

doi: 10.1093/femsle/fnz077

Advance Access Publication Date: 16 April 2019 Minireview

MINIREVIEW - Physiology & Biochemistry

# Organization and regulation of cyanobacterial *nif* gene clusters: implications for nitrogenase expression in plant cells

# Teresa Thiel\*

Department of Biology, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121, USA

\*Corresponding author: Department of Biology, University of Missouri-St. Louis, One University Blvd, St. Louis, MO 63121 USA. Tel: 01-314-516-6208; E-mail: thiel@umsl.edu

One sentence summary: This review describes the organization of nitrogenase genes and their regulation by the transcription factor CnfR via its highly conserved binding sites in three different types of cyanobacteria, *Anabaenavariabilis* ATCC 29413, *Leptolyngbya boryana* dg5 and Cyanothece sp. ATCC 51142 as well as attempts to express the *nif* genes in heterologous cyanobacteria.

Editor: Hermann Bothe

### **ABSTRACT**

For over 50 years scientists have considered the possibility of engineering a plant with nitrogen fixation capability, freeing farmers from their dependence on nitrogen fertilizers. With the development of the tools of synthetic biology, more progress has been made toward this goal in the last 5 years than in the previous five decades. Most of the effort has focused on nitrogenase genes from Klebsiella oxytoca, which has complex gene regulation. There may be advantages in using nitrogenase genes from cyanobacteria, which comprise large polycistronic gene clusters that may be easier to manipulate and eventually express in a plant. The fact that some diatoms have a cyanobacterial nitrogen fixing organelle further supports the idea that a cyanobacterial nitrogenase gene cluster may function in a newly-engineered, cyanobacterial-based plant organelle, a nitroplast. This review describes recent attempts to express the nif genes from Anabaena variabilis ATCC 29413, Leptolyngbya boryana dg5 and Cyanothece sp. ATCC 51142 in heterologous cyanobacteria in the context of the organization of the nitrogenase genes and their regulation by the transcription factor CnfR via its highly conserved binding sites.

Keywords: nitrogenase; cyanobacteria; heterocysts; regulation; CnfR

### INTRODUCTION

Engineering a plant to fix nitrogen could provide enormous benefits to society in terms of increased food production, environmental protection and reduction in fossil fuel consumption. The critical step of moving nitrogenase genes from a diazotrophic strain to a nondiazotroph was first demonstrated more than 45 years ago in the bacterium Escherichia coli, (Dixon and Postgate 1972) but only relatively recently has an E. coli strain with nif genes produced an active nitrogenase (Wang et al. 2013). Because of the regulatory complexity of the nif gene cluster

source, Klebsiella oxytoca, considerable manipulation of the genes was needed to optimize expression (Gouy, Guindon and Gascuel 2010; Temme, Zhao and Voigt 2012; Wang et al. 2013; Smanski et al. 2014; Yang et al. 2018). An even bigger challenge will be to synthesize functional nitrogenase, which is exquisitely sensitive to oxygen, in a eukaryote. Experiments using yeast mitochondria (Buren et al. 2017) and plant mitochondria (Allen et al. 2017) as hosts have resulted in the expression of individual Nif proteins, but not an active nitrogenase. Cyanobacteria are the evolutionary ancestors of chloroplasts, so there has also been

Received: 7 March 2019; Accepted: 11 April 2019

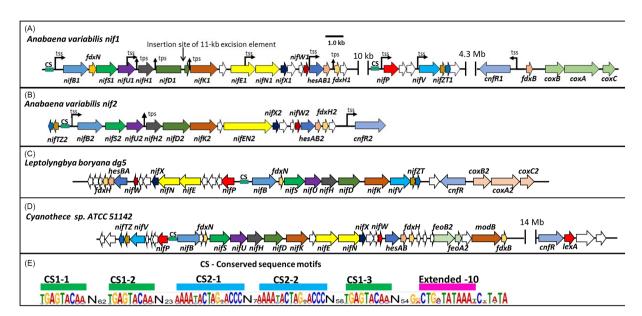



Figure 1. Maps of nif gene clusters and cnfR genes from IMG-JGI genome database (Chen et al. 2019). Arrows in panels A and B indicate published transcription start sites (tss) and transcription processing sites (tps) (Pratte et al. 2015). Green boxes labelled CS shown upstream of nifB and nifP refer to the conserved motifs shown in panel E. Conserved motifs, panel E, calculated using MEME (Bailey et al. 2009).

interest in expressing nif genes from a nitrogen-fixing cyanobacterial strain in a cyanobacterial strain that lacks the nif genes, which has been successful (Liu et al. 2018; Tsujimoto et al. 2018). The advantage of this system is that cyanobacterial cells are likely to require less modification for high level expression of nitrogenase than mitochondria. In addition cyanobacteria might function as a nitrogen fixing endosymbiont, similar to the intracellular cyanobacterial endosymbionts found in nitrogen fixing diatoms in the family Rhopalodiaceae (Floener and Bothe 1980; Prechtl et al. 2004; Kneip et al. 2007; Nakayama et al. 2011). These cyanobacterial spheroid bodies are phylogenetically most similar to the genus Cyanothece; however, they have a much reduced genome that has the genes for nitrogen fixation, but lacks the genes for photosynthesis (Nakayama et al. 2014).

Understanding the regulation of the large nif gene clusters in cyanobacteria, including the similarities and differences in the mechanisms that control nif gene expression levels, will be important in determining the best nif cluster that may eventually allow a plant to fix its own nitrogen. The best characterized cyanobacterial nif clusters include those from Anabaena variabilis ATCC 29413 (Thiel and Pratte 2014), Leptolyngbya boryana strain dg5 (Tsujimoto, Kamiya and Fujita 2014; Tsujimoto, Kamiya and Fujita 2016; Tsujimoto et al. 2018) and Cyanothece sp. ATCC 51142 (Stockel et al. 2011; Liu et al. 2018) (Fig. 1D).

## Nitrogen fixation in cyanobacteria

Anabaena variabilis ATCC 29413 is a filamentous cyanobacterium that responds to nitrogen deficiency by differentiating specialized cells called heterocysts that fix atmospheric nitrogen under aerobic growth conditions (Kumar, Mella-Herrera and Golden 2010; Muro-Pastor and Hess 2012; Herrero, Picossi and Flores 2013; Flores et al. 2018). In contrast, the filamentous strain L. boryana and the unicellular strain Cyanothece sp., like most non-heterocyst forming strains, temporally separate nitrogen fixation and oxygen-evolving photosynthesis to protect nitrogenase from oxygen (Misra and Tuli 2000; Schneegurt et al. 2000; Stockel et al. 2011). Cyanothece sp. is unusual because, unlike L. boryana,

it can fix nitrogen well in the dark in an aerobic environment (Colon-Lopez, Sherman and Sherman 1997).

Heterocysts, which comprise 5%-10% of the cells in a filament, maintain a microoxic environment via the structure of their cell wall, their lack of oxygen-evolving photosystem II, and their high rate of respiration, all features that protect the oxygen-labile nitrogenase from oxygen (Murry, Horne and Benemann 1984; Walsby 1985; Murry and Wolk 1989; Valladares et al. 2003; Walsby 2007). Anabaena variabilis is unusual because it has three nitrogenases: a heterocyst-specific, Mo-nitrogenase encoded by the nif1 genes, a heterocyst-specific V-nitrogenase encoded by the unfgenes, and a second Mo-nitrogenase encoded by the nif2 genes that is made only in anaerobic vegetative cells (Thiel 2004; Thiel and Pratte 2014). Expression of the nif1 cluster of A. variabilis depends on the differentiation of heterocysts, which is controlled by a cascade of regulatory factors including NtcA, HetR, NrrA and DevH (Muro-Pastor and Hess 2012; Herrero, Picossi and Flores 2013; Flores et al. 2018). NtcA is not only important in heterocyst differentiation, but also more generally mediates global responses, especially to changes in the carbon to nitrogen ratio in the cell that are typically sensed by the levels of 2-oxoglutarate (Forchhammer 2004; Herrero and Flores 2018). When 2-oxoglutarate levels are high and fixed nitrogen levels are low, PipX and 2-oxoglutarate bind to NtcA, which activates genes that respond to nitrogen deprivation leading to heterocyst differentiation (Valladares, Flores and Herrero 2008; Valladares et al. 2011; Espinosa et al. 2014; Picossi, Flores and Herrero 2014; Herrero and Flores 2018). NtcA is required for expression of the nif2 nitrogenase in anaerobic vegetative cells of A. variabilis (Thiel and Pratte 2001) by activating expression of the transcription factor, CnfR2, which activates nifB2 (described below). In contrast, another key regulator, HetR, is not required for the expression of the nif2 nitrogenase in anaerobic vegetative cells of A. variabilis (Thiel, unpublished).

The organization of the large nif1 and nif2 nitrogenase gene clusters in A. variabilis is very similar, as are the nif gene clusters in filamentous nitrogen-fixing cyanobacteria without heterocysts, like L. boryana, and unicellular strains, such as Cyanothece

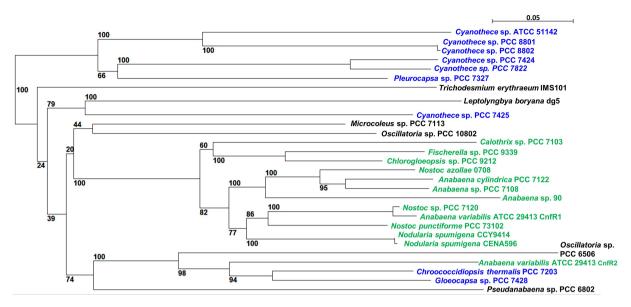



Figure 2. Phylogenetic tree of representative cyanobacterial CnfR deduced proteins. Heterocyst-forming strains are shown in green, filamentous non-heterocystforming strains in black and unicellular strains in blue. This BioNJ distance tree was constructed from CnfR sequences obtained from JGI-IMG (Chen et al. 2019) using the program SeaView (Gouy et al. 2010) with 100-replicate bootstrap values.

sp. In contrast to the mostly contiguous nif genes in A. variabilis, the nif genes of L. boryana and Cyanothece ATCC 51142 comprise two divergently transcribed groups of nif genes (Fig. 1C and D). The nif regulatory gene cnfR is linked to the nif cluster in some (e.g. nif2 in A. variabilis and the nif cluster of L. boryana) but not all clusters (e.g. nif1 in A. variabilis and the nif cluster of Cyanothece sp.) (Fig. 1A-D). The cnfR gene of Cyanothece ATCC 51142 appears to be cotranscribed with a transcriptional regulator, lexA, located immediately downstream of cnfR; however, this not true for other cyanobacteria, including other strains of Cyanothece spp. This divergence in cnfR among strains of Cyanothece spp. is reflected in the phylogeny of the Cyanothece cnfR genes (Fig. 2)

# nif regulatory proteins

CnfR is a regulatory protein with a C-terminal XRE-type, DNAbinding domain and two N-terminal 4Fe-4S binding sites, similar to bacterial ferredoxins (Liang, Scappino and Haselkorn 1993; Jones, Buikema and Haselkorn 2003; Pratte and Thiel 2016). This gene, found in all nitrogen fixing cyanobacterial genomes, forms a clear monophyletic group only for nif systems that function in heterocysts (Fig. 2). The cnfR gene of Anabaena sp. PCC 7120 was first identified as a frameshift mutation in a gene that was then called pat-2 which resulted in a strain with poor growth in the absence of fixed nitrogen, a high frequency of heterocysts, and fragmentation of filaments (Liang, Scappino and Haselkorn 1993). The gene, subsequently renamed patB, was found to be expressed exclusively in heterocysts late in their development. A patB deletion mutant failed to grow in the absence of fixed nitrogen, but had very low levels of nitrogenase activity, about 0.25% of normal activity (Jones, Buikema and Haselkorn 2003). In the filamentous non-heterocystous cyanobacterium L. boryana, the nif genes (Fig. 1C) were not expressed in a mutant with a deletion of a homolog of patB, called cnfR, leading to the conclusion that CnfR is the major regulator for nif transcription in that strain (Tsujimoto, Kamiya and Fujita 2014). The CnfR protein of L. boryana with a deletion in either the conserved CnfR N-terminal iron-sulfur cluster binding region or the C-terminal

DNA binding region resulted in loss of transcription of nifB (Tsujimoto, Kamiya and Fujita 2016). In contrast, in Anabaena sp. PCC 7120, a mutant of CnfR that destroyed the terminal ironsulfur cluster binding region, by replacement of the N-terminal six cysteines with alanines, grew, albeit slowly, in the absence of fixed nitrogen. A frameshift mutation, which resulted in loss of the C-terminal DNA-binding domain of CnfR in Anabaena sp. PCC 7120 also grew slowly in the absence of fixed nitrogen, with about 14% of wild-type nitrogenase activity (Jones, Buikema and Haselkorn 2003).

Anabaena variabilis has two copies of cnfR encoding CnfR1, which activates the nifB1 promoter only in heterocysts and CnfR2, which activates the nifB2 promoter only in anaerobic vegetative cells (Pratte and Thiel 2016). CnfR1 and CnfR2 do not cluster together phylogenetically. CnfR1 clusters with genes from other heterocyst-specific nitrogenases, while CnfR2 clusters with nitrogenases from filamentous, non-heterocystous cyanobacteria (Fig. 2). Deletion mutations in cnfR1 or cnfR2 abolish the expression of nifB1 or nifB2, respectively. The cnfR1 mutation had little effect on expression of the secondary nif1 promoters, such as the one inside the nifE1 gene, or on hesA1, which has its own promoter (Fig. 1A). Expression of nifP was reduced only 2-3 fold in the cnfR1 mutant (Pratte and Thiel 2016). CnfR1 is not required for expression of the vnfDGKEN genes that encode the structural and scaffolding proteins of the heterocyst-specific Vnitrogenase of A. variabilis; however, because the V-nitrogenase requires NifB1, a functional V-nitrogenase cannot be made in a cnfR1 mutant (Pratte and Thiel 2016). The vnf genes are regulated by VnfR1 and VnfR2 (Pratte et al. 2013).

In bacterial transcription, the RNA polymerase core enzyme requires a sigma factor for initial binding to the promoter. The nifB1 and nifB2 promoters have strikingly conserved sequences upstream of the transcription start site that form a canonical 'extended -10 promoter' (Fig. 1E) (Mitchell et al. 2003), but they lack a recognizable -35 region. They represent a type 2 promoter, which typically requires a transcription factor and often uses alternative sigma factor in addition to the normal, housekeeping  $\sigma^{70}$  factor (Imamura and Asayama 2009). Thus, activation of the nifB1 or nifB2 promoters may require cell-type-specific

expression of alternative sigma factors. In addition to the normal group 1, housekeeping  $\sigma^{70}$  factor, bacteria have several alternative sigma factors in groups 2 and 3 (Paget 2015). Cyanobacteria typically have 9-12 sigma factors, including the housekeeping SigA (group 1); Sig B, C, D, E (group 2); and Sig F, G, H, I, J (group 3), but they lack the  $\sigma^{N}$  factor often associated with control of nitrogen-stress related genes in other bacteria (Asayama et al. 2004; Imamura et al. 2006; Imamura and Asayama 2009; Paget 2015). In Synechocystis sp. PCC 6803 a mutant of all group 2 sigma factors (∆sigBCDE) led to poor growth under many stress conditions, including oxidative stress, nitrogen stress, heat, high light or high salt; however, in the absence of environmental stress the deletion strain grew nearly as well as the wild-type strain (Antal et al. 2016; Koskinen et al. 2016; Hakkila et al. 2019). Mutants in any one of the group 2 sigma factors genes had little effect on short-term growth with low levels of fixed nitrogen. A double mutant lacking sigB and sigD grew poorly under conditions of nitrogen stress and a triple mutant lacking sigB, sigD and sigE recovered very poorly after nitrogen starvation (Antal et al. 2016). In Anabaena sp. PCC 7120 expression of sigC, sigE and sigG is increased in differentiating heterocysts (Aldea, Mella-Herrera and Golden 2007; Ehira and Miyazaki 2015). SigB and SigC function for expression of some NtcA-dependent, nitrogenresponsive genes (Imamura and Asayama 2009). Both SigC (Ehira and Miyazaki 2015) and SigE (Mella-Herrera et al. 2011) are important, but not essential, for expression of the nif genes in heterocysts of Anabaena sp. PCC 7120. Upregulation of SigC, starting at 3-4 h after nitrogen removal, requires HetR, a key activator of heterocyst differentiation, and transcription of hetR requires the global nitrogen regulator NtcA (Huang, Dong and Zhao 2004; Zhang, Chen and Zhang 2009; Herrero, Picossi and Flores 2013). SigE is implicated in the expression of nif genes in the unicellular cyanobacterium, Cyanothece (Mueller et al. 2016). Together, these results suggest that sigB, sigC, sigD and sigE probably have overlapping roles in transcribing genes that are important in nitrogen stress and possibly in nitrogen fixation.

# Promoters and other cis-acting elements for nif genes

The nif1 genes, which are heterocyst-specific, even in cells grown under anaerobic conditions (Elhai and Wolk 1990; Thiel et al. 1995), are primarily under the control of the promoter for nifB1, the first gene in the 15-kb cluster (Fig. 1A) (Ungerer, Pratte and Thiel 2010; Pratte and Thiel 2014). Similarly, the nif2 genes are under the control of the nifB2 promoter. There are additional weak promoters located in nifU1 and nifE1 and hesA1 has its own strong promoter (Pratte and Thiel 2014) (Fig. 1A). The relatively high abundance of some transcripts in both the nif1 and nif2 operons, most notably nifH1 and nifH2, is the result of the high stability of these transcripts, not a strong promoter. This stability is due to conserved stem-loop structures located at RNA processing sites upstream of these genes (Pratte and Thiel 2014). The RNA transcriptional processing sites are indicated in Fig. 1A and B. While it seems likely that the promoter for nifB serves as the primary promoter for the nif operons in other cyanobacteria, this has not yet been clearly demonstrated. However, the region upstream of nifH in the filamentous non-heterocystous strain, L. boryana, showed no promoter activity, in contrast to the region between the nifB and nifP genes which serves as the promoter region for the two divergently transcribed operons nifBSUHDKVZT and nifPENXW (Tsujimoto, Kamiya and Fujita 2016) (Fig. 1C).

Conserved cis-acting elements that were identified in a region that extended 300–600 bp upstream of the transcription

start sites of nifB1, nifB2 and nifP in A. variabilis (Vernon, Pratte and Thiel 2017) and upstream of the promoters of nifB and nifP in L. boryana (Tsujimoto, Kamiya and Fujita 2016) are also highly conserved in most diazotrophic cyanobacteria. Three of these conserved motifs (CS1-1, CS1-2 and CS1-3) (Fig. 1E) have been studied the most extensively. The nifB promoter region of L. boryana, fused to a luxAB reporter gene, with cnfR was expressed in Synechocystis sp. PCC 6803 under the control of the trc promoter. In this heterologous expression system, mutation of the nifB CS1-3 conserved motif, (corresponding to Region IX in L. boryana), abolished transcription from the nifB promoter, while mutation of CS1-1 or CS1-2 (corresponding to Region 0 and I in L. boryana) increased transcription from the nifB promoter compared to a wild-type sequence (Tsujimoto, Kamiya and Fujita 2016). The results of similar experiments done in vivo in A. variabilis had opposite results. In the case of expression of nifB1, the loss of either CS1-1 or CS1-2 decreased transcription from nifB1 about 50% compared to a sequence with all three motifs, and loss of both CS1-1 and CS1-2 led to a 75% reduction in expression of niB1. Loss of the entire region upstream of CS1-2, including CS1-2, still showed good heterocyst-specific expression from the nifB1 promoter (Vernon, Pratte and Thiel 2017).

While the conserved regions upstream of nifB1 and nifB2 in A. variabilis are very similar, they do not function interchangeably. The conserved region upstream of nifB2 can replace the similar region upstream of nifB1 for expression of nifB1 (Fig. 3A), but the converse is not true; replacement of the region of the nifB2 promoter that includes the CS1-1 motif with the similar upstream region of nifB1 results in 80% loss of nifB2 expression, while replacement of the entire conserved region of the nifB2 promoter with the similar region from nifB1 resulted in complete loss of nifB2 expression. High-level expression of nifB2 requires not only the conserved motif region of nifB2, but also the 5' untranslated region as well as sequences within the 5' end of the gene (Fig. 3B) (Vernon, Pratte and Thiel 2017). Despite the similarity in the CnfR1 and CnfR2 proteins, CnfR2 can only activate the nifB2 conserved region, while CnfR1 activates either nifB1 or nifB2. This has been confirmed by the fact that expression of cnfR1 from the cnfR2 promoter in anaerobic vegetative cells results in activation of both nifB1 and nifB2, whereas expression of cnfR2 from the cnfR1 promoter in heterocysts activates neither nifB1 nor nifB2 (Pratte and Thiel 2016). Thus, it appears that activation of nifB2 requires not only CnfR2, but also another factor that is present in anaerobic vegetative cells but absent from heterocysts. A hybrid promoter construct that is almost entirely the upstream region of nifB2, with only the -10 region of nifB1, can be activated by either CnfR1 in heterocysts or by CnfR2 in anaerobic vegetative cells (Fig. 3C) (Vernon, Pratte and Thiel 2017). Therefore, the conserved upstream region of nifB2 is critical for its expression, and cannot be replaced by the similar region of nifB1, while expression from the nifB1 promoter stringently requires only the extended -10 region of the nifB1 promoter, but otherwise functions well using the homologous regions of the

In addition to nifB1 and nifB2, the upstream regions of two other genes in A. variabilis have the conserved motifs characteristic of CnfR activation sites: nifP and a gene of unknown function, ava0453, located not far from cnfR1, which is present only in heterocyst-forming cyanobacteria where it is expressed late in heterocyst differentiation (Thiel, unpublished data). The nifP (cysE) gene encodes a serine O-acetyltransferase, essential for the synthesis of cysteine; however most nitrogen-fixing cyanobacteria have cysE as well as nifP. In the Proteobacterium, Azotobacter chroococcum, the first strain in which nifP was

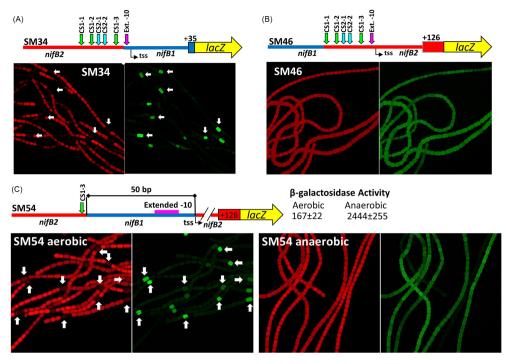



Figure 3. In situ expression of nifB1 and nifB2 hybrid promoters. (A) Heterocyst-specific expression of a nifB2/nifB1 hybrid promoter fused to lacZ, 24 h after aerobic growth -N. (B) Anaerobic vegetative cell expression of a nifB1/nifB2 hybrid promoter fused to lacZ, 6 h after anaerobic growth -N. (C) Expression of the nifB2 promoter, modified with the nifB1 extended -10 region, fused to lacZ, 24 h after aerobic growth -N (left panel) or 6 h after anaerobic growth -N (right panel). White arrows indicate  $heterocysts.\ Right panels, fluorescein fluoresceince from\ cleavage\ of\ 5-dodecanoyl-fluorescein-\beta-D-galacto-pyranoside\ by\ \beta-galactosidase; left panels, red fluorescence$ from photosynthetic pigments in cyanobacteria (less in mature heterocysts). Modified from (Vernon et al. 2017).

described, mutation of nifP resulted in a delay in nitrogen fixation and slower growth of the strain under nitrogen fixing conditions. (Evans et al. 1991). In A. variabilis, there is a single nifP gene, which may serve both the Nif1 and the Nif2 nitrogenases. A nifP deletion mutant grows well and fixes nitrogen similarly to the wild-type strain (Thiel, unpublished results). However, in L. boryana deletion of nifP and the three small orfs immediately downstream reduced nitrogenase to less than 10% of wild-type activity (Tsujimoto, Kamiya and Fujita 2014). In L. boryana the conserved upstream region is not sufficient for expression of nifP, which also requires an additional 900 bp upstream of nifP (Tsujimoto, Kamiya and Fujita 2016).

# The role of CnfR in cell-type specific nif regulation

In A. variabilis cell-type specific expression of nifB1 (only in heterocyst) or nifB2 (in anaerobic vegetative cells) depends largely on the cell-type specificity of cnfR1 or cnfR2 expression. Heterologous expression of the cnfR1 gene under the control of the cnfR2 promoter in anaerobic vegetative cells results in activation of both the nifB1 and the nifB2 promoters in these cells. Hence, celltype specificity of nifB1 expression is determined solely by the heterocyst-specific expression of cnfR1. In contrast, expression of the cnfR2 gene under the control of the cnfR1 promoter in heterocysts does not result in expression of either the nifB1 promoter or the nifB2 promoter in these cells (Pratte and Thiel 2016). Thus CnfR1 activates only nifB1 in heterocysts because cnfR1 is only made in heterocysts and because nifB2 cannot be activated in heterocysts by CnfR1. In contrast, in anaerobic vegetative cells, nifB2 can be activated by either CnfR1 or CnfR2, suggesting that there is a factor required for nifB2 activation that is only present in anaerobic vegetative cells. Therefore, the activation of nifB2 in anaerobic vegetative cells by CnfR2 results not only from the fact

that cnfR2 is expressed only in those cells, but also that expression of nifB2 requires another factor that is only made in anaerobic vegetative cells.

# Expression of nitrogenase genes in a heterologous host

Anabaena sp. PCC 7120, is very similar to A. variabilis, but it lacks the nif2 cluster. When the cnfR2 gene of A. variabilis was inserted into the chromosome of Anabaena sp. PCC 7120, CnfR2 was expressed in anaerobic vegetative cells and activated nifB2, indicating that CnfR2 is necessary and sufficient for expression of nifB2 in anaerobic vegetative cells of Anabaena sp. PCC 7120 (Pratte and Thiel 2016) (Fig. 4). When the entire A. variabilis nif2 cluster (from nifT2-cnfR2, Fig. 1B) was transferred to Anabaena sp. PCC 7120, it was able to fix nitrogen under anoxic conditions in vegetative cells, but the activity of the Nif2 system was about 5% of that observed for A. variabilis. Transcript analysis of this engineered Anabaena sp. PCC 7120 strain showed that expression of cnfR2 was similar to that observed for A. variabilis, but that expression of nifB2 and nifH2 was 5- to 10-fold lower, leading to the lower nitrogenase activity (Thiel, unpublished). When the cnfR2 gene, with its own promoter, from A. variabilis was integrated in the Synechocystis sp. PCC 6803 genome there was little transcription of cnfR2 and no activation of the nifB2 promoter under anoxic conditions suggesting that Synechocystis 6803 lacks a necessary factor for transcription of cnfR2 (Thiel, unpublished

The cnfR gene of L. boryana, under the control of the constitutive trc promoter, was expressed in the non-nitrogen fixing cyanobacterium, Synechocystis sp. PCC 6803. In this heterologous strain, the nifB and nifP promoters, fused to a luxAB reporter, were expressed only under anaerobic conditions, suggesting that factors in addition to the constitutively expressed CnfR,

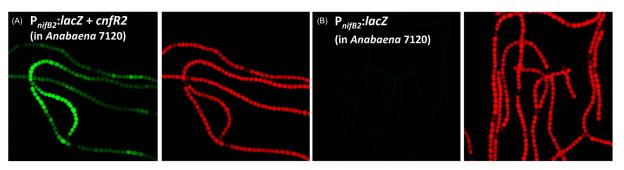



Figure 4. Expression of nifB2 in Anabaena sp. PCC 7120. In situ localization of expression of lacZ, under the control of the nifB2 promoter in Anabaena sp. PCC 7120 with the cnfR2 gene of A. variabilis (panel A) or without the cnfR2 gene of A. variabilis (panel B). β-galactosidase expression was visualized in cells grown for 24 h under anaerobic conditions -N. Left panels, fluorescein fluoresceine from cleavage of 5-dodecanoyl-fluorescein-β-D-galacto-pyranoside by β-galactosidase; right panels, red fluorescence from photosynthetic pigments in cyanobacteria (less in mature heterocysts, which appear dark in the right panel of each set). Modified from (Pratte, Thiel 2016)

apparently present only in anaerobic cells of *Synechocystis* sp. PCC 6803, were also required for *nif* gene expression (Tsujimoto, Kamiya and Fujita 2016). The *nifB* promoter was activated only in the absence of fixed nitrogen, but the *nifP* promoter was weakly activated in cells grown with fixed nitrogen. Recently, the 25 gene *nif* cluster from *fdxB* to *nifT* (Fig. 1C) from *L. boryana* was cloned with *cnfR*, under the control of the *trc* promoter, into a neutral site in the genome of *Synechocystis* 6803 producing strain CN1. Under anaerobic conditions, CN1 produced NifH, NifD and NifK proteins at about 6%–23% of the levels in *L. boryana*; however, nitrogenase levels were only about 0.26% of those of *L. boryana* (Tsujimoto *et al.* 2018).

The first transfer of nif genes to Synechocystis 6803 with significant nitrogenase expression was recently demonstrated using a region with 24 nif genes from Cyanothece sp. ATCC 51142, from nifT to hesB (Fig. 1D). The nif genes were integrated into a small, multi-copy plasmid in Synechocystis 6803, pCA2.4, creating strain TSyNif-9. Under anaerobic growth conditions, Synechocystis TSyNif-9 was able to fix nitrogen at 13%-31% (acetylene reduction versus N<sub>2</sub> reduction values, respectively) of the rate of Cyanothece (Liu et al. 2018). However, without the increased level of expression provided by expression of the nif gene on a plasmid, nitrogenase expression in Synechocystis was about 2% of the rate of Cyanothece (Liu et al. 2018). This suggests that expressing cyanobacterial nif genes on a host strain-compatible plasmid is a reasonable strategy for increasing nitrogenase activity in a heterologous host. Synechocystis TSyNif-9 lacks the cnfR gene, suggesting that, unlike A. variabilis or L. boryana, in Cyanothece nif genes do not require this activator. It would be interesting to see whether the addition of cnfR to TSyNif-9 could further increase nitrogenase production. It should be noted that because nitrogenase activity was reported using different units for specific activity in the Synechocystis strains expressing the nif genes from the L. boryana versus those from Cyanothece, it is very difficult to compare the actual amounts of nitrogenase activity between these strains (Liu et al. 2018; Tsujimoto et al. 2018).

# **CONCLUSIONS**

The large contiguous nif gene clusters, lacking excision elements, described here for A. variabilis nif2, Cyanothece, and L. boryana show promise for heterologous expression in plants. These nif genes comprise large operons, with few promoters. The transcription factor CnfR is the primary activator of nifB and nifP promoters, but it is likely that other factors, possibly

sigma factors, are also involved in regulation. Transcript abundance may be regulated primarily by posttranscriptional processing and differential transcript stability (Pratte, Ungerer and Thiel 2015), but may also be increased by expression of the nif genes from a multi-copy cyanobacterial plasmid (Liu et al. 2018). It is noteworthy that experiments in different laboratories attempting to express different cyanobacterial nif clusters in Synechocystis 6803 yielded low, but quite different levels of nitrogenase activity in the engineered strains (Liu et al. 2018; Tsujimoto et al. 2018). Thus, expressing cyanobacterial nif genes in plants appears feasible, but will require better understanding of the regulation of nitrogenase genes in cyanobacteria and optimization of conditions for nitrogenase activity in the host cell. The latter will likely include providing the appropriate redox state of the cell as well as sufficient reductant and ATP, key factors for high nitrogenase activity.

# **FUNDING**

Support for this research was provided by National Science Foundation grant MCB-1818298.

# **ACKNOWLEDGEMENTS**

I thank Brenda Pratte for her help with the research described in this review and in editing this manuscript.

Conflict of interest. None declared.

### **REFERENCES**

Aldea MR, Mella-Herrera RA, Golden JW. Sigma factor genes sigC, sigE, and sigG are upregulated in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007;189:8392–6.

Allen RS, Tilbrook K, Warden AC et al. Expression of 16 nitrogenase proteins within the plant mitochondrial matrix. Front Plant Sci 2017;8:287.

Antal T, Kurkela J, Parikainen M et al. Roles of group 2 sigma factors in acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to nitrogen deficiency. Plant Cell Physiol 2016;57:1309–18.

Asayama M, Imamura S, Yoshihara S et al. SigC, the group 2 sigma factor of RNA polymerase, contributes to the late-stage gene expression and nitrogen promoter recognition in

- the cyanobacterium Synechocystis sp. strain PCC 6803. Biosci Biotechnol Biochem 2004;68:477-87.
- Bailey TL, Boden M, Buske FA et al. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res 2009;37:W202-8.
- Buren S, Young EM, Sweeny EA et al. Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae. ACS Synth Biol 2017;6:1043-55.
- Chen IA, Chu K, Palaniappan K et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019;**47**:D666-77.
- Colon-Lopez MS, Sherman DM, Sherman LA. Transcriptional and translational regulation of nitrogenase in light-darkand continuous-light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 1997;**179**:4319-27.
- Dixon RA, Postgate JR. Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli. Nature 1972;237:102-3.
- Ehira S, Miyazaki S. Regulation of genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120 by a group 2 sigma factor SigC. Life (Basel) 2015;**5**:587–603.
- Elhai J, Wolk CP. Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J 1990;9:3379-88.
- Espinosa J, Rodríguez-Mateos F, Salinas P et al. PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. Proc Natl Acad Sci USA. 2014;111:E2423-30.
- Evans DJ, Jones R, Woodley PR et al. Nucleotide sequence and genetic analysis of the Azotobacter chroococcum nifUSVWZM gene cluster, including a new gene (nifP) which encodes a serine acetyltransferase. J Bacteriol 1991;173:5457-69.
- Floener L, Bothe H. Nitrogen fixation in Rhopalodia qibba, a diatom containing blue-greenish inclusions symbiotically. Endocytobiol endosymbiosis cell biol 1980;1:514-52.
- Flores E, Picossi S, Valladares A et al. Transcriptional regulation of development in heterocyst-forming cyanobacteria. Biochim Biophys Acta Gene Regul Mech. 2018. doi.org/10.1016/j.bbagrm.2018.04.006
- Forchhammer K. Global carbon/nitrogen control by PII signal transduction in cyanobacteria: From signals to targets. FEMS Microbiol Rev 2004;28:319-33.
- Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221-4.
- Hakkila K, Valev D, Antal T et al. Group 2 sigma factors are central regulators of oxidative stress acclimation in cyanobacteria. Plant Cell Physiol. 2019;**60**:436–47.
- Herrero A, Flores E. Genetic responses to carbon and nitrogen availability in Anabaena. Environ Microbiol. 2018. doi.org/10.1111/1462-2920.14370
- Herrero A, Picossi S, Flores E. Gene expression during heterocyst differentiation. Advances in Botanical Research, Franck C, Corinne C-C (eds). 2013;65, pp.281-329. Academic Press.
- Huang X, Dong Y, Zhao J. HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNAbinding activity is inhibited by PatS. Proc Natl Acad Sci USA. 2004;101:4848-53
- Imamura S, Asayama M. Sigma factors for cyanobacterial transcription. Gene Regul Syst Bio 2009;3:65-87.
- Imamura S, Tanaka K, Shirai M et al. Growth phase-dependent activation of nitrogen-related enes by a control network of group 1 and roup 2  $\sigma$  Factors in a cyanobacterium. J Biol Chem 2006;281:2668-75.

- Jones KM, Buikema WJ, Haselkorn R, Heterocyst-specific expression of patB, a gene required for nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 2003;185:2306-14.
- Koskinen S, Hakkila K, Gunnelius L et al. In vivo recruitment analysis and a mutant strain without any group 2 sigma factor reveal roles of different sigma factors in cyanobacteria. Mol Microbiol 2016;99:43-54.
- Kneip C, Lockhart P, Voss C et al. Nitrogen fixation in eukaryotesnew models for symbiosis. BMC Evol Biol 2007;7:55.
- Kumar K, Mella-Herrera RA, Golden JW. Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2010;2:a000315.
- Liang J, Scappino L, Haselkorn R. The patB gene product, required for growth of the cyanobacterium Anabaena sp. strain PCC 7120 under nitrogen-limiting conditions, contains ferredoxin and helix-turn-helix domains. J Bacteriol 1993;175:1697-704.
- Liu D, Liberton M, Yu J et al. Engineering nitrogen fixation activity in an oxygenic phototroph. MBio 2018. doi:10.1128/mBio.01029-18
- Mella-Herrera RA, Neunuebel MR, Kumar K et al. The sigE gene is required for normal expression of heterocyst-specific genes in Anabaena sp. strain PCC 7120. J Bacteriol 2011; 193:1823-32.
- Misra HS, Tuli R. Differential expression of photosynthesis and nitrogen fixation genes in the cyanobacterium Plectonema boryanum. Plant Physiol 2000;122:731-6.
- Mitchell JE, Zheng D, Busby SJ et al. Identification and analysis of 'extended -10' promoters in Escherichia coli. Nucleic Acids Res 2003;31:4689-95.
- Mueller TJ, Welsh EA, Pakrasi HB et al. Identifying regulatory changes to facilitate nitrogen fixation in the nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 2016;5:250-8.
- Muro-Pastor AM, Hess WR. Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol 2012;20:548-57.
- Murry MA, Wolk CP. Evidence that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch Microbiol 1989;151:469-74.
- Murry MA, Horne AJ, Benemann JR. Physiological studies of oxygen protection mechanisms in the heterocysts of Anabaena cylindrica. Appl Env Microbiol 1984;47:449-54.
- Nakayama T, Ikegami Y, Ishida K et al. Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. J Plant Res 2011; 124:93-97.
- Nakayama T, Kamikawa R, Tanifuji G et al. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci USA 2014;**111**:11407–12.
- Paget MS. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 2015;5:1245-65.
- Picossi S, Flores E, Herrero A. ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genomics 2014;15:22.
- Pratte BS, Sheridan R, James JA et al. Regulation of V-nitrogenase genes in Anabaena variabilis by RNA processing and by dual repressors. Mol Microbiol 2013;88:413-24.
- Pratte BS, Thiel T. Regulation of nitrogenase gene expression by transcript stability in the cyanobacterium Anabaena variabilis. J Bacteriol 2014;196:3609-21.
- Pratte BS, Thiel T. Homologous regulators, CnfR1 and CnfR2, activate expression of two distinct nitrogenase gene clusters in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 2016;100:1096-109.

- Pratte BS, Ungerer J, Thiel T. Role of RNA secondary structure and processing in stability of the nifH1 transcript in the cyanobacterium Anabaena variabilis. J Bacteriol 2015;197:1408–22.
- Prechtl J, Kneip C, Lockhart P et al. Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 2004;21:1477–81.
- Schneegurt MA, Tucker DL, Ondr JK et al. Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, heterotrophically grown in continuous dark. *J Phycol* 2000;36:107–17.
- Smanski MJ, Bhatia S, Zhao D et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 2014;32:1241–9.
- Stockel J, Jacobs JM, Elvitigala TR et al. Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142. PLoS One 2011;6:e16680.
- Temme K, Zhao D, Voigt CA. Refactoring the nitrogen fixation gene cluster from *Klebsiella oxytoca*. Proc Natl Acad Sci USA 2012;109:7085–90.
- Thiel T. Nitrogen fixation in heterocyst-forming cyanobacteria. Genetics and Regulation of Nitrogen Fixing Bacteria, Klipp W, Masepohl B, Gallon JR, Newton WE (eds). Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004, pp.73–110.
- Thiel T, Pratte B. Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium *Anabaena* variabilis ATCC 29413. *J Bacteriol* 2001;**183**:280–6.
- Thiel T, Pratte B. Regulation of three nitrogenase gene clusters in the cyanobacterium *Anabaena variabilis ATCC* 29413. Life 2014;4:944–67.
- Thiel T, Lyons EM, Erker JC et al. A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. *Proc Natl Acad Sci USA* 1995;**92**:9358–62.
- Tsujimoto R, Kamiya N, Fujita Y. Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in non-heterocystous cyanobacteria. *Proc Natl Acad Sci USA*. 2014; 111:6762–7.
- Tsujimoto R, Kamiya N, Fujita Y. Identification of a cis-acting element in nitrogen fixation genes recognized by CnfR in the

- nonheterocystous nitrogen-fixing cyanobacterium *Leptolyng-bya boryana*. Mol Microbiol 2016;**101**:411–24.
- Tsujimoto R, Kotani H, Yokomizo K et al. Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism. Sci Rep 2018;8:7380.
- Ungerer JL, Pratte BS, Thiel T. RNA processing of nitrogenase transcripts in the cyanobacterium *Anabaena variabilis*. *J Bacteriol* 2010;192:3311–20.
- Valladares A, Herrero A, Pils D et al. Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol Microbiol 2003; 47:1239–49.
- Valladares A, Flores E, Herrero A. Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium *Anabaena* sp. strain PCC 7120. *J Bacteriol* 2008;**190**:6126–33.
- Valladares A, Rodríguez V, Camargo S et al. Specific role of the cyanobacterial PipX Factor in the heterocysts of Anabaena sp. strain PCC 7120. J Bacteriol 2011;193:1172–82.
- Vernon SA, Pratte BS, Thiel T. Role of the nifB1 and nifB2 promoters in cell-type-specific expression of two Mo nitrogenases in the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 2017. doi.org/10.1128/JB.00674-16.
- Walsby AE. The permeability of heterocysts to the gases nitrogen and oxygen. Proc R Soc Lond B 1985;226:345–66.
- Walsby AE. Cyanobacterial heterocysts: Terminal pores proposed as sites of gas exchange. Trends Microbiol 2007;15:340-9.
- Wang X, Yang JG, Chen L et al. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation. PLoS One 2013;8:e68677.
- Yang J, Xie X, Xiang N et al. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc Natl Acad Sci USA 2018; 115:E8509–17.
- Zhang JY, Chen WL, Zhang CC. hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous nonheterocyst-forming cyanobacteria. Microbiology 2009;155:1418–26.