
Information and Computation 261 (2018) 616–633
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Compositional and symbolic synthesis of reactive controllers

for multi-agent systems

Rajeev Alur a, Salar Moarref b,∗, Ufuk Topcu c

a 3330 Walnut Street, Philadelphia, PA 19104, United States
b 124 Hoy Rd, Ithaca, NY 14850, United States
c 210 East 24th Street, Austin, TX 78712, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 December 2016
Available online 1 March 2018

Keywords:
Reactive synthesis
Compositional synthesis
Multi-agent systems
Formal methods

We consider the controller synthesis problem for multi-agent systems that consist of a
set of controlled and uncontrolled agents. Controlled agents may need to cooperate with
each other and react to actions of uncontrolled agents in order to fulfill their objectives.
Moreover, agents may be imperfect, i.e., only partially observe their environment. We pro-
pose a framework for controller synthesis based on compositional reactive synthesis. We
implement the algorithms symbolically and apply them to a robot motion planning case
study where multiple robots are placed on a grid-world with static obstacles and other
dynamic, uncontrolled and potentially adversarial robots. We consider different objectives
such as collision avoidance, keeping a formation and bounded reachability. We show that
by taking advantage of the structure of the system, compositional synthesis algorithm can
significantly outperform centralized alternative, both from time and memory perspective,
and can solve problems where the centralized algorithm is infeasible.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Complex systems often consist of multiple agents (or subsystems or components) interacting with each other and their
environment to perform certain tasks and achieve specified objectives. For example, teams of robots are employed to per-
form tasks such as monitoring, surveillance, and disaster response in different domains including assembly planning [1],
evacuation [2], search and rescue [3], localization [4], object transportation [5], and formation control [6]. With growing
complexity of systems and guarantees they are required to provide, the need for automated and reliable design and analysis
methods and tools is increasing.

To this end, an ambitious goal in system design and control is to automatically synthesize controllers for controllable
parts of the system such that satisfaction of the specified objectives is guaranteed. Given a model of the system describing
the interaction of a controllable plant with its environment and an objective specified in a formal language such as linear
temporal logic (LTL), controller synthesis problem seeks to construct a finite-state controller that ensures that the system
satisfies the objective, regardless of how its environment behaves. In this paper we consider the controller synthesis problem
for multi-agent systems.

Unfortunately, high complexity of synthesis procedures has restricted their application to relatively small-sized prob-
lems. The pioneering work by Pnueli et al. [7] showed that reactive synthesis from LTL specifications is intractable which

* Corresponding author.
E-mail addresses: alur @cis .upenn .edu (R. Alur), sm945 @cornell .edu (S. Moarref), utopcu @utexas .edu (U. Topcu).
https://doi.org/10.1016/j.ic.2018.02.021
0890-5401/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2018.02.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:alur@cis.upenn.edu
mailto:sm945@cornell.edu
mailto:utopcu@utexas.edu
https://doi.org/10.1016/j.ic.2018.02.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2018.02.021&domain=pdf

R. Alur et al. / Information and Computation 261 (2018) 616–633 617
prohibited the practitioners from utilizing synthesis algorithms. This issue becomes more evident for multi-agent systems,
as adding each agent can often increase the size of the state space exponentially. Furthermore, distributed reactive synthe-
sis [8] and multi-player games of incomplete information [9] are undecidable in general. Despite these discouraging results,
recent advances in this growing research area have enabled automatic synthesis of interesting real-world systems [10], indi-
cating the potential of the synthesis algorithms for solving realistic problems. The key insight is to consider more restricted
yet practically useful subclasses of the general problem, and in this paper we take a step toward this direction.

The main motivation for our work is the growing interest in robotic motion planning from rich high-level specifications,
e.g., LTL [11–13]. In most of these works, all agents are controlled and operate in static and fully-observable environments,
and the applications of synthesis algorithms are restricted to very small examples due to the well-known state explosion
problem. Since the reactive synthesis from LTL specifications is intractable, no algorithm will be efficient for all problems.
Nevertheless, one can observe that in many application domains such as robot motion planning, systems are structured,
a fact that can be exploited to achieve better scalability.

In this paper, we consider a special class of multi-agent systems that are referred to as dynamically-decoupled and are
inspired by robot motion planning, decentralized control [14,15], and swarm robotics [16,17] literature. Intuitively, in a
dynamically-decoupled multi-agent system the transition relations (or dynamics) of the agents are decoupled, i.e., at any
time-step, agents can make decisions on what action to take based on their own local state. For example, an autonomous
vehicle can decide to slow down or speed up based on its own position, velocity, etc. However, dynamically-decoupled
agents may be coupled through objectives, that is, an agent may need to cooperate with other agents or react to their
actions to fulfill a given objective (e.g., it would not be a wise decision for an autonomous vehicle to speed up when the
front vehicle pushes the break if collision avoidance is an objective). In our framework, multi-agent systems consist of a set
of controlled and uncontrolled agents. Controlled agents may need to cooperate with each other and react to the actions
of uncontrolled agents in order to fulfill their objectives. Besides, controlled agents may be imperfect in the sense that they
can only partially observe their environment, for example due to the limitations in their sensors. The goal is to synthesize
controllers for each controlled agent such that the objectives are enforced in the resulting system.

To solve the controller synthesis problem for multi-agent systems one can directly construct the model of the system by
composing those of the agents, and solve the problem centrally for the given objectives. However, the centralized method
lacks flexibility, since any change in one of the components requires the repetition of the synthesis process for the whole
system. Besides the resulting system might be exponentially larger than the individual parts, making this approach infeasible
in practice. Compositional reactive synthesis aims to exploit the structure of the system by breaking the problem into
smaller and more manageable pieces and solving them separately. Then solutions to subproblems are merged and analyzed
to find a solution for the whole problem. The existing structure in multi-agent systems makes them a potential application
area for compositional synthesis techniques.

We propose a compositional framework for dynamically-decoupled multi-agent systems based on automatic decompo-
sition of objectives and compositional reactive synthesis using maximally permissive strategies [18]. We assume that the
objective of the system is given in conjunctive form. We make an observation that in many cases each conjunct of the
global objective only refers to a small subset of agents in the system. We take advantage of this structure to decompose the
synthesis problem: for each conjunct of the global objective, we only consider the agents that are “involved”, and compute
the maximally permissive strategies for those agents with respect to the considered conjunct. We then intersect the strate-
gies to remove potential conflicts between them, and project back the constraints to subproblems, solve them again with
updated constraints, and repeat this process until the strategies become fixed.

We implement the algorithms symbolically using binary decision diagrams (BDDs) and apply them to a robot motion
planning case study where multiple robots are placed on a grid-world with static obstacles and other dynamic, uncontrolled
and potentially adversarial robots. We consider different objectives such as collision avoidance, keeping a formation and
bounded reachability. We show that by taking advantage of the structure of the system, the proposed compositional syn-
thesis algorithm can significantly outperform the centralized synthesis approach, both from time and memory perspective,
and can solve problems where the centralized algorithm is infeasible. Our findings show the potential of symbolic and com-
positional reactive synthesis methods as planning algorithms in presence of dynamically changing and possibly adversarial
environment.

Related work. Synthesis problem was first recognized by Church [19]. The problem of synthesizing reactive systems from a
specification given in linear temporal logic was considered by Pnueli et al. [7], where they propose a synthesis algorithm that
first transforms the LTL specification into a Büchi automaton, which is then translated into a deterministic Rabin automaton
using Safra’s determinization procedure [20]. This double translation causes a doubly exponential time complexity which is
unavoidable [21]. The high complexity of the synthesis process was discouraging, however, it was shown later that there
are several interesting cases where the synthesis problem can be solved in polynomial time [22,23]. Bloem et al. [10]
present polynomial time algorithms for the realizability and synthesis problems for a more general fragment of LTL known
as Generalized Reactivity (1) (GR(1)). They show the efficiency and expressivity of GR(1) by applying their algorithms to a
realistic industrial hardware case study of a medium size.

Compositional reactive synthesis has been considered in some recent works. Kupferman et al. [24] propose a Safraless
approach that reduces the LTL realizability problem to Büchi games. Their approach is then extended to treat specifications
that are conjunction of LTL properties compositionally [25]. There is no notion of maximally permissive strategy for Büchi

618 R. Alur et al. / Information and Computation 261 (2018) 616–633
games, and to our best knowledge their algorithms are not implemented. Baier et al. [26] give a compositional framework
for treating multiple linear-time objectives inductively. To this end, they introduce the concept of most general strategies
which generate all decision functions that guarantee the objective under consideration. Sohail et al. [27] propose an al-
gorithm to compositionally construct a parity game from conjunctive LTL specifications. Alur et al. [28] show how local
specifications of components can be refined compositionally to ensure satisfaction of a global specification. Lustig et al. [29]
study the problem of LTL synthesis from libraries of reusable components. Alur et al. [30] propose a framework for composi-
tional synthesis from a library of parametric and reactive controllers. Filiot et al. [18] present monolithic and compositional
algorithms to solve the LTL realizability problem. They reduce the LTL realizability problem to solving safety games, and
show that for LTL specifications written as conjunction of smaller LTL formulas, the problem can be solved compositionally
by first computing winning strategies for each conjunct. Moreover, they show that compositional algorithms can handle
fairly large LTL specifications. To the best of our knowledge, algorithms in [18] seems to be the most successful application
of compositional synthesis in practice.

Two-player games of imperfect information are studied in [31–34], and it is shown that they are often more complicated
than games of perfect information. The algorithmic difference is exponential, due to a subset construction that turns a game
of imperfect information into an equivalent game of perfect information. In this paper, we build on the results of [18,34]
and extend and adapt their methods to treat multi-agent systems with imperfect agents. To the best of our knowledge,
compositional reactive synthesis is not studied in the context of multi-agent systems and robot motion planning.

The controller synthesis problem for systems with multiple controllable agents from a high-level temporal logic specifi-
cation is also considered in many recent works (e.g., [11,35,36]). A common theme is based on first computing a discrete
controller satisfying the LTL specification over a discrete abstraction of the system, which is then used to synthesize contin-
ues controllers guaranteed to fulfill the high-level specification. In many of these works (e.g., [37,38]) the agents’ models are
composed (either from the beginning or incrementally) to obtain a central model. The product of the central model with
the specification automaton is then constructed and analyzed to compute a strategy. In [12], authors present a composi-
tional motion planning framework for multi-robot systems based on a reduction to satisfiability modulo theories. However,
their model cannot handle uncertain or dynamic environment. In [11,39] it is proposed that systems with multiple com-
ponents can be treated in a decentralized manner by considering one component as a part of the environment of another
component. However, these reactive approaches cannot address the need for joint decision making and cooperative objec-
tives. In this paper we consider compositional and symbolic algorithms for solving games in presence of a dynamic and
possibly adversarial environment. Note that in this paper we assume that a finite-state abstraction of the system is given
and we present compositional algorithms for synthesizing discrete controllers. Computed controllers can then be refined to
controllers enforcing the specification over the original system using standard techniques in the literature [40].

Dynamically decoupled multi-agent systems are considered and studied in different research areas, e.g., in decentralized
control [14,15], interpreted systems [41,42], and swarm robotics [16,17] literature. In this paper, we model dynamically-
decoupled multi-agent systems in a way that best fits our solution approach and intended application. The problem
considered in this paper is also related to the planning algorithms that are well-studied in artificial intelligence commu-
nity, and a huge body of research has been developed over the last decades for planning using logic-based representations
such as propositional and first order logics (see [43] and [44] for a comprehensive introduction). In this paper we use tem-
poral logic to specify the system objectives which allows describing time-varying aspects of discrete planning problems.
Furthermore, we consider environments that are partially-observable and dynamically changing.

Organization. The organization of the paper is as follows. In Section 2 we introduce some notation, background and defini-
tions that are used in the rest of the paper. In Section 3 we explain how multi-agent systems are modeled in our framework.
In Section 4 we present the compositional synthesis algorithm. In Section 5 we apply the centralized and compositional syn-
thesis algorithms to a robot motion planning case study and compare their performance. Finally, in Section 6 we conclude
the paper and point out some future directions. This paper is based on a conference publication [45] and contains detailed
explanations of the methods and results presented there.

2. Preliminaries

Let Z be the set of integers. For a, b ∈ Z, let [a..b] = {x ∈ Z | a ≤ x ≤ b}.
2.1. Linear temporal logic (LTL)

We use LTL to specify system objectives. LTL is a formal specification language with two types of operators: logical
connectives (e.g., ¬ (negation), ∧ (conjunction), ∨ (disjunction), and → (implication)) and temporal operators (e.g., � (al-
ways), © (next), U (until), and � (eventually)). The formulas of LTL are defined over a set of atomic propositions (Boolean
variables) V . The syntax is given by the grammar:

� := v | � ∨ � | ¬� | © � | � U � for v ∈ V
We define true = v ∨ ¬v , false= v ∧ ¬v , �� = true U �, and �� = ¬�¬�. A formula with no temporal operator is
a Boolean formula or a predicate. Given a predicate φ over variables V , we say s ∈ 2V satisfies φ, denoted by s |= φ, if the

R. Alur et al. / Information and Computation 261 (2018) 616–633 619
formula obtained from φ by replacing all variables in s by true and all other variables by false is valid. Formally, we
define s |= φ inductively as

• for v ∈ V , s |= v if and only if v ∈ s,
• s |= ¬φ if and only if s 	|= φ, and
• s |= φ ∨ ψ if and only if s |= φ or s |= ψ .

We call the set of all possible assignments to variables V states and denote them by �V , i.e., �V = 2V . An LTL formula
over variables V is interpreted over infinite words w ∈ (�V)ω . The language of an LTL formula �, denoted by L(�), is the
set of infinite words that satisfy �, i.e., L(�) = {

w ∈ (�V)ω | w |= �
}
, where the satisfaction relation w = σ0σ1σ2 · · · |= �

is inductively defined as follows:

1. w |= v if v ∈ σ0,
2. w |= �1 ∨ �2 if w |= �1 or w |= �2,
3. w |= ¬� if w 	|= �,
4. w |= ©� if σ1σ2 · · · |= �, and
5. w |= �1U�2 if there is n ≥ 0 such that σnσn+1 · · · |= �2 and for all 0 ≤ i < n, σiσi+1 · · · |= �1.

Given a subset of variables X ⊆ V and a state s ∈ �V , we denote by s|X the projection of s to X , i.e., s|X =
{x ∈X | x ∈ s}. Given non-overlapping sets of Boolean variables V1, V2, · · · , Vn , we use the notation φ(V1, V2, · · · , Vn) to in-
dicate that φ is a predicate over V1∪V2∪· · ·∪Vn . We often use predicates over V∪V ′ where V ′ is the set of primed versions
of the variables in V , i.e., V ′ = {

v ′ | v ∈ V
}
. Given a predicate φ(V1, V2, · · · , Vn, V ′

1, V ′
2, · · · , V ′

n) and assignments si, ti ∈ �Vi ,
we use (s1, s2, · · · , sn, t′1, t′2, · · · , t′n) |= φ to indicate s1 ∪ s2 ∪ · · · ∪ sn ∪ t′1 ∪ t′2 ∪ · · · ∪ t′n |= φ where t′i =

{
v ′ ∈ V ′

i | v ∈ ti
}
. For

a predicate φ over variables V , we let �φ� be the set of valuations over V that make φ true, that is, �φ� = {s ∈ �V | s |= φ}.
For a set Z ⊆ V , let Same(Z, Z ′) be a predicate specifying that the value of the variables in Z stay unchanged during a
transition. Formally, Same(Z, Z ′) = ∧

z∈Z z ↔ z′ .
OBDDs (or BDDs for short) can be used for obtaining concise representations of sets and relations over finite do-

mains [46]. If R is an n-ary relation over {0,1}, then R can be represented by the BDD for its characteristic function:

f R(x1, · · · , xn) = 1 if and only if R(x1, · · · , xn) = 1.

With a little bit abuse of notation and when it is clear from the context, we treat sets and functions as their corresponding
predicates.

Example 1. Consider a function f : [0..3] → [0..3] defined as f (i) = i for i ∈ [0..3]. Let a1 and a0 (b1 and b0) be Boolean
variables used to encode input (output, respectively) of f . The function f can be represented by a predicate φ f = a1 ↔
b1 ∧ a0 ↔ b0 , and symbolically encoded by a BDD.

2.2. Game structures

A game structure G of imperfect information is a tuple G = (V, �, τ , OBS, γ) where V is a finite set of variables, � is a
finite set of variables encoding actions, τ is a predicate over V ∪ � ∪V ′ defining G ’s transition relation, OBS is a finite set
of observable variables, and γ : �OBS → 2�V \∅ is an observation function that maps each observation to a set of states.
We assume that the set

{
γ (o) | o ∈ �OBS

}
partitions the state space �V .1 A game structure G is called perfect information

if OBS = V and γ (s) = {s} for all s ∈ �V . We omit (OBS, γ) in the description of games of perfect information.
In this paper, we consider two-player turn-based game structures where player-1 and player-2 alternate playing. Without

loss of generality, we assume that player-1 always starts the game. Let t ∈ V be a special variable with domain {1,2}
determining which player’s turn it is during the game. For i = 1, 2, let �i

V = {
s ∈ �V | s|t = i

}
denote player-i’s states in

the game structure. At any state s ∈ �i
V , player-i chooses an action � ∈ �� such that there exists a successor state s′ ∈ �V ′

where (s, �, s′) |= τ . Intuitively, at a player-i state, she chooses an available action according to the transition relation τ
and the next state of the system is chosen from the possible successor states. For every state s ∈ �V , we define �(s) ={
� ∈ �� | ∃s′ ∈ �V ′ . (s, �, s′) |= τ

}
to be the set of available actions at that state. A run in G from an initial state sinit ∈ �V

is a sequence of states π = s0s1s2 · · · such that s0 = sinit and, for all i > 0, there is an action �i ∈ �� with (si−1, �i, s′i) |= τ ,
where s′i is obtained by replacing the variables in si by their primed copies. A run π is maximal if either it is infinite or it is
finite and ends in a state s ∈ �V where �(s) = ∅. The observation sequence of π is the unique sequence Obs(π) = o0o1o2 · · ·
such that for all i ≥ 0, we have si ∈ γ (oi). For � ∈ �� and X ⊆ �V , let PostG� (X) = {

r ∈ �V | ∃s ∈ X : (s, �, r′) |= τ
}
.

Strategies. A strategy S in G for player-i, i ∈ {1,2}, is a function S : (�V)∗.�i
V → �� . A strategy S in G for player-2 is

observation-based if for all prefixes ρ1, ρ2 ∈ (�V)∗.�2
V , if Obs(ρ1) = Obs(ρ2), then S(ρ1) = S(ρ2). We are interested in the

1 This assumption can be weakened to a covering of the state space where observations can overlap [34,33].

620 R. Alur et al. / Information and Computation 261 (2018) 616–633
existence of observation-based strategies for player-2. Given two strategies S1 and S2 for player-1 and player-2, respectively,
the possible outcomes �S1,S2(s) from a state s ∈ �V are runs: a run s0s1s2 · · · belongs to �S1,S2 (s) if and only if s0 = s and
for all j ≥ 0 either s j has no successor, or s j ∈ �i

V and (s j, Si(s0 · · · s j), s′j+1) |= τ . A strategy S is memory-less (a.k.a.
positional) if it is independent of the history of the game and only depends on the current state. A memory-less strategy
for player-i can be represented as a function S : �i

V → �� .

Winning condition. A game (G, φinit , �) consists of a game structure G , a predicate φinit specifying a set of initial states,
and an LTL objective � for player-2. A run π = s0s1 · · · is winning for player-2 if it is infinite and π ∈ L(�). Let � be
the set of runs that are winning for player-2. A strategy S2 is winning for player-2 if for all strategies S1 of player-1 and
all initial states sinit |= φinit , we have �S1,S2 (sinit) ⊆ �, that is, all possible outcomes are winning for player-2. It is well
known that for ω-regular objectives, the games are determined, i.e., either player-2 has a winning strategy or player-1 has a
spoiling strategy [47]. We say the game (G, φinit , �) is realizable if and only if player-2 has a winning strategy in the game
(G, φinit, �).

Knowledge game structure. For a game structure G = (V, �, τ , OBS, γ) of imperfect information, a game structure GK

of perfect information can be obtained using a subset construction procedure such that for any objective �, there exists
a deterministic observation-based strategy for player-2 in G with respect to � if and only if there exists a deterministic
winning strategy for player-2 in GK for � [31,34]. Formally, let V K be a set of Boolean variables of size 2|V | and H be a
bijective mapping that maps each state vK ∈ �V K to a unique set H(vK) ⊆ �V of states. We define the knowledge-based
subset construction of G as the game structure GK = (V K , �, τ K) of perfect information where (vK , �, wK) |= τ K if and only
if there exists obs ∈ �OBS such that H(wK) 	= ∅ and

• H(wK) = (
⋃

σ∈��
PostGσ (H(vK))) ∩ γ (obs) if vK ∈ �1

V K , and
• H(wK) = PostG� (H(vK)) ∩ γ (obs) if vK ∈ �2

V K .

Intuitively, each state in GK is a set of states of G that represents player-2’s knowledge about the possible states in which
the game can be after a sequence of observations. Note that here we assume actions of player-1 cannot be observed by
player-2. That is, when it is player-2’s turn to play, she does not know what action player-1 took at the previous step. That
is why player-1 and player-2 states are treated differently in the transition relation of the knowledge game structure. In
the worst case, the size of GK is exponentially larger than the size of G . We refer to GK as the knowledge game structure
corresponding to G . Given an initial state, we construct the knowledge game structure symbolically, and only part of it that
is reachable from the initial state (see Appendix A for details of constructing the knowledge game structure). In the rest of
this section, we only consider game structures of perfect information.

Safety games. In this paper, we use the bounded synthesis approach [48,18] to solve the synthesis problems from LTL
specifications. In bounded synthesis approach, the LTL specification is translated into a universal co-Büchi word or tree
automaton, which is then, together with a bound k ∈ N, is used to build a safety game such that winning strategies in the
game correspond to implementations satisfying the specification. Intuitively, the bound indicates the maximum number of
times that rejecting states in the co-Büchi automaton can be visited, so it implicitly defines a safety game. Formally, a safety
game is a game (G, φinit , �) with a special safety objective � = �(true). That is, any infinite run in the game structure G
starting from any initial state s |= φinit is winning for player-2. We drop � from description of safety games as it is implicitly
defined. Intuitively, in a safety game, the goal of player-2 is to avoid the dead-end states, i.e., states that there is no available
action. Next, we summarize how LTL specifications are transformed into safety games following the construction proposed
in [18].

An infinite word automaton over the finite alphabet � is a tuple A = (Q , �, q0, δ, F) where Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is a set of rejecting states and δ : Q × � → 2Q is a transition function. We say A is
deterministic if ∀q ∈ Q .∀σ ∈ �.|δ(q, σ)| ≤ 1. A run of A on a word w = w0w1 · · · ∈ �ω is an infinite sequence of states
σ = σ0σ1 · · · ∈ Q ω such that σ0 = q0 and for all i ≥ 0.σi+1 ∈ δ(σi, wi). Let RunsA(w) be the set of all runs of A on w . We
denote by V isit(σ , q) the number of times the state q occurs along the run σ . A word w is accepted by A with universal
co-Büchi accepting condition if ∀σ ∈ RunsA(w). ∀q ∈ F . V isit(σ , q) < ∞, i.e., rejecting states are visited only finitely often.
Similarly, w is accepted by A with universal K-co-Büchi accepting condition if ∀σ ∈ RunsA(w). ∀q ∈ F . V isit(σ , q) ≤ K .
We denote by Luc(A) and Luc,K (A) the set of words accepted by A with the universal co-Büchi and universal K -co-Büchi
accepting condition, respectively. With these interpretations in mind, we say A is a universal co-Büchi automaton (UCW)
and that the pair (A, K) is a universal K -co-Büchi automaton (UKCW).

To reflect the game point of view of synthesis, the turn-based extension of infinite word automaton is defined as follows.
A turn-based automaton A over the input alphabet �I and output alphabet �O is a tuple A = (�I , �O, Q 1, Q 2, q0, δ1, δ2, F)

where Q 1, Q 2 are finite set of input and output states, respectively, q0 ∈ Q 1 is the initial state, F ⊆ Q 1 ∪ Q 2 is the set of
rejecting states, and δ1 : Q 1 × �I → 2Q 2 and δ2 : Q 2 × �O → 2Q 1 are the player-1 and player-2 transition relations, re-
spectively. Let � = �I ∪ �O . A run on a word w = (i0 ∪ o0)(i1 ∪ o1) · · · ∈ �ω is a word σ = σ0σ1 · · · ∈ (Q 1Q 2)

ω such

R. Alur et al. / Information and Computation 261 (2018) 616–633 621
that σ0 = q0 and for all j ≥ 0, (σ2 j, i j, σ2 j+1) ∈ δ1 and (σ2 j+1, o j, σ2 j+2) ∈ δ2. All the accepting conditions defined for infi-
nite word automaton carry over to turn-based automata in a straightforward manner. Turn-based automata with universal
co-Büchi (universal K -co-Büchi) accepting condition is denoted by tbUCW (tbUKCW, respectively).

Associating a safety game with an LTL formula � is done as follows [18]: 1) construct a tbUCW A� such that
Luc(A�) = L(�), 2) given a bound k ∈ N, construct a turn-based deterministic 0-co-Büchi automaton det(A�, k) =
(�I , �O, Q 1, Q 2, q0, δ1, δ2, F) such that Luc,0(det(A�, k)) = Luc,k(A�), and 3) obtain a safety game from det(A�, k) as fol-
lows. Let Q, I , and O be sets of Boolean variables encoding sets Q 1 ∪ Q 2, �I and �O , respectively. Let predicates φ�

init(Q),
φδ1(Q, I, Q′), φδ2(Q, O, Q′), and φ F (Q) represent the initial state {q0}, transition relations δ1, δ2, and the set of rejecting
states F , respectively. Assume t /∈ Q ∪ I ∪O is a special turn variable with domain {1,2}, representing which player’s turn
it is. The associated safety game with � is defined as (G�, φ�

init) where G� = (Q, I ∪O, τ) with

τ = ((t = 1∧ t′ = 2∧ φδ1) ∨ (t = 2∧ t′ = 1∧ φδ2)) ∧ ¬φ F .

Intuitively, τ specifies that when its player-i’s turn (i.e., t = i) for i ∈ {1,2}, she makes a move according to δi . The conjunct
¬φ F in definition of τ ensures that there is no outgoing transition from rejecting states, i.e., all rejecting states are dead-end.
A winning strategy for player-2 in the safety game (G�, φ�

init) must avoid reaching dead-end states. We refer the readers to
[18,49] for further details on reducing LTL formulas to safety games.

Maximally permissive strategies. Safety games are memory-less determined, i.e., player-2 wins the safety game (G, φinit)

where G = (V , �, τ) if and only if there exists a memory-less winning strategy S : �2
V → �� . Let W ⊆ �V be the set of

winning states for player-2, i.e., from any state s ∈ W there exists a strategy S2 such that for any strategy S1 chosen by
player-1, all possible outcomes π ∈ �S1,S2 (s) are winning. The maximally permissive strategy S : �2

V → 2�� for player-2 is
defined as follows: for any s ∈ �2

V , S(s) = {� ∈ �� | ∀r ∈ �V ′ . (s, �, r) |= τs → r ∈ W }, i.e., the set of actions � where all
�-successors belong to the set of winning states. It is well known that S subsumes all winning strategies of player-2 in
(G, �init).

Composition of two maximally permissive strategies S1, S2 : �2
V → 2�� , denoted by S = S1 ⊗ S2, is defined as S(s) =

S1(s) ∩S2(s) for any s ∈ �2
V , i.e., the set of allowed actions by S at any state s ∈ �2

V is the intersection of the allowed actions
by S1 and S2. Let φS1 (φS2) be a predicate encoding S1 (S2, respectively), i.e., for all (s, �) ∈ �2

V × �� , (s, �) |= φS1 if and
only if � ∈ S1(s). The predicate φS corresponding to S can be computed symbolically as φS = φS1 ∧ φS2 . The restriction
of the game structure G with respect to its maximally permissive strategy S is the game structure G[S] = (V, �, τ ∧ φS)

where φS is the predicate encoding S . Intuitively, G[S] is the same as G but player-2’s actions are restricted according
to S .

Solving games. To solve a game (G, φinit , �) using bounded synthesis approach, we first obtain the safety game (G�, φ�
init)

corresponding to � using the methods proposed in [18]. The game structure G� is then composed with G . Composition
of two game structures G1 = (V1, �1, τ 1), G2 = (V2, �2, τ 2) of perfect information, denoted by G⊗ = G1 ⊗ G2, is a game
structure G⊗ = (V⊗, �⊗, τ⊗) of perfect information where V⊗ = V1 ∪ V2, �⊗ = �1 ∪ �2, and τ⊗ = τ 1 ∧ τ 2. The safety
game (G ⊗ G�, φinit ∧ φ�

init) is solved to determine the winner of the game and compute a winning strategy for player-2, if
one exists.

Symbolic algorithms for solving the realizability and synthesis problems are based on the controllable predecessor opera-
tor [50]. The (player-2) controllable predecessor operator C Pre : 2�V → 2�V maps a set X ⊆ �V of states to the states from
which player-2 can force the game into X in one step. Player-2 can force the game into X from a state s ∈ �1

V if and only if
for all available moves �, all �-successors of s are in X , and she can force the game into X from a state s ∈ �2

V if and only
if there is some available action � such that all �-successors of v are in X . Formally, let operator Epre� : 2�V → 2�V maps
a set X ⊆ �V of states to the states for which there exists an action � ∈ �� such that all �-successors belong to the set X ,
and is formally defined as follows:

Epre�(X) = {v ∈ �V | ∃� ∈ ��∀w ∈ �V .(v, �, w ′) |= τ → w ∈ X}
Similarly, operator Apre� : 2�V → 2�V maps a set X ⊆ �V of states to the states for which for all actions � ∈ � all

�-successors belong to the set X , and is formally defined as

Apre�(X) = {v ∈ �V | ∀� ∈ ��∀w ∈ �V .(v, �, w ′) |= τ → w ∈ X}
The controllable predecessor is formally defined as

C Pre(X) = (t = 2∧ Epre�(X)) ∨ (t = 1∧ Apre�(X)).

The set of winning states from which player-2 can avoid dead-end states in the safety game (G, φinit) is the greatest
fixed point W = νX .C Pre(X). Player-2 is winning in (G, φinit) if �φinit � ⊆ W , i.e., any initial state is winning. Algorithm 1
summarizes the steps for solving games using bounded-synthesis approach. The procedure ToSafetyGame takes an LTL
formula as an input and returns its corresponding safety game [18,49]. The procedure SolveSafetyGame computes the
maximally permissive strategy for player-2 in the safety game (G ⊗ G�, φinit ∧ φ�) [18], if one exists.
init

622 R. Alur et al. / Information and Computation 261 (2018) 616–633
Algorithm 1: SolveGame.

Input: a game (G, φinit , �)

Output: a winning strategy S , if one exists
1 (G�, φ�

init) := ToSafetyGame(�);
2 S := SolveSafetyGame(G ⊗ G�, φinit ∧ φ�

init);
3 return S;

3. Dynamically-decoupled multi-agent systems

In this section we describe how we model dynamically-decoupled multi-agent systems and formally state the problem
that is considered in this paper. In our framework, we use agents to specify a system in a modular manner. An agent a =
(type, I, O, �, τ, OBS , γ) is a tuple where type ∈ {controlled,uncontrolled} indicates whether the agent is controlled
or not, O (I) is a set of output (input) variables that the agent can (cannot, respectively) control by assigning values to
them, � is a set of variables encoding actions of the agent, and τ is a predicate over I ∪ O ∪ � ∪ O′ that specifies the
possible transitions of the agent where O′ is the primed copies of the variables O, OBS is a set of observable variables, and
γ : �OBS → 2�I∪O is the observation function that maps agent’s observations to its corresponding set of states. Intuitively,
τ defines what actions an agent can choose at any state s ∈ �I∪O and what are the possible next valuations over agent’s
output variables for the chosen action. That is, (i, o, �, o′) |= τ for i ∈ �I , o ∈ �O , � ∈ �� , and o′ ∈ �O′ indicates that at any
state s of the system with s|I = i and s|O = o, the agent can take action �, and any state s′ where s′|O′ = o′ is a possible
successor. A perfect agent is an agent with OBS = I ∪ O and γ (s) = {s} for all s ∈ �I∪O , i.e., a perfect agent can observe
the valuation over its input and output variables perfectly. We omit (OBS, γ) in the description of perfect agents.

A multi-agent system M = {a1,a2, · · · ,an} is defined as a set of agents ai = (typei, Ii, Oi, �i, τi, OBS i, γi) for 1 ≤
i ≤ n. Let V = ⋃n

i=1Oi be the set of agents’ output variables. We assume that the set of output variables of agents are
pairwise disjoint, i.e., ∀1 ≤ i ≤ n. Oi ∩O j = ∅, and the set of input variables Ii for each agent ai ∈M is the set of variables
controlled by other agents, i.e., Ii = V\Oi . We further make some simplifying assumptions. We assume that all controlled
agents are cooperative while uncontrolled ones can play adversarially, i.e., the controlled agents cooperate with each other
and make joint decisions to enforce the global objective. Moreover, we assume that the observation variables for controlled
agents are pairwise disjoint, i.e., ∀1 ≤ i ≤ n. OBS i ∩OBS j = ∅, and that each controlled agent has perfect knowledge about
other controlled agents’ observations. That is, controlled agents share their observations with each other. Intuitively, it is as
if the communication between controlled agents is instantaneous and error-free, i.e., they have perfect communication and
tell each other what they observe. This assumption helps us preserve the two-player game setting and to stay in a decidable
subclass of the more general problem of multi-player games with partial information. Note that multi-player games of
incomplete information are undecidable in general [9].

In this paper we focus on a special class of multi-agent systems where all agents are local. An agent a = (type, I, O,

�, τ, OBS , γ) is called local if and only if its transition relation τ is a predicate over O ∪ � ∪O′ , i.e., it does not depend
on any uncontrolled variable v ∈ I . We say a multi-agent system M = {a1,a2, · · · ,an} is dynamically-decoupled if all agents
a ∈ M are local. Intuitively, agents in a dynamically-decoupled multi-agent system can choose their action based on their
own local state and regardless of the local states of other agents in the system. That is, the availability of actions for each
agent in any state of the system is only a function of that agent’s local state. Such setting arises in many applications,
e.g., robot motion planning, where possible transitions of agents are independent from each other. For example, how a
robot moves around a room is usually based on its own characteristics and motion primitives [12]. Note that this does not
mean that the controlled agents are completely decoupled, as the objectives might concern different agents in the system,
e.g., collision avoidance objective for a system consisting of multiple controlled robots, which requires cooperation between
agents.

In our framework, the user describes the agents and also specifies the objective as a conjunctive LTL formula. From
description of the agents, a game structure is obtained that encodes how the state of the system evolves. Formally, given
a dynamically-decoupled multi-agent system M = Mu ⊎

Mc partitioned into a set Mu = {u1, · · · ,um} of uncontrolled
agents and a set Mc = {c1, · · · ,cn} of controlled agents, the turn-based game structure GM induced by M is defined
as GM = (V , �, τ , OBS , γ) where V = {t} ∪ ⋃

a∈MOa is the set of all variables in M with t as a turn variable, � =⋃
a∈M �a is the set of action variables, OBS = ⋃

c∈Mc OBSc is the set of all observation variables of controlled agents,2
and τ and γ are defined as follows:

τ = τe ∨ τs,

τe = t = 1∧ t′ = 2∧
∧

u∈Mu

τu ∧
∧

c∈Mc

Same(Oc,O′
c),

2 For uncontrolled agents, it does not matter if they are perfect or imperfect since spoiling strategies in turn-based games can even be blind [34].

R. Alur et al. / Information and Computation 261 (2018) 616–633 623
Fig. 1. A grid-world with static obstacles.

τs = t = 2∧ t′ = 1∧
∧

c∈Mc

τc ∧
∧

u∈Mu

Same(Ou,O′
u), and

γ =
∧

c∈Mc

γc

Intuitively, at each step, uncontrolled agents take actions consistent with their transition relations, and their variables
get updated while the controlled agents’ variables stay unchanged. Then the controlled agents react concurrently and simul-
taneously by taking actions according to their transition relations, and their corresponding variables get updated while the
uncontrolled agents’ variables stay unchanged.

Example 2. Let R1 and R2 be two robots in an n × n grid-world similar to the one shown in Fig. 1. Assume R1 is an
uncontrolled robot, whereas R2 is controlled. In the sequel, let i range over {1,2}. At each time any robot Ri can move to
one of its neighboring cells by taking an action from the set ��i = {upi,downi, righti, le f ti}. Furthermore, assume that R2

has imperfect sensors and can only observe R1 if R1 is in one of its adjacent cells. Let (xi, yi) represent the position of robot
Ri in the grid-world at any time.3 We define Oi = {xi, yi} and Ii = O3−i as the output and input variables, respectively.
Note that the controlled variables by one agent are the input variables of the other agent. Transition relation τi = ∧

�∈�i
τ�

is defined as conjunction of four parts corresponding to robot’s action where

τupi = (yi > 1) ∧ upi ∧ (y′
i ↔ yi − 1) ∧ Same(xi, x

′
i)

τdowni = (yi < n) ∧ downi ∧ (y′
i ↔ yi + 1) ∧ Same(xi, x

′
i)

τle f ti = (xi > 1) ∧ le f ti ∧ (x′
i ↔ xi − 1) ∧ Same(yi, y

′
i)

τrighti = (xi < n) ∧ righti ∧ (x′
i ↔ xi − 1) ∧ Same(yi, y

′
i)

Intuitively, each τ� for � ∈ ��i specifies whether the action is available in the current state and what is its possible succes-
sors. For example, τupi indicates that if Ri is not at the top row (yi > 1), then the action upi is available and if applied, in
the next state the value of yi is decremented by one and the value of xi does not change.

Next we define the observation function γ2 for R2. It is easier and more intuitive to define γ −1
2 , and since observations

partition the state space γ2 = (γ −1
2)−1 is defined. Formally,

γ −1
2 (a,b, c,d) =

{
(a,b, c,d) if a − 1 ≤ c ≤ a + 1∧ b − 1 ≤ d ≤ b + 1

(⊥,⊥, c,d) otherwise

Let OBS2 = {
xo1, y

o
1, x

o
2, y

o
2

}
where xo1, y

o
1 ∈ {⊥,1,2, · · · ,n} and xo2, y

o
2 ∈ {1, · · · ,n}. Intuitively, R2 observes its own local

state perfectly. Furthermore, if R1 is in one of its adjacent cells, its position is observed perfectly, otherwise, R1 is away and
its location cannot be observed. The observation function γ2 can be symbolically encoded as

γ2 =
∨

o∈�OBS

(o ∧ φγ (o))

where φγ (o) is the predicate specifying the set γ (o). Finally, we let R1 = (uncontrolled, I1, O1, �1, τ1) and R2 =
(controlled, I2, O2, �2, OBS2, γ2). Note that R1 (R2) is modeled as a perfect (imperfect, respectively) local agent.

The game structure GM of imperfect information corresponding to multi-agent system M = {R1, R2} is a tuple GM =
(V , �, τ , OBS , γ) where

3 Note that variables xi and yi are defined over a bounded domain and can be encoded by a set of Boolean variables. To keep the example simple, we
use their bounded integer representation here.

624 R. Alur et al. / Information and Computation 261 (2018) 616–633
Algorithm 2: Compositional controller synthesis.
Input: A dynamically-decoupled multi-agent system M = {u1, · · · ,um,c1, · · · ,cn}, φinit specifying an initial state, and an objective

� = �1 ∧ · · · ∧ �k

Output: A set of strategies (S1, · · · , Sn) one for each controlled agent, if one exists
1 /* Decompose the problem */
2 for all �i , 1 ≤ i ≤ k do
3 INV i := Involved(�i);
4 Gi := CreateGameStructure(INV i);
5 Xi := ⋃

a∈INV i
Oa ; /*variables controlled by involved agents */

6 φi
init := Project(φinit , Xi);

7 GK
i := CreateKnowledgeGameStructure(Gi);

8 (G�i , φ�i
init) := ToSafetyGame(�i);

9 (Gd
i , φ

di
init) := (GK

i ⊗G�i , φi
init ∧ φ

�i
init);

10 /*Compositional synthesis*/
11 while true do
12 for i = 1 · · ·k do

13 Sd
i := SolveSafetyGame(Gd

i , φ
di
init);

14 S := ⊗k
i=1 Sd

i ; /* compose the strategies */
15 for i = 1 · · ·k do
16 Let Yi = Vd

i ∪ �d
i be the set of variables and actions in Gd

i ;
17 Ci := Project(S, Yi); /* project the strategies */
18 if ∀1 ≤ i ≤ k, Sd

i = Ci then
19 break; /* a fixed point is reached over strategies */
20 for i = 1 · · ·k do
21 Gd

i := Gd
i [Ci]; /* Restrict the subgames for the next iteration */

22 (S1, · · · , Sn) :=Extract(S);
23 return (S1, · · · , Sn);

V = {t} ∪O1 ∪O2,

� = �1 ∪ �2,

τ = τe ∨ τs,

τe = t = 1∧ t′ = 2∧ τ1 ∧ Same(O2,O′
2),

τs = t = 2∧ t′ = 1∧ τ2 ∧ Same(O1,O′
1),

OBS = OBS2,and

γ = γ2. �
We now formally define the problem we consider in this paper.

Problem 1. Given a dynamically-decoupled multi-agent system M = Mu ⊎
Mc partitioned into uncontrolled Mu =

{u1, · · · ,um} and controlled agents Mc = {c1, · · · ,cn}, a predicate φinit specifying an initial state, and an objective
� = �1 ∧ · · · ∧ �k as conjunction of k ≥ 1 LTL formulas �i , compute strategies S1, · · · , Sn for controlled agents such that
the strategy S = S1 ⊗ · · · ⊗ Sn defined as composition of the strategies is winning for the game (GM, φinit, �), where GM

is the game structure induced by M.

4. Compositional controller synthesis

We now explain our solution approach for Problem 1 stated in Section 3. Algorithm 2 summarizes the steps for com-
positional synthesis of strategies for controlled agents in a dynamically-decoupled multi-agent system. It has three main
parts. First the synthesis problem is automatically decomposed into subproblems by taking advantage of the structure in
the multi-agent system and given objective. Then the subproblems are solved separately and their solutions are composed.
Composition may restrict the possible actions that are available for agents at some states. The composition is then projected
back to each subproblem and the subproblems are solved again with new restrictions. This process is repeated until either
a subgame becomes unrealizable, or computed solutions for subproblems reach a fixed point. Finally, a set of strategies,
one for each controlled agent, is extracted by decomposing the strategy obtained in the previous step. Next, we explain
Algorithm 2 in more detail.

4.1. Decomposition of the synthesis problem

The synthesis problem is decomposed into subproblems in lines 2–9 of Algorithm 2. The main idea behind this decom-
position is that, in many cases, each conjunct �i of the objective � only refers to a small subset of agents. This observation

R. Alur et al. / Information and Computation 261 (2018) 616–633 625
is utilized to obtain a game structure from description of those agents that are involved in �i , i.e., only agents are considered
to form and solve a game with respect to �i that are relevant. Each subproblem corresponds to a conjunct �i of the global
objective � and the game structure obtained from agents involved in �i .

For each conjunct �i , 1 ≤ i ≤ k, Algorithm 2 first obtains the set INV i of involved agents using the procedure Involved.
Formally, let V�i ⊆ V be the set of variables appearing in �i ’s formula. The set of involved agents are those agents whose
controlled variables appear in the conjunct’s formula, i.e., Involved(�i) =

{
a ∈M | Oa ∩ V�i 	= ∅}

. A game structure Gi is
then obtained from the description of the agents INV i using the procedure CreateGameStructure as explained in Section 3.

The projection φi
init of the predicate φinit with respect to the involved agents is computed next. The procedure Project

takes a predicate φ over variables Vφ and a subset X ⊆ Vφ of variables as input, and projects the predicate with respect to
the given subset. Formally, Project(φ, X) = {

s|X | s ∈ �Vφ
and s |= φ

}
.4

The knowledge game structure GK
i corresponding to Gi is obtained at line 7. Note that this step is not required if

the system only includes agents that can observe the state of the game perfectly at any time-step. Finally, the objective
�i is transformed into a safety game using the algorithms in [18,49] and composed with GK

i to obtain a safety game
(Gd

i , φ
di
init). The result of decomposition phase is k safety games

{
(Gd

1, φ
d1
init), · · · , (Gd

k , φ
dk
init)

}
that form the subproblems for

the compositional synthesis phase.

Example 3. Let Ri for i = 1, · · · , 4 be four robots in an n × n grid-world, where R4 is uncontrolled and other robots are
controlled. For simplicity, assume that all agents are perfect. At each time-step any robot Ri can move to one of its neigh-
boring cells by taking an action from the set {upi,downi, righti, le f ti} with their obvious meanings. Consider the following
objective � = �1 ∧ �2 ∧ �3 ∧ �12 ∧ �23 where �i for i = 1, 2, 3 specifies that Ri must not collide with R4, and �12 (�23)
specifies that R1 and R2 (R2 and R3, respectively) must avoid collision with each other. Sub-formulas �i , i = 1, 2, 3, only
involve agents Ri and R4, i.e., INV(�i) = {Ri, R4}. Therefore, the game structures Gi induced by agents Ri and R4 are
composed with the game structure computed for �i to form a subproblem as a safety game. Similarly, we obtain safety
games for objectives �12 and �23 with INV(�12) = {R1, R2} and INV(�23) = {R2, R3}, respectively. �
Remark 1. The decomposition method used here is neither the only way to decompose the problem, nor necessarily the
optimal. More efficient decomposition techniques can be used to obtain quicker convergence in Algorithm 2 for example by
different grouping of conjuncts. Nevertheless, the decomposition technique explained above is simple and proved effective
in our experiments.

4.2. Compositional synthesis

The safety games obtained in the decomposition phase are compositionally solved in lines 10–21 of Algorithm 2. At each
iteration of the main loop, the subproblems (Gd

i , φ
di
init) are solved, and a maximally permissive strategy Sd

i is computed for
them, if one exists. Intuitively, maximally permissive strategies Sd

i ’s allow all winning actions for involved controlled agents
at each winning state, restricting the agents as little as possible and letting them to choose from a set of possible actions, in
contrast to a single action permitted in deterministic strategies. In other words, the agents are not yet “committed” to any
action. This least-commitment principle captured naturally by maximally permissive strategies is useful when composing the
strategies: at each global state, the controlled agents can choose from those joint actions that are allowed by all maximally
permissive strategies.

Computed maximally permissive strategies are composed in line 14 of Algorithm 2 to obtain a strategy S for the whole
system. The strategy S is then projected back to sub-games, and it is checked whether all the projected strategies are
equivalent to the strategies computed for the subproblems. If that is the case, the main loop terminates and S is winning
for the game (Gd, φd

init) where (Gd, φd
init) is the safety game associated with the multi-agent system M and objective �.

Otherwise, at least one of the subproblems needs to be restricted. Each subgame is restricted by the computed projection,
and the process is repeated. The loop terminates either if a subproblem becomes unrealizable at some iteration, or if
permissive strategies S1, · · · , Sk reach a fixed point. In the latter case, a set of strategies, one for each controlled agent is
extracted from S as explained below.

4.3. Computing strategies for the agents

Let V⊗ = ⋃k
i=1 VGd

i
be the set of all variables used to encode the game structures Gd

i , and �c = �c1 ∪ · · · ∪ �cn be
the set of variables encoding actions of the controlled agents. Once a permissive strategy S : �2

V⊗ → 2��c is computed,
a winning strategy Sd : �2

V⊗ → ��c is obtained from S by restricting the non-deterministic action choices of the controlled
agents to a single action at each state s ∈ �2

V⊗ where S(s) is non-empty. The strategy Sd is then decomposed into strategies

4 The procedure Project can be implemented symbolically using BDD operations by existentially quantifying the variables Y = Vφ\X in φ , i.e.,
Project(φ, X) = ∃Y.φ.

626 R. Alur et al. / Information and Computation 261 (2018) 616–633
S1 : �2
V⊗ → ��c1

, · · · , Sn : �2
V⊗ → ��cn

for the agents simply by projecting the actions with respect to their corresponding
agents. Formally, for each s ∈ �2

V⊗ such that S(s) 	= ∅, let Sd(s) = σ ∈ S(s) where σ = (σ1, · · · , σn) ∈ ��c is an arbitrary
action chosen from possible actions permitted by S in state s. Individual agents’ strategies are defined as Si(s) = σi for
i = 1, · · · , n. Note that we assume each controlled agent has perfect knowledge about other controlled agents’ observations.
The following theorem establishes the correctness and completeness of Algorithm 2.

Theorem 1. Algorithm 2 is sound and complete.

Proof. See Appendix B. �
Remark 2. Filiot et al. in [18] show that bounded synthesis is complete by proving the existence of a sufficiently large
bound. Completeness of Algorithm 2 is based on completeness of bounded synthesis. Note that in practice, the required
bound is rather high and instead an incremental approach is used for synthesis.

Remark 3. Algorithm 2 is different from the compositional algorithm proposed in [18] in two ways. First, it composes max-
imally permissive strategies in contrast to composing game structures as proposed in [18]. The advantage is that strategies
usually have more compact symbolic representations compared to game structures. That is because strategies are mappings
from states to actions while game structures include more variables and typically have more complex BDD representation
as they refer to states, actions, and next states. Second, in the compositional algorithm in [18], sub-games are composed
and a symbolic step, i.e., a post- or pre-image computation, is performed over the composite game. In our experiments,
performing a symbolic step over the composite game resulted in a poor performance, often worse than the centralized al-
gorithm. Algorithm 2 removes this bottleneck as it is not required in our setting. This leads to a significant improvement in
performance since image and pre-image computations are typically the most expensive operations performed by symbolic
algorithms [51].

5. Case study

We now demonstrate the techniques on a robot motion planning case study similar to those that can be found in the
related literature (e.g., [11–13]). Consider a square grid-world similar to the one depicted in Fig. 1 where some static
obstacles are positioned in the middle rows to create two narrow corridors. We consider a multi-agent system M =
{u1, · · · ,um,c1, · · · ,cn} with uncontrolled robots Mu = {u1, · · · ,um} and controlled ones Mc = {c1, · · · ,cn}. At any time-
step, any controlled robot ci for 1 ≤ i ≤ n can move to one of its neighboring cells using actions upi , downi, le f ti, and righti ,
or it can stay put by taking the action stop. Any uncontrolled robot u j for 1 ≤ j ≤m stays on the same row where they are
initially positioned, and at any time-step can move to their left or right neighboring cells by taking actions le f t j and right j ,
respectively. For each agent a ∈ M, let (xa, ya) denote its position on the grid-world. Assume SO is the set of static obsta-
cles. We denote the position of each static obstacle o ∈ SO by (xo, yo). We consider the following objectives:

• Collision avoidance (�1): controlled robots must avoid collision with static obstacles and other robots. This can be
specified as �1 = �co ∧ �cu ∧ �cc where

�co =
∧

c∈Mc

∧
o∈SO

�(¬(xc ↔ xo ∧ yc ↔ yo)),

�cu =
∧

c∈Mc

∧
u∈Mu

�(¬(xc ↔ xu ∧ yc ↔ yu)), and

�cc =
∧

ci∈Mc

∧
c j∈Mc, j>i

�(¬(xci ↔ xc j ∧ yci ↔ yc j)).

Intuitively, �co says controlled robots must never occupy cells where static obstacles are, �cu specifies that no con-
trolled robot must be at the same cell where an uncontrolled robot is, and �cc requires that there must be no collision
between the controlled robots.

• Formation maintenance (�2): each controlled robot ci must keep a linear formation (same horizontal or vertical coor-
dinate) at all times with the subsequent controlled robot ci+1 for 1 ≤ i < n. Formally,

�2 =
∧

1≤i<n

�(xci ↔ xci+1 ∨ yci ↔ yci+1)

• Bounded reachability (�3): controlled robots must reach the bottom row in a pre-specified number of steps k. This can
be specified as

�3 =
∧

c∈Mc

�(yc ↔ bottom_row)

The bound k is used to associate a safety game for each conjunct of �3 as explained in Section 2.

R. Alur et al. / Information and Computation 261 (2018) 616–633 627
Table 1
Evaluation of approaches on a robot motion planning case study with perfect agents.
Ex. # |Mu | |Mc | Objective Size |V| Centralized Compositional

time mem (MB) time mem (MB)

5 1 1 �1 64× 64 52 72 ms 6.6 105 ms 6.6
6 1 1 �1 128× 128 60 93 ms 6.6 101 ms 6.6
39 1 2 �13 16× 16 79 14.9 min 365.5 4.2 s 19.3
40 1 2 �13 32× 32 95 mem out mem out 34.4 s 50.8
43 1 2 � 16× 16 79 400.3 s 239.7 5.1 s 19.4
44 1 2 � 32× 32 95 155.8 min 1209 33.1 s 38.3
47 1 3 �1 16× 16 74 38.6 min 1391.5 181.9 s 201.8
51 1 3 �12 16× 16 74 9.6 min 648.7 168.1 s 271
53 1 3 �13 4× 4 66 22 s 50.8 0.8 s 6.8
54 1 3 �13 8× 8 88 mem out mem out 98.4 s 101.2
56 1 3 � 8× 8 88 88.9 min 1227.8 28.4 s 44.5
82 2 1 � 8× 8 51 106.4 s 322 33 ms 6.6
86 2 1 � 128× 128 107 mem out mem out 3.5 s 6.7
93 2 2 � 4× 4 56 3.2 s 19.4 201 ms 6.6
94 2 2 � 8× 8 76 10.6 min 460 14.4 s 19.4
96 2 3 �1 8× 8 71 53.8 min 1423 421.4 s 264.8
98 2 3 �12 8× 8 71 14.2 min 642.4 481.3 s 277.4
99 2 3 �13 4× 4 75 19.1 min 497.8 8.4 s 25.9
100 2 3 �13 8× 8 101 mem out mem out 30.2 min 800.2
102 2 3 � 8× 8 101 mem out mem out 12.7 min 302.6

We consider two settings. First we assume all agents are perfect and have full-knowledge of the state of the system at any
time-step. Then we assume controlled agents are imperfect and can observe uncontrolled robots only if they are nearby and
occupying an adjacent cell, similar to the setting described in Example 2.

We apply two different methods to synthesize strategies for the agents. In the Centralized method, first a game structure
for the whole system is obtained, and then a winning strategy is computed with respect to the considered objective. In the
Compositional approach, the strategy is computed compositionally using Algorithm 2. We implemented the algorithms in Java
using the BDD package JDD.5 The experiments are performed on an Intel core i7 3.40 GHz machine with 16 GB memory. In
our experiments, we vary the number of uncontrolled and controlled agents, size of the grid-world, and the objective of the
system6 as shown in Tables 1 and 2. The columns show the experiment number, the number of uncontrolled and controlled
robots, considered objective, size of the grid-world, number of variables in the system, and the time and memory usage (in
MB) for different approaches, respectively. Furthermore, we define �12 = �1 ∧ �2, �13 = �1 ∧ �3, and � = �1 ∧ �2 ∧ �3.

Multi-agent systems with perfect agents. Table 1 shows some of our experimental results for the setting where all agents
are perfect.7 Note that the compositional algorithm does not always perform better than the centralized alternative. In-
deed, if the conjuncts of objectives involve a large subset of agents, compositional algorithm comes closer to the centralized
algorithm. Intuitively, if the agents are “strongly” coupled, the overhead introduced by compositional algorithm is not help-
ful, and the centralized algorithm performs better. For example, when the system consists of a controlled robot and an
uncontrolled one along with a single safety objective, compositional algorithm coincides with the centralized one, and cen-
tralized algorithm performs slightly better. However, if the subproblems are “loosely” coupled, which is the case in many
practical problems, the compositional algorithm significantly outperforms the centralized one, both from time and memory
perspective, as we increase the number of agents and make the objectives more complex, and it can solve problems where
the centralized algorithm is infeasible. Fig. 2 shows the computation time and memory usage in some of our experiments
(see Table 1 for details of the experiments) where both centralized and compositional algorithms successfully computed
strategies.

Multi-agent systems with imperfect controlled agents. Not surprisingly, scalability is a bigger issue when it comes to games
with imperfect information due to the subset construction procedure, which leads to yet another reason for compositional
algorithm to perform better than the centralized alternative. Table 2 shows some of our experimental results for the setting
where controlled agents are imperfect. While the centralized approach fails to compute the knowledge game structure due
to the state explosion problem, the compositional algorithm performs significantly better by decomposing the problem and
performing subset construction on smaller and more manageable game structures of imperfect information. Fig. 3 shows
the computation time and memory usage in some of our experiments (see Table 2 for details of the experiments) where
both centralized and compositional algorithms successfully computed strategies.

5 http://javaddlib .sourceforge .net /jdd /index .html.
6 JDD does not support dynamic variable reordering [52]. In our experiments, we fixed a variable ordering that had the best performance for the

centralized approach and used the same variable ordering for the compositional algorithm.
7 More experimental data for both perfect and imperfect set-ups is provided in [53].

http://javaddlib.sourceforge.net/jdd/index.html

628 R. Alur et al. / Information and Computation 261 (2018) 616–633
Table 2
Evaluation of approaches on a robot motion planning case study with imperfect agents.
Ex. # |Mu | |Mc | Objective Size |V| Centralized Compositional

time mem (MB) time mem (MB)

137 1 2 �12 4× 4 127 1.7 s 6.7 0.6 s 6.7
139 1 2 �12 6× 6 235 28.6 s 31.9 10.2 s 19.3
141 1 2 �12 8× 8 235 229.7 s 126.6 95 s 57.1
142 1 2 �13 4× 4 143 1.4 s 6.7 303 ms 6.7
144 1 2 �13 6× 6 255 38.2 s 57.1 5 s 13
145 1 2 �13 7× 7 255 159.5 s 132.6 16.7 s 25.6
146 1 2 �13 8× 8 255 8.9 min 252.2 38.3 s 51
147 1 2 � 4× 4 143 2.3 s 6.7 0.7 s 6.7
149 1 2 � 6× 6 255 46.2 s 50.8 10 s 19.3
151 1 2 � 8× 8 255 344.5 s 202.1 129.9 s 57.1
152 1 2 �1 9× 9 375 27.8 min 390.7 113.2 s 82.3
154 1 2 �12 9× 9 375 time out time out 306 s 94.9
155 1 2 �12 10 × 10 375 time out time out 9.7 min 176.7
156 1 2 �13 9× 9 395 time out time out 114.9 s 88.6
157 1 2 �13 10 × 10 395 time out time out 279.9 s 157.8
158 1 2 � 9× 9 395 time out time out 309.9 s 101.2
159 1 2 � 10 × 10 395 time out time out 9.6 min 176.7
160 1 3 �1 4× 4 186 144.3 s 69.7 0.9 s 6.7
162 1 3 �1 6× 6 346 time out time out 17.7 s 38.2
164 1 3 �1 8× 8 346 time out time out 190.9 s 176.7
166 1 3 �1 10 × 10 554 time out time out 24.6 min 730.6
174 1 3 �13 4× 4 210 265.8 s 214.5 0.9 s 6.7
176 1 3 �13 6× 6 376 time out time out 49.2 s 57.1
178 1 3 �13 8× 8 376 time out time out 483.9 s 214.5
179 1 3 �13 9× 9 584 time out time out 31.7 min 441.1
181 1 3 � 6× 6 376 time out time out 36 s 50.8
183 1 3 � 8× 8 376 time out time out 343.4 s 201.9
185 1 3 � 10 × 10 584 time out time out 39.6 min 774.7

Fig. 2. Comparison of centralized and compositional approaches on a robot motion planning case study with perfect agents.

6. Conclusions and future work

We considered the problem of automated synthesis of controllers for multi-agent systems from high-level temporal logic
specifications. The key insight was to consider more restricted yet practically useful subclasses of the general problem. The
overall theme of the solution approach was to take advantage of the existing structure in systems in order to decompose
the synthesis problem into smaller and more manageable subproblems, and to achieve more efficient synthesis algorithms
through compositional synthesis techniques. We proposed a framework for modular specification and controller synthesis
for dynamically-decoupled multi-agent systems. We showed that, by taking advantage of the structure in system to com-
positionally synthesize controllers, and by representing and exploring the state space symbolically, we can achieve better
scalability. Our preliminary results show the potential of reactive synthesis as planning algorithms in the presence of dy-
namically changing and adversarial environment.

R. Alur et al. / Information and Computation 261 (2018) 616–633 629
Fig. 3. Comparison of centralized and compositional approaches on a robot motion planning case study with imperfect agents.

In our implementation, we performed the subset construction procedure symbolically and we only constructed the part
of it that is reachable from the initial state. One of our observations was that by considering more structured observation
functions for game structures of imperfect information, such as the ones considered in our case study where the robots
show a “local” observation behavior, the worst case exponential blow-up in the constructed knowledge game structure does
not occur in practice. In future, we plan to investigate how considering more restricted observation functions can enable us
to handle systems with imperfect agents of larger size. Besides, in multi-agent systems we consider, the agents are either
cooperative or adversarial. An interesting future direction is to extend this model and allow the user to specify which agents
can cooperate to fulfill a specific objective.

Acknowledgments

This research was partially supported by awards NSF Expeditions in Computing CCF 1138996, AFRL F A8650-15-C-2546,
AFRL 8650-16-C-2610 and DARPA W 911NF -16-1-0001.

Appendix A. Constructing the knowledge game structure

A turn-based game structure of imperfect information is first transformed into its corresponding knowledge game struc-
ture through subset construction. Given an initial state, we construct the knowledge game structure symbolically, and only
part of it that is reachable from the initial state. Intuitively, only “relevant” part of the knowledge game structure is con-
structed. Algorithm 3 summarizes the steps for constructing the knowledge game structure. Queues Q 1 and Q 2 store sets
of states in the knowledge game structure that are reachable from the initial state by player-1 and player-2, respectively,
and their outgoing transitions are yet to be computed. Since we assume player-1 starts the game, Q 1 initially contains the
initial state, and Q 2 is empty. Let k be a bounded integer variable that is used to encode states of the knowledge game
structure, and H be a mapping that maps knowledge game states to their corresponding sets of states. Note that since the
domain of k is bounded, it can be encoded using a finite number of Boolean variables. To keep the notation simple, we use
its bounded integer representation.

Sets V is1 and V is2 keep track of sets of states for player-1 and player-2, respectively, that are already visited during the
search and for which the outgoing transitions in the knowledge game structure is computed. Transition relations τ K

1 and
τ K
2 represent player-1 and player-2’s transition relations in the knowledge game structure, and initially are set to false.

Algorithm 3 iteratively chooses a non-empty queue and picks a set of states �φ� to compute its corresponding transitions
in the knowledge game structure. φ is marked as visited in the corresponding set. The post-image of φ, i.e., the set of states
that can be reached in game structure G in one step from any state s ∈ �φ�, is computed next. The transition relation of the
corresponding player is updated using the procedure UpdateKGSTransitionRelation as shown in Algorithm 4.

Procedure UpdateKGSTransitionRelation first obtains the “relevant” observations Obs ⊆ �OBS by partitioning the set
of states �ψ � using the observation function γ . Then for each observation o ∈ Obs, the knowledge game state b ∈ �k
corresponding to α = γ (o) ∧ ψ is obtained. If b is undefined, a new state for the knowledge game structure is defined by
mapping α to the current value of the counter and then incrementing the counter. Next, if the set of states α has not already
been explored, it is added to Q 1 or Q 2 (depending on what player’s transition relation is being updated) to be processed
later. Finally, the transition relation of the player-p is updated by adding a transition between β = H−1(φ). Note that since
player-1 actions cannot be observed by player-2, actions do not appear in the transition relation formula of player-1.

630 R. Alur et al. / Information and Computation 261 (2018) 616–633
Algorithm 3: CreateKnowledgeGameStructure.
Input: a turn-based game structure G = (V, �, τ , OBS, γ) of imperfect information and a predicate φinit specifying an initial state
Output: the knowledge game structure GK for G

1 Let Q 1 and Q 2 be two initially empty queues;
2 Q 1.Enqueue(φinit);

3 Let k be a variable with domain �k ∈ [0..22|V |];
4 counter := 0;
5 Let H : �k → 2�V be a mapping that maps knowledge game states to sets of states. Initially H(a) is undefined for any a ∈ �k ;
6 V is1 := ∅ /*sets of states visited by player-1, initially empty*/;
7 V is2 := ∅ /*sets of states visited by player-2, initially empty*/;
8 τ K

1 := false /*player-1 transition relation in GK */;
9 τ K

2 := false /*player-2 transition relation in GK */;
10 while Q 1 or Q 2 is not empty do
11 if Q 1 is not empty then
12 φ := Q 1.Dequeue();
13 V is1 := V is1 ∪ {φ};
14 Let ψ be a predicate specifying the set ⋃�∈� PostG� (�φ�);
15 UpdateKGSTransitionRelation(φ, ψ, true, player-1);
16 if Q 2 is not empty then
17 φ := Q 2.Dequeue();
18 V is2 := V is2 ∪ {φ};
19 for each action � ∈ actions do
20 Let ψ be a predicate specifying the set PostG� (φ);
21 UpdateKGSTransitionRelation(φ, ψ, �, player-2);

22 Let tK be a variable with domain �tK = {1,2};
23 Define τ K = (tK = 1 ∧ t′K = 2 ∧ τ K

1) ∨ (tK = 2 ∧ t′K = 1 ∧ τ K
2);

24 return GK = ({k, tk} , �, τ K);

Algorithm 4: UpdateKGSTransitionRelation.
Input: a predicate φ over V specifying a set of states, a predicate ψ over variables V specifying a set of next states, an action σ ∈ �, and

player-p ∈ {player-1,player-2} whose transition relation is being updated (assumes access to local variables of the invoker)
1 Obs := {

o ∈ �OBS | ∃s ∈ �V . s |= ψ ∧ o = γ −1(s)
}
;

2 for each observation o ∈ Obs do
3 α := γ (o) ∧ ψ ;
4 b := H−1(α);
5 if b is undefined then
6 b := counter;
7 counter := counter + 1;
8 H(b) := α;

9 if p = player-1 then
10 if α /∈ V is2 then
11 Q 2.Enqueue(α);

12 else
13 if α /∈ V is1 then
14 Q 1 = Enqueue(α);

15 β := H−1(φ);
16 if p = player-1 then
17 τ K

1 := τ K
1 ∨ (β ∧ α′);

18 else
19 τ K

2 := τ K
2 ∨ (β ∧ σ ∧ α′);

Appendix B. Proof of Theorem 1

Proof. Note that Algorithm 2 always terminates, that is because either eventually a fixed point over strategies is reached, or
a sub-game becomes unrealizable which indicates that the objective cannot be enforced. Consider the permissive strategies
Sd
i and their projections Ci . We have Ci(s) ⊆ Sd

i (s) for all s ∈ �V , and by composing and projecting intermediate strategies,
we obtain more restricted subgames. As the state space and available actions at any state is finite, eventually, either a
subgame becomes unrealizable because the system player becomes too restricted and cannot win the game, or all strategies
reach a fixed point. Therefore, the algorithm always terminates.

We now show that Algorithm 2 is sound, i.e., if it computes strategies (S1, · · · , Sn), then the strategy S = ⊗n
i=1 Si is a

winning strategy in the game (GM, φinit, �), where GM is the game structure induced by M. Let S∗ = ⊗k
i=1 Sd be the
i

R. Alur et al. / Information and Computation 261 (2018) 616–633 631
fixed point reached over the strategies. First note that any run in Gd
i [Sd

i] starting from a state s |= φ
di
init for 1 ≤ i ≤ k satisfies

the conjunct �i since Sd
i is winning in the corresponding safety game. That is, the restriction of the game structure Gd

i
to the strategy Sd

i satisfies �i . Consider any run π = s0s1s2 · · · in the restricted game structure Gd[S∗] starting from the
initial state s0 |= φd

init where Gd = ⊗k
i=1 Gd

i and φd
init = ∧k

i=1 φ
di
init . Let π

i = si0s
i
1s

i
2 · · · for 1 ≤ i ≤ k be the projection of π

with respect to variables Vd
i of the game structure Gd

i , i.e., s
i
j = s j|Vd

i

for j ≥ 0. Since si0 |= φ
di
init and Sd

i is equivalent to

the projection of S∗ with respect to variables and actions in the game structure Gd
i , it follows that π i is a winning run

in the safety game (Gd
i [Sd

i], φdi
init), i.e., π

i |= �i . As π i |= �i for 1 ≤ i ≤ k, we have π |= � = ∧k
i=1 �i . It follows that S∗ is

winning in the safety game (Gd, φd
init). Moreover, S∗ is also winning with respect to the original game as (Gd, φd

init) is the
safety game associated with (GM, φinit, �) [18]. It is easy to see that the set (S1, · · · , Sn) of strategies extracted from S∗
by Algorithm 2 is winning for the game (GM, φinit, �).

We now show that Algorithm 2 is also complete, i.e., if there exists a winning strategy S = ⊗n
i=1 Si in the game

(GM, φinit, �) given as composition of strategies for controlled agents, then Algorithm 2 computes such a strategy. Let
S : �2

V⊗ → �� be a winning strategy for the central safety game (Gd, φd
init). Assume Ci = Project(S, Yi) is the projection of

S into variables of the game structure Gd
i for 1 ≤ i ≤ k.

Lemma 1. Ci is the maximally permissive strategy in the safety game (Gd
i [Ci], φdi

init).

Proof. We show that any run in Gd
i [Ci] starting from the initial state r0 |= φ

di
init is infinite and therefore winning. That

is, the projection of the winning strategy S of the centralized game structure Gd = (V⊗, �, τ), is winning for the game
structure Gd

i = (Vd
i , �d

i , τ
d
i). Let W ⊆ �V⊗ be the set of winning states in the central safety game (Gd, φd

init). Consider any
run π = r0, r1, r2, · · · in the game structure Gd

i [Ci] where r j ∈ �Vd
i
and r0 |= φ

di
init for j ≥ 0. We show that for any r j ∈ �Vd

i
,

j ≥ 0, there exists a state s j ∈ W such that s|Vd
i

= r j . It follows that no r j is dead-end, i.e., there is at least one available

action at r j , and thus the run π is infinite (because otherwise the corresponding state s j of Gd must also be dead-end
which is a contradiction with s j being a winning state).

Proof is by induction. For r0 |= φ
di
init , there exists s0 ∈ �V⊗ |= φinit such that s0|Vd

i

= r0 and s0 ∈ W . That is because

(Gd, φd
init) is realizable, and therefore s0 must be a winning state. For j ≥ 0, let σ j ∈ �

�d
i
be an arbitrary action available at

r j in Gd
i , and r j+1 a possible successor, i.e., (r j, σ j, r j+1) |= τ d

i . There are two cases. If r j is a player-1 state, there exists a
state s j ∈ W where s j|Vd

i

= r j (inductive assumption) and � j ∈ �� such that � j|�d
i

= σ j . That is because the set of available

actions at r for uncontrolled agents involved in Gd
i is same as the set of available actions for them at s in Gd since the

agents are dynamically decoupled and actions of uncontrolled agents are not restricted during composition. Otherwise if r j
is a player-2 state, there exists a state s j ∈ W and � ∈ S(s j) such that �|�d

i
= σ j ∈ Ci . Given s j and chosen actions of the

agents � and since the agents are dynamically-decoupled, there must exist s j+1 ∈ W such that s j+1|Vd
i

= r j+1. �
The following lemma shows that composing the permissive strategies Ci, 1 ≤ i ≤ k and then projecting them with

respect to the variables and actions of the sub-games will lead to the same permissive strategy Ci for each sub-game, i.e.,
{Ci | 1 ≤ i ≤ k} is a fixed point over strategies.

Lemma 2. Project(
⊗k

i=1 Ci, Yi) = Ci .

Proof. We prove the lemma for k = 2. Extension to the general case is straightforward. We have V⊗ = VGd
1

∪ VGd
2
. We

define three (possibly empty) sets X1 = VGd
1
\VGd

2
, X2 = VGd

2
\VGd

1
, and X3 = VGd

1
∩ VGd

2
. That is, X1 is the set of variables

that only appear in Gd
1 , X2 is the set of variables only appearing in Gd

2 , and X3 is the set of common variables. We have
V⊗ = X1 �X2 �X3. Similarly, action variables in the game structure Gd can be partitioned into three sets �1, �2, and �3
where �1 is the action variables of those controlled agents that are involved in Gd

1 and not in Gd
2 , �2 is the action variables

of controlled agents that are involved in Gd
2 and not in Gd

1 , and �3 is the action variables of controlled agents that are
involved in both game structures Gd

1 and Gd
2 . Finally, let Zi =Xi ∪ �i for i = 1..3.

Note that S can be viewed as a predicate over V⊗ ∪ � =Z1 ∪Z2 ∪Z3. We have

C1 = Project(S,Y1)

= ∃Z2.S = {
(z1, z3) ∈ �Z1 × �Z3 | ∃z2 ∈ �Z2 . (z1, z2, z3) |= S

}
, and

C2 = Project(S,Y2)

= ∃Z .S = {
(z , z) ∈ � × � | ∃z ∈ � . (z , z , z) |= S

}
.
1 2 3 Z2 Z3 1 Z1 1 2 3

632 R. Alur et al. / Information and Computation 261 (2018) 616–633
We show that for any (z1, z3) ∈ �Z1 × �Z3 such that (z1, z3) |= C1, (z1, z3) |= Project(C1 ⊗ C2, Y1) and vice versa.
That is, C1 = Project(C1 ⊗ C2, Y1). Let (z1, z3) |= C1. Then by definition ∃z2.(z1, z2, z3) |= S. Besides (z2, z3) |= C2. It follows
that (z1, z2, z3) |= C1 ⊗ C2. Thus, (z1, z3) |= Project(C1 ⊗ C2, Y1) = ∃Z2.C1 ⊗ C2. For the opposite direction, let (z1, z3) |=
Project(C1 ⊗ C2, Y1). Then there must exist z2 ∈ �Z2 such that (z1, z2, z3) |= C1 ⊗ C2. It follows from definition of the
composition that (z1, z3) |= C1. The proof for C2 = Project(C1 ⊗ C2, Y2) is symmetric. �

From Lemma 1 and 2 it follows that there is at least a set of maximally permissive strategies Ci for 1 ≤ i ≤ k such
that the projection of their composition

⊗k
i=1 Ci to each sub-games is equivalent to the computed permissive strategies for

that sub-game. As a result, if there exists a winning strategy for the centralized game, a winning strategy is computed by
Algorithm 2. �
References

[1] D. Halperin, J.-C. Latombe, R.H. Wilson, A general framework for assembly planning: the motion space approach, Algorithmica 26 (3–4) (2000) 577–601.
[2] S. Rodriguez, N.M. Amato, Behavior-based evacuation planning, in: IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2010,

pp. 350–355.
[3] J.S. Jennings, G. Whelan, W.F. Evans, Cooperative search and rescue with a team of mobile robots, in: 8th International Conference on Advanced

Robotics (ICAR), IEEE, 1997, pp. 193–200.
[4] D. Fox, W. Burgard, H. Kruppa, S. Thrun, A probabilistic approach to collaborative multi-robot localization, Auton. Robots 8 (3) (2000) 325–344.
[5] D. Rus, B. Donald, J. Jennings, Moving furniture with teams of autonomous robots, in: Proceedings of 1995 IEEE/RSJ International Conference on

Intelligent Robots and Systems, vol. 1, IEEE, 1995, pp. 235–242.
[6] T. Balch, R.C. Arkin, Behavior-based formation control for multirobot teams, IEEE Trans. Robot. Autom. 14 (6) (1998) 926–939.
[7] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: Proceedings of the 16th ACM Symposium on Principles of Programming Languages,

ACM, 1989, pp. 179–190.
[8] A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize, in: Proceedings of 31st Annual Symposium on Foundations of Computer

Science, IEEE, 1990, pp. 746–757.
[9] G. Peterson, J. Reif, S. Azhar, Lower bounds for multiplayer noncooperative games of incomplete information, Comput. Math. Appl. 41 (7) (2001)

957–992.
[10] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of reactive (1) designs, J. Comput. Syst. Sci. 78 (3) (2012) 911–938.
[11] H. Kress-Gazit, G.E. Fainekos, G.J. Pappas, Temporal-logic-based reactive mission and motion planning, IEEE Trans. Robot. 25 (6) (2009) 1370–1381.
[12] I. Saha, R. Ramaithitima, V. Kumar, G.J. Pappas, S.A. Seshia, Automated composition of motion primitives for multi-robot systems from safe LTL specifi-

cations, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2014, pp. 1525–1532.
[13] N. Ayanian, V. Kallem, V. Kumar, Synthesis of feedback controllers for multiple aerial robots with geometric constraints, in: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, 2011, pp. 3126–3131.
[14] T. Keviczky, F. Borrelli, G.J. Balas, Decentralized receding horizon control for large scale dynamically decoupled systems, Automatica 42 (12) (2006)

2105–2115.
[15] W.B. Dunbar, R.M. Murray, Distributed receding horizon control for multi-vehicle formation stabilization, Automatica 42 (4) (2006) 549–558.
[16] E. Şahin, S. Girgin, L. Bayindir, A.E. Turgut, Swarm robotics, in: Swarm Intelligence, Springer, 2008, pp. 87–100.
[17] Z. Shi, J. Tu, Q. Zhang, L. Liu, J. Wei, A survey of swarm robotics system, in: Advances in Swarm Intelligence, Springer, 2012, pp. 564–572.
[18] E. Filiot, N. Jin, J.-F. Raskin, Antichains and compositional algorithms for LTL synthesis, Form. Methods Syst. Des. 39 (3) (2011) 261–296.
[19] A. Church, Logic, arithmetic and automata, in: Proceedings of the International Congress of Mathematicians, 1962, pp. 23–35.
[20] S. Safra, On the complexity of ω-automata, in: 29th Annual Symposium on Foundations of Computer Science, IEEE, 1988, pp. 319–327.
[21] R. Rosner, Modular Synthesis of Reactive Systems, Ph.D. thesis, Weizmann Institute of Science, 1992.
[22] R. Alur, S. La Torre, Deterministic generators and games for Ltl fragments, ACM Trans. Comput. Log. 5 (1) (2004) 1–25.
[23] E. Asarin, O. Maler, A. Pnueli, J. Sifakis, Controller synthesis for timed automata, IFAC Proc. Vol. 31 (18) (1998) 447–452.
[24] O. Kupferman, M.Y. Vardi, Safraless decision procedures, in: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, 2005,

pp. 531–540.
[25] O. Kupferman, N. Piterman, M. Vardi, Safraless compositional synthesis, in: Computer Aided Verification (CAV), Springer, 2006, pp. 31–44.
[26] C. Baier, J. Klein, S. Klüppelholz, A compositional framework for controller synthesis, in: Concurrency Theory (CONCUR), Springer, 2011, pp. 512–527.
[27] S. Sohail, F. Somenzi, Safety first: a two-stage algorithm for LTL games, in: Formal Methods in Computer-Aided Design, IEEE, 2009, pp. 77–84.
[28] R. Alur, S. Moarref, U. Topcu, Pattern-based refinement of assume-guarantee specifications in reactive synthesis, in: Tools and Algorithms for the

Construction and Analysis of Systems, Springer, 2015, pp. 501–516.
[29] Y. Lustig, M.Y. Vardi, Synthesis from component libraries, Int. J. Softw. Tools Technol. Transf. 15 (5–6) (2013) 603–618.
[30] R. Alur, S. Moarref, U. Topcu, Compositional synthesis with parametric reactive controllers, in: Proceedings of the 19th International Conference on

Hybrid Systems: Computation and Control, ACM, 2016, pp. 215–224.
[31] J.H. Reif, The complexity of two-player games of incomplete information, J. Comput. Syst. Sci. 29 (2) (1984) 274–301.
[32] K. Chatterjee, T.A. Henzinger, Semiperfect-information games, in: Foundations of Software Technology and Theoretical Computer Science (FSTTCS),

Springer, 2005, pp. 1–18.
[33] M. De Wulf, L. Doyen, J.-F. Raskin, A lattice theory for solving games of imperfect information, in: Hybrid Systems: Computation and Control, Springer,

2006, pp. 153–168.
[34] K. Chatterjee, L. Doyen, T.A. Henzinger, J.-F. Raskin, Algorithms for omega-regular games with imperfect information, in: Computer Science Logic,

Springer, 2006, pp. 287–302.
[35] T. Wongpiromsarn, U. Topcu, R.M. Murray, Receding horizon temporal logic planning, IEEE Trans. Autom. Control 57 (11) (2012) 2817–2830.
[36] H. Kress-Gazit, T. Wongpiromsarn, U. Topcu, Correct, reactive, high-level robot control, IEEE Robot. Autom. Mag. 18 (3) (2011) 65–74.
[37] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, D. Rus, Incremental synthesis of control policies for heterogeneous multi-agent systems with linear

temporal logic specifications, in: IEEE International Conference on Robotics and Automation, IEEE, 2013, pp. 5011–5018.
[38] M. Kloetzer, C. Belta, Automatic deployment of distributed teams of robots from temporal logic motion specifications, IEEE Trans. Robot. 26 (1) (2010)

48–61.
[39] N. Ozay, U. Topcu, R.M. Murray, Distributed power allocation for vehicle management systems, in: 50th IEEE Conference on Decision and Control and

European Control Conference, IEEE, 2011, pp. 4841–4848.
[40] P. Tabuada, Verification and Control of Hybrid Systems: a Symbolic Approach, Springer Science & Business Media, 2009.

http://refhub.elsevier.com/S0890-5401(18)30024-5/bib68616C706572696E3230303067656E6572616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib726F6472696775657A323031306265686176696F72s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib726F6472696775657A323031306265686176696F72s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6A656E6E696E677331393937636F6F7065726174697665s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6A656E6E696E677331393937636F6F7065726174697665s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib666F783230303070726F626162696C6973746963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib727573313939356D6F76696E67s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib727573313939356D6F76696E67s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib62616C6368313939386265686176696F72s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib706E75656C693139383973796E746865736973s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib706E75656C693139383973796E746865736973s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib706E65756C69313939306469737472696275746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib706E65756C69313939306469737472696275746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib7065746572736F6E323030316C6F776572s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib7065746572736F6E323030316C6F776572s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib626C6F656D3230313273796E746865736973s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B726573733230303974656D706F72616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib73616861323031346175746F6D61746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib73616861323031346175746F6D61746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6179616E69616E3230313173796E746865736973s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6179616E69616E3230313173796E746865736973s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B657669637A6B7932303036646563656E7472616C697A6564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B657669637A6B7932303036646563656E7472616C697A6564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib64756E626172323030366469737472696275746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib736168696E32303038737761726Ds1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib73686932303132737572766579s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib66696C696F7432303131616E7469636861696E73s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib636875726368313936326C6F676963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib736166726131393838636F6D706C6578697479s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib726F736E6572313939326D6F64756C6172s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib616C75723230303464657465726D696E6973746963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib706E75656C6931393938636F6E74726F6C6C6572s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B75706665726D616E3230303573616672616C657373s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B75706665726D616E3230303573616672616C657373s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B75706665726D616E3230303673616672616C657373s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib626169657232303131636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib736F6861696C32303039736166657479s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib616C7572323031357061747465726Es1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib616C7572323031357061747465726Es1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6C75737469673230313373796E746865736973s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib616C757232303136636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib616C757232303136636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib7265696631393834636F6D706C6578697479s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib636861747465726A65653230303573656D6970657266656374s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib636861747465726A65653230303573656D6970657266656374s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6465323030366C617474696365s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6465323030366C617474696365s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib636861747465726A656532303036616C676F726974686D73s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib636861747465726A656532303036616C676F726974686D73s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib776F6E677069726F6D7361726E323031327265636564696E67s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib4B726573732D67617A69745F636F7272656374s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib776F6E677069726F6D7361726E32303133696E6372656D656E74616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib776F6E677069726F6D7361726E32303133696E6372656D656E74616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B6C6F65747A6572323031306175746F6D61746963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6B6C6F65747A6572323031306175746F6D61746963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6F7A6179323031316469737472696275746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6F7A6179323031316469737472696275746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib7461627561646132303039766572696669636174696F6Es1

R. Alur et al. / Information and Computation 261 (2018) 616–633 633
[41] R. Parikh, R. Ramanujam, Distributed processes and the logic of knowledge, in: Logics of Programs, 1985, pp. 256–268.
[42] R. Fagin, J.Y. Halpern, Y. Moses, M. Vardi, Reasoning About Knowledge, MIT Press, 2004.
[43] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.
[44] S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
[45] R. Alur, S. Moarref, U. Topcu, Compositional synthesis of reactive controllers for multi-agent systems, in: Computer Aided Verification, Springer, 2016,

pp. 251–270.
[46] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
[47] Y. Gurevich, L. Harrington, Trees, automata, and games, in: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, ACM,

1982, pp. 60–65.
[48] S. Schewe, B. Finkbeiner, Bounded synthesis, in: Automated Technology for Verification and Analysis, Springer, 2007, pp. 474–488.
[49] R. Ehlers, Symbolic bounded synthesis, Form. Methods Syst. Des. 40 (2) (2012) 232–262.
[50] O. Maler, A. Pnueli, J. Sifakis, On the synthesis of discrete controllers for timed systems, in: STACS 95, Springer, 1995, pp. 229–242.
[51] R. Bloem, H.N. Gabow, F. Somenzi, An algorithm for strongly connected component analysis in n log n symbolic steps, Form. Methods Syst. Des. 28 (1)

(2006) 37–56.
[52] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, in: Proceedings of the 1993 IEEE/ACM International Conference on

Computer-Aided Design, IEEE Computer Society Press, 1993, pp. 42–47.
[53] S. Moarref, Compositional Reactive Synthesis for Multi-Agent Systems, University of Pennsylvania, 2016.

http://refhub.elsevier.com/S0890-5401(18)30024-5/bib706172696B68313938356469737472696275746564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib666167696E32303034726561736F6E696E67s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib72757373656C6C323030326172746966696369616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6C6176616C6C6532303036706C616E6E696E67s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib616C7572636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib616C7572636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib636C61726B65313939396D6F64656Cs1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6775726576696368313938327472656573s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6775726576696368313938327472656573s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib73636865776532303037626F756E646564s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib65686C6572733230313273796D626F6C6963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6D616C65723139393573796E746865736973s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib626C6F656D32303036616C676F726974686Ds1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib626C6F656D32303036616C676F726974686Ds1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib727564656C6C3139393364796E616D6963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib727564656C6C3139393364796E616D6963s1
http://refhub.elsevier.com/S0890-5401(18)30024-5/bib6D6F617272656632303136636F6D706F736974696F6E616Cs1

	Compositional and symbolic synthesis of reactive controllers for multi-agent systems
	1 Introduction
	2 Preliminaries
	2.1 Linear temporal logic (LTL)
	2.2 Game structures

	3 Dynamically-decoupled multi-agent systems
	4 Compositional controller synthesis
	4.1 Decomposition of the synthesis problem
	4.2 Compositional synthesis
	4.3 Computing strategies for the agents

	5 Case study
	6 Conclusions and future work
	Acknowledgments
	Appendix A Constructing the knowledge game structure
	Appendix B Proof of Theorem 1
	References

