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Hardware Constructions for Error Detection of Number-Theoretic Transform
Utilized in Secure Cryptographic Architectures

Ausmita Sarker, Mehran Mozaffari-Kermani

Abstract—Polynomial multiplication is one of the most rigorous
arithmetic construction of postquantum cryptosystems. Utilizing number-
theoretic transformations, the product of such multiplication can be
efficiently computed in quasi-linear time O(n.lgn). Error detection
schemes of number-theoretic transform (NTT) architectures are essential
to ensure correct mathematical operations, improved security, and thwart
active side-channel attacks mounted through faults. NTT is not only
significant to post-quantum cryptosystems, but the structure is also
valuable to the already existing security protocols, e.g., signature schemes,
hash functions, and the like. This paper, for the first time, introduces new
error detection schemes of NTT architectures, successfully detecting both
permanent and transient faults. Our schemes are based on recomputing
with negated, scaled, and swapped operands. We have implemented the
proposed schemes on the application-specific integrated circuit (ASIC).
Performance and implementation metrics on this hardware platform
show acceptable hardware overhead. As our schemes provide acceptable
complexity and high efficiency, they can be utilized in compact hard-
ware implementations of constrained applications, e.g., deeply embedded
architectures.

Index Terms— Application-specific integrated circuit (ASIC),
fast Fourier transform (FFT), number-theoretic transform
(NTT).

1. INTRODUCTION

Number-theoretic transform (NTT) [1] is a discrete Fourier trans-
form defined over a finite ring or field. Being an elegant polynomial
multiplication technique, NTT is essential to postquantum cryptosys-
tems, e.g., lattice-based cryptosystems. Such cryptosystems rely on
well-studied hard problems, the merit of which is that quantum
algorithms to solve these problems efficiently are yet unknown. One
of the most common average-case lattice problems is learning with
errors problem [2], which assures the hardness of solving other
lattice problems in the worst case [3]. However, this very appealing
technique gives an impractical key size of quadratic, i.e., O(nz)
complexity, for security parameter n [4]. To reduce the complexity,
cyclic [5] and ideal lattices [6] are introduced. Using computation
based on fast Fourier transform (FFT), these structures can enable
construction of theoretically robust and efficient cryptosystems with
quasi-linear, i.e., O(n.lgn), key lengths.

Ideal lattices are also employed in fully homomorphic encryp-
tion [7] or somewhat homomorphic encryption (SHE) [8], two
new primitives with strong potential for securing cloud computing.
Polynomial multiplication is the most computationally exhaustive
operation of ideal lattices. Applying number theoretic constructions
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provides a speed advantage, because the polynomial multiplication
can be efficiently computed in quasi-linear time O(n./gn) using
FFT [9].

Besides postquantum cryptography, NTT can radically improve the
currently used schemes by increasing their security parameters. For
example, NTT proves to be a valuable tool to signature schemes [10],
collision-resistant hash functions [11], as well as identification
schemes [12]. As a result, efficient error detection schemes of NTT
in polynomial multiplication will boost the security and reliability of
postquantum cryptography as well as existing cryptosystems.

Previous studies of NTT-based polynomial multiplication have
dealt with reconfigurable hardware [13] and efficient architecture
to achieve high speed [14]. Examples of other interesting recent
works related to the respective implementations include [15] and [16].
However, no work is yet proposed in the open literature focusing on
error detection of NTT polynomial multiplier.

Error detection in cryptography has been the center of attention in
previous work [17]-[25]. In this paper, we propose error-detection
schemes of NTT polynomial multiplier. The main contributions of
this paper are summarized as follows.

1) We introduce a number of categories for error detection in NTT
of the ring R = (Z/pZ[x]/x" +1). Our proposed schemes are
not confined to certain cryptographic constructions.

2) The first category of the proposed error-detection schemes
involves recomputing with negated operands. Moreover,
we present recomputing with scaled operands. The last category
constitutes recomputing with swapped operands. Our target is
low hardware overhead, which is favorable to compact and
deeply embedded architectures.

3) We implement the proposed error-detection architectures on
application-specific integrated circuit (ASIC) for a 65-nm
library to assess the implementation and performance metrics.

The rest of the paper is organized as follows. Section II reviews the
relevant details on efficient computation of NTT. Section III presents
our motivation for efficient fault detection as well as our proposed
error-detection schemes. Hardware implementations on ASIC along
with their overheads are given in Section IV. Finally, Section V
concludes this paper.

II. PRELIMINARIES

In this paper, we have considered ideal lattices, defined by
R = (Z/pZ[x]/x"™ + 1). Here, f(x) is an irreducible polynomial
of degree n, which can be represented as f(x) = fp + fix +
fgx2 + ...+ f,,_lx"_l. Also, n is a power of 2, and p is a
prime number where p = 1 mod 2n. Multiplication of two poly-
nomials a(x), b(x) € Zp, can be represented as: a(x).b(x) =
Z?__l Z?:_c: a;bjx'+/ mod f(x), taking quadratic complexity of
O(n~) utilizing school book algorithm.

On the contrary, NTT is a discrete Fourier transform, defined in
a finite field, Z, = Z/pZ[x] [1]. For a given primitive nth root of
unity in Zp, A(x) and B(x) are the polynomials under Zp, where
both are generic forward NTT,, (a) and NTT, (b), respectively:
A; = NTT? (a(x)); = zf;;},ajmffmod pi=0,1,...,n—1
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Algorithm 1 Iterative-NTT

Input: a € Zy[z] of lengthn = 2% withk €
N and a primitive n-th root of unity w € Zj
Output: y = NTT,(a)
1: A + Bit-reverse(a); m + 2
2: while m < N do

33 5¢0

4. while s <N do

5 for i to m/2 — 1 do

6: N—in/m;as+ibes+i+m/2
7 ¢+ Ala]; d + A[b]

8 Ala] + ¢+ wV ™4 "d mod p

9 Al + ¢ — wN ™4 nd mod p

10: end for

11: Sss+m

12 end while
13: m +— m.2
14: end while
15: return A

The NTT exists if and only if the block length n divides g — 1
for every prime factor ¢ of p, where p is a prime and n is a
power of 2. Computing Inverse NTT (INTT) is similar to computing
NTT, while replacing w with w1 and introducing n~l e, a; =
INTT? (A(x)); = n~} zf;;l Ajo~mod p,i=0,1,...,n— 1L
As p is a prime, the inverse of n, n~! can be computed in modulo p,
where n.n~! = 1 mod p- Applying NTT and INTT to compute
polynomial multiplication reduces the time complexity from O(nz)
to O(n.lgn).

III. PrROPOSED ERROR-DETECTION SCHEME

For high-performance lattice-based cryptography, a flexible
NTT-based polynomial multiplier is required. In this section,
we present our schemes to provide error-detection hardware architec-
tures with low complexity. The proposed approaches constitute three
categories, i.e., recomputing with encoded operands through negated,
scaled, and swapped operands.

A. Efficient NTT Implementation

In Algorithm 1 [26], the iterative FFT implementation computes
the NTT of a given polynomial a(x) € Zp. The Bit-Reverse(a)
operation (line 1) reorders the input vector a, in which, the new
position of the elements in position k can be found by reversing
the binary representation of k. This algorithm utilizes the “butterfly
operation” [21] (lines 8 and 9), which is the multiplication of the
factor ¥ M°d" with 4. and addition with or subtraction of the
result from c¢. Lines 5-10 divide the input polynomial into two
smaller polynomials, each with length n/2 and perform NTT on
each polynomial simultaneously. Instead of transforming the entire
polynomial of degree n, decomposing a in two halves and computing
the NTT in parallel improves the time complexity from quadratic
(0(n?)) to quasi-linear (O (n.lgn)).

B. Recomputing With Negated Operands

In proposing the error-detection approaches, we make sure that
augmenting the original constructions with the proposed schemes
leads to low-complexity architectures. As a result, we have applied
a number of recomputing with negated operands schemes.

Norm/
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Fig. 1. Proposed butterfly construction for NTT through RENtO.

The architecture for NTT consists of the common butterfly struc-
ture (lines 8 and 9 of Algorithm 1). This well-known structure
performs the core operation of NTT implementation, multiplying
elements of the polynomial by powers of w. Each cycle computes
one node of NTT flow, where a multiplier, followed by a modular
reduction (mod p block in Fig. 1) circuit performs polynomial
multiplication by reiterating the butterfly operation. For this most
rigorous operation within such constructions, we propose two variants
of our scheme. The first one is through recomputing with negated dual
operands (RENdO) in which, as the name suggests, two operands
are negated. The second one, shown in Fig. 1, is recomputing
with negated tri operands (RENtO), in which all three operands,
i.e., ¢, w, and d, are negated. In these approaches, encoding/decoding
are the most prominent operations (and carefully thought operations
to implement). In the latter, i.e., RENtO, for a modified architecture
of NTT-butterfly, we insert a negation unit for modulo p nega-
tion, multiplexer, and comparator circuits. The select of multiplexer
Norm/RENtO, determines the original NTT or RENtO operation.
In accordance with lines 8 and 9 of Algorithm 1, at the original
NTT operation, the outputs are A and B, where A = ¢ 4+ wd and
B = ¢ — wd. During the encoding stage, which is active at RENtO
only, we negate all inputs, i.e., ¢, @ and d, and they eventually become
p—c, p—w, and p—d, respectively. Thus, the encoded operands are
A’ and B’, where A’ = —¢ + wd and B’ = —c — wd. The decoding
operation is as follows. We negate A’ and B’, and the decoded outputs
are compared with their alternate prerecomputed outputs. At the
input of the decoder, depending on the multiplexer select, the data
bus flows either A or A’, which is represented as A/A’ in Fig. 1.
In addition, for the former approach, i.e., RENdO, encoding, and
decoding blocks are identical to RENtO. However, in the comparator
circuit, we compare the decoded output with their respective original
output.

C. Recomputing With Scaled Operands

A second variant of the proposed error-detection schemes involves
scaling the operands, e.g., doubling, quadrupling, or multiplying with
a factor. Let us present an example to explain the scheme. A first
example, i.e., recomputing with doubled and quadrupled operands
(REdqO), involves doubling @ and d, and deriving the quadruple
of ¢. The encoded operands would be A" = 4¢ + (2w * 2d) and
B’ = 4c — (2w * 2d). The decoding is performed by dividing the
outputs by 4. In binary, dividing by 4 is right shift two places,
making decoding a relatively-inexpensive operation. A second exam-
ple would be, instead of doubling all the operands as REdqO,
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Fig. 3. Proposed butterfly construction for NTT through RESwO.

doubling only @ and ¢, i.e., recomputing with doubled operands
(REdO). The encoding and decoding of REdO is much similar to
REdqO, requiring only one doubler and one divider, i.e., one left and
one right shift operation, resulting in low hardware overhead and time
delay.

In a more general variant of recomputing with scaled operands,
namely, recomputing with scaled dual operand (REScdO), we scale
both e and ¢ by the factor k. This is shown in Fig. 2. The encoding
operations would give A’ = k¢ + (k) *d = k(c + wd) and B’ =
ke — (kw) *d = k(c — wd). Decoding is performed by dividing both
operands with k (Fig. 2). As p is a prime number, ged(k, p)= 1
mod p, for all values of k.

D. Recomputing With Swapped Operands

If we swap w and d, while negating ¢, we can perform recomputing
with swapped operands (RESwO). The recomputed operands are
A" = —c 4 wd and B' = —c — wd. As shown in Fig. 3, there
is no necessity for decoding, and RESwO just requires comparison
with alternate prerecomputed values. The only negation unit in the
scheme makes it inexpensive and efficient. We also present a modified
variant of RESwO, i.e., RESwO-m in Fig. 3, in which we lower
the overhead by swapping just @ and d, having ¢ intact. This
would result in even lower overhead as decoding would be free in
hardware.

TABLE I
IMPLEMENTATION RESULTS FOR ASIC THROUGH TSMC 65 nm
FOR THREE CASE STUDIES, ie., (n, p)1 = (64,257), (n, p)2 =

(256, 65537), AND (n, p)3 = (512,4294967297), AND TWO
PROPOSED ARCHITECTURES, i.e., RECOMPUTING WITH
SWAPPED OPERANDS-RESWO AND ITS MODIFIED

VARIANT RESWO-MODIFIED (RESWO-M)

. Area | Delay | Power
Architecture wmg) (ns) (mW)
Original (n, p): || 2042 | 12.24 | 0.047
3674 | 1337 | 0.054

RESWO (n, )1 || (4g0) | 9%) | (16%)
3544 | 1319 | 0.052

RESWO-m (n, p)1 || 500y | 8%) | (12%)
Original (1, p)2 || 8,995 | 13.80 | 0.093
11,170 | 1441 | 0.111

RESWO (n, P)2 || o490y | (4%) | (18%)
11,001 | 1423 | 0.108

RESwO-m (n, p)> 22%) | 3%) | (16%)
Original (n, p)a || 30,820 | 14.76 | 0207
37476 | 1590 | 0.231

RESWO (n, P)s || ‘229) | 8%) | (15%)
35972 | 1545 | 0.228

RESWO-m (1, p)s || ‘179y | 5%) | (11%)

IV. ASIC ASSESSMENTS AND COMPARISONS

The proposed error-detection schemes are able to detect transient
and permanent faults (intelligent attackers for intentional/malicious
faults as well as natural defects). In this section, we present the results
of our ASIC assessments using Synopsys Design Compiler and Very
High Speed Integrated Circuit Hardware Description Language with
TSMC 65 nm for three pairs of (n, p) and two of our architectures
to assess the overhead in Table I. We have used Fermat primes in the
form of 1+2/ for i =8, 16, 32 which result in having @ = 2. Using
65-nm ASIC synthesis, and for three cases (n, p); = (64, 257),
(n, p)y = (256, 65537), and (n, p)3 = (512, 4294967297), we
also present the overhead of the presented constructions for the case
studies of the proposed RESwO and RESwO-modified in this paper.
The benchmarking is performed for the error-detection architectures
(for two proposed schemes) and also for the original constructions,
and overheads are shown in parentheses in Table L.

As shown in Table I, the area (in terms of ,umz), delay (which is an
indication of maximum working frequency), and power consumption
at the frequency of 50 MHz are tabulated. The proposed schemes
achieve acceptable overhead with very high error coverage. One
would use RESwO if both permanent and transient faults in the entire
architectures are to be detected. RESwO-modified has slightly less
overhead and can detect transient faults in the structures.

We have performed simulations for (a) single, (b) two-bit, and
(c) multiple-bit stuck-at-faults. For each experiment, more than
65000 cases have been considered. From the results, we achieved that
our schemes can detect these three cases with 100% error coverage.
Further analysis shows that if the comparison units (i.e., voters) are
compromised, the error-detection scheme will degrade. Hardening the
comparators, using triple modular redundancy and other fault tolerant
techniques, can solve this faulty comparator status situation.

We would like to finalize this section by noting that the proposed
architectures are oblivious of the standard-cell library and hardware
platform. Therefore, we expect similar results on field-programmable
gate array and ASIC libraries. We also note that the throughput
and frequency overhead can be alleviated through pipelining at the
expense of added hardware overhead.
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V. CONCLUSION

In this paper, we have presented a number of categories for error-
detection schemes of NTT in the ring R = (Z/pZ[x]/x" 4+1), which
are also platform-oblivious. The proposed schemes constitute error-
detection architectures on hardware based on recomputation with
encoded operands. Our target has been low hardware overhead, which
is favorable to compact and deeply embedded architectures. We have
implemented the proposed error-detection techniques on ASIC for a
65-nm library to assess the implementation and performance metrics.
With high error coverage, the presented approaches achieve an
acceptable overhead (at most 24% area, 18% power consumption,
and 9% delay for the synthesized case studies) and can be tailored
toward the objectives in terms of error detection and reliability.
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