Learning Trajectories for Real-Time Optimal Control of Quadrotors

Gao Tang', Weidong Sun? and Kris Hauser’

Abstract— Nonlinear optimal control problems are challeng-
ing to solve efficiently due to non-convexity. This paper intro-
duces a trajectory optimization approach that achieves real-
time performance by combining machine learning to predict
optimal trajectories with refinement by quadratic optimization.
First, a library of optimal trajectories is calculated offline
and used to train a neural network. Online, the neural
network predicts a trajectory for a novel initial state and
cost function, and this prediction is further optimized by a
sparse quadratic programming solver. We apply this approach
to a fly-to-target movement problem for an indoor quadrotor.
Experiments demonstrate that the technique calculates near-
optimal trajectories in a few milliseconds, and generates agile
movement that can be tracked more accurately than existing
methods.

I. INTRODUCTION

Nonlinear Optimal Control Problems (OCPs) are critical
for high performance in robotics applications. Applications
such as Model Predictive Control (MPC) [1] and kinody-
namic motion planning [3] require OCPs to be solved quickly
and repeatedly. However, OCPs in robotics suffer from
nonlinear dynamics, high dimensionality, and non-convex
constraints. As a result, they are generally challenging to
solve reliably, let alone in real time. In practice, to explore
the benefits of trajectory optimization for agile maneuvers,
the trajectories are usually computed offline [4] and many
approaches [10], [11] are proposed to improve computational
efficiency.

We propose a technique that can exploit the versatility
of trajectory optimization on handling different dynamics,
constraints, and cost functions by using machine learning
to help avoid its high computational requirement. There has
been an intense interest in using learning to approximately
solve OCPs, either using supervised learning [12], [9] or
reinforcement learning [13]. We adopt the supervised learn-
ing approach and explore the ability of neural networks to
perform optimal trajectory prediction. To handle the predic-
tion errors made by the neural network, it is important to
introduce some postprocessing in order to respect dynamics
and control constraints. We show that only a small amount
of optimization suffices to achieve high performance.

Specifically, our technique formulates the trajectory opti-
mization problem as parametric OCP. The range of problems

'G. Tang is with department of Mechanical Engineering and
Material Science, Duke University, Durham, NC 27708, USA
gao.tang@duke.edu

'W. Sun is with department of Mechanical Engineering and Material
Science, Duke University, Durham, NC 27708, USA ws134@duke.edu

2K. Hauser is with the Departments of Electrical and Computer Engineer-
ing and of Mechanical Engineering and Materials Science, Duke University,
Durham, NC, 27708 USA kris.hauser@duke.edu

_;3(0 —4
m) 4 -6

Fig. 1: Samples of a few optimal trajectories in the quadrotor
dataset. The arrow shows initial velocity direction.

parameters such as initial and final states are defined and
the parameters are sampled. A dataset of optimal trajectories
corresponding to those sampled parameters are calculated
offline (samples shown in Fig. 1). The neural networks are
trained using the computed dataset to predict the optimal
trajectory for a novel OCP defined by problem parameters as
input. While this prediction is ready to be tracked, subsequent
one-step refinement based on linearized system dynamics
further improves the prediction and is done by solving a
sparse quadratic program (QP) within milliseconds.

We evaluate effectiveness of this approach on a quadrotor
point-to-point navigation problem. Trained on 50,000 exam-
ples, our method calculates near-optimal trajectories in less
than 2 ms on average. Experiments demonstrate that trajecto-
ries calculated by our technique achieve lower tracking error
than minimum-snap trajectories of the same duration [14],
[6], [15]. Its fast rate of computation also allows it to be used
in a model predictive control (MPC) framework in which the
trajectory has to be replanned frequently. Experiments in the
supplementary video show the quadrotor using this method
to stay above a quickly moving target object.

II. RELATED WORK

Generation of optimal trajectories for dynamic systems
in real-time often requires either simplification of system
dynamics into linear systems such as double integrator or pa-
rameterization of state trajectories in a limited function space
such as piecewise polynomials. This paper is concerned pri-
marily with quadrotor trajectory generation, which has been

explored by many other researchers. Pioneered by Mellinger
et al. [14], a quadrotor can explore the differential flatness in
its dynamics. The trajectory is parameterized using piecewise
polynomials and minimizes a combination of the derivatives
of the position states and yaw angle, so-called minimum-
snap trajectory. Similar research is found in [6], [15]. These
approaches limit the trajectory class to polynomial functions
and the available choices of cost functions and constraints
are limited. Another drawback is these approaches explore
the differential flatness of the quadrotor system and cannot
be easily extended to quadrotors augmented with slung loads
or arms, or more precise model such as considering air drag.

On the other hand, numerical optimal control is versa-
tile and does not require specific system dynamics, cost
function, or constraints. In [7] numerical optimal control is
demonstrated on a wide range of quadrotor related trajectory
optimization problem. However, it needs to solve non-linear
programming (NLP) problems [2] which in general cannot
be solved in real time or to a global optimum due to high
computational expense.

Machine learning approaches have been proposed to assist
in OCP solving by predicting better initial guesses for NLP
solvers. Both trajectory optimization [9], [17], [18] and
global nonlinear optimization [8] benefits from supervised
learning. In [9] precomputed optimal motions are used in a
regression to predict trajectories for novel situations to speed
up subsequent optimization. This technique works faster than
optimizing from scratch, but is not real-time and was not
evaluated on dynamic systems. In [17] the nearest-neighbor
optimal control (NNOC) method is proposed. This past work
only applied to indirect methods for optimal control, which
are more challenging to formulate for general problems with
state and control constraints. To account for the additional
expense of NLP we introduce a faster one-step optimization.
Moreover, it uses nearest-neighbor approach for learning,
which suffers from the curse of dimensionality.

III. METHODS

Our approach is composed of four major components.

1) Formulate the problem of interest into a parametric
OCP.

2) Generate a training database by sampling parameters
from a given range and solving for their optimal
trajectories.

3) Use a neural network (NN) to learn the mapping from
parameters to optimal trajectories.

4) Online, given a new set of problem parameters, use the
NN to predict an optimal trajectory, and then solve a
one-step QP to refine the prediction.

Although components 2-3 are computationally expensive,
they are only performed once offline. Only component 4 is
performed repeatedly online, and we demonstrate that it can
be performed extremely quickly.

A. Parametric Optimal Control

We address dynamical systems in the form

x=f(t,x,u) (D

where ¢ is time; x € R” is the state variable; u € R is the
control variable. We refer [14] for the detailed dynamical
equations. The state x = (x,y,2,Vx, vy, vz, 9,0, ¥, p,q,r) € R12
and control u € R*. The control is directly chosen as the
PWM (scaled to [0,1]) for each rotor due to the nonlinear
relation between PWM and its thrust and moment [5].

A trajectory is a mapping from time to state and control
variables, i.e. f: 1 — [x(r),u(r)],t € [0,¢7]. We use direct
transcription approach to solve OCPs. An equidistant time
grid of size N+ 1, i.e. {#;}) is used for discretization. The
trajectory is thus z = {t,-,x,-,ui}ﬁy: o- The cost function to be
minimized is

N-1
J=win+h Z [xiTQxi—&— <ul Uizl) TR (ul i1)]
i=0 h h
2
where & is the grid size; u_; is the nominal control that
compensates gravity; w, @, R penalizes flight time, state, and
change of control variables; the term (u; —u;_;)/h approxi-
mates #. We penalize the change of control since our drone
has difficulty ramping up its PWM. The penalty on transfer
time w encodes the aggressiveness of the trajectory. This
cost function is difficult to be directly optimized using the
minimum-snap or related approach. We limit u € [0.2,0.85]
to avoid saturation when feedback is introduced. Again,
control bound on PWM is also difficult to be constrained
in the minimum-snap framework. Throughout the paper we
use w € [0.1,5], Q = diag(0,0,0,1,1,1,0,0,0,1,1,1), R =
diag(5,5,5,5); System dynamics impose constraints

Xk+1 = RK4(xka Uy, h) (3)

where RK4 means integrating f with constant control u; for
time period £ from state x;. We note that RK4 is used for
higher integration accuracy and thus N can be reduced. The
initial and final states specification imposes constraint

X0 = S0;XN = S 4)

where so and sy are the desired initial and final states.
Additionally, depending on specific problem, other path
constraint such as collision avoidance and bounds on state
and control can be applied.

The problem is to solve the optimal trajectory from a given
initial position and velocity (assuming zero angle and angular
velocity) to the origin with zero velocity with different
choice of aggressiveness encoded by w. We denote the vector
collecting 7 problem parameters (3 initial position, 3 initial
velocity, and w) as p. Due to the limitation of the laboratory
size, the initial position is limited within [—5,—5,—2.5]
and [5,5,2.5] and velocity is limited within [—2,—2,—1.5]
and [2,2,1.5]. Since the initial velocity can be non-zero,
this parametric OCP provides the flexibility of commanding
the quadrotor to another target in flight without stopping.
We only consider the obstacle-free problem, and intend to
address obstacles in future work.

B. Learning Optimal Trajectories

The solution to the parametric OCP is a mapping from
problem parameter p to the corresponding optimal trajec-

tory z(p). This mapping can be approximated using neural
networks. The problem parameter is directly treated as a 7-D
vector including 3-D position, 3-D velocity, and time penalty
weight w. While the position and velocity parameters enables
prediction of optimal trajectories based on current state, w
controls the aggressiveness of the predicted trajectory. We
assume the angle and angular velocity are small and can be
controlled much faster than position and velocity so they are
not included in problem parameters to simplify the problem.
We encode the solution using a long vector, denoted as
Z composed of states {x;}¥, controls {u;}"', and time
ty. The neural network is simply chosen as a multilayer
perceptron (MLP) with one hidden layer. It takes problem
parameter as input and the output is the encoded optimal
trajectory, i.e. g(w,p): p — Z(p) where w are the weights
of the network. Through learning, we find optimal w to
minimize

L=Eppy,loss(g(w,p), Z(p)) (5)
where loss is any regression loss function. We use smoothed
L1 loss in this paper.

We train on a dataset of parameter-solution pairs
{(pM,Zz(pM),....(p™M) , Z(p™))} by sampling a set of
problem parameters p!), ..., p™) and solving their cor-
responding OCPs using a nonlinear programming (NLP)
formulation. To generate the training dataset, both position
and velocity are sampled uniformly within range, while w is
sampled uniformly after log transformation. We firstly solve
5000 problems to optima using random restart with different
initial guesses. The random restart technique increases the
probability that the solutions to those problems are indeed
globally optimal. These 5000 problem-solution pairs are used
as database and the NNOC approach [17], which initializes
the local optimizer with several nearest neighbors in the
database, is used to solve the rest of the problems. The
database can be built incrementally. Eventually we collect
M = 50,000 samples. After the whole dataset is built, we
resolve all examples again using NNOC to further reduce
the likelihood of local optima in the database. Samples of
optimal trajectories are shown in Fig. 1.

We train a neural network with input layer of size 7,
hidden layer of size 500, and output layer of size 317 (in this
paper we choose N = 20). The hidden layer has a nonlinear
activation function, specifically Leaky ReLLU with o = 0.2.
80% data are used for model training and the rest is used
as test set. Stochastic gradient descent with momentum is
used for training with a mini-batch of 64. The training is
terminated when the test error does not decrease within 1000
iterations. Fig. 2 illustrates the learning curves. At the end
of training, test error is 1.7 x 10~*, which indicates that the
network approximates the function accurately.

C. Refinement by QP

The neural network is capable of predicting Z(p) fairly
well for any p, but the prediction might not fully respect
all the constraints due to approximation error. Although
numerical simulation shows the violation is low and the pre-
diction can still be used for trajectory tracking, this prediction

0.0100 4 ‘ —— Train
Test
0.007571 |
4
5 0.00501 |
L)
0.0025 \\t
0.0000 T P R
0 5000 10000 15000 20000

Training step

Fig. 2: History of neural net training and test error

improved by subsequent optimization. NLPs are often solved
using a sequential quadratic programming (SQP) algorithm,
but our refinement technique only solves a QP once. We
call this approach one-step QP (OSQP), and demonstrate
that it is particularly fast when sparsity is exploited. If more
computational resources are available, this approach can be
extended to perform a small amount of SQP to further refine
the trajectories, e.g., performing backtracking line search or
trust region approach and multi-step update.

Assuming the prediction Z is decoded into {ti,ici,ﬁi}ﬁ\’: 0
we want to refine this prediction by finding 6Z =
{0,6x;,8u;}Y, such that Z+ 6Z solves optimal control
problem. We note that 4 is not optimized to keep the problem
as QP. As shown later, the prediction error in transfer time
ty is small.

Substituting Z+ 6Z into the cost function and constraints
yields

N—1
J = Constant + A Z [SJCI'TQSXZ‘ + ZJ_Cl'Tan,' + (5u,~R5ul~
i=0

+ 8u; |RSu; 1 +2(; —it;_1)"R(Su; — Su;_1))/h?*] ;
which is quadratic in terms of 6Z and ©
X1+ 0xp 1 = RKA(Xy + 0%y, i + Oy, h) 7

which is linearized to
¥
iy,

Yy

FTR Suy ®)

Ox;+

Xir1+0xp 01 =y +

where ¥, = RK4(%, g, h). Since the neural network predicts
Z close to the optimum, 8Z is small and linearization is valid.
We conveniently change the nonlinear dynamics constraints
into linear constraints. Additionally, the constraints for initial
and final states are readily converted into

X0+ 0x0 = 03 XN + Oxy =8¢ 9)

and other constraints such as bounds on state and control
variables can be converted similarly.

We note that the neural network predicts a trajectory with
zero angle and angular velocity which might be different
from the quadcopter’s current state. This issue is further
reduced by solving optimal 6Z since to satisfy Eq. (9)
the result trajectory has an initial state identical to the
quadcopter’s current state.

These constraints are assembled into a QP of the form

Minimize 1 TPx+ qTx
x 2 (10)
subject to [<Ax<u

with positive semi-definite matrix P. From Eq. (9) dx(and
Oxy can be determined directly. The optimization variables
for QP are thus {&x;} ' and {Su;}Y'. Observing that
Q and R are both diagonal in Eq. (6), P is also diagonal.
The linear constraints contain linear equality constraints from
Eq. (8) and inequality constraints of bounds on state and con-
trol. The bounds on state and control variables are essentially
block identity matrix in A. There are N sets of linearized
dynamical constraints as Eq. (8) for k =0,...,N — 1. Each
instance of (8) introduces at most n X (n+m+ 1) nonzero
elements. Out of those nonzero elements, n2 belong to 3—?;,
nm belong to (‘%’i, and the rest n is the diagonal matrix
associated with 0x;, ;. To exploit this sparsity, we use the
implementation in [16], and all tested problems can be solved

in microseconds.

IV. RESULTS

In this section, we evaluate the method’s performance in
simulation and on a real quadcopter.

A. System Description

We use a commercially available quadrotor Crazyflie 2.0,
with basic specifications listed in Tab. I. We refer to [5]
for more details on system dynamics. The position of the
quadrotor is captured by the Vicon motion capture system
and transmitted to ground control station using Ethernet at
200 Hz. The raw data stream from Vicon goes through a
Kalman filter and then serves as feedback for a position con-
troller on the ground control station. The position controller
is a proportional-integral-differential (PID) controller, and
sends commands at 100 Hz through radio to the quadrotor
which drives the on-board attitude controller at 500 Hz. The
commanded target position is fed into the neural network
to generate a trajectory and then optimized by OSQP to get
the optimal trajectory. The optimal trajectory is then sent to
the position controller as a reference trajectory. The system
diagram is shown in Fig. 3.

TABLE I: Specifications of Crazyflie2.0

Parameter Value

Mass (with markers) 335 g
Size(WxHxD) 92%x29%92 mm
Takeoff weight 42 ¢

Flight time 7 min

Uhttps://www.bitcraze.io/crazyflie-2/

-I
Crazyflie Onboard ‘ B ,\
Attitude Controller %

Radio 100Hz

> Reference

Trajectory | lrajectory
Optimizer

Keyboard Trajectory
Command Generator

AN J

Position
Controller

Kalman Filter

Fig. 3: Architecture of the system

Vicon Motion
Capture System

2 4
=
2y
=
O 1 -”V
0 1 2 3 4 5
Time (s)
Lol E .
) 0.51
e 0SQP \
....... Opt ".\»v.'.
0.01 , : : —
0 1 2 3 4 5
Time (s)

Fig. 4: Top: four trajectories from the same initial state with
different aggressiveness weights. Bottom: predicted, OSQP refined,
and optimal trajectories for w = 1. The curves almost overlap,
indicating high prediction accuracy.

B. Numerical Validation

The top row of Fig. 4 shows the prediction of optimal
trajectories from (—3,—3,—2) with zero velocity to the
origin with different weights on transfer time. These show
that the chosen aggressiveness affects the optimized transfer
time. The bottom row indicates that the neural network
makes accurate predictions. Refinement by QP is able to
further optimize the trajectory, and the result is visually
indistinguishable from the global optimum.

We evaluate the network’s prediction error in transfer time
in Fig. 5 and Tab. II. It shows that most of the errors are
within 0.25 s. This is important because OSQP is unable
to improve the transfer time. However, there are still a few
outliers with large transfer time error. These tend to be non-
aggressive problems. For example, in the worst problem, w =
0.15 and the costs from the OSQP and optimal trajectory are
0.870 and 0.739, respectively.

Next, we examine the violation of the dynamics constraint.

TABLE II: Prediction error in transfer time (s)

MAE RMSE max median

0.056 0.080 1.62 0.043

1500 1

1000

Count

5001

7(‘).5 0.0 ().‘5 1‘.0 1.‘5
Aty

Fig. 5: Prediction error in transfer time. Most prediction errors are
within 0.25 s. Outliers (invisible in histogram) are indicated with
vertical lines.

1000

750

500

Count

250

0.00 002 004 006 008 010 0.2
Violation

Fig. 6: Histogram of constraint violation measured by the norm
of the constraint function. Outliers (invisible in histogram) are
indicated with vertical lines.

We randomly sample 1000 initial states and evaluate the L2
norm of the violation of constraints of the optimal trajectories
from our approach (0 means no violation). The result is
shown in Fig. 6 with a worst case of 0.12. Considering
that this problem has (N — 1)n = 228 constraints, even the
worst-case violation is relatively small and can be well
compensated by feedback control.

Tab. III compares the running time and cost of the follow-
ing methods:

1) Our approach (NN+OSQP)

2) Minimum-snap trajectory (Min-Snap) [14]

3) NLP solver with straight line initialization (SL+NLP)
4) NLP solver with NNOC initialization (NNOC) [17]
5) NLP solver with neural net initialization (NN+NLP)

on 1000 sampled initial states. We note that Min-Snap is
implemented in Python and a careful C++ implementation
can reduce the computation time to the same level with
our approach. The transfer time of minimum-snap trajectory
must be set by some other methods which often leads to
conservativeness for safety. In these experiments it is selected
to be the same with the results from NNOC. Since the
minimum-snap approach is optimizing the snap of selected
state variable, it will have larger cost for our cost function.

Compared with the full NLP solver, our approach is able
to get an approximate solution two orders of magnitude
faster at similar levels of cost. It also obtains better cost
than Min-Snap. Although we are not explicitly optimizing
control energy, it turns out our approach yields lower energy
trajectory. Besides, Min-Snap has to check violation of
control constraint a posterior and as a result, the transfer
time has to be chosen conservatively in practice.

TABLE III: Comparison between approaches.

NN+OSQP Min-Snap SL+NLP NNOC NN+NLP
Success 1000 1000 563 1000 1000
Time (ms) 1.80 10.21 3829 194.7 131.1
Avg. cost 2 8.73 8.88 8.64 8.64 8.64
Avg. energy 6.67 7.00 6.69 6.69 6.69
Avg. jerk 0.37 0.40 0.35 0.35 0.35

C. Point-to-point Navigation and Real-time Tracking

Fig. 7 compares our method applied to the real quadcopter
by a point-to-point maneuver from (0, 0, 0) to (3, 3, 1.5). Our
approach predicts a transfer time of 3.1 s. The minimum-
snap trajectory to reach the same target within the same
amount of time is also shown. The two reference trajectories
are quite different, especially in the z direction. This is
not too surprising because they are optimizing different
cost functions. The trajectory from our prediction yields
better tracking performance. For underpowered drone like
Crazyflie, the specialized cost function in Eq. (2) penalizes
rapid change of rotor PWM so it leads to better performance
than the general minimum-snap approach.

0.25 1
z E 0.00—\’/\\
*>-<’ é — AXsnap
—0.254 — Ax
0 2 4
==== Ysnap —— 0.251 AYSnap
—21 — Ysnap ’E‘ A
E .y < 0.001 v
~ | 3 v—
o — ¥ -0.251
0 2 4 0 2 4
S ZAsnap ,7,@_——& Azsnap
€ 2] Zenap E 0.0] — Az 7&
N -z 3 ~
—: \/
1 = . . -0.11 . .
0 2 4 0 2 4
Time (s) Time (s)

Fig. 7: Results for tracking a trajectory. The dashed and solid lines
are reference and actual trajectory. The blue and red lines are the
trajectory by our minimum-snap and our approach. To reach the
same target within the same amount of time, our approach generates
a trajectory with better tracking performance.

We repeated this experiment for 10 manually selected
targets. The tracking errors, measure by the norm of position
and velocity errors, are listed in Tab. IV. It shows our
approach generates a trajectory that is easier to track than
the minimum-snap approach, given the same transfer time.

Since our approach can predict a trajectory with non-
zero initial velocity, it can switch target rapidly. Fig. 8
demonstrates this capability. A movement to the initial target
is interrupted with a new target after 1.7s. The technique
smoothly and immediately switches to the new trajectory.

2See Eq. (2)

TABLE IV: Comparison of average tracking error

NN+OSQP Min-Snap

0.45 0.87

y(m)

Time (s)

Fig. 8: Results for replanning during tracking. The vertical line
indicates when replanning is commanded. The blue curve shows
the planned trajectory to the first target. Our approach is able to
generate optimal trajectory in real time.

A supplementary video shows another real-time tracking
experiment. Here, we set the quadrotor to fly above a moving
target moved by a human at a certain height, as shown in
Fig. 9. Our approach enables agile response of the quadrotor
when the target is moved to a large distance.

Fig. 9: One frame of the live experiment. The rectangles show the
drone and target.

V. CONCLUSION

We exploit the ability of machine learning for global
nonlinear function approximation and efficiency of local
trajectory optimizer to enable real-time OCP solving.

The problem of interest is formulated as parametric
OCP so dataset of optimal trajectories is created and the
parameter-solution mapping can be learned. It turns out the
optimal trajectories can be learned using small amount of
data and approximated to high precision. The local trajectory
optimizer based on sparse QP benefits from the high accuracy
of the prediction from the learned model. The combination

of these techniques enables real-time solving of challenging
nonlinear OCPs. We validate this approach using an indoor
quadrotor system. We note that this quadrotor is under-
powered and light-weight so its disturbance rejection capabil-
ities is relatively weak. In future work we intend to apply our
technique to quadrotors capable of more aggressive maneu-
vers. Our method should benefit more from the exploitation
of nonlinear dynamics to achieve higher performance. Future
work includes applying this technique to more challenging
systems such as locomotion and theoretical study of stability
guarantee and bounds on loss of cost function.

REFERENCES

[11 A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit
solution of model predictive control via multiparametric quadratic
programming,” in Proc. American Control Conf., vol. 1-6, 2000, pp.
872 - 876.

[2] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193—
207, 1998.

[3] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048-1066,
1993.

[4] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scara-
muzza, “Fast trajectory optimization for agile quadrotor maneuvers
with a cable-suspended payload,” in Robotics: Science and Systems,
2017, pp. 1-10.

[51 J. Forster, M. Hamer, and R. D’ Andrea, “System identification of the
crazyflie 2.0 nano quadrocopter,” B.S. thesis, 2015.

[6] F. Gao and S. Shen, “Online quadrotor trajectory generation and
autonomous navigation on point clouds,” in 2016 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), Oct 2016,
pp. 139-146.

[71 M. Geisert and N. Mansard, “Trajectory generation for quadrotor based
systems using numerical optimal control,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), May 2016, pp. 2958—
2964.

[8] K. Hauser, “Learning the problem-optimum map: Analysis and ap-
plication to global optimization in robotics,” IEEE Trans. Robotics,
vol. 33, no. 1, pp. 141-152, Feb. 2017.

[9]1 N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1-2, pp. 111-127, Jan. 2013.

[10] F. Jiang and G. Tang, “Systematic low-thrust trajectory optimization
for a multi-rendezvous mission using adjoint scaling,” Astrophysics
and Space Science, vol. 361, no. 4, p. 117, 2016.

[11] F. Jiang, G. Tang, and J. Li, “Improving low-thrust trajectory op-
timization by adjoint estimation with shape-based path,” Journal of
Guidance, Control, and Dynamics, pp. 1-8, 2017.

[12] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in 2011 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 3719-3726.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, May 2011, pp. 2520-2525.

[15] M. W. Mueller, M. Hehn, and R. D’Andrea, “A Computationally
Efficient Motion Primitive for Quadrocopter Trajectory Generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294-1310.

[16] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs,” arXiv preprint
arXiv:1711.08013, 2017.

[17] G. Tang and K. Hauser, “A data-driven indirect method for nonlinear
optimal control,” in Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on. 1EEE, 2017, pp. —.

[18] T. Tomi¢, M. Maier, and S. Haddadin, “Learning quadrotor maneuvers
from optimal control and generalizing in real-time,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. 1EEE,
2014, pp. 1747-1754.

