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1. Introduction

In some applications we often encounter the problem of recovering a signal x, up to 
a unimodular scalar, in a Hilbert space H from a system of measurements, which is 
the same as recovering the rank-one operator x ⊗ x from the given measurements. More 
precisely, let H be a Hilbert (signal) space over F (= C or R) and let Fj : H → F (j ∈ J) 
be a system of measurement functions that satisfy the condition Fj(λx) = Fj(x) for all 
x ∈ H and every unimodular scalar λ ∈ F . We say that {Fj}j∈J does phase-retrieval (or, 
is a phase-retrievable system) if the measurements {Fj(x) : j ∈ J} uniquely determines 
x ⊗ x for every x ∈ H, where the notation x ⊗ y denotes the rank-one operator defined 
by (x ⊗ y)(z) = 〈z, y〉x for every z ∈ H. In the case that H = Rd (or Cd), x ⊗ y = xy∗, 
where y∗ is the transpose (or conjugate transpose) of y.

Depending on choices of the measurement functions, we will get into different scenar-
ios of the phase-retrieval problems, some of which have been extensively investigated 
in recent literature (cf. [1–23], [25], [27–29], [34,36–43] and the references therein). 
For example, if measurement functions are given by Fj(x) = |〈x, xj〉|2, then this 
leads to the recently well-studied problems for vector valued phase-retrievable frames 
{xj}j∈J . Vector-valued phase-retrievable frames can also be viewed as a special case 
of a phase-retrievable problem from positive (or more generally self-adjoint) operator 
induced quadratic measurements. This paper examines several aspects of general phase-
retrievable operator-valued frames. The elementary (both in terms of statements and 
proofs) characterizations of such frames will be presented in connection with several ap-
plications to, for example, group representation frames, point-wisely tight frames, almost 
point-wise phase-retrievable frames and representations of quantum channels etc.

Notations: H will be a separable Hilbert space and B(H) denote the space of bounded 
linear operators on H. We also use Md(C) or Md(R ) for B(H) in the case that H = Cd

or R d. While 〈 , 〉 usually denotes the inner product for a Hilbert space H, it is also 
used for the Hilbert-Schmidt inner product defined by 〈S, T 〉 = Tr(ST ∗).

2. Phase-retrieval operator-valued frames

This section will be devoted to presenting some characterizations for phase-retrievable 
operator-valued frames that generalize several well-known characterizations for vector 
valued phase-retrievable frames, fusion frames, or, more generally, frames of Hermi-
tian matrices (cf. [4,17,22,25,40,42,43]). The characterizations are for arbitrary operator 
families and for both finite and infinite dimensional Hilbert spaces. Moreover, the op-
erator family does not have to countable (i.e., the index set J can be uncountable, see 
Remark 2.2). We also discuss a few applications including the minimal length of phase-
retrievable operator-valued frames, the phase-retrievability of the “complement” systems, 
and phase-retrieval by norms.

Phase-retrievable has natural connections with quantum information theory. Let A
be a von Neumann algebra acting on a Hilbert space H over F (where F = R or C). An 
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operator family in A is a (finite or infinite) sequence of operators {Tj}j∈J in A. The set 
of all the normal positive linear functionals f is the (quantum) state space of A such that 
f(I) = 1, which will be denoted by S(A). A pure state is an extreme point of the state 
space. In what follows we will mostly consider the case when A = B(H). In this case the 
quantum state space of B(H) is exactly the space of all positive trace-class operators of 
trace one.

Definition 2.1. Let {Tj}j∈J be an operator system in A. We say that {Tj}j∈J is

(i) an operator-valued frame for H if 
∑

j∈J T ∗
j Tj is bounded invertible;

(ii) phase-retrievable from quadratic measurement (QM-phase-retrievable for short) if 
{〈x, Tjx〉}j∈J uniquely determines x ⊗ x for every x ∈ H;

(iii) state-retrievable if {ρ(Tj)}j∈J uniquely determines ρ for every ρ ∈ S(A).

Recall that a (vector-valued) frame for a Hilbert space H is a sequence {xj}j∈J such 
that

AI ≤
∑
j∈J

xj ⊗ xj ≤ BI

for some constants A, B > 0. Therefore if we let Tj = xj⊗xj then {Tj}j∈J is a QM-phase-
retrievable operator-valued frame if and only if {xj}j∈B is a phase-retrievable frame. The 
following is an easy consequence from the definition.

Proposition 2.1. Let A be a von Neumann algebra acting on a Hilbert space H and 
{Tj}j∈J be an operator family in A such that 

∑
j∈J T ∗

j Tj is bounded.

(i) If {Tj}j∈J is state-retrievable, then it is QM-phase-retrievable.
(ii) If dimH < ∞, then the QM-phase-retrievability of {Tj}j∈J implies that it is an 

operator-valued frame.

2.1. Characterizations

There have been several well-known necessary and sufficient conditions for phase re-
trievable frames (cf. [4–8]). One of them is characterized in terms of the “complement
property”: A frame {xj}j∈J is said to have the complement property if for every Ω ⊆ J

we have either span{xj}j∈Ω = H or span{xj}j∈Ωc = H. The complement property is 
necessary for a frame to be phase-retrievable. The condition is also sufficient for real 
Hilbert spaces, but not sufficient for complex Hilbert spaces.

It is easy to prove that the complement property is equivalent to the condition that

span{〈x, xj〉xj : j ∈ J} = H
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for every nonzero vector x ∈ H. The following slightly more general statement (for 
non-self-adjoint operators Tj = xj ⊗ yj) remains to be true.

Proposition 2.2. Let Tj = xj ⊗ yj with xj , yj ∈ H (j ∈ J). Then the following are 
equivalent:

(i) span{Tjx : j ∈ J} = H for every nonzero vector x ∈ H;
(ii) For any Ω ⊆ J we have either span{xj}j∈Ω = H or span{yj}j∈Ωc = H.

Condition (i) (and its variations) of Proposition 2.2 can be stated for any operator-
valued frames and in fact it has been used in the characterization of phase-retrievable 
frames of self-adjoint operators (cf. [25,40]). Here we generalize some of those to arbitrary 
operator-valued frames.

Lemma 2.3. An operator-valued frame {Tj}j∈J is not QM-phase-retrievable if and only 
if there exist nonzero vectors x, y such that x /∈ iRy and

〈x, Tjy〉 + 〈x, T ∗
j y〉 = 0

for j ∈ J .

(Note that in the real Hilbert space case, the condition x /∈ iRy is automatically 
satisfied.)

Proof. For x, y ∈ H, write u = x +y and v = x −y. Then we have that 〈u, Tju〉 = 〈v, Tjv〉
if and only if 〈x, Tjy〉 + 〈x, T ∗

j y〉 = 0.
Now first assume that {Tj}j∈J is not QM-phase-retrievable. Then there exists u, v

such that u ⊗ u 
= v ⊗ v but 〈u, Tju〉 = 〈v, Tjv〉 for every j. Let x = 1
2(u + v) and 

y = 1
2(u −v). Then u = x +y and v = x −y, and 〈x, Tjy〉 + 〈x, T ∗

j y〉 = 0. Clearly x and y
are nonzero. If x = iay for some a ∈ R in the complex Hilbert space case, then we have 
u = (1 + ia)y and v = (1 − ia)y, which implies that u ⊗ u = v ⊗ v. Thus we also have 
x /∈ iRy.

Conversely, assume that 〈x, Tjy〉 + 〈x, T ∗
j y〉 = 0 for some nonzero vectors x and y

with x /∈ iRy. Then 〈u, Tju〉 = 〈v, Tjv〉 with u = x + y and v = x − y. If u ⊗ u = v ⊗ v, 
then u and v are linearly dependent and ||u|| = ||v||, which implies that x and y are 
linearly dependent. Write x = cy with c 
= 0. Thus we have |c + 1| = |c − 1| since 
||u|| = ||v||. If H is a real Hilbert space, then c is real and hence c = 0, which leads 
to a contradiction. If H is a complex Hilbert space, then c ∈ C. Thus |c + 1| = |c − 1|
holds only if c is purely imaginary, i.e. c = ia for some a ∈ R, which contradicts with 
the assumption that x /∈ iRy. Thus we obtain that u ⊗ u 
= v ⊗ v and so {Tj}j∈J is not 
QM-phase-retrievable. �
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Proposition 2.4. Let {Tj}j∈J be an operator-valued frame for a real Hilbert space H. 
Then the following are equivalent:

(i) {Tj}j∈J is QM-phase-retrievable.
(ii) span{(Tj + T ∗

j )x}j∈J = H for every nonzero vector x ∈ H.
In the finite-dimensional and |J | < ∞ case, this condition is also equivalent to:

(iii)
∑

j∈J (Tj + T ∗
j )(x ⊗ x)(Tj + T ∗

j ) is invertible for every nonzero vector x ∈ H.

Proof. Clearly (ii) and (iii) are equivalent in the finite-dimensional case. Write Sj = Tj +
T ∗
j . Then 〈x, Sjy〉 +〈x, S∗

j y〉 = 2(〈x, Tjy〉 +〈x, T ∗
j y〉). So 〈x, Sjy〉 +〈x, S∗

j y〉 = 0 if and only 
if 〈x, Tjy〉 +〈x, T ∗

j y〉 = 0. Thus, by Lemma 2.3, we have that {Tj} is QM-phase-retrievable 
if and only if {Tj +T ∗

j } is QM-phase-retrievable. Therefore we can assume that T ∗
j = Tj . 

By Lemma 2.3 we have that {Tj} is not QM-phase-retrievable if and only if there exist 
nonzero vectors x, y such that 〈y, Tjx〉 = 0. Thus we establish the equivalence of (i) 
and (ii). �
Remark 2.1.

(i) If Tj is a self-adjoint matrix for every j, then Proposition 2.4 recovers Theorem 2.1 
in [40]. So this can be considered as an extension since here Tj is not required to be 
self-adjoint and H does not have to be finite-dimensional.

(ii) If we do not assume that Tj is self-adjoint, then the condition that span{Tjx} = H

for every nonzero vector x ∈ H is neither necessary nor sufficient for the QM-phase-
retrievability of {Tj}. For example, in R2, let T1 = e1 ⊗ e1, T2 = e2 ⊗ e2 and 
T3 = e1 ⊗ e2. Then it is easy to verify that span{(Tj + T ∗

j )x}3
j=1 = R2 for every 

nonzero vector x ∈ R2. Thus, by Proposition 2.4, {Tj}3
j=1 is QM-phase-retrievable. 

However, {Tje1}3
j=1 does not span R 2.

Conversely, if we let T1 = e1 ⊗ e1, T2 = e2 ⊗ e2 and T3 = e1 ⊗ e2 − e2 ⊗ e1. Then ∑3
j=1 Tj(x ⊗x)T ∗

j is invertible for every x 
= 0. However, by using the fact that T3+T ∗
3 =

0, we get that span{(Tj + T ∗
j )x}3

j=1 
= R2 for x = e1, which shows by Proposition 2.4
that {Tj} is not QM-phase-retrievable.

For complex Hilbert spaces, without losing the generality we will work on the concrete 
space H = �d2(C), where �d2(C) = Cd when d is finite and �d2(C) = �2(C) is the space 
of square-summable sequences when d = ∞. Similarly �d2(R ) represents the real Hilbert 
space. For every vector x ∈ �d2(C), we write x = Re(x) + iIm(x) with Re(x), Im(x) ∈
�d2(R ). A closed subspace of a Hilbert space W is said to have co-dimension one if 
dimW⊥ = 1.

Proposition 2.5. An operator-valued frame for �d2(C) is QM-phase-retrievable if and only 
if for every nonzero vector x ∈ �d2(C) the subspace
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Wx := span{Re((Tj +T ∗
j )x)⊕Im((Tj +T ∗

j )x), Im((T ∗
j −Tj)x)⊕Re((Tj−T ∗

j )x) : j ∈ J}

has co-dimension one in �d2(R ) ⊕ �d2(R ).

Proof. A simple calculation shows that

〈y, Tjx〉 + 〈y, T ∗
j x〉 = 〈Re(y) ⊕ Im(y), Re((Tj + T ∗

j )x) ⊕ Im((Tj + T ∗
j )x)〉

+i〈Re(y) ⊕ Im(y), Im((T ∗
j − Tj)x) ⊕Re((Tj − T ∗

j )x)〉.

Thus 〈y, Tjx〉 + 〈y, T ∗
j x〉 = 0 for all j if and only if Re(y) ⊕ Im(y) is orthogonal to Wx.

If y = iax for some nonzero vector x and nonzero scalar a ∈ R, then 〈y, Tjx〉 +
〈y, T ∗

j x〉 = 0. Note that Re(y) ⊕ Im(y) = a((−Im(x)) ⊕Re(x)). Thus span{(−Im(x)) ⊕
Re(x)} is a one-dimensional subspace of the W⊥

x . Thus dimW⊥
x ≥ 1.

On the other hand, we also have dimW⊥
x > 1 if and only if there exist vectors 

u, v ∈ �d2(R ) such that u ⊕ v /∈ span{(−Im(x)) ⊕ Re(x)} and u ⊕ v ∈ W⊥
x , which, 

in turn, is equivalent to the condition that there exists y = u + iv /∈ iRx such that 
〈y, Tjx〉 + 〈y, T ∗

j x〉 = 0 for every j ∈ J . Therefore we get that for a nonzero vector x, 
dimW⊥

x = 1 if and only if there exists no nonzero vector y such that 〈y, Tjx〉 +〈y, T ∗
j x〉 =

0 for every j ∈ J . Hence, Lemma 2.3 implies that {Tj}j∈J is QM-phase-retrievable if and 
only if the following Wx has co-dimension one for every nonzero vector x ∈ �d2(C). �
Remark 2.2. Although we have assumed that {Tj}j∈J is a finite or countable set, from 
their proofs it is clear that all the above results remain to be true even when the index 
set J is not countable (in this case we drop off the requirement that {Tj}j∈J is an 
operator-valued frame).

In the case that H is finite-dimensional and each Tj is self-adjoint we get the following 
consequence that was due to Wang and Xu [40] (also see the work of P. Casazza and his 
collaborators for the case where each Tj is an orthogonal projection).

Corollary 2.6. Let H = Cd and assume that each Tj ∈ B(H) is self-adjoint. Then {Tj}
is QM-phase-retrievable if and only if

dim span{Re(Tjx) ⊕ Im(Tjx) : j ∈ J} = 2d− 1

holds for every nonzero x ∈ Cd. In particular |J | ≥ 2d − 1 if {Tj}j∈J does QM-phase-
retrieval.

Remark 2.3. Note that for a finite sequence {zj}kj=1, span{zj} is m-dimensional if and 

only if rank(
∑k

j=1 zj ⊗zj) = m. Therefore for self-adjoint matrices Tj ∈ Md(C), we have 
that {Tj}kj=1 is QM-phase-retrievable if and only if
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rank
[ ∑k

j=1 Re(Tjx) ⊗Re(Tjx)
∑k

j=1 Re(Tjx) ⊗ Im(Tjx)∑k
j=1 Im(Tjx) ⊗Re(Tjx)

∑k
j=1 Im(Tjx) ⊗ Im(Tjx)

]
= 2d− 1

for every nonzero vector x ∈ Cd.

2.2. Applications

The following corollary is a simple consequence of the characterizations of QM-phase-
retrievable operator-valued frames.

Corollary 2.7. Let {Tj}j∈J be an operator-valued frame on a Hilbert space H. Then 
QM-phase-retrievability of {Tj + T ∗

j } implies the QM-phase-retrievability of {Tj}. The 
converse is also true for real Hilbert case but false for the complex case.

Proof. The real Hilbert space case follows from the proof of Proposition 2.4, and the 
complex Hilbert space case follows from Proposition 2.5. For a counterexample of the 
converse, let H = C2, T1 = i(e1 ⊗ e1), T2 = i(e2 ⊗ e2), T3 = e1 ⊗ e2 and T4 = e2 ⊗ e1. 
Then span{Tj}4

j=1 = M2×2(C). Thus {Tj}4
j=1 is QM-phase-retrievable. However {Tj +

T ∗
j }4

j=1 = {0, 0, T3 + T4, T3 + T4} is clearly not QM-phase-retrievable. �
One of the interesting and difficult problems in phase-retrieval and in quantum 

information theory is to determine the minimal number of measurements required to per-
forming phase-retrieval (see [35,42,43] and the references therein). In the d-dimensional 
real Hilbert space H case, the minimal number N such that there exists a QM-phase-
retrievable frame of the form {xj ⊗ xj}Nj=1 is 2d − 1. However, the minimal number N
could be smaller than 2d −1 for arbitrary operator-valued QM-phase-retrievable frames. 
For example, Z. Xu constructed an example in [42] of a QM-phase-retrievable frame of 
six symmetric matrices for R4.

For F = R or C, let m(Fd) (respectively ms(Fd)) be the smallest number N such that 
there exists a QM-phase-retrievable operator-valued frames of length N (respectively, 
QM-phase-retrievable self-adjoint operator-valued frames of length N). Then the above 
corollary shows that m(Rd) = ms(Rd). It would be interesting to know whether we also 
have m(Cd) = ms(Cd).

Recall that a family of orthogonal projections {Pj} does phase retrieval if {||Pjx||} de-
termines x uniquely up to a unimodular scalar [2,17,18,22,27]. Since ||Pjx||2 = 〈x, Pjx〉, 
we have that this is the same as saying that {Pj} is a QM-phase-retrievable projection-
valued frame. P. Casazza etc proved that if 

∑
j∈J Pj = I, then {P⊥

j } is QM-phase-
retrievable if and only if {Pj} is QM-phase-retrievable. The following generalizes the to 
arbitrary operator-valued frame.

Proposition 2.8. Let Tj ∈ B(H) and T =
∑

j∈J Tj, where the sum is convergent in the 
sense of weak-operator-topology if |J | = ∞. Then {Tj} is QM-phase-retrievable if and 
only if {T − Tj} is QM-phase-retrievable.



D. Han, T. Juste / Linear Algebra and its Applications 579 (2019) 148–168 155
Proof. Assume that {Tj} is QM-phase-retrievable but {T − Tj} is not QM-phase-
retrievable. Then by Lemma 2.3 we get that there exist nonzero vectors x, y such that 
x /∈ iRy and

〈x, (T − Tj)y〉 + 〈x, (T ∗ − T ∗
j )y〉 = 0

for each j.
Suppose that J = {1, ..., N} is a finite set. Summing up over j and using the assump-

tion T =
∑N

j=1 Tj we get that

N(〈x, Ty〉 + 〈x, T ∗y〉) − (〈x, Ty〉 + 〈x, T ∗y〉) = 0.

Thus 〈x, Ty〉 + 〈x, T ∗y〉 = 0 since N > 1, and therefore we get that 〈x, Tjy〉 + 〈x, T ∗
j y〉 =

0 for each j, which leads to the contradiction that {Tj} is not QM-phase-retrievable. 
Suppose that J = {1, 2, ...} is infinite. Then we get

〈x, Ty〉 + 〈x, T ∗y〉 = 1
N

(〈x,
N∑
j=1

Tjy〉 + 〈x,
N∑
j=1

T ∗
j y〉)

for every N . This implies by letting N → ∞ that 〈x, Ty〉 + 〈x, T ∗y〉 = 0, which also 
leads to the contradiction that {Tj} is not QM-phase-retrievable. Therefore we have 
that {T − Tj} is QM-phase-retrievable.

Conversely, assume that {T − Tj} is QM-phase-retrievable. Suppose that {Tj} is not 
QM-phase-retrievable. Again by Lemma 2.3 there exist nonzero vectors x, y such that 
x /∈ iRy and

〈x, Tjy〉 + 〈x, T ∗
j y〉 = 0

for each j. Summing up over j we get 〈x, Ty〉 + 〈x, T ∗y〉 = 0. Thus we obtain that

〈x, (T − Tj)y〉 + 〈x, (T ∗ − T ∗
j )y〉 = 0

which implies that {T − Tj} is not QM-phase-retrievable. Therefore {Tj} must be QM-
phase-retrievable. �
Example 2.1. Let {xj} and {yj} be a dual frame pair, i.e., 

∑
j∈J xj ⊗ yj = I. Then 

{xj ⊗ yj} is QM-phase-retrievable if and only if {I − xj ⊗ yj} is QM-phase-retrievable.

For projection-valued frames, norm-retrieval is the same as QM-phase-retrieval since 
||Px||2 = 〈x, Px〉 for any orthogonal projection P and any x ∈ H. There are many other 
situations (cf. the forward imaging model studied in [16], and quantum measurements 
discussed in [30,35]) where norm measurement is also a natural choice. For example if 
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the measurement operators Tj are operators from H to a space Wj , where Wj is not 
necessarily a subset of H, then clearly the quadratic measurement does not apply. In 
this case the natural measurement seems to be ||Tjx||.

Definition 2.2. Let H and Wj be Hilbert spaces and Tj ∈ B(H, Wj) for j ∈ J . We say 
that {Tj} does phase retrieval from norm measurements (NM-phase-retrieval for short) 
if {||Tjx||}j∈J uniquely determines x ⊗ x.

It follows from ||Tjx||2 = 〈x, T ∗
j Tjx〉 that {Tj} does NM-phase-retrieval if and only if 

{T ∗
j Tj} does QM-phase-retrieval.

Corollary 2.9. Let H and Wj be Hilbert spaces and Tj ∈ B(H, Wj) for j ∈ J .

(i) If H, Wj are real Hilbert spaces, then {Tj} does NM-phase-retrieval if and only if 
span{T ∗

j Tjx} = H for every nonzero vector x ∈ H.
(ii) If H = �d2(C), then {Tj} does NM-phase-retrieval if and only if for every nonzero 

vector x ∈ H,

span{ReT ∗
j Tjx⊕ ImT ∗

j Tjx : j ∈ J}

has co-dimension one in �d2(R ) ⊕ �d2(R ).

3. Almost everywhere point-wise and point-wise tight phase-retrievable 
operator-valued frames

For an operator-valued frames {Tj}j∈J , we establish in this section some connections 
among the phase-retrievability of the operator-valued frames, the (almost everywhere) 
point-wise phase-retrievability, and point-wise tight frame property for {Tj}. We will 
assume that H = R d or Cd is finite-dimensional and J = {1, ..., N} is finite.

For the real Hilbert space Rd case, it is easy to prove that {Tjx}Nj= is phase-retrievable 
for some x if and only if {Tjx}Nj=1 is phase-retrievable for any generic vector x. Moreover, 
if Tj = xj ⊗ xj , then {Tj}Nj=1 is QM-phase-retrievable if and only if and if {Tjx}Nj= is 
phase-retrievable for some x ∈ H. However, this is no longer true in general as demon-
strated by the following example.

Example 3.1. Again we use the example of Z. Xu [42] which is an QM-phase-retrievable 
operator-valued frame with six Hermitian operators {Tj}6

j=1 for R4. Clearly {Tjξ}6
j= is 

not phase retrievable for any ξ ∈ R4 since it requires at least 7 vectors for a vector-valued 
frame to be phase-retrievable for R 4.

Conversely, let H = R2 and {e1, e2} be its standard orthonormal basis. Define T1 =
e1 ⊗ e1 + e2 ⊗ e2, T2 = e1 ⊗ e1 + 2e2 ⊗ e2 and T3 = e1 ⊗ e1 + 3e2 ⊗ e2. Then {T1, T2, T3}
is an operator-valued frame for R 2. For x = e1 we have span{T1x, T2x, T3x} = Re1 
=
R2. Thus, by Proposition 2.4, {T1, T2, T3} is not QM-phase-retrievable. However, for 
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x = e1 + e2 we have {T1x, T2x, T3x} = {e1 + e2, e1 + 2e2, e1 + 3e2}, which is clearly is 
phase-retrievable for R 2.

If an operator-valued frame {Tj}j∈J has the property that {Tjx}j∈J is phase-
retrievable for some x ∈ H (and hence for almost all x ∈ H), then we say that {Tj}j∈J
is almost everywhere point-wise phase-retrievable. The above example naturally leads to 
the question of identifying a large class of systems which are QM-phase-retrievable if and 
only if they are almost everywhere point-wise phase-retrievable. We will prove in Theo-
rem 3.3 that, like QM-phase-retrievable operator-valued frames, every generic operator-
valued frame of length N in Rd is almost everywhere point-wise phase-retrievable when 
N ≥ 2d − 1. For a concrete class of such examples, it was proved in [37] that if π is 
an irreducible unitary representation of a finite abelian group G, then {π(g)}g∈G is al-
most everywhere point-wise phase-retrievable. It remains open whether it is still true for 
non-abelian groups [37,23].

The following was recently proved by Y. Wang and Z, Xu.

Theorem 3.1 ([40], Theorem 4.1). Let N ≥ 2d −1. Then a generic operator-valued frame 
A = (A1, ..., AN ) of Hermitian matrices is QM-phase-retrievable for R d.

By Corollary 2.7 and the above theorem we immediately get

Corollary 3.2. Let N ≥ 2d − 1. Then a generic operator-valued frame A = (A1, ..., AN )
is QM-phase-retrievable for R d.

Example 3.1 tells that the set of almost everywhere point-wise phase-retrievable 
operator-valued frames is different from the set of QM-phase-retrievable operator-valued 
frames. Therefore the following is not a generalization of Theorem 3.3 or Theorem 4.1 
in [40], but should be considered as a supplement to these results.

Theorem 3.3. Assume that N ≥ 2d − 1. Let P the set of all n-tuples (A1, ..., AN ), where 
Aj ∈ Md(R), such that {Ajx}Nj=1 is phase-retrievable for some x ∈ Rd. Then P is open 
dense in the direct sum space Md(R) ⊕ ... ⊕Md(R) (N -copies).

Proof. Write A = (A1, ..., AN ). Let {xj}Nj=1 be a phase-retrievable frame for Rd such 
that xj 
= 0 for each j. Set Aj = xj ⊗ xj , and pick x ∈ R d such that 〈 x , xj 〉 
= 0 for 
every j. Then clearly {Ajx} is phase-retrievable and hence P is nonempty.

Now let A = (A1, ..., AN ) ∈ P and x ∈ R d be such that {Ajx} is phase-retrievable. We 
clearly can assume that ||x|| = 1. Since the set of all the phase-retrievable vector-valued 
frames of length N is open in R d ⊕ ... ⊕ R d, there exists δ > 0 such that {yj}Nj=1 is 
phase-retrievable whenever 

∑N
j=1 ||Ajx − yj ||2 < δ. This implies that if 

∑N
j=1 ||Aj −

Bj ||2 < δ, then {Bjx}Nj=1 is phase-retrievable and consequently B = (B1, ..., BN ) ∈ P. 
Thus P is open.
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For density, let B = (B1, ..., BN ) ∈ Md(R) ⊕ ... ⊕ Md(R) be an arbitrary element 
and let A = (A1, ..., AN ) ∈ P be a fixed element with {Ajx} being phase-retrievable 
for some x ∈ R d. Consider C(t) = tA + (1 − t)B. We show that C(t) is in P for 
all but finitely many numbers of t′s, which will imply that B is a limit point of P. 
Since {Ajx} is phase-retrievable, we have that either span{Ajx : j ∈ Λ} = R d or 
span{Ajx : j ∈ Λc} = R d for every Λ ⊆ {1, ..., N}. Thus we can associate every Λ with 
a set Φ(Λ) of cardinality d such that it is either a subset of Λ or a subset of Λc and 
det[Ajx]j∈Φ(Λ) 
= 0. Define

fΛ(t) = det[(tAj + (1 − t)Bj)x]j∈Φ(Λ).

Then these are nonzero polynomials since fΛ(1) 
= 0 for every Λ. By the complement 
property for phase-retrievable frames, we clearly have that {tAj + (1 − t)Bj)x}Nj=1 is 
phase retrievable if fΛ(t) 
= 0 for every Λ. Since the union of the zero sets of fΛ is finite, 
we conclude that C(t) is in P for all but finitely many numbers of t′s. �

We have seen from section 2 that the characterizations of QM-phase-retrievable frames 
are much simpler for frames of self-adjoint operators. However this might be too re-
strictive since there are many useful and interesting examples (e.g. frames of unitary 
operators) do not fall into this category. In what follows, we will call an operator family 
S a self-adjoint family if T ∈ S implies T ∗ ∈ S.

Lemma 3.4. Let {Tj}Nj=1 be a self-adjoint family. If {Tj}Nj=1 is QM-phase-retrievable, 
then for every nonzero vector x ∈ H we have that 

∑N
j=1 Tj(x ⊗ x)T ∗

j is invertible.

Proof. We only need to prove for the complex Hilbert space case. Assume that ∑N
j=1 Tj(x ⊗ x)T ∗

j is not invertible for some x 
= 0. Then there exists y 
= 0 such that 
〈y, Tjx〉 = 0 for every j. If y = iax for some 0 
= a ∈ R, then we get 〈x, T ∗

j x〉 = 0, 
which implies that {Tj} is not QM-phase-retrievable. So we have that y /∈ iRx. Since 
S is self-adjoint we obtain that 〈y, T ∗

j x〉 = 0 for every j. Thus 〈y, Tjx〉 + 〈y, T ∗
j x〉 = 0, 

which implies by Lemma 2.3 that {Tj} is not QM-phase-retrievable. This contradiction 
shows that 

∑N
j=1 Tj(x ⊗ x)T ∗

j must be invertible for every x 
= 0. �
Remark 3.1. The converse of the above lemma is not true. For the complex case, let 
{xj}Nj=1 be a frame for Cd such that it has the complement property but not phase-
retrievable (existence of such a frame is guaranteed for complex Hilbert spaces). Let 
Tj = xj ⊗ xj . Clearly {Tj}Nj=1 is a self-adjoint family, 

∑N
j=1 Tj(x ⊗ x)T ∗

j is invertible for 
every nonzero vector x and {Tj} is not QM-phase-retrievable. However, this phenomenon 
can not happen for some well-structured operator-valued frames. Here we examine the 
example of projective unitary group representation frames. For a counterexample for real 
space case, we use the modified example of Remark 2.1: Conversely, if we let T1 = e1⊗e1, 
T2 = e2 ⊗ e2, T3 = e1 ⊗ e2 − e2 ⊗ e1 and T4 = T ∗

3 . Then 
∑4

j=1 Tj(x ⊗ x)T ∗
j is invert-

ible for every x 
= 0. However, by using the fact that T3 + T ∗
3 = 0 = T4 + T ∗

4 , we get 
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that span{(Tj + T ∗
j )x}4

j=1 
= R2 for x = e1, which shows by Proposition 2.4 that the 
self-adjoint family {Tj}4

j=1 is not QM-phase-retrievable.

Now we examine a special type of structure frames that have been systematically 
investigated in the literature (cf. [23,26,32,31,33,37]). Recall that a projective unitary 
representation π for a finite group G is a mapping g 
→ π(g) from G into the group 
U(H) of all the unitary operators on a finite dimensional Hilbert space H such that 
π(g)π(h) = μ(g, h)π(gh) for all g, h ∈ G, where μ(g, h) is a scalar-valued function on 
G ×G taking values in the circle group T . In this case we also say that π is a μ-projective 
unitary representation. It is clear from the definition that we have

(i) μ(g1, g2g3)μ(g2, g3) = μ(g1g2, g3)μ(g1, g2) for all g1, g2, g3 ∈ G.
(ii) μ(g, e) = μ(e, g) = 1 for all g ∈ G, where e denotes the group unit of G.

Any function μ : G ×G 
→ T satisfying (i)–(ii) above will be called a multiplier or 
2-cocycle of G. It follows from (i) and (ii) that we also have

(iii) μ(g, g−1) = μ(g−1, g) holds for all g ∈ G.

A projective unitary representation π of G on H is irreducible if span{π(g) : g ∈ G} =
B(H).

Proposition 3.5. Let π be a μ-projective unitary representation of G on a complex Hilbert 
space H. Then the following are equivalent:

(i) {π(g)}g∈G is QM-phase-retrievable.
(ii)

∑
g∈G π(g)(x ⊗ x)π(g)∗ is invertible for every x 
= 0.

(iii) π is irreducible.
(iv) There exists scalar λ > 0 such that 

∑
g∈G π(g)(x ⊗ y)π(g)∗ = λ〈x, y〉I for all 

x, y ∈ H.
(v) {π(g)}g∈G is tight frame for B(H).
(vi) {π(g)}g∈G is a frame for B(H).

Proof. Clearly, we have the equivalence of (ii) and (iii) and the implications (v) ⇒ (vi) ⇒
(i). The implication (i) ⇒ (ii) follows from Lemma 3.4.

For (iii) ⇒ (v), it is a routine exercise to check that 
∑

g∈G π(g)(x ⊗y)π(g)∗ commutes 
with π(h) for every h ∈ G. Since π is irreducible, there exists scalar b(x, y) such that ∑

g∈G π(g)(x ⊗y)π(g)∗ = b(x, y)I. Clearly, b(x, y) is bilinear and thus there is an operator 
T such that b(x, y) = 〈Tx, y〉 for all x, y ∈ H. Now for every h ∈ G and x, y ∈ H, we 
have

〈Tπ(h)x, y〉 =
∑

π(g)(π(h)x⊗ y)π(g)∗

g∈G
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=
∑
g∈G

π(gh)(x⊗ π(h)∗y)π(gh)∗

=
∑
g′∈G

π(g′)(x⊗ π(h)∗y)π(g′)∗

= b(x, π(h)∗y) = 〈Tx, π(h)∗, y〉 = 〈π(h)Tx, y〉.

This implies that T commutes with π(h) for all h ∈ G and therefore T = λI for some 
scalar λ. Since λ||x||2I = b(x, x)I =

∑
g∈G π(g)(x ⊗ x)π(g)∗ is a positive operator for 

every x 
= 0 we obtain that λ > 0.
For (iv) ⇒ (v), it is enough to show that 

∑
g∈G〈x ⊗ y, π(g)〉π(g) = λ(x ⊗ y) for every 

x, y ∈ H. Let

A =
∑
g∈G

〈x⊗ y, π(g)〉π(g).

Then for every z ∈ H, we have

Az =
∑
g∈G

〈x⊗ y, π(g)〉〉π(g)z

=
∑
g∈G

tr((x⊗ y)π(g)∗)π(g)z

=
∑
g∈G

tr(x⊗ π(g)y)π(g)z

=
∑
g∈G

〈x, π(g)y〉π(g)z

=
∑
g∈G

(π(g)z ⊗ π(g)y)(x)

= λ〈z, y〉x
= λ(x⊗ y)z.

Thus A = λ(x ⊗ y). Since every operator T is the sum of rank-one operators we get
∑
g∈G

〈T, π(g)〉π(g) = λT

hold every T ∈ B(H). Thus {π(g)}g∈G is a λ-tight frame for B(H). �
We would like to see how much of the previous proposition can be generalized to more 

general operator-valued frames. For this purpose we introduce:

Definition 3.1. We say an operator family {Tj}j∈J is point-wisely tight if for every x 
= 0, 
{Tjx}j∈J is a tight frame for H, i.e., 

∑
j∈J Tjx ⊗ Tjx = λxI for some λx > 0.
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Theorem 3.6. Let {Tj}j∈J be an operator family for a complex Hilbert space H. Then 
the following are equivalent:

(i) There exists a positive invertible operator B such that {TjB}j∈J is a Parseval frame 
for B(H).

(ii) {Tj}j∈J is point-wisely tight.
(iii) For every x, y ∈ H, there exists λx,y such that

∑
j∈J

Tj(x⊗ y)T ∗
j = λx,yI,

and λx,x > 0 when x 
= 0.

Proof. (i) ⇒ (ii): Suppose that there exists a positive invertible operator B such that 
{TjB} is a Parseval frame for B(H). Then for any T ∈ B(H) we have

∑
j∈J

〈T, TjB〉TjB = T.

Note that

〈TB−1, TjB〉 = Tr(TB−1(TjB)∗) = Tr(TT ∗
j ) = 〈T, Tj〉.

Thus, by replacing T with TB−1, we get 
∑

j∈J 〈T, Tj〉TjB = TB−1 and hence we have ∑
j∈J 〈T, Tj〉Tj = T (B−1)2.
Let S = (B−1)2. Now for a fixed x 
= 0, define

A =
∑
j∈J

Tjx⊗ Tjx.

Then for any z, y ∈ H we have that

〈Az, y〉 =
∑
j∈J

〈z, Tjx〉 · 〈Tjx, y〉 =
∑
j∈J

〈z ⊗ x, Tj〉〈Tj , y ⊗ x〉

= 〈
∑
j∈J

〈z ⊗ x, Tj〉Tj , y ⊗ x〉

= 〈(z ⊗ x)S, y ⊗ x〉 = 〈x, Sx〉〈z, y〉.

This implies that Az = 〈x, Sx〉z for any z ∈ H, and hence A = 〈x, Sx〉I. Therefore 
{Tj}j∈J is point-wisely tight.

(ii) ⇒ (iii): Assume that 
∑

j∈J Tjx ⊗ Tjx = λxI for each x with λx > 0 when x 
= 0. 
Now fix any x, y ∈ H. We have
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λx+yI =
∑
j∈J

Tj(x + y) ⊗ Tj(x + y)

= (λx + λy)I +
∑
j∈J

Tjy ⊗ Tjx +
∑
j∈J

Tjx⊗ Tjy,

and

λx+iyI =
∑
j∈J

Tj(x + iy) ⊗ Tj(x + iy)

= (λx + λy)I + i
∑
j∈J

Tjy ⊗ Tjx− i
∑
j∈J

Tjx⊗ Tjy.

This implies that

∑
j∈J

Tjx⊗ Tjy = 1
2[λx+y + iλx+iy − (1 + i)(λx + λy)]I.

Thus we get (iii) by setting λx,y = 1
2 [λx+y + iλx+iy − (1 + i)(λx + λy)].

(iii) ⇒ (i): Assume that

∑
j∈J

Tj(x⊗ y)T ∗
j = λx,yI,

and λx,x > 0 when x 
= 0. Then clearly λx,y defines a positive bilinear form on H, 
and hence there exists a positive invertible operator S such that λx,y = 〈Sx, y〉 for all 
x, y ∈ H. Let B = S−1/2. A simple calculation shows that (iii) implies

∑
j∈J

〈u⊗ v, TjB〉TjB = u⊗ v

for all u, v ∈ H. Since span{u ⊗ v : u, v ∈ H} = B(H), we get that {TjB}j∈J is a 
Parseval frame for B(H). �

From the proof of Theorem 3.6, we have that λx,y = 〈B−1/2x, y〉 when {TjB}j∈J is a 
Parseval frame for B(H). Thus we obtain the following consequence:

Corollary 3.7. Let {Tj}j∈J be an operator family for a complex Hilbert space H. Then 
the following are equivalent:

(i) {Tj}j∈J is a tight frame for B(H).
(ii) There exists λ > 0 such that 

∑
j∈J Tj(x ⊗ x)T ∗

j = λ〈x, x〉I.
(iii) There exists λ > 0 such that 

∑
j∈J Tj(x ⊗ y)T ∗

j = λ〈x, y〉I.
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Using the fact that every operator is a linear combination of rank-one operators, we 
also have:

Corollary 3.8. An operator family {Tj}j∈J is a point-wisely tight operator system for a 
complex Hilbert space H if and only if there exists a positive operator B such that

∑
j∈J

TjAT ∗
j = tr(AB)I

for every A ∈ B(H).

Remark 3.2. In the real Hilbert space case, λx,y in (iii) is positive symmetric. So it is 
obvious from the proof of Theorem 3.6 that we still have the equivalence between (i) and 
(iii).

4. Phase-retrievability of representations of quantum channels

In quantum information and tomography theory, special type of operator families are 
used for quantum channels and measurements of unknown quantum states (cf. [30,32,
35] and the references therein). While quantum measurements are described by positive 
operator-valued measures, quantum channels are described as completely positive (CP) 
trace-preserving maps between spaces of operators. In this section we discuss the QM-
phase-retrievable operator-valued frames and representations of quantum channels. We 
prove that phase-retrievability is independent of the operator families that are used to 
represent the quantum channel.

Let A be a C*-algebra and Mn(A be the C*-algebra consisting of all the n ×n matrices 
with entries from A. A linear map Φ from a C*-algebra A to a C*-algebra B is called 
positive it (Φ(A) ≥ 0 whenever A ≥ 0. For a linear map Φ from a C*-algebra A to a 
C*-algebra B, we define for each n a linear map Φn : Mn(A) → Mn(B) by

Φn([Aij ]) = [Φ(Aij)], where [Aij ] ∈ Mn(A).

A linear map Φ from a C*-algebra A to a C*-algebra B is called completely bounded if 
supn∈N ||Φn|| < ∞, and completely positive (CP map for short) if Φn is positive for every 
n ∈ N.

Now we consider a linear map Φ from the C*-algebra Md(C) to the C*-algebra Mk(C), 
where Md(C) denote the matrix algebra of d × d matrices over C. Let Eij = ei ⊗ ej
(i.j = 1, ..., d) be the standard matrix units of Md(C) and PΦ = [Φ(Eij)] ∈ Md(Mk(C)).

The characterization of quantum channels from Md(C) to Mk(C) are described by 
the following well-known Choi-Kraus representation theorem [24].

Theorem 4.1 (Choi’s first theorem). The following are equivalent:
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(i) Φ is completely positive.
(ii) Φ(A) =

∑m
j=1 TjAT ∗

j for some matrices Tj ∈ Mk×d(C) for 1 ≤ j ≤ m.
(iii) PΦ is positive.

Suppose that Φ : Md(C) → Mk(C) is a CP map. Then, by Theorem 4.1

Φ(A) =
m∑
j=1

TjAT ∗
j

for some matrices Tj ∈ Mk×d(C) for 1 ≤ j ≤ m, here we will call {Tj} a representing 
operator system for Φ. The Choi rank of Φ (denoted by cr(Φ)) is defined to be the 
smallest r such that Φ(A) =

∑r
j=1 SjAS∗

j for some Sj ∈ Mk×d(C).

Lemma 4.2 ([30]). Let Φ : Md(C) → Mk(C) be a CP map. Then cr(Φ) = rank(PΦ).

In quantum information theory, Choi’s rank of a quantum channel is an important 
piece of information that allows us minimizing the number of quantum measurements. 
While the above lemma tells us that it is equal to the rank of the matrix PΦ, it is 
also natural to ask what more can be said about Choi’s rank if a quantum channel can 
be represented by a special type of operator systems. In this section we consider the 
ones that are represented by QM-phase-retrievable frames. We will first prove in the 
following result that the Choi’s rank for a quantum channel acting on a Cd is exactly 
d2 if it can be represented by a point-wisely tight operator-valued frames (recall from 
Theorem 3.6 that such a frame is “right” similar to a QM-phase-retrievable frames). 
Then we will prove in Proposition 4.5 that if a quantum channel is represented by a 
QM-phase-retrievable operator-valued frame, then all of its representing operator systems 
are QM-phase-retrievable.

Corollary 4.3. Let H = Cd. Suppose that {Tj}mj=1 is a point-wisely tight system and 
Φ(A) =

∑m
j=1 TjAT ∗

j . Then cr(Φ) = d2.

Proof. By Theorem 3.6, there exists a positive invertible matrix B such that {TjB}mj=1
is a Parseval frame for Md(C) and

Φ(x⊗ y) =
m∑
j=1

Tj(x⊗ y)T ∗
j = 〈x, (B−1)2y〉I

for every x, y ∈ H. This implies that

Φ(Eij) =
m∑
j=1

Tj(ei ⊗ ej)T ∗
j = 〈ei, (B−1)2ej〉I

Write (B−1)2 = [cij ]d×d. Then clearly cij = 〈ei, (B−1)2ej〉. Thus we get that
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PΦ = [Φ(Eij)] = [〈x, (B−1)2y〉I] = [cijI] = (B−1)2 ⊗ I,

where in the last equality we write the matrix [cijI] ∈ Md(Md(C)) as the tensor product 
of the matrices (B−1)2 and I, acting on the tensor product Hilbert space Cd⊗Cd. Hence 
PΦ is invertible and therefor, by Lemma 4.2, cr(Φ) = rank(PΦ) = d2. �

This can also be deduced from the following Proposition 4.7 which is based on Choi’s 
second theorem [30].

Theorem 4.4 (Choi’s second theorem). Suppose that Φ : Md(C) → Mk(C) is completely 
positive and cr(Φ) = r. If Φ(A) =

∑r
j=1 SjAS∗

j =
∑m

j=1 TjAT ∗
j for some matrices 

Sj , Tj ∈ Mk×d(C), then there exists matrix U = (uij) ∈ Mm,r(C) such that U∗U = Ir
and Si =

∑r
j=1 uijTj for i = 1, ..., m and span{T1, ..., Tm} = span{S1, ..., Sr}.

The following shows that the QM-phase-retrievability of the representation system for 
CP maps is independent of the representation.

Proposition 4.5. Let {Tj}nj=1 and {Sj}mj=1 be two representations of a completely posi-
tive map Φ : Md(C) → Md(C) (i.e. Φ(A) =

∑n
j=1 TjAT ∗

j =
∑m

j=1 SjAS∗
j for every A

in Md(C)). Then {Tj}nj=1 is QM-phase-retrievable if and only if {Sj}mj=1 is QM-phase-
retrievable.

Proof. First note, by definition, that if two operator systems have the same linear span, 
then one does QM-phase-retrieval if and only if the other one does QM-phase-retrieval.

Let r = cr(Φ). Then there exists Lj ∈ Md (j = 1, ..., r) such that Φ(A) =
∑r

j=1 LjAL∗
j

for every A ∈ Md. By Choi’s second theorem we get both span{L1, ..., Lr} =
span{S1, ..., Sm} and span{L1, ..., Lr} = span{T1, ..., Tn}. Thus we have

span{S1, ..., Sm} = span{T1, ..., Tn},

which implies that {Tj}nj=1 is QM-phase-retrievable if and only if {Sj}mj=1 is QM-phase-
retrievable. �

In the complex Hilbert space spaces case, two operator systems {Tj}nj=1 and {Sj}mj=1
induce the same completely positive map if and only if 

∑n
j=1 Tjx ⊗Tjx =

∑m
j=1 Sjx ⊗Sjx

for every x ∈ Cd. If we set Tj = uj ⊗ uj and Si = vi ⊗ vi for j = 1, ..., n and i =
1, ...m, then we have 

∑n
j=1 Tjx ⊗ Tjx =

∑m
j=1 |〈x, uj〉|2uj ⊗ uj and 

∑m
i=1 Sjx ⊗ Sjx =∑m

i=1 |〈x, vi〉|2vi ⊗ vi. Thus from Proposition 4.5 we obtain the following consequence:

Corollary 4.6. Let uj , vi ∈ Cd be such that

m∑
|〈x, uj〉|2uj ⊗ uj =

m∑
|〈x, vi〉|2vi ⊗ vi
j=1 i=1
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holds for every x ∈ Cd. Then {uj}nj=1 is phase-retrievable if and only if {vi}mi=1 is 
phase-retrievable.

By Choi’s second theorem, we know that cr(Φ) ≥ dim span{T1, ..., Tm} if Φ(A) =∑m
j=1 TjAT ∗

j . In fact they are equal due to the following simple argument.

Proposition 4.7. Let Φ(A) =
∑m

j=1 TjAT ∗
j . Then cr(Φ) = dim span{T1, ..., Tm}.

Proof. Let r = dim span{T1, ..., Tm}. We already know by Choi’s second theorem that 
cr(Φ) ≥ r. So it is enough to show there exist {L1, ..., Lr} such that Φ(A) =

∑r
j=1 LjAL∗

j . 
Without losing the generality, we can assume that {T1, ...Tr} are linearly independent. 
Let Si = Ti for i = 1, ..., r and write Tj =

∑r
j=1 cijSj for i = 1, ..., m. The C = [cij ]

is an m × r matrix of rank r. Let C = U(C∗C)1/2 be the polar decomposition of C. 
Then U = [uij ] is an m × r full rank partial isometry such that U∗U = Ir. Define 
Li =

∑r
j αijSj for i = 1, ..., r, where (C∗C)1/2 = [αij ]. Then we get that Ti =

∑r
j=1 uijLj

for i = 1, ..., m, and so

Φ(A) =
m∑
i=1

TiAT ∗
i

=
m∑
i=1

(
r∑

j=1
uijLj)A(

r∑
j=1

uijL
∗
j )

=
m∑
i=1

(
r∑

j,j′=1
uijuij′LjAL∗

j′)

=
r∑

j,j′=1
(

m∑
i=1

uijuij′)LjAL∗
j′

=
r∑

j=1
LjAL∗

j ,

where in the last equality we use the fact that U∗U = Ir. This completes the proof. �
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