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Abstract This paper describes an efficient optimization method for determining the subject-
specific strength percentile and predicting the maximum weight lifting motion by consid-
ering dynamic joint strength in symmetric box lifting. Dynamic strength is modeled as a
three-dimensional function of joint angle and joint angular velocity based on experimen-
tally obtained joint strength data from the literature. The function is further formulated as
the joint torque limit constraint in an inverse dynamics optimization formulation to predict
the maximum weight lifting motion. The initial, mid-time, and final postures are obtained
from experiments and imposed as tracking constraints in the optimization formulation. In
addition, the box weight and time duration are given as inputs for the lifting optimization
problem. The normalized joint torque squared is used as the objective function. Subject-
specific strength percentile (z_score) is enumerated until the optimal solution is achieved.
The determined strength percentile is a global score considering interactions of all joints
for the two-dimensional symmetric lifting task. Results show that incorporating dynamic
strength is critical in predicting lifting motion in extreme lifting conditions. The proposed
algorithm can determine the subject-specific strength percentile based on experimental box
lifting data. The accurate strength percentile is critical to predict strength related tasks to
protect workers from injury.

Keywords Lifting · Dynamic joint strength · Strength percentile · Maximum weight ·
Inverse dynamics optimization · Motion prediction · Manual material handling

1 Introduction

Manual material handling, particularly lifting, poses an injury risk to many workers and
is considered a major cause of work-related low back pain and impairment. Lifting is a
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dynamic process and each body joint for the worker is bounded by its dynamic joint strength
to ensure the lifting task is achieved without any injury. Dynamic joint strength can be
modeled as a three-dimensional function of joint angle and joint angular velocity, which are
functions of time. Thus, dynamic joint strength is an implicit function of time which is more
accurate than the constant static strength values in human modeling. For heavy box lifting,
the joint strength percentile estimation to adapt the joint load to the worker is important for
individual’s injury prevention.

The dynamic strengths for particular joints could be modeled by using experimental data
for a set of subjects [1–4]. The dynamic joint strength needs to be scaled when applied to
an individual. However, it is difficult to determine the subject-specific strength percentile
(z_score) which is required for a dynamic simulation. In this study, we formulate the two-
dimensional (2D) symmetric maximum weight lifting as a dynamic optimization problem.
The maximum box weight, time duration, initial, mid-time, and final postures are given as
inputs for the dynamic lifting optimization formulation. The optimization is carried out by
sequentially increasing z_score value until the optimization algorithm converges. The cor-
responding strength percentile is the subject-specific strength percentile for the symmetric
maximum weight lifting. This strength percentile is a global score for all joints considering
their interactions for the task.

For the last few decades, researchers developed biomechanical prediction approaches
for lifting. Compared with the experimental method of using human subjects to assess
problems during lifting, biomechanical models can provide relatively new alternative tech-
nologies that allow direct testing and subject-specific results. In addition, it is risky to
use human subjects to determine the maximum weight-lifting motion. On the other hand,
the experimental and simulation methods are complimentary, and the simulation model
needs to be validated by experiments before application [5, 6]. Dynamic motion optimiza-
tion algorithms can predict different strategies for lifting using different objective func-
tions and set of constraints [7–12]. Lifting motion prediction is essentially an optimal
control problem. The motion is generated using certain optimization principles with given
boundary conditions. The direct optimization method transfers the optimal control problem
into a nonlinear programming (NLP) problem [13]. For optimization-based motion predic-
tions, there are different optimization formulations, such as forward dynamics optimiza-
tion [14, 15], inverse dynamics optimization [16–19], and optimization with direct colloca-
tion [20, 21]. Another prediction tool for lifting is the well-known NIOSH lifting equation
which is an index based method and it cannot describe the details of dynamic lifting pro-
cess.

For human motion predictions, constraints are critical in predicting accurate human mo-
tions. Some physical constraints, such as joint angle limits and joint torque limits, must be
enforced throughout motion. Many simulations reported in the literature used static strength
for approximation [10–12, 16–19, 21]. Dynamic joint strength has been experimentally
tested and reported in the literature [1–4, 22, 23], but only a few have been used in sim-
ulation to predict more accurate human motion, such as reported in Farizeh and Sadigh [24]
who studied a fast-walking problem. Therefore, it is important to use dynamic strength in-
stead of static strength for motion prediction under extreme conditions. This paper reports
an efficient optimization method to determine the subject-specific strength percentile in a
symmetric maximum weight box-lifting task. The ultimate goal is to develop a subject-
specific and real-time ergonomic tool to protect workers from injury for both symmetric and
asymmetric lifting tasks.
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2 Method

2.1 Human skeletal model

A 2D skeletal model with 10 degrees of freedom (DOF) defined in joint space is used to
simulate symmetric lifting motion, as shown in Fig. 1. Three DOF are used for global trans-
lation (y, z) and rotation (β), and seven DOF (q1, q2, . . . , q7) are used for the body joints.
The global DOF are composed of two translational (prismatic) joints and one rotational (rev-
olute) joint. The anthropometric data for the skeletal model is generated using GEBOD®
software based on experimental data.

Figure 1 depicts how the DOF are set up in the Denavit–Hartenberg (DH) method [25].
The degree of freedom is given in the local z-direction in both the translational joint and the
rotational joint. Note that the global rotation joint (z3), spine joint (z4), and hip joint (z7)
coincide at the same location. The positive directions for all the rotation joints (z3 − z10) are
clockwise in the global Y –Z plane. There are two branches in the body frame with respect
to the global coordinate branch (parent): the spine–arm branch and leg branch. In the spine–
arm branch, two arms are represented as a single branch, since only 2D symmetric lifting is
studied. The arm branch includes upper arm and lower arm. In the leg branch, two legs are
combined as a single branch including thigh, tibia, and foot. The DH parameters, θ , d , a, α,
[25] are described in Table 1.

Fig. 1 The 2D lifting skeletal
model
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Table 1 DH table for a 2D human model

DOF (Positive direction) θ d a α Segment

z (Forward translation) π 0 0 π/2 Global translation

y (Upward translation) π/2 Leg length 0 −π/2

β (Clock-wise rotation) 0 0 0 0 Global rotation

q1 (Spine flexion) −π/2 0 Spine length 0 Spine

q2 (Shoulder flexion) π 0 Upper arm length 0 Arm

q3 (Elbow extension) 0 0 Lower arm length 0

q4 (Hip extension) π/2 0 Thigh length 0 Leg

q5 (Knee flexion) 0 0 Tibia length 0

q6 (Ankle plantar flexion) −π/2 0 Hinder foot length 0

q7 (Metatarsophalangeal extension) 0 0 Fore foot length 0

The kinematics and dynamics are calculated using the DH-based recursive Lagrangian
approach [26]. The EOM is expressed in Eqs. (1)–(5), where the first term in the torque
expression (Eq. (1)) is the inertia and Coriolis torque, the second term is the torque due to
gravity load, the third term is the torque due to external force, and the fourth term represents
the torque due to the external moment:

τi = tr

(
∂Ai

∂qi
Di

)
− gT ∂Ai

∂qi

Ei − fT
k

∂Ai

∂qi

Fi − GT
i Ai−1z0, (1)

Di = IiCT
i + Ti+1Di+1, (2)

Ei = miri + Ti+1Ei+1, (3)

Fi = rkδik + Ti+1Fi+1, (4)

Gi = hkδik + Gi+1, (5)

where tr(·) is the trace of a matrix, Ai and Ci are the recursive kinematics position and
acceleration matrices, respectively, qi is the joint angle, Ii is the inertia matrix for link i, Di

is the recursive inertia and Coriolis matrix, g is the gravity vector, mi is the mass of link
i, ri is the center of mass of link i, fk = [0 fky fkz 0]T is the external force applied on
link k, rk is the position of the external force in the local frame k, hk = [hx 0 0 0]T is the
external moment applied on link k, Ti is the link transformation matrix, z0 = [0 0 1 0]T is
for a revolute joint, z0 = [0 0 0 0]T is for a prismatic joint, and δik is Kronecker delta. The
detailed derivations of Ai and Ci are described in [26, 27].

2.2 Maximum weight lifting experiments

A maximum load lifting study was conducted with 23 healthy males split into three age
categories at Texas Tech University with the approved IRB. Fifteen were in the 20–30 years
of age category, five in the 31–45 and three in the 50–60. The male subjects studied covered
all different stature percentiles and had a low BMI. Three dimensional kinematic data was
collected at 100 Hz using Vicon Nexus motion capture system (VICON, Oxford, UK). Five
cameras were placed around the room with one in each corner and one in the front middle
of the room. A plug-in-gait model with added iliac crests, giving 42 markers total, was used
for the marker protocol [28]. There were two force plates, one under each of the subject’s
feet, which collected ground reaction forces (GRF) at 2000 Hz. Electromyographic (EMG)
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Fig. 2 Maximum weight lifting experiment

Trigno system (Delsys, Inc., Natick, MA, USA) was put on the following muscles; exter-
nal oblique, internal oblique, rectus femoris, latissimus dorsi, erector spinae, multifidus,
glutaeus maximus, and medial hamstring. Symmetry was assumed so only the right side
muscle activity was collected. The EMG data was also collected at 2000 Hz. The following
anthropometric measurements were taken for each subject: height, weight, leg length, ankle
width, knee width, wrist width, elbow width, shoulder offset, inter-asis distance, and waist
circumference [29, 30].

For the lifting study, each participant was asked to psychophysically determine their
maximum weight lifting capability. The entire maximum was not used to avoid injury during
the experiment. Once the weight was determined, the lifting study was initiated. The subject
was asked to lift three different sized boxes in three directions with three trials for each
lifting which gave a total of 27 lifts. A randomized table was created to avoid any learning
curve. The three directions for lifting were symmetric (forwards) and asymmetric (left and
right). The three sizes of the box were small (35 cm × 35 cm × 15 cm), medium (50 cm ×
35 cm×15 cm), and large (65 cm×35 cm×15 cm). As the box did not have handles, it was
placed in front of the subject on top of a weight about 2.54 cm off the floor so the subject
could fit their fingers beneath the box. The subject then lifted the box in the most comfortable
and natural way and set it down on a 1 meter tall table that was either in front of them or
to their side, as seen in Fig. 2. Following the experiment, the data was processed in the
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motion capture software Vicon Nexus. All markers were labeled and the data was smoothed
and converted into a C3D file. That C3D file was then used in Visual 3D (C-Motion, Inc.,
Germantown, MD, USA). A skeletal model was created following the marker protocol used
in the experiments. This skeletal model consisted of 15 segments and was used to output
coordinates, joint angles, and joint moments. The anthropometric measurements taken for
each subject were used to create distinct and accurate skeletal models allowing for more
precise calculations.

In this paper we extract experimental data for 2D symmetric lifting and 19 out of 23 sub-
jects are used for this study (sex, male; age, 30.58 ± 11.45 years; height, 180.8 ± 6.2 cm;
body mass, 82.17 ± 11.87 kg, where ± indicates standard deviation). The other four sub-
jects’ motion capture data were found incomplete and therefore discarded.

2.3 Dynamic joint strength

As reported in the literature [1–4], the dynamic isokinetic and isometric strengths of ankle,
knee, hip, spine, shoulder, and elbow were tested using experiments through a normal range
of motion. The peak torque for a given joint position and angular velocity was measured.
These data can be used to model joint dynamic strength surface as a function of joint angle
and angular velocity. In this section, a surrogate model is developed from the experimental
data. The logistic equations are used to model the peak torque as a function of both joint
angle and angular velocity, and the coefficients of the logistic function are obtained from
Gauss least squares regressions. The corresponding peak torque-angle–velocity relationship
is given as:

τ i
peak_U = c1 + c2

4e−(qi−c3)/c4

[1 + e−(qi−c3)/c4 ]2
+ c5

4e−(vi−c6)/c7

[1 + e−(vi−c6)/c7 ]2

+ c8
4e−(qi−c3)/c4

[1 + e−(qi−c3)/c4 ]2

4e−(vi−c6)/c7

[1 + e−(vi−c6)/c7 ]2
, (6a)

τ i
peak_L = c1 + c2

4e−(qi−c3)/c4

[1 + e−(qi−c3)/c4 ]2
+ c5

4e−(vi−c6)/c7

[1 + e−(vi−c6)/c7 ]2

+ c8
4e−(qi−c3)/c4

[1 + e−(qi−c3)/c4 ]2

4e−(vi−c6)/c7

[1 + e−(vi−c6)/c7 ]2
, (6b)

where c1 ∼ c8 are regression equation coefficients, e is the exponential function, qi is the
ith joint angle, vi = q̇i is the ith joint angular velocity, τ i

peak_U is the upper peak torque value
for the ith joint in positive qi direction, and τ i

peak_L is the lower peak torque value for the ith
joint in negative qi direction.

The coefficients in Eqs. (6a), (6b) are scaled mean values, and along with the coefficient
covariance (CV) determined with each curve fit. Therefore, a specific percentile strength can
be determined as follows:

τ
i_p%
peak_U = z_score ∗ CVi

U ∗ τ i
peak_U + τ i

peak_U, (7a)

τ
i_p%
peak_L = z_score ∗ CVi

L ∗ τ i
peak_L + τ i

peak_L, (7b)

where τ
i_p%
peak_U is the pth percentile upper torque limit for the ith joint, and τ

i_p%
peak_L is the pth

percentile lower torque limit for the ith joint; both τ
i_p%
peak_U and τ

i_p%
peak_L are calculated from

same z_score. There is one-to-one relationship between the pth percentile and z_score.
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We modeled dynamic strengths for ankle, knee, hip, spine, shoulder, and elbow joints, us-
ing experimental data from the literature [1–4]. In Eqs. (7a), (7b), τ i

peak_U, τ i
peak_L, CVi

U, and

CVi
L are statistical values obtained from experiments. However, it is difficult to determine

the subject-specific strength percentile (z_score) which is required for a dynamic simulation.
In this study, we formulate the maximum weight lifting as a dynamic optimization problem.
The upper and lower peak torque values in Eqs. (7a), (7b) are used in joint torque constraints
and objective function. The maximum box weight, time duration, initial, mid-time, and final
postures are given as inputs for the dynamic lifting optimization problem. The optimiza-
tion is carried out by sequentially increasing z_score value until the optimization algorithm
converges. The corresponding strength percentile is the subject-specific global strength per-
centile for the maximum weight lifting.

2.4 Symmetric lifting motion prediction formulation

2.4.1 Objective function

For lifting motion, the design variables are the optimal control points P of joint angle pro-
files. The normalized dynamics effort is used as an objective function for the lifting motion,
which is defined as time integration of all normalized joint torque squared [16–18]:

J (P) =
ndof∑
i=4

∫ T

0

(
τi(P)

τ
i_p%
peak_U(t) − τ

i_p%
peak_L(t)

)2

dt, (8)

where ndof is the number of DOF. Note that the joint torque for each global DOF is zero for
a balanced lifting motion.

2.4.2 Constraints

The general constraints for a 2D symmetric lifting motion include:

(1) Joint angle limits

qL ≤ q(t) ≤ qU, (9)

where qL is the lower joint angle limit and qU is the upper limit;
(2) Joint torque limits

0 ≤ τi(t) − τ
i_p%
peak_L(t)

τ
i_p%
peak_U(t) − τ

i_p%
peak_L(t)

≤ 1; (10)

(3) Feet contacting positions

P (feet, t) = P s
feet, (11)

where P s
feet is the specified feet contact position on level ground;

(4) Balance condition

P (ZMP, t) ∈ FSR, (12)

where the zero moment point (ZMP) position is inside the foot support region (FSR);
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(5) Collision avoidance

d(t) ≥ r1 + r2, (13)

where d is the calculated distance between the hand and the circle center on the body
segment representing the body thickness, r1 is half of the box width, and r2 is the radius
of the circle. Seven circles are filled into body segments: two for spine and five for leg;

(6) Initial and final hand positions

P (hand, t = 0, T ) = P s
hand(t = 0, T ), (14)

where P s
hand is the specified hand position at initial and final times;

(7) Initial and final velocities

q̇(t = 0, T ) = 0, (15)

where the initial and final lifting motions are static;
(8) Initial and final postures

∣∣q(t) − qs(t)
∣∣ ≤ ε, t = 0,

T

2
, T , (16)

where qs is the specified experimental posture, and ε = 0.1.

All these constraints and optimization algorithm are described in detail in [10, 11, 31].
Joint trajectory is interpolated by using B-splines with five control points for each joint.
There are 50 design variables and 523 nonlinear constraints for the symmetric lifting motion
optimization. The dynamic strengths of all joints are considered in the optimization. The
initial guess for design variables is P = 0. The SQP-based optimizer, SNOPT [32], is used
to solve the optimization problem. The optimal solution is obtained in 4.43 seconds CPU
time on average on a laptop with Intel® Core i5-7200U @ 2.50 GHz, 2.70 GHz, and 8 GB
RAM.

3 Results

Simulation results for all 19 subjects’ symmetric maximum weight box liftings are con-
ducted and compared with the experimental data. The subject’s initial, mid-time, final pos-
tures, box weight, and total lifting time are all specified in the simulation as shown in Table 2.
The motions between the initial and final postures are predicted by using the optimization
formulation in Sect. 2.4. The minimum z_score and the corresponding strength percentile
for each subject to ensure the optimization converges are shown in Table 2.

The stick diagrams of the predicted maximum weight lifting motions are depicted in
Fig. 3. A representative subject (#5) is chosen to show the predicted joint angles, vertical
GRF, and joint torques in Figs. 4, 5, and 6, respectively.

4 Discussion

In Fig. 3, most subjects use a perfect squat lifting strategy with large ankle dorsi-flexion and
knee flexion, and small spine flexion at initial posture. In contrast, Subjects 1, 9, 13, and 14
use a combined squat and back lifting strategy with large spine and knee flexion at initial
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Table 2 Maximum weight box lifting input parameters, z_score, and global strength percentile

Subject
#

Initial y*

(m)
Final y

(m)
Initial z*

(m)
Final z

(m)
Weight
(N)

Time
(s)

z_score Percentile
%

1 0.070 0.980 0.428 0.323 343.98 1.36 1.63 94.84

2 0.101 1.090 0.424 0.540 233.73 1.65 0.47 68.08

3 0.102 1.069 0.444 0.461 189.63 1.77 −0.07 47.21

4 0.107 1.047 0.483 0.437 255.78 1.80 0.30 61.79

5 0.070 1.088 0.418 0.417 233.73 1.44 0.69 75.49

6 0.088 1.091 0.449 0.487 211.68 1.93 0.21 58.32

7 0.057 1.144 0.450 0.581 233.73 1.55 0.68 75.17

8 0.077 1.106 0.514 0.424 233.73 1.41 1.16 87.70

9 0.081 0.989 0.444 0.347 145.53 1.54 −0.25 40.13

10 0.050 1.170 0.528 0.480 233.73 2.17 0.76 77.64

11 0.078 1.037 0.543 0.362 255.78 1.41 0.86 80.51

12 0.084 1.210 0.492 0.493 233.73 1.59 0.43 66.64

13 0.086 1.143 0.463 0.378 211.68 2.06 0.39 65.17

14 0.075 1.118 0.480 0.491 145.53 1.57 0.23 59.10

15 0.067 1.098 0.393 0.394 167.58 1.57 0.06 52.39

16 0.053 1.098 0.483 0.384 211.68 2.40 0.61 72.91

17 0.096 1.203 0.457 0.480 211.68 1.70 0.31 62.17

18 0.074 1.139 0.475 0.528 211.68 1.36 0.73 76.73

19 0.094 0.994 0.397 0.336 277.83 1.21 0.86 80.51

*Note that y is the vertical height measured from hand to ground, and z is the horizontal distance measured
from hand to ankle

posture. This may be a subject-specific strategy and may not be optimal for the maximum
weight lifting. In this case, the predicted strength percentile will underestimate the subject’s
strength. If the subject is trained properly, he/she could lift more weight.

For the maximum weight lifting of Subject 5, we can see that hip dynamic strength is
activated in Fig. 6(d). Hip joint strength is activated for almost one-third of time period at the
beginning stage of lifting. Spine is close to be activated in the middle of lifting (Fig. 6(a));
other joints are not activated. In addition, the upper dynamic hip strength value is time
dependent and less than the static strength value. These illustrate the importance of imposing
dynamic joint strength for maximum weight lifting compared to using static joint strength.
These also demonstrate the hip and spine are critical joints in maximum weight lifting.

In this study, we use posture constraints to track the experimental data for the simu-
lation similar to [33]. We allow ε = 0.1 rad for each joint angle difference between the
simulation and experimental data at the initial, mid-time, and final postures. The advan-
tage of this method is that only one parameter ε is adjusted for tracking the experimental
data. The smaller value of ε gives more accurate tracking results, which further refines the
predicted strength percentile. However, it is more difficult for the optimization problem to
converge during simulation. Therefore, to determine an appropriate ε value, we need to bal-
ance the accuracy and convergence of the simulation for all 19 subjects. Although, adding
a tracking term in the objective function can also make the simulation and experiment have
similar trends, tuning the weighting coefficients is not trivial and can significantly affect the
predicted results. In addition, the combined objective functions partially represent the cen-
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Fig. 3 Snapshots of all 19 subjects’ maximum weight lifting motions (sb, subject index)

tral nervous system. Therefore, the objective function tracking technique is not used in this
study. The general trends of the simulation results are matching well with the experimental
data as shown in Figs. 4 and 5.

Due to the various sources for the experimental data, expressed in various ways, and col-
lected on a large range of subjects [1, 2, 4], there are some errors in the dynamic strength
database. The model needs several precautions whenever it is implemented, but this is be-
yond the scope of our study. Recently, Frey-Law’s group has extended the dynamic strength
data to all joints [3, 4]. Anderson et al. [34] also studied peak torque value as a function of
joint angle and angular velocity for the lower extremity. However, only a few subjects were
used to collect data and the interaction between the torque-angle and torque-velocity was
not studied.
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Fig. 4 Joint angle profiles of the maximum weight lifting for subject #5: (a) spine, (b) shoulder, (c) elbow,
(d) hip, (e) knee, and (f) ankle

Fig. 5 Vertical GRF of the
maximum weight lifting for
subject #5

In this study, the symmetric lifting motion is simulated using an inverse dynamics op-
timization method. The dynamic joint strengths are modeled using experimental data, and
incorporated in the optimization formulation to predict the maximum lifting motions and
subject-specific strength percentiles. For a lifting task, the initial, mid-time and final pos-
tures, box weight, and total time are imposed as constraints in the optimization formulation.
The z_score is sequentially enumerated to increase the strength limits to make the maximum
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Fig. 6 Joint torque profiles of the maximum weight lifting for subject #5: (a) spine, (b) shoulder, (c) elbow,
(d) hip, (e) knee, and (f) ankle

weight lifting optimization converge. Furthermore, the obtained z_score value is the global
strength percentile for the subject. It is noted that the global score represents all joints for a
particular task. People may have clear discrepancies for upper and lower limb strength, and
also for different tasks. The global strength score is a task based concept considering the in-
teractions of all joints, which is different from the joint by joint isokinetic strength test. Each
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of the 19 subjects’ strength percentiles is predicted. These subject-specific strength values
are critical to predict other strength related tasks to protect them from injury in manual mate-
rial handling. Future work includes (1) whole body dynamic strength model implementation;
(2) extension of this 2D model to 3D to study asymmetric lifting.
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