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Abstract. We present an optimized, constant-time software library
for commutative supersingular isogeny Diffie-Hellman key exchange
(CSIDH) proposed by Castryck et al. which targets 64-bit ARM pro-
cessors. The proposed library is implemented based on highly-optimized
field arithmetic operations and computes the entire key exchange in
constant-time. The proposed implementation is resistant to timing
attacks. We adopt optimization techniques to evaluate the highest perfor-
mance CSIDH on ARM-powered embedded devices such as cellphones,
analyzing the possibility of using such a scheme in the quantum era.
To the best of our knowledge, the proposed implementation is the first
constant-time implementation of CSIDH and the first evaluation of this
scheme on embedded devices. The benchmark result on a Google Pixel
2 smartphone equipped with 64-bit high-performance ARM Cortex-A72
core shows that it takes almost 12 s for each party to compute a com-
mutative action operation in constant-time over the 511-bit finite field
proposed by Castryck et al. However, using uniform but variable-time
Montgomery ladder with security considerations improves these results
significantly.

Keywords: Commutative supersingular isogeny · Constant-time ·
Embedded devices · Post-quantum cryptography

1 Introduction

The construction of public-key cryptography schemes based on the elliptic curves
isogeny problem was proposed by Couveignes in 1997 [11] which described a
non-interactive key exchange based on the isogeny classes of ordinary elliptic
curves defined over a finite field Fp. In 2004, Rostovtsev and Stolbunov [26]
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Table 1. Comparison of SIDH and CSIDH over NIST’s level 1 quantum security [12]

Scheme Speed Key size
(Bytes)

Constant-time Quantum
attack

Active
attacks

Non-
interactive

SIDH ∼10 ms 378 B Yes p1/6 Yes No

CSIDH ∼100 ms 64 B Not yet Subexponential Not
known

Yes

independently came up with the same construction which later led to the design
of other primitives such as isogeny-based digital signature [29]. Although the
isogeny-based public-key cryptography construction by Couveignes-Rostovtsev-
Stolbunov is attractive in many aspects such as key size, in 2010, Childs, Jao and
Soukharev [7] showed that there exists a subexponential quantum algorithm that
can solve the ordinary curve isogeny underlying problem. The proposed attack
targeted the commutative ideal class group cl(O) for isogeny of ordinary curves;
thus made this primitive unsuitable for the post-quantum era.

In 2006, Charles-Lauter-Goren [6] proposed a set of secure cryptographic
hash functions from the supersingular curves isogeny graphs. Inspired by their
work, in 2011, Jao and De Feo [22] proposed a Diffie-Hellman key exchange
protocol from the isogeny of supersingular elliptic curves which was not vul-
nerable to Childs’s quantum attack because of the non-commutative ring of
endomorphisms in supersingular curves. Their interactive Supersingular Isogeny
Diffie-Hellman (SIDH) key exchange is the fundamental basis of CCA secure
Supersingular Isogeny Key Encapsulation (SIKE) mechanism [21] which was
submitted to NIST PQC standardization project.

Due to the Child’s quantum attack and impractical performance results of
Couveignes-Rostovtsev-Stolbunov scheme, this primitive has been disregarded
by community. Even the recent effort by De Feo-Kieffer-Smith [15] still takes
several minutes to perform a single commutative action, in spite of using opti-
mized state-of-the-art techniques.

Recently, Castryck et al. [5] proposed a new modification on the Couveignes-
Rostovtsev-Stolbunov original scheme by adopting it to supersingular elliptic
curves. However, instead of defining the supersingular curve over full ring of
endomorphisms, the proposed scheme is restricted to the prime field Fp which
preserves the commutative action of isogeny. They named the Diffie-Hellman
key exchange scheme constructed over the commutative action as CSIDH (Com-
mutative Supersingular Isogeny Diffie-Hellman). The main motivation behind
using supersingular curves is to accelerate the commutative action rather than
to address the security concerns on the Couveignes-Rostovtsev-Stolbunov raised
by Child’s quantum attack. In fact, CSIDH proposal can still be solved theoret-
ically in subexponential time using the quantum algorithm as it is discussed by
Biasse-Jao-Sankar [3] which targets the abelian hidden shift problem in the con-
text of isogeny of supersingular curves [5]. However, as it is stated in [5], since the
CSIDH public-key, in contrast to SIDH, contains only a single curve coefficient,
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it is not vulnerable to torsion point images attacks presented by Petit [25]. Fur-
thermore, CSIDH simple key validation makes it inherently secure against CCA
attacks proposed by Galbraith et al. [17]. Table 1 provides an abstract compar-
ison between CSIDH and SIDH over NIST’s level 1 security. The performance
metrics provided in this table are based on optimized implementations on Intel
Skylake processors. The performance of SIDH scheme on embedded devices is
also investigated in detail in [18–20,23,27].

Recent detailed analysis in [4] shows that the CSIDH may have some secu-
rity concerns with respect to quantum attacks. However, it offers efficient and
fast key validation as well as extremely small key size. Moreover, other cryptog-
raphy applications can be derived from the commutative group action similar
to traditional Diffie-Hellman. For instance, De Feo and Galbraith [14] recently
proposed SeaSign, a set of compact signatures from supersingular isogeny group
action. Therefore, it is important to evaluate and analyze different aspects of
this scheme such as performance and security on the practical settings.

The initial performance report of the commutative group action in [1,5] is
based on a variable-time, mixed C and ASM implementation on Intel Skylake
processors. Recent performance improvement of CSIDH by Meyer et al. [24] was
also designed on top of the proof of concept implementation of CSIDH [5] and
thus is variable-time. Note that as it is stated clearly in [5], the proof of concept
implementation of CSIDH is unfit for production and it is totally vulnerable to
timing and power analysis attacks.

In this work, we present a constant-time software library for CSIDH which
targets 64-bit ARM-powered embedded devices. The main motivation behind
this work is to evaluate the performance and the feasibility of using CSIDH in the
real setting while the proposed software is secure against timing analysis attacks
due to the constant-time implementation. We provide a set of modifications
to the initial implementation of CSIDH in [5] over different layers from field
arithmetic to group operations.

Since the proposed commutative action operation is implemented in constant-
time, it can be simply adopted inside other applications of commutative super-
singular isogeny to evaluate their performance in real settings.

The paper is organized as follows. Section 2 provides preliminaries on the
isogeny of supersingular elliptic curves and explains the CSIDH scheme in a
nutshell. Section 3 describes our approach to implement the entire commutative
Diffie-Hellman key exchange efficiently and constant-time on embedded devices.
The CSIDH benchmark results on two popular cellphones are presented in Sect. 4
and a comparison of constant- and variable-time implementations is provided.
We conclude this work in Sect. 5.

2 Background

In this section, a brief description of supersingular curves isogeny and its appli-
cation to construct a Diffie-Hellman key exchange protocol is presented. We refer
the readers to [5,13,16,28] for more details.
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2.1 Isogeny of Supersingular Curves

An �-degree isogeny φ� is a rational function that maps an elliptic curve E defined
over a field K to another curve E′. E′ is a unique curve up to isomorphism and
the map can be defined by a kernel which is a point P of order � on E.

φ� : E → E′/〈P 〉, P ∈ E[�].

The ring of endomorphisms of E is defined over the algebraic closure of K and
denoted as End(E). Considering an elliptic curve E defined over a finite field
Fp, in case of ordinary elliptic curves, the End(E) is defined only over the base
field Fp, while for supersingular curves, it is defined over some extension field.

In contrast to Couveignes-Rostovtsev-Stolbunov scheme, CSIDH is con-
structed on supersingular curves. Therefore, only the subring of End(E) which is
defined over Fp, i.e., EndFp

(E), is considered [5]. We have EndFp
(E) ∼= O where

O is an order in an imaginary quadratic field [14].

2.2 Class Group Action

For a supersingular elliptic curve E defined over Fp with EndFp
(E) ∼= O, the

cl(O) is the ideal class group of O. The action of an O-ideal a can be defined
by an isogeny φ : E → E′ and denoted as a ∗ E; its kernel ker(φ) is presented
by a torsion subgroup of points E[a] on the curve E. The j-invariant, j(E), of
a curve E divides the End(E) into isomorphism classes where the isomorphic
curves share the j-invariant value. Moreover, according to [11], the set of j(E)
constructs a hard homogeneous space which immediately implies the construc-
tion of a Diffie-Hellman like protocol.

2.3 Commutative Isogeny Diffie-Hellman Key Exchange

Considering the isogeny group action as described above on supersingular
curves, CSIDH is defined over a finite field Fp with the prime p of the form
p = 4.�1 · · · �n − 1. Here �i are small odd primes and in the proposed parameter
setting in [5] contain 74 primes which together construct a 511-bit prime value.
Since the curve is supersingular, all �i are Elkies primes.

Using supersingular curves in CSIDH in contrast to Couveignes-Rostovtsev-
Stolbunov original scheme makes it easy to find a curve with cardinality equal to
#E(Fp) = p+1 and �i|p+1. Thus #E(Fp) is congruent to 0 modulo all primes.

Similar to SIDH efficient implementation [10], in order to take advantage
of fast and compact Montgomery arithmetic, the starting curve is defined as
E0 : y2 = x3 +x which is an instance of Montgomery curve and therefore all the
corresponding isomorphic curves are also in Montgomery form.

Private Key. The private key is defined as an n-tuple (e1, · · · , en) of integers
chosen from [−m,m] where m is a small integer. Note that the value of m is
defined by the provided security level as it is discussed in details in [5, Section 7].
According to their security analysis, m = 5 is sufficient to provide 125-bit and
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61-bit of classical and quantum security, respectively. De Feo and Galbraith also
provide the estimation of range for m regarding the NIST higher security levels
[14, Table 1].

Public Key. Each n-tuple private key represents the ideal class [a] = [le1
1 · · · len

n ]
on the ideal class group cl(O) and generates a public key by applying the group
action on the base curve E0. The isomorphic curve generated by this group
action is a Montgomery curve [a]E : y2 = x3 + Ax2 + x which whose coefficient
A ∈ Fp is the corresponding public key.

Shared Secret. Since the group action is commutative, Alice and Bob compute
the shared secret in a non-interactive procedure. They generate their key pairs as
([a], EA) and ([b], EB). Alice applies the action using her secret [a] on the Bob’s
public key EB and computes [a]EB . Conversely, Bob computes [b]EA using his
action and Alice’s public key. The shared secret is the final curve coefficient
[a][b]E0 = [a]EB = [b]EA. Figure 1 demonstrates the key exchange procedure in
a nutshell.

boBecilA

SKA = (eA1, · · · , eAn) SKB = (eB1, · · · , eBn)
[a] = [leA1

1 · · · leAn
n ] [b] = [leB1

1 · · · leBn
n ]

PKA = [a]E0 = EA PKB = [b]E0 = EB

SharedA = [a]EB = [a][b]E0 SharedB = [b]EA = [b][a]E0

Fig. 1. CSIDH key exchange.

3 Constant-Time CSIDH Implementation

In this section, we outline our strategy for implementing an optimized and
constant-time CSIDH on 64-bit ARMv8 processors. We engineered the underly-
ing finite field arithmetic for the proposed field size and adopted different opti-
mizations to evaluate a high performance and constant-time implementation of
CSIDH on embedded devices.

All the field arithmetic operations described in this work are implemented
using hand-written ARMv8 assembly to reduce the compiler overhead and pro-
vide the most-optimized results.

3.1 Field Arithmetic Modulo p511

Starting from simple field arithmetic, modular addition and subtraction mod-
ulo p511 are implemented in constant-time. In contrast to the CSIDH proof of
concept implementation [5] in which the modulo operation is only performed
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when the results are required to be corrected, our addition result is always sub-
tracted from p511 and tested for borrow overflow. Based on the last borrow value,
either p511 or 0 is added to the result for final correction. The same strategy is
adopted for modular subtraction in order to have constant-time modular addi-
tion/subtraction.

Montgomery Modular Multiplication. Following the optimized SIDH
implementation by Castello-Longa-Naehrig [10], Castryck et al. designed the
entire curve operations in x-only arithmetic to take advantage of the optimized
and compact Montgomery formulas. Accordingly, field multiplication and reduc-
tion are implemented using the Montgomery multiplication which is expected to
offer the optimal performance since the p511 does not have any special form to
enable further optimization techniques.

Since the prime is 511-bit, there is only one bit space left for any overflows
and it is impossible to use optimization techniques such as lazy reduction to post-
pone the reduction operation. Therefore, using the Montgomery multiplication
seems to be a better option rather than separate multiplication and Montgomery
reduction due to the optimal memory usage and compactness.

The p511 is not a Montgomery-friendly prime which means that p′ = −p−1

mod r is not equal to 1 for the target radix, i.e., r = 264. This adds extra
multiplication operations to the reduction part.

Because of the special shape of the CSIDH prime p = 4.�1 · · · �n−1, a straight-
forward strategy to find a Montgomery-friendly primes suggests the form

p = r.�1 · · · �n − 1,

where r is the implementation target radix. This adds a considerable length
(an extra word) to the field size without enhancing security level. Therefore,
searching for a Montgomery-friendly prime in the context of CSIDH does not
seem to add any performance improvement and the prime p511 is a proper choice
for the target security level.

Since the filed elements over Fp511 are stored in an array of 8×64-bit words, 32
available 64-bit general registers inside the ARMv8 cores are adequate for imple-
menting the modular multiplication efficiently using operand-scanning method.
Therefore, we implement a compact and constant-time operand-scanning Mont-
gomery multiplication using ARMv8 assembly, taking advantage of 64-bit wide
general registers. Similar to our constant-time addition, the final result of the
multiplication is always subtracted from p511 and according to the borrow over-
flow it adds to either p511 or 0 for the final correction.

Field Inversion. The constant-time field inversion is implemented using FLT
algorithm in which for a field element a, the inverse of the element is com-
puted as a−1 = ap−2 mod p. Surprisingly, the variable-time CSIDH proof of
concept implementation uses the same approach for computing the inverse of
an operand, while faster non-constant algorithm such as Extended Euclidean
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Algorithm (EEA) could have been utilized. Moreover, they used binary square-
and-multiply method to compute such exponentiation which is not an efficient
approach in terms of performance, but it offers slightly less memory usage.

We implemented the exponentiation using fixed-window method with pre-
computed table. We set the window length to 6-bit which led to a table with
28 Fp elements. This consumes roughly 1.8 KB of memory which is negligible to
the obtained performance improvement. The proposed addition chain is highly-
optimized for the 6-bit window and it costs 29M + 2S operations1 for generating
the table, and 73M + 510S for computing addition chain. Therefore, a field inver-
sion costs 102M + 512S in our window method, while it costs 255M + 510S for
binary method which is used in the CSIDH proof of concept.

Square Root. The square root test over Fp511 for a field element a is imple-
mented in constant-time by computing a

p−1
2 mod p. Instead of using binary

method in the CSIDH proof of concept implementation, we adopted the win-
dow method. The proposed addition chain computes the square root test using
71M + 510S in addition to 27M + 2S for the precomputed table generation.
This leads to the total 98M + 512S computations, in contrast to 255M + 510S
cost of binary method.

Note that in contrast to projective implementation of SIDH which only
requires one inversion at the very end of each round, projective CSIDH requires
several field inversion and square root computations inside each group action.
Therefore, the above optimizations provide considerable enhancement in overall
performance and efficiency of the protocol.

3.2 Scalar Multiplication

The Montgomery curve and x-only arithmetic offer a set of fast and compact
formulas for computing curve arithmetic and isogeny computations. The CSIDH
proof of concept implementation [5] is implemented based on the Montgomery
group arithmetic. However, since the proposed implementation is non-constant
time, it is entirely vulnerable to DPA and SPA attacks. In particular, the Mont-
gomery ladder implementation for computing scalar multiplication is totally vul-
nerable to the power attacks and the exact value of scalar can be retrieved easily
by power trace analysis [8].

To mitigate this vulnerability, we adopted the constant-time Montgomery
ladder using the constant-time conditional cswap function. Since the point
scalars in the CSIDH scheme have variable length, the constant-time ladder
adds a significant extra operations to the scheme compared to non-constant ver-
sion, but since the scalar in the commutative action operation is directly related
to the private key, this modification is necessary.

The constant-time left-to-right Montgomery ladder is illustrated in
Algorithm 1. It computes the scalar multiplication using n − 1 number of oper-
ations for different bit-length scalars where n is the finite field bit-length.
1 M and S stand for field multiplication and field squaring, respectively.
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Algorithm 1. Constant-time variable length scalar multiplication

Input : k =
∑n−1

i=0 ki2
i and x(P ) for P ∈ E(Fp).

Output: (Xk, Zk) ∈ F
2
p s.t. (Xk : Zk) = x([k]P ).

1: XR ← XP , ZR ← ZP

2: XQ ← 1, ZQ ← 0
3: for i = n − 2 downto 0 do
4: (Q, R) ← cswap(Q, R, (ki xor ki+1))
5: (Q, R) ← xDBLADD(Q, R, P )
6: end for
7: (Q, R) ← cswap(Q, R, k0)
8: return Q

As it is already implemented in [10] and pointed out in [24], the xDBLADD func-
tion inside Algorithm1 computes the simultaneous point addition and doubling
using precomputed (A + 2C : 4C) values to reduce the number of operations.
We state that the effect of this optimization on the overall performance of our
constant-time CSIDH is negligible.

Remark 1. The constant-time Montgomery ladder in Algorithm1 is computa-
tionally expensive. However, using this algorithm guarantees the DPA and SPA
resistance. Alternatively, to achieve significant better performance results, we can
adopt a uniform ladder with various number of iterations for different scalars
such that kn−1 = 1 as it is outlined in Algorithm2. Since the algorithm is uni-
form, it does not reveal any information about the scalar bit values. However,
the scalar bit-length can still be exposed by DPA. We included both implemen-
tations in our software to illustrate the difference in performance results of the
CSIDH scheme. Further details are provided in Sect. 4.

Remark 2. In order to be resistant against DPA, Coron [8] proposed different
countermeasures for scalar multiplication in the context of elliptic curve cryp-
tography. According to his analysis, the countermeasures do not significantly
impact efficiency. However, they also do not thwart all kinds of power attacks.
Moreover, adopting such techniques results in variable-time software which is
dependent to the inputs. Therefore, we choose to use fully constant-time Mont-
gomery ladder inside our software to be resistant against all kinds of timing and
power attacks.

The rest of Montgomery arithmetic such as xDBL, xADD, are constant-time
and therefore no modifications are needed. However, we note that depending on
the inputs, the number of group operations and subsequently field arithmetic
counts can vary in the CSIDH variable-time implementation. Accordingly, in
order to make the scheme entirely constant-time, we need to modify the key
exchange operations and make them independent of inputs. In the next section,
we describe these modifications.
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Algorithm 2. Uniform and variable-time scalar multiplication

Input : k =
∑n−1

i=0 ki2
i with kn−1 = 1 and x(P ) for P ∈ E(Fp).

Output: (Xk, Zk) ∈ F
2
p s.t. (Xk : Zk) = x([k]P ).

1: XR ← XP , ZR ← ZP

2: Q ← xDBL(P )
3: for i = n − 2 downto 0 do
4: (Q, R) ← cswap(Q, R, (ki xor ki+1))
5: (Q, R) ← xDBLADD(Q, R, P )
6: end for
7: (Q, R) ← cswap(Q, R, k0)
8: return Q

3.3 Key Exchange Operations

As it is discussed in details in [5, Section 8], the most prominent operation inside
CSIDH is the commutative group action. This operation computes the resulting
curve coefficient given a starting curve and an n-tuple private key. The provided
proof of concept implementation of group action in [5] is fast and optimized.
However, as it is discussed before, its timing and performance directly depend
on the input which makes it impossible to utilize in the practical settings. In
this section, we provide a set of modifications to make key exchange operations
constant-time. These modifications result in notable performance degradation
to the scheme. However, they are necessary to be resistant against timing and
power attacks.

Constant-Time Commutative Action. In order to compute an �-degree
isogeny using Vélu’s formulas [30], we need to find a kernel point of order � from
torsion subgroup E[�] on the curve. On Montgomery curves, a set of projective
x-only formulas for arbitrary degree isogenies were proposed by Costello and
Hisil [9] which the CSIDH proof of concept implementation is constructed upon.

In the context of SIDH, since the exact degree of isogeny is defined prior to
the key exchange (2eA and 3eB for Alice and Bob, respectively), two pairs of base
points are chosen from each torsion subgroups PA, QA ∈ E[2eA ] and PB, QB ∈
E[3eB ] as public parameters. Using these bases, Alice and Bob simply compute
their secret isogeny kernel points RA = QA + [nA]PA and RB = QB + [nB ]PB

which accelerate the computation. However, this is not the case in the CSIDH
scheme since the degree of isogeny action [le1

1 · · · len
n ] is directly related to the

each party’s secret key (e1, · · · , en). Therefore, as it is noted in [5] the kernel of
each small degree isogeny �ei

i in each step of isogeny computation is retrieved by
sampling a random x-coordinate followed by a square root test (to check whether
it is defined over Fp or imaginary Fp2) and a multiplication by (p + 1)/�i which
because of the special shape of p outputs a point of order �i or the point at
infinity O with the probability of 1 − 1/�i and 1/�i, respectively. After finding
a kernel for each small degree isogeny φ�i , the isogeny map is computed on the
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Fig. 2. Computing action using auxiliary base points on E0.

current curve. This procedure is consecutively performed for all the small degree
isogeny maps which together construct the action.

The random sampling procedure is expensive and it significantly affects the
performance of the action operation, especially when it fails to provide an �i

order point. It is possible to define a set of base points with predefined orders
{P1 ∈ E[�1], · · · , Pk ∈ E[�k]} such that {�1, · · · , �k} are a subgroup of primes
from {�1, · · · , �n} on the base curve E0 similar to SIDH. Furthermore, in each
step of isogeny computations, the image of these base points can be computed on
the next curve. Therefore, for the small degree isogenies (�1, · · · , �k) with higher
probability of failure in random sampling (1/�1, · · · , 1/�k), the kernel points are
ready at each step to use for the isogeny computations.

For the larger degrees, since the failure probability is relatively small, we can
stick to the random sampling to reduce the memory usage. Figure 2 illustrates
this procedure for some predefined value of k2. In each step of isogeny compu-
tation, one of the image points is dropped and its image is not needed for the
further isogeny computations.

Therefore, at the beginning of the procedure, the x-coordinate of k points is
stored while at the k-th step, only one point is required. As a result, the isogeny
evaluations of the auxiliary points are reduced as the algorithm steps forward.

However, this adds some security concerns to the scheme since the isogeny
kernels are the image of some public base points through small degree isogenies.
Moreover, a set of extra isogeny evaluations in each step is added to the scheme.
Therefore, more investigation on the security and performance of the proposed
method is needed. We leave the possibility of using such a technique for the
future work.

To be able to practically evaluate the variation of the main loop in variable-
time group action implementation, we performed a statistical analysis on the
number of required iterations for uniformly random inputs. We conducted 106

experiments of variable-time group action from random inputs and recorded the
number of iterations. Figure 3 presents the result of this experiment. We observed
that the number of iterations for different private keys can be as large as 60 (only
once in 106 experiments), while some inputs only require 9 iterations. This is

2 The optimal value for k is directly related to the prime and the trade-off between
memory usage and performance.
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Fig. 3. The frequency of different iterations count over 106 experiments of group action.

the result of the variation in the n-tuple secret key and the failure probability
of computing the point of order �i for some �is.

To mitigate this variation, the variant number of iterations should be replaced
with an upper bound value. The straightforward value for the upper bound is
n (the number of eis). However, this is very conservative which significantly
degrades the performance of the software. In fact, the recent detailed analysis
of CSIDH in [2] shows that it is sufficient to iterate r = 59 iterations of the
main loop to obtain a negligible failure probability (<2−32) of the group action,
considering the range of e ∈ {−5, · · · , 5}.

To evaluate the performance of constant-time CSIDH on the target embedded
devices, we modified the CSIDH variable-time action operation algorithm by
removing all the conditional and while loop statements in an efficient way to
provide a constant-time implementation of this algorithm inside our software. We
outline the procedure in Algorithm3. We refer the readers to our implementation
for further details.

Using cswap in Algorithm 3 implies useless point multiplication and isogeny
computations. However, the frequency of these operations may directly reveal
the sign and the value of private key in a detailed power analysis trace. In fact,
the detailed analysis of variable-time implementation of CSIDH in the Fig. 3
indeed demonstrates that the main loop iteration can have notable variation
depending on the value of private key.
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Algorithm 3. Constant-time commutative class group action

Input : A ∈ Fp and a list of integers (e1, · · · , en).
Output: B ∈ Fp s.t. [le11 · · · lenn ]EA = EB .

1: // Decoding private key

2: for i = 0 to n − 1 do
3: Set s ← 1 if ei is negative, otherwise s ← 0.
4: Set v ← 0 if ei is 0, otherwise v ← 1.
5: ei(s) ← ei − (2 · s · ei).
6: ei(s̄) ← 0.
7: k(s̄) ← �i · k(s̄).
8: k(v̄) ← (�i − v · (�i − 1)) · k(v̄).
9: end for

10: // Action

11: for i = 0 to n − 1 do
12: A′ ← A.
13: Sample a random x = x(P ) ∈ Fp.
14: Set u ← 0 if x3 + Ax2 + x is a square in Fp, otherwise u ← 1.
15: R ← [k(u)]P.
16: d(u) ← 1.
17: for j = 0 to n − 1 do
18: f ← 1, r ← ej(u).
19: for z = j + 1 to n − 1 do
20: f ← f × (�z − (ēz(u).(�z − 1))).
21: end for
22: Q ← [f ]R.
23: Set t ← 1 if ZQ = 0, otherwise t ← 0.
24: Compute φ�j : A → B s.t. ker(φ�j ) = Q.
25: cswap(B, A, (t̄ ∨ ej(u))).
26: ej(u) ← ej(u) − 1.
27: m ← (ej(u) ∨ t ∨ r̄).
28: ej(u) ← ej(u) + t.
29: k(u) ← k(u) × (�j − (m · (�j − 1))).
30: d(u) ← (d(u) ∧ ej(u)).
31: end for
32: q ← q ⊕ q.
33: cswap(A′, A, q).
34: q ← (d(0) ∧ d(1)).
35: end for
36: return A

We observe that the scalar multiplications in lines 15 and 22 of Algorithm3
directly generate the secret isogeny kernel. Therefore, from the security view-
point, the scalar multiplication indeed requires to be resistant against side-
channel attacks. However, as we see in this algorithm, the point P is randomly
generated in each iteration.

This makes it very hard for an attacker to retrieve the value of the kernel point
using power analysis. Therefore, using a uniform but variable-time Montgomery
ladder can be an option since it improves the performance results notably. We
leave the further investigations for future work.
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Constant-Time Key Generation. The CSIDH key generation algorithm is
straightforward. First, private keys are randomly generated as an n-tuple integers
from [−m,m] interval, where in case of our implementation m = 5. Next, the
public key is computed by performing the group action using the generated
private key on the base curve E0.

The CSIDH proof of concept implementation generates both private and
public keys in variable-time. Since our proposed group action in Sect. 3.3 is
constant-time, the public key generation is indeed constant-time. We made some
trivial changes using constant-time conditional instructions on the private key
random generation procedure to make the entire key generation resistant to
timing attacks. We refer the reader to our implementation for further details.

Public Key Validation. The CSIDH scheme offers a fast and straightforward
public key validation by examining whether the given curve is supersingular or
not. Based on [5, Proposition 8], the supersingularity check justifies that the
represented curve (public key) has the right endomorphism ring and therefore is
a valid public key.

Since the public key validation procedure only uses public values, it does
not require to be resistant against power and timing attacks and therefore it
can be designed and implemented in variable-time as it is already implemented
efficiently in [5]. Accordingly, we adopted the same implementation of the public
key validation inside our software and used the fast variable-time Montgomery
ladder algorithm for point multiplication inside the cofactor multipliers algo-
rithm. We refer the readers to [5] for further details on the implementation of
public key validation.

4 Performance Results and Discussion

In this section, we present our implementation3 results on the two popular cell-
phones, Google Pixel 2 and Huawei Nexus 6P equipped with 64-bit ARM Cortex-
A72 and Cortex-A57, respectively. Our software is designed in a way that can be
simply compiled to either constant-time or variable-time executable using gcc
preprocessors.

We used aarch64-linux-gnu-gcc compiler for cross-compiling the exe-
cutable with -static -O3 flags and ran it using adb shell on the cellphones.
Table 2 presents the performance of our constant-time and variable-time software
on target platforms. Note that the variable-time implementation is also based on
our optimized hand-written assembly field arithmetic and provides an optimized
performance estimation of CSIDH proof of concept implementation on embed-
ded devices. Moreover, the total CSIDH results are obtained by running the
entire protocol, containing key generations and key validation on the target pro-
cessors. The difference between timing and the number of clock cycles for target

3 Our library is publicly available at: https://github.com/amirjalali65/ARMv8-
CSIDH.

https://github.com/amirjalali65/ARMv8-CSIDH
https://github.com/amirjalali65/ARMv8-CSIDH
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Table 2. Performance results of constant-time (with constant-time Montgomery lad-
der) and variable-time CSIDH. (Benchmarks were obtained on 1.95 GHz Cortex-A57
and 2.4 GHz Cortex-A72 cores running Android 7.1.1 and 8.1.0, respectively)

Constant-time Variable-time [5]

Cortex-A57 Cortex-A72 Cortex-A57 Cortex-A72

Key validation Cycles ×106 - - 38 23

Seconds - - 0.02 0.01

Group action Cycles ×106 30,459 28,872 624 552

Seconds 15.6 12.03 0.32 0.23

Total CSIDH Cycles ×106 61,054 57,912 1,326 1,224

Seconds 31.3 24.1 0.68 0.51

Table 3. Performance results of constant-time (with uniform but variable-time Mont-
gomery ladder) CSIDH.

Operation Cortex-A57 Cortex-A72

Group action 11,286 · 106 cc
5.94 s

10,824 · 106 cc
4.51 s

Total CSIDH 22,819 · 106 cc
12.01 s

21,744 · 106 cc
9.06 s

platforms refers to the processor’s working frequency and its micro-architecture
technology. Cortex-A72 core is the new high-performance 64-bit ARM core with
optimized pipeline and micro-architecture which is used inside many embedded
devices recently.

We also benchmarked our constant-time software with uniform but variable-
time Montgomery ladder as it is discussed in Sect. 3.2. Table 3 presents the per-
formance results of this experiment on our target platforms. We observed more
than 2.5 times performance improvement just by using uniform variable-time lad-
der. This implies that the main challenge for designing a constant-time isogeny
group action is to find an optimized and secure way of computing scalar multi-
plication. Considering the countermeasure techniques for uniform variable-time
ladder, the performance results become more practical.

4.1 Discussion

Although the performance results of the constant-time CSIDH is not extremely
promising, but since it is constructed on a commutative action, it offers a set
of cryptographic applications such as digital signature which can be very useful
in the quantum era. Based on the estimations in [14], such signatures are not
very high-performance even by using fast and variable-time commutative action.
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Therefore, in order to be able to practically adopt the isogeny commutative group
action, its performance should be enhanced. The main bottleneck lies in the
constant-time Montgomery ladder for computing point multiplication. Further-
more, useless computations inside the constant-time group action is undesirable.

One significant improvement to the algorithm can be achieved by using a
faster but insecure ladder as it is discussed in the previous section. We can also
reduce the number of useless operations and point sampling inside the group
action by defining a set of base points as CSIDH public parameters and compute
the image of these points in each step. While this may improve the performance
notably, it adds some concerns regarding the security of the scheme. We believe
that using the above suggestions and imposing security countermeasures can
make the CSIDH and isogeny group action a suitable candidate for different
applications, specifically because of its small key sizes and fast key validation.

5 Conclusion

In this work, we presented an efficient and constant-time implementation of
CSIDH scheme on embedded devices. We engineered a set of constant-time
and highly-optimized field and group arithmetic implementation using ARM
assembly and provided a CSIDH software which is secure against SPA and DPA
attacks. We benchmarked our software on two popular cellphones equipped with
64-bit high-performance ARM Cortex-A57 and Cortex-A72 cores. To the best
of our knowledge, this work is the first constant-time implementation of CSIDH
and the first evaluation of this scheme on embedded devices.

The implementation results imply that the fully constant-time implementa-
tion of the scheme may not be practical for many applications and it needs more
investigations on the performance improvement and security analysis. However,
because of many advantages of the isogeny commutative group action, the pro-
posed software can still be used inside the applications with static keys and
restricted band-width, taking advantage of fast key validation and small key
size of CSIDH. Since side-channel attacks resistance is one of the fundamental
requirements for any cryptographic scheme, we hope this work attracts engi-
neers and researchers to investigate the performance improvement and security
of the constant-time isogeny group action as it seems to be one of the promising
candidates for designing different cryptographic applications in the future.
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