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Abstract. We introduce program synthesis with equivalence reduction, a
synthesis methodology that utilizes relational specifications over compo-
nents of a given synthesis domain to reduce the search space. Leveraging
a blend of classic and modern techniques from term rewriting, we use
relational specifications to discover a canonical representative per equiv-
alence class of programs. We show how to design synthesis procedures
that only consider programs in normal form, thus pruning the search
space. We discuss how to implement equivalence reduction using effi-
cient data structures, and demonstrate the significant reductions it can
achieve in synthesis time.

1 Introduction

Over the past few years, we have witnessed great strides in automated pro-
gram synthesis, the process of automatic construction of programs that satisfy
a given specification—for instance, a logical formula [3], an input-output exam-
ple [16,24], a type [17], etc. While the underlying algorithmic techniques may
appear different, ultimately, a majority of existing algorithms and tools imple-
ment a search through the space of programs, be it explicitly through careful
enumeration or implicitly through constraint solving.

Of course, the search space in synthesis is enormous—likely infinite. But
whenever we are encountered with a large search space, it is often the case that
large fractions of the space are redundant. Here, we ask the following question:
How can we exploit operator semantics to efficiently explore large spaces of can-
didate programs?

Motivation. Let us consider a generic learner–teacher model, where the learner
(the synthesizer) proposes programs and the teacher (the verifier) answers with
yes/no, indicating whether the learner has provided the correct program or not.
Our goal is to make the learner smarter : we want to reduce the number of
questions the learner needs to ask before arriving at the right answer.

Consider the following two string-manipulating programs:

p1 : λx. swap(lower(x)) p2 : λx. upper(x)
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where swap turns all uppercase characters to lowercase, and vice versa; lower
and upper turn all characters into lowercase or uppercase, respectively. A smart
learner would know that turning all characters into lowercase and then applying
swap is the same as simply applying upper. Therefore, the learner would only
inquire about one of the programs p1 and p2. Formally, the learner knows the
following piece of information connecting the three functions:

∀x. swap(lower(x)) = upper(x)

One could also imagine a variety of other semantic knowledge that a learner
can leverage, such as properties of specific functions (e.g., idempotence) or rela-
tional properties over combinations of functions (e.g., distributivity). Such prop-
erties can be supplied by the developer of the synthesis domain, or discovered
automatically using tools like QuickSpec [6] or Bach [37].

Equivalence Reduction. Universally quantified formulas like the one above
form equational specifications (equations, for short): they define some (but not
all) of the behaviors of the components (functions in the synthesis domain), as
well as relations between them. The equations partition the space of programs into
equivalence classes, where each equivalence class contains all equivalent programs
with respect to the equations. The learner needs to detect when two programs are
in the same equivalence class and only ask the teacher about one representative
per equivalence class. To do so, we make the observation that we can utilize the
equations to define a normal form on programs, where programs within the same
equivalence class all simplify to the same normal form. By structuring the learner
to only consider programs in normal form, we ensure that no redundant programs
are explored, potentially creating drastic reductions in the search space. We call
this process program synthesis with equivalence reduction.

By constraining specifications to be equational (as in the above example),
we can leverage standard completion algorithms, e.g., Knuth–Bendix comple-
tion [21], to construct a term-rewriting system (trs) that is confluent, terminat-
ing, and equivalent to the set of equations. Effectively, the result of completion
is a decision procedure that checks whether a program p is the representative
of its equivalence class—i.e., whether p is in normal form. The difficulty, how-
ever, is that constructing such a decision procedure is an undecidable process—
as equations are rich enough to encode a Turing machine. Nonetheless, signifi-
cant progress has been made in completion algorithms and termination proving
(e.g., [15,41,43]), which is used for completion.

Given a normalizing trs resulting from completion, we show how to incor-
porate it in existing synthesis techniques in order to prune away redundant
fragments of the search space and accelerate synthesis. We show how to incorpo-
rate equivalence reduction into salient synthesis algorithms that employ bottom-
up, dynamic-programming-style search—e.g., [2,3,28]—and top-down search—
e.g., [13,14,30,33].

Our primary technical contribution is porting foundational tech-
niques from term rewriting and theorem proving to a contemporary
automated program synthesis setting.
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Applicability. While our proposed technique is general and orthogonal to much
of the progress in program synthesis technology, it is important to note that it
is not a panacea. For instance, a number of synthesizers, e.g., the enumerative
SyGuS solver [3], prune the search space using observational equivalence with
respect to a set of input–output examples, which effectively impose a coarse
over-approximation of the true equivalence relation on programs. In such set-
tings, equivalence reduction can be beneficial when, for instance, (i) evaluating
examples is expensive, e.g., if one has to compile the program, simulate it, eval-
uate a large number of examples; or (ii) the verification procedure does not
produce counterexamples, e.g., if we are synthesizing separation logic invariants,
and one cannot prune through observational equivalence.

Our approach is beneficial in synthesis settings where observational equiva-
lence is not an option or is difficult to incorporate, e.g., in functional program
synthesis algorithms like λ2 [13], Myth [14,30], SynQuid [33], Leon [20], and
bigλ [36]. A number of these tools employ a top-down type-driven search with
which observational equivalence is not compatible. Additionally, some of these
techniques decompose the problem into multiple subproblems, e.g., a process
searching for mappers and another searching for reducers in bigλ. In such case,
different synthesis subproblems have no input context on which to employ obser-
vational equivalence. Thus, minimizing the search space is essential.

Contributions. This paper makes a number of contributions:
– Conceptual. We present program synthesis with equivalence reduction,

where a synthesis problem is augmented with domain knowledge in the
form of equational specifications.

– Algorithmic. We demonstrate how to utilize classical and modern tech-
niques from theorem proving and the theory of trss to impose a normal
form on programs. We demonstrate how to incorporate normal forms in
bottom-up and top-down synthesis techniques.

– Practical. We implement our approach in an existing synthesis tool for
functional, data-parallel programs. To fully exploit equivalence reduction,
we discuss the importance of employing efficient data structures used
by theorem provers—namely, perfect discrimination trees [27]—and fast
algorithms for normality checking.

– Empirical. We apply our tool to synthesis of reduction functions—
commutative and associative binary operators that are ubiquitous in
modern data-parallel programming. Our thorough empirical evaluation
investigates the following important aspects:

• Speedups gained with equivalence reduction.
• Overhead of applying equivalence reduction in different algorithms,

in relation to program size.
• Robustness of equivalence reduction to varying the number of equa-

tions used.
• The impact of data structures (perfect discrimination trees) on effi-

ciency.
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Fig. 1. Overview of synthesis with equivalence reduction

2 Overview and Illustration

2.1 Overview

Figure 1 provides an overview of our proposed synthesis technique. A synthe-
sis modulo equations problem is defined by three inputs. First, we are given
a synthesis domain, which is a set of components (operators) that define the
search space of programs. Second, we expect equational specifications, which are
equations over single components or combinations of components. For example,
equations might specify that an operator f is associative, or that two operators,
f and g, are inverses of each other. Finally, a synthesis problem also contains a
specification of the desired program. Below, we describe the various components
in Fig. 1 in detail.

2.2 Synthesis Modulo Equations Problem

Synthesis Domain. We will now illustrate the various parts of our approach
using a simple example. Consider the synthesis domain shown in Table 1(a). The
domain includes basic integer operations as well as a number of functions over
strings and byte arrays (utf8) that form a subset of Python 3.6’s string api.1

We describe some of the non-standard components. split(x,y) splits string x
into a list of strings using the delimiter string y, e.g.:

The function join(x,y) concatenates a list of strings x using the delimiter
string y. Functions encode/decode transform between strings and UTF-8 byte
arrays.

Equational Specifications. Even for such a simple synthesis domain, there is
a considerable amount of latent domain knowledge that we can exploit in the
synthesis process. Table 1(b) provides a partial view of the equations that we can
1 https://docs.python.org/3/library/stdtypes.html.

https://docs.python.org/3/library/stdtypes.html
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Table 1. (a) Left: synthesis domain; (b) Right: partial list of equations

utilize for this synthesis domain. The variables x, y, z are implicitly universally
quantified. Consider, for instance, the following equation:

∀x, y. join(split(x, y), y) = x

This connects split and join: splitting a string x with delimiter y, and then
joining the result using the same delimiter y, produces the string x. In other
words, split and join are inverses, assuming a fixed delimiter y.

Other equations specify, e.g., that abs (absolute value of an integer) is idem-
potent (∀x. abs(abs(x)) = abs(x)) or that the function swap is an involution—
an inverse of itself (∀x. swap(swap(x)) = x).

2.3 Completion Phase

Completion Overview. Two programs are equivalent with respect to the equa-
tions if we can use the equations to rewrite one into the other—just as a high-
school student would apply trigonometric identities to make the two sides of a
trigonometric equation identical. Given the set of equations, we would like to
be able to partition the space of programs into equivalence classes, where two
programs are in the same equivalence class if and only if they are equivalent
with respect to the equations. By partitioning the space into equivalence classes,
we can ensure that we only consider one representative program per equivalence
class. Intuitively, without equations, each program is its own equivalence class.
The more equations we add—i.e., the more domain knowledge we have—the
larger our equivalence classes are.

Given the set of equations, the completion phase generates a trs that trans-
forms any program into its normal form—the representative of its equivalence
class. It is important to note that the process of determining equality mod-
ulo equations is generally undecidable [29], since equations are rich enough to
encode transitions of a Turing machine. Completion attempts to generate a deci-
sion procedure for equality modulo equations, and as such can fail to terminate.
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Nevertheless, advances in automatic termination proving have resulted in pow-
erful completion tools (e.g., [41,43]). Note that completion is a one-time phase
for a given synthesis domain, and therefore can be employed offline, not affecting
synthesis performance.

The Term Rewriting System. The trs generated by completion is a set of
rewrite rules of the form l → r, which specify that if a (sub)program matches
the pattern l, then it can be transformed using the pattern r. For instance,
completion of the equations in our running example might result in a system that
includes the rule swap(swap(x)) → x. In other words, for any program containing
the pattern swap(swap(x)), where x is a variable indicating any completion of
the program, we can rewrite it into x.

The above rule appears like a simple syntactic transformation (orientation)
of the corresponding equation defining that swap is an involution. However, as
soon as we get to slightly more complex equations, the resulting rules can become
intricate. Consider, for instance, commutativity of addition. The completion pro-
cedure will generate an ordered rewrite system to deal with such unorientable
rules. For example, one rule that completion might generate is x + y →> y + x,
which specifies that a program of the form x + y can be rewritten into y + x
only if x + y > y + x, where > is a reduction ordering, which is a well-founded
ordering on programs. (The difficulty in completion is finding a reduction order,
just like finding a ranking function is the key for proving program termination.)

Normality Checking. Given the trs generated by the completion procedure,
checking whether a program p is in normal formal is a simple process: If any of
the rewrite rules in the trs can be applied to p, then we know that the program
is not in normal form, since it can be reduced.

2.4 Synthesis with Equivalence Reduction

Let us now discuss how a synthesis procedure might utilize the trs generated by
completion to prune the search space. For the sake of illustration, suppose our
synthesis technique constructs programs in a bottom-up fashion, by combining
small programs to generate larger programs, a strategy that is employed by a
number of recent synthesis algorithms [2,3,28].

Consider the following simple program,

where s is a string variable and count is an integer variable. The synthesizer
constructs this program by applying integer addition to the two smaller expres-
sions: and count. To check if the program is in normal form, the
synthesizer attempts to apply all the rules in the trs generated by completion.
If none of the rules apply, the program is irreducible, or in normal form. If any
rule applies, then we know that the program is not in normal form. In the latter
case, we can completely discard this program from the search space. But what if
the end solution uses this program as a subprogram? By construction of the trs,
if a program p is not in normal form, then all programs ps, where p appears in
ps as a subprogram, are also not in normal form. Intuitively, we can apply the
same rewrite rules to ps as those we can apply to p.
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Fig. 2. #normal forms vs. prog. size
(Color figure online)

By ensuring that we only construct and
maintain programs in normal form, we dras-
tically prune the search space. Figure 2
shows the number of well-typed programs
for fixed program size in our running syn-
thesis domain, augmented with two inte-
ger and two string variables. The solid
(blue) line shows the number of programs
(normal forms) for increasing size of the
abstract syntax tree (components and vari-
ables appearing in the program). When we
include the equations in Table 1(b) that
only deal with integer components, the
number of programs per size shrinks, as
shown by the dashed (green) line. Incorpo-
rating the full set of equations (over integer and string components) shrinks the
number of normal forms further, as shown by the dotted (red) line. For instance,
at 11 ast nodes, there are 21 million syntactically distinct programs, but only
about 20% of them are in normal form with respect to the full set of equations.

While the number of programs explodes as we increase the size (unless the
synthesis domain is fairly simple), utilizing the equations allows us to delay the
explosion and peer deeper into the space of programs. In Sect. 5, we experimen-
tally demonstrate the utility of equations on practical synthesis applications.

3 Synthesis Modulo Equations

We now define synthesis problems with equational specifications.

3.1 Formalizing the Synthesis Problem

Synthesis Domain. A synthesis domain D is a set of components {f1, . . . , fn},
where each component fi is a function of arity ar(fi) ∈ N. The synthesis domain
D induces a set of candidate programs PD, where each p ∈ PD is defined as
follows:

p := f f ∈ D and ar(f) = 0
| f(p1, . . . , pn) f ∈ D and ar(f) = n > 0

When clear from context, we shall use P to refer to PD. Components of arity
n model functions that take n arguments and return some value; components
of arity 0 model constants and input arguments of a program. For simplicity of
presentation, we shall restrict our discussion to first-order components and elide
types. While our approach can handle higher-order components, the equations
we define below are restricted to first-order components.
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Synthesis Problems. A synthesis problem S is a tuple (D, ϕ), where D is a
synthesis domain and ϕ is a specification. A solution to a synthesis problem S is
a program p ∈ PD such that p |= ϕ, where p |= ϕ specifies that the program p
satisfies the specification ϕ. We assume that ϕ is defined abstractly—it can be a
Hoare triple that p should satisfy, a reference implementation that p should be
equivalent to, a set of input–output examples p should satisfy, etc.

Synthesis Modulo Equations Problems. A synthesis modulo equations prob-
lem S� is a tuple (D, ϕ, E), where E defines equational specifications. Formally,
E is a set of equations, where each equation is a pair (p1, p2) ∈ PD(X) × PD(X)
and PD(X) is the set of programs induced by the domain D ∪ X, where
X = {x, y, z, . . .} is a special set of variables. An equation (p1, p2) denotes the
universally quantified formula ∀X. p1 = p2, indicating that programs p1 and p2
are semantically equivalent for any substitution of the variables X.

Example 1 (Matrix operations). Suppose that the synthesis domain is defined as
follows: D = {t,+m, i}, where t is a unary function that returns the transpose
of a matrix, +m is (infix) matrix addition, and i denotes an input argument. A
possible set E is:

t(t(x)) = x (s1)
t(x +m y) = t(x) +m t(y) (s2)

where x and y are from the set of variables X. Formula s1 specifies that transpos-
ing a matrix twice returns the same matrix; Formula s2 specifies that transpo-
sition distributes over matrix addition. Using E , we can infer that the following
programs are semantically equivalent:

t(t(i) +m t(i)) =s2 t(t(i)) +m t(t(i)) =s1 i +m i

Equivalence Reduction. Given a synthesis problem S�, the equations E induce
an equivalence relation on candidate programs in P. We shall use p1 =E p2 to
denote that two programs are equivalent modulo E (formally defined in Sect. 3.2).
We can partition the set of candidate programs P into a union of disjoint equiv-
alence classes, P = P1 � P2 � . . ., where for all p, p′ ∈ P,

p =E p′ ⇐⇒ (∃i ∈ N such that p, p′ ∈ Pi)

For each equivalence class Pi, we shall designate a single program pi ∈ Pi, called
the representative of Pi. A program p ∈ P is in normal form, denoted norm(p),
iff it is a representative of some equivalence class Pi.

Solutions of Synthesis Modulo Equations Problems. A solution to a syn-
thesis problem S� = (D, ϕ, E) is a program p ∈ P such that (1) p |= ϕ and (2)
norm(p) holds. That is, a solution to the synthesis problem is in normal form.

3.2 Term-Rewriting and Completion

We now ground our discussion in the theory of term rewriting systems and
discuss using completion to transform our equations into a procedure that detects
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if a program is in normal form. We refer to Baader and Nipkow [4] for a formal
exposition of term-rewriting systems.

Rewrite Rules. A rewrite system R is a set of rewrite rules of the form (l, r) ∈
PD(X) × PD(X), with vars(r) ⊆ vars(l). We will denote a rewrite rule (l, r) as
l → r. These rules induce a rewrite relation. We say that p rewrites to p′, written
as p →R p′, iff there exists a rule l → r ∈ R that can transform p to p′. We
illustrate rewrite rules with an example.

Example 2. Consider the following rewrite rule, f(x, x) → g(x), where f and g
are elements of D and x is a variable. Consider the program p = f(f(a, a), b),
where a and b are two arguments. We can apply the rewrite rule to rewrite p
into p′ = f(g(a), b), by rewriting the subprogram f(a, a) into g(a).

We will use →∗
R to denote the reflexive transitive closure of the rewrite rela-

tion. The symmetric closure of →∗
R, denoted ↔∗

R, forms an equivalence relation.
We shall drop the subscript R when the trs is clear from context.

Normal Forms. For a given trs R, a program p is R-irreducible iff there is
no program p′ such that p →R p′. For a program p, the set of R-irreducible
programs reachable from p via →R is its set of normal forms. We write NR(p) =
{p′ | p →∗ p′, p′ is R-irreducible} for the normal forms of p.

We say that a trs R is normalizing iff for every program p, |NR(p)| � 1.
A trs R is terminating iff the relation →R is well-founded ; that is, for every
program p, there exists n ∈ N such that there is no p′ where p →n

R p′ (i.e., no p′

reachable from p through n rewrites).

Rewrite Rules and Equations. Recall that equations are of the form
(p1, p2) ∈ PD(X) × PD(X). It is often convenient to view an equation (p1, p2)
as two rules: p1 → p2 and p2 → p1. Let R be the trs defined by equations in E ,
then for all programs p, p′ ∈ PD(X), we have p ↔∗

R p′ ⇐⇒ p =E p′.
R is not terminating by construction, and so cannot be used for determining

unique normal forms. For a terminating trs equivalent to E , we must be more
cautious with how rules are generated. The process of generating these rules is
known as a completion procedure.

Completion Procedures. For our purposes, we only need a declarative view of
completion procedures. A completion procedure provides a term rewriting system
Rc such that p ↔∗

Rc
p′ ⇐⇒ p =E p′ and for any program p, applying the rules in

Rc will always lead to a unique normal form in finitely many rewrites, no matter
what the order of application is. Formally, Rc is terminating and confluent.

Completion is generally undecidable. Knuth and Bendix are responsible for
the first completion procedure [21]; it repeatedly tries to orient equations—turn
them into rewrite rules—through syntactic transformations. Knuth–Bendix com-
pletion, even if it terminates, can still fail to produce a result, as not all equations
are orientable. Bachmair et al. neatly side-step this weakness by presenting a
completion procedure that cannot fail, called unfailing completion [5]. In order
to handle the unorientable rules, unfailing completion introduces ordered rules:
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(a) bottom-up: Bottom-up synthesis

init
C ∅

p ∈ C p |= ϕ
verify

p is a solution

f ∈ D {p1, . . . , pn} ⊆ C

p = f(p1, . . . , pn) norm(p)
expand

C C ∪ {p}

(b) top-down: Top-down synthesis

init
C { }

p ∈ C p |= ϕ
verify

p is a solution

p ∈ C norm(σp) ∈ vars(p) f ∈ D
σ = [ f( 1, . . . , n)] { i}i are fresh

expand
C C ∪ {σp}

Fig. 3. Synthesis with equivalence reduction algorithms

let > be a reduction order, and r : u →> v be an ordered rule. (A reduction
order is a well-founded order that ensures termination of the rewrite system.)
Then p1 → p2 by rule r iff p1 → p2 by the unordered rule u → v and p1 > p2.

Recall our matrix domain D = {t,+m, inp} from Example 1, and suppose we
have the equation x+my = y+mx. Knuth–Bendix completion will not be able to
orient this rule. Unfailing completion, when provided with a suitable reduction
order >, would generate the ordered rule x +m y →> y +m x. Modern comple-
tion tools, such as omkbTT [43] and Slothrop [41], are able to simultaneously
complete a set of rules and derive an appropriate reduction order.

Knuth–Bendix Order. The Knuth–Bendix order (kbo) is a standard family
of reduction orders that we will use in our implementation and evaluation. The
formal definition of kbo is not important for our exposition, and we thus relegate
it to the supplementary material. We will denote a kbo as >kbo, and note that
näıvely computing kbo following its standard definition is polynomial in the size
of the compared terms. We discuss our linear-time implementation in Sect. 5.3.

4 Synthesis Modulo Equations

We now describe how to incorporate equivalence reduction in bottom-up and top-
down synthesis techniques, and highlight the subtleties involved. An example
illustrating both scenarios is provided in the supplementary material.
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Bottom-up techniques explore the space of programs in a bottom-up,
dynamic-programming fashion, building larger programs from smaller ones.
Examples include Escher [2], the enumerative solver of SyGuS [3], and the prob-
abilistic search of Menon et al. [28].

Top-down techniques explore the space of programs in a top-down fashion,
effectively, by unrolling the grammar defining the programs. A number of recent
synthesis algorithms, particularly for functional programs, employ this method-
ology, e.g, Myth [30], Myth2 [14], Bigλ [36], λ2 [13], and SynQuid [33].

We now present abstract algorithms for these techniques and show how to
augment them with equivalence reduction.

4.1 Bottom-Up Synthesis Modulo Equations

We start by describing the bottom-up synthesis algorithm. We would like to find
a solution to the synthesis problem S� = (D, ϕ, E). We assume that completion
has resulted in a procedure norm(p) that checks whether a candidate program
p is in normal form.

Figure 3(a) shows a bottom-up synthesis algorithm, bottom-up, as a set of
guarded rules that can be applied non-deterministically. The only state main-
tained is a set C of explored programs, which is initialized to the empty set in
the initialization rule init. The algorithm terminates whenever the rule verify
applies, in which case a program satisfying the specification ϕ is found.

The rule expand creates a new program p by applying an n-ary function f
to n programs from the set C. Observe, however, that p is only considered if it
is in normal form. In other words, the algorithm maintains the invariant that all
programs in C are in normal form.

Root-Normality. The invariant that all programs in C are normal can be
used to simplify checking norm(p) during the expand step. In synthesizing p =
f(p1, . . . , pn), we already know that the subprograms p1, . . . , pn are normal: no
rule can apply to any subprogram. Therefore, if p is not normal, it must be due
to a rule applying at the root. Checking this property, called root-normality,
simplifies rule application. Instead of examining all subprogram decompositions
of p to see if the rule l → r applies, it suffices to check whether there exists a
substitution σ such that σp = σl.

4.2 Top-Down Synthesis Modulo Equations

We now describe how to perform top-down synthesis with equivalence reduction.
Top-down synthesis builds programs by unrolling the grammar of programs. We
will assume that we have a countable set of variables X = {�, �1, �2, . . .}, called
wildcards, which we use as placeholders for extending programs in PD(X).

Figure 3(b) shows the top-down synthesis algorithm, top-down, a simplified
version of the algorithm in bigλ [36]. The algorithm maintains a set C of ground
(with wildcards) and non-ground programs. C is initialized to the program �,
using init. The rule expand picks a non-ground program from C and substitutes
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one of its wildcards with a new program. The algorithm terminates when a
ground program in C satisfies the specification, as per rule verify.

Normality with Non-ground Programs. The rule expand checks whether
p is in normal form before adding it to C. However, note that top-down main-
tains non-ground programs in C, and even if a non-ground program is normal,
no ground programs derivable from it through expand need be normal. There-
fore, top-down may end up exploring subtrees of the search space that are
redundant. Deciding if a non-ground program has ground instances in normal
form is known as checking R-ground reducibility, which is decidable in exponen-
tial time [7]. Our formulation avoids exponential checks at the cost of exploring
redundant subtrees.

Soundness of both algorithms is discussed in the supplementary material.

5 Implementation and Evaluation

5.1 Implementation and Key Optimizations

We implemented our technique in an existing efficient synthesis tool, written
in OCaml, that employs bottom-up and top-down search strategies. Our tool
accepts a domain D, defined as typed OCaml functions, along with a set of
equations E over the OCaml functions. As a specification ϕ for the synthesis
problem, we utilize input–output examples (see Sect. 5.2 below).

The implementations of the bottom-up and top-down synthesis algorithms
augment the abstract algorithms in Sect. 4 with a deterministic search strategy
that utilizes types. Both algorithms explore programs by increasing size—a strat-
egy used in many existing synthesis tools, e.g., [2,13,30], as smaller programs
are considered more likely to generalize. Both algorithms are type-directed, enu-
merating only well-typed programs.

Implementing Completion and Reduction Orders. Completions of equa-
tions were found using the omkbTT tool [43]—which employs termination
provers for completion. All completions used the kbo reduction order (see the
supplementary material).

During synthesis, the reduction order can be a performance bottleneck, as
we need to compute it for every candidate program. If we were to implement
kbo directly from its formal definition (see the supplementary material), evalu-
ating s >kbo t would be quadratic in |s| + |t|. However, program transformation
techniques have given us an algorithm linear in the sizes of the terms [26]. In
our tool, we implement Löchner’s linear-time kbo computation algorithm. The
performance impacts of the reduction order will be discussed in Sect. 5.3.

Data Structures for Normalization. Every time a candidate program is
considered, we check if it is in normal form using norm(·) (recall algorithms in
Fig. 3). More precisely, given a candidate program p, norm attempts to find a
substitution σ and a rule l → r ∈ R such that σ(l) = p. This is a generalization
problem, which has been studied for years in the field of automated theorem
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proving. A näıve implementation of norm might keep a list of rules in the trs,
and match candidate programs against one rule at a time. Instead, we borrow
from the existing literature and use perfect discrimination trees [27] to represent
our list of rules. Perfect discrimination trees are used in the Waldmeister theorem
prover [18] to great effect; the tree representation lets us match multiple rules at
once, and ignore rules that are inapplicable.

A perfect discrimination tree can be thought of as a trie. Figure 4 illustrates
the construction for a set of unordered rules (ordered rules can be added anal-
ogously). First, rules are rewritten using De Bruijn-like indices [9]. Second, the
left-hand side of every rule is converted into a string through a pre-order traver-
sal. Finally, all string representations are inserted into the trie.

Fig. 4. Building the trie data structure from lhs of rules

To match a candidate program p against the trie, we first convert p to a flat-
term, which is a linked-list representation of p in pre-order with forward pointers
to jump over subterms. For example, the term +(max(x, y), 0) is converted to:

+ max x y 0

Now, matching the program against the trie is done using a simple back-
tracking algorithm, which returns a substitution (if one exists) that converts the
left-hand side of a rule in our set to the query program. See [27] for details.

Using perfect discrimination trees in our normalization procedure has several
immediate benefits, the most important of which is that unused rules do not
impact the performance, as their paths are never followed. In Sect. 5.3, we will
evaluate the performance overhead of normalization.

5.2 Synthesis Domain and Benchmarks

A primary inspiration for our work came from applying synthesis to the domain
of large-scale, data-parallel programming, where a program is composed of data-
parallel combinators, e.g., map and reduce, which allow programmers to write
distributed programs without having to worry about low-level details of distri-
bution. Popular MapReduce-like systems, e.g., Apache Spark [45], Hadoop [42],
and Dryad [44], provide such high-level interfaces.
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Fig. 5. Addition of two complex numbers of
the form a + bi, where a and b are represented
as a pair

Here, we will focus on synthe-
sizing reducers in the distributed,
data-parallel programming con-
text. Reducers are functions that
allow us to aggregate large amounts
of data by exploiting parallelism.
Our long-term goal with synthesis
of such aggregation functions from
examples is to enable average computer users to construct non-trivial data anal-
yses through examples. We will focus on evaluating our synthesis algorithms in
this context.

To synthesize deterministic data-parallel programs, tools like Bigλ ensure
that reducers form a commutative semigroup (csg) [36]. This guarantees deter-
minism in the face of data reordering (e.g., shuffles [10]). To ensure we only syn-
thesize csg reducers, we employ the dynamic analysis technique from Bigλ [36].

Synthesis Domain. Our synthesis domain comprises four primary sets of com-
ponents, each consisting of 10+ components, that focus on different types. These
types—integers, tuples, strings, and lists—are standard, and appear as the sub-
ject of many synthesis works. See full list in the supplementary material.

Equational Specifications. We manually gathered a set of 50 equations for
our synthesis domain. Each class of components has between 3 (lists) and 21
(integers) equations, with a few equations correlating functions over multiple
domains (e.g., strings and integers interacting through length). Completions of
the equations are a mix of ordered and unordered rules describing the inter-
action of the components. Some equations are described below—full list in the
supplementary material.

– Strings: In addition to the equations relating uppercase, swap, and
lowercase (as defined in Sect. 1), we include equations encoding, e.g., idem-
potence of trim, and the fact that many string operations distribute over
concatenation. For instance, we have the equation ∀x, y. len(x) + len(y) =
len(x ++ y).

– Lists: We provide equations specifying that operations distribute over list
concatenation, as in ∀x, y.sum(x) + sum(y) = sum(cat(x, y)). In addition, we
relate constructors/destructors, as in ∀x, y.head(cons(x, y)) = x.

Benchmarks. Our benchmarks were selected to model common reducers over
our domain, and typically require solutions with 10–12 ast nodes—large enough
to be a challenge for state-of-the-art synthesizers, as we see later in this Sect. 5.3.
A few examples are given below—for a full list, refer to supplementary material.

– Tuples and integers: The tuple benchmarks expose several different uses for
pairs in reducers—as an encoding for rational numbers (such as in mult-q), for
complex numbers (in add-c), and for points on the plane (as in distances).
We also treat pairs as intervals over integers (e.g., intervals synthesizes join
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in the lattice of intervals [8]). Figure 5 shows the synthesized program for one
of those benchmarks.

– Lists and integers: Lists are also an interesting target for aggregation, e.g.,
if we are aggregating values from different scientific experiments, where each
item is a list of readings from one sensor. List benchmarks compute a value
from two lists and emit the result as a singleton list. For example, ls-sum-abs
computes absolute value of the sums of two lists, and then adds the two,
returning the value as a singleton list.

Like many synthesis tools, we use input–output examples to characterize the
desired solution. Examples are used to ensure that the solution (i) matches user
expectations and (ii) forms a csg.

5.3 Experimental Evaluation

Our experiments investigate the following questions:

RQ1. Does equivalence reduction increase the efficiency of synthesis algorithms
on the domain described above?

RQ2. What is the overhead of equivalence reduction?
RQ3. How does the performance change with different numbers of equations?
RQ4. Are the data structures used in theorem provers a good fit for synthesis?

To address these questions, we developed a set of 30 synthesis benchmarks. Each
benchmark consists of: (i) a specification, in the form of input–output examples
(typically no more than 4 examples are sufficient to fully specify the solution);
(ii) a set of components from the appropriate domain; (iii) a set of ordered and
unordered rewrite rules generated from equations over the provided components.

For each algorithm, bottom-up (bu) and top-down (td), we created three
variations:

– bu and td: equivalence reduction disabled.
– bun and tdn: equivalence reduction enabled.
– buñ and tdñ: equivalence reduction without ordered rules. By dropping

ordered rules from the generated trs, we get more normal forms (less prun-
ing).

See Table 2 for the full results. For each experiment, we measure total time
taken in seconds. Grey boxes indicate the best-in-category strategy for each
benchmark—e.g., the winner of the sub-c benchmark is bun in the bottom-up
category, and tdñ in top-down. Values reported are the average across 10 runs.

RQ1: Effects of Equivalence Reduction on Performance. In 2 out of the
3 benchmarks where bu and td do not terminate, adding equivalence reduction
allows the synthesizer to find a solution in the allotted time. For bottom-up, in
all benchmarks where bu terminates in under 1 s, both bun and buñ outperform
the näıve bu, often quite dramatically: in sum-to-second, bu takes over 60 s,
while bun and buñ finish in under 2 s. For top-down, tdñ outperforms td in
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Table 2. Experimental results (Mac OS X 10.11; 4 GHz Intel Core i7; 16 GB RAM).
We impose a cpu timeout of 300 s and a memory limit of 10 GBs per benchmark. ✗

denotes a timeout.

nearly all benchmarks that take td more than 1 s (the exception being ls-sum2).
With ordered rules, the exceptions are more numerous. The most egregious is
ls-stutter, going from 50s with td to 94 s with tdn. There is still potential
for large performance gains: in sum-to-second, we decrease the time from 108 s
in td to under 12 s for tdn and under 6 s for tdñ.

Equivalence Reduction Appears to Drastically Improve the Perfor-
mance of Bottom-Up and Top-Down Synthesis. In general, the unordered
rules outperform the full ordered rules. In the bottom-up case, this performance
gap is smaller than 5s: while the ordered rules are more costly to check, bottom-
up synthesis only requires that we check them at the root of a program. In
top-down, we must check rule application at all sub-programs. This magnifies
the cost of the ordered rules and leads to significant performance differences
between tdn and tdñ.
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RQ2-a: Overhead of Equivalence Reduction. Figure 6 provides a different
look at the benchmarks in Table 2: for each benchmark where bu and td do
not terminate in less that 1 s, we compute (i) the overhead, the percentage of
time spent in the normalization procedure norm; and (ii) the reduction, the
percentage of programs visited compared to the un-normalized equivalent, bu
or td. The results are shown as density plots.

Figure 6a and c show the performance characteristics of buñ and tdñ, respec-
tively. Both have consistent overhead—40% for buñ and 25% for tdñ—although
tdñ has a more reliable reduction of over 85%, while buñ ranges from 60% to
90% reduction. Both strategies boast large reductions in the number of candidate
programs visited for reasonable overhead, although tdñ is the clear winner—buñ

dominates tdñ in Table 2, suggesting that normalization isn’t enough to fully
close the gap between bu and td. In Fig. 6b and d, we see the performance char-
acteristics of bun and tdn, respectively. Compared to Fig. 6a and c, we see a
higher overhead with less consistent normalization. Both figures have secondary
clusters of benchmarks outside the region of highest density: these contain the
benchmarks from the strings and integers domain.

This View of the Data Supports the Conclusion of Table 2 that
Unordered Rules Outperform Ordered Rules. While our implementation
of kbo is optimized, evaluating the reduction order is still a bottleneck. Our
implementation verifies candidate solutions quickly, but the benefits of high
reduction outweigh the large overhead as verification time increases.
For instance, when providing more input-output examples, the verification time
increases but not the overhead. In the ls-stutter benchmark, buñ visits
1,288,565 programs with an average overhead of 1.07 s, while bun visits 792,662
programs with an average overhead of 5.6 s. Increasing the verification cost per
program by only 0.0001 s will raise buñ’s time by 129 s, while bun’s time is only
raised by 80 s—easily a large enough gap to out-scale the overhead. Indeed, when
we instrument our tool with a synthetic delay, this behavior is visible.

Fig. 6. Equivalence reduction overhead. Benchmarks are converted into (overhead,
reduction) pairs and plotted using kernel density estimation (kde), with marginal
distributions projected on to the side. No points lie outside the bounding box (any
appearance of such is an artifact of kde).
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RQ2-b: Normalization Overhead w.r.t. Program Size. Experience holds
that normalization procedures don’t scale as candidate programs become large.
To explore how this behavior might impact the effectiveness of equivalence reduc-
tion, we instrumented our tool to ignore solutions and explore the space of pro-
grams depth-first, during which we record the average overhead of norm(·) at
all program sizes. Figure 7 presents the data for the sum-to-first benchmark,
although the figures are representative of the other benchmarks.

Fig. 7. Average performance of norm(·) w.r.t. the size of candidate programs. Normal
graph represents executions of norm(·) that return true; removed represents executions
that return false. Data is average of multiple executions of norm(·) per program size
using the sum-to-first benchmark. Time is in microseconds—note the difference in
scale between graphs.

Unsurprisingly, norm(·) Scales Linearly with Program Size. This Lin-
ear Growth Appears Quite Sustainable. Solutions with 100 ast nodes are
beyond modern-day synthesis tools, and a 3x slowdown compared to programs
of size 40 is manageable.

When we compare the performance of buñ in Fig. 7a to that of bun in Fig. 7b,
we observe an order of magnitude loss in performance. This holds as well for tdñ

and tdn in Fig. 7c and d, respectively. Checking kbo is clearly expensive, and
so the observed performance in Table 2 of bun and tdn indicate a large amount
of search-space reduction occurring.

RQ3 and RQ4: Impact of Rules and Perfect Discrimination Trees. To
determine how the number of rules impacts our tool’s performance, we completed
our entire set of 50 equations to produce 83 unordered rules that we randomly
sample subsets from (the results from ordered results are similar). To test the
effectiveness of perfect discrimination trees, we compare performance against a
näıve algorithm that maintains a list of rules it checks against one by one on
a representative benchmark: str-len. Not all rules apply to the components
used—only 47 out of 83 describe components used for str-len. We plot the
time taken for synthesis per number of randomly sampled rules, from 0 rules to
150 rules (to clearly show optimal performance). Results are presented in Fig. 8.

We see, for both benchmarks, nearly continuously decreasing graphs; the only
exceptions are with low numbers of rules sampled, where it is likely we have
mostly unusable rules. The performance levels off at 83 rules, when we are guar-
anteed to sample all applicable rules. These results are promising: completion
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Fig. 8. Performance versus number of rules sampled for d-tree and list over 2 bench-
marks. The line is the average of 10 samples per x-value, and the lighter band is a 95%
confidence interval.

is undecidable, and so it is impossible to predict the rules that will be included
from a given set of equations. However, the results in Fig. 8 indicate that—on
average—the more rules we provide the better the algorithm’s perfor-
mance, even when the rules might not be relevant. Furthermore, we see
immediately and clearly that perfect discrimination trees outperform our
list-based implementation. Performance differences are magnified in the tdñ

benchmarks, where checking normality includes checks on every subterm. On the
rest of the benchmarks, the näıve implementation results in an average of an 11%
increase in time for buñ and a 144% increase for tdñ, which strongly indicates
that perfect discrimination trees are an important implementation choice.

Gauging Benchmark Difficulty. We considered related tools as a gauge of
benchmark difficulty and a baseline for evaluation. The most similar tool—
λ2 [13]—is top-down, type-directed, uses input–output examples, and searches
for programs from smallest to largest. SynQuid (sq) [33] synthesizes Haskell pro-
grams from refinement types, using smt-driven type-directed synthesis. When
able, we encoded specifications of our benchmarks as refinement types.2

As seen in Table 2, λ2 is either not applicable (strings are not supported,
and so were ignored) or unable to solve most benchmarks. sq exhibits similar
behavior and performance. We stress that these results are meant as a indication
of the difficulty of the benchmarks, and not a head-to-head comparison between
our algorithms and those of λ2 and sq.

Threats to Validity. We identify two primary threats to the validity of our
evaluation. First, we base our evaluation on a single tool in order to evaluate vari-
ous algorithms and data structures. However, since our bottom-up and top-down
strategies are (i) instances of standard synthesis techniques and (ii) comparable
to existing implementations (as seen in Table 2), we believe our results can be
beneficial to tools like Myth, SynQuid, and λ2, modulo technical details.

2 We also consider two other works: Bigλ [36] is implemented in Python and not
competitive with our baseline, while Myth [30] expects data types to be specified
from first principles, and does not have, e.g., integers or strings by default.
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Second, the domains considered in our evaluation—integers, lists, etc.—
operate over well-behaved algebraic structures. These domains form the core
search space of many modern synthesis tools, but one could imagine domains
that do not induce many equational specifications, e.g., gui manipulation and
stateful domains.

5.4 Further Discussion

Constructing Equational Specifications. In a large number of recent works
on program synthesis, it is assumed that someone designs the synthesis domain
by providing a set of components. We additionally assume that we are given
a set of equational specifications over the components. In our evaluation, we
manually crafted a set of equations for our domain. Alternatively, this process
can be automated using tools like QuickSpec [6] and Bach [37].

Rule Preprocessing. The synthesis algorithms we consider search for a pro-
gram over a regular tree grammar of components. Therefore, one could incorpo-
rate equations by rewriting the grammar so as to only generate normal forms.
This can be done by encoding the trs as a regular tree grammar and intersecting
it with the search grammar. However, to express a trs as a regular tree gram-
mar, we require the trs to be left-linear and unordered [31]. These conditions
are too strong to be used as a general technique: most useful equations result in
non-left-linear or ordered rules.

Completion and Termination. A key component in our approach is the com-
pletion tool that takes our equations and produces a trs that can be used for
pruning the search space. In our evaluation, we found that modern completion
procedures were able to complete our equational specifications. In general, how-
ever, completion is an undecidable problem. In the supplementary material, we
discuss a mechanism to work around this fact, by terminating the completion
procedure at any point and salvaging a sub-optimal (non-confluent) trs.

6 Related Work

Program Synthesis. We are not the first to use normal forms for pruning
in synthesis. In type-directed synthesis, Osera and Zdancewic [30] and Frankle
et al. [14] restrict the space by only traversing programs in β-normal form.
Equivalence reduction can be used to augment such techniques with further
pruning, by exploiting the semantics of the abstract data types defined. Feser
et al. [13] mention that their enumeration uses a fixed set of standard rewrites,
e.g., x+0 → x, to avoid generating redundant expressions. In contrast, our work
presents a general methodology for incorporating equational systems into the
search by exploiting completion algorithms.

Techniques that search for fast programs—e.g., superoptimization [32,35]—
may not be able to directly benefit from equivalence reduction, as it may impose
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inefficient normal forms. It would be interesting to incorporate a cost model into
completion and coerce it into producing minimal-cost normal forms.

In SyGuS [3,39], the synthesizer generates a program encodable in a decid-
able first-order theory and equivalent to some logical specification. A num-
ber of solvers in this category employ a counter-example-guided synthesis loop
(cegis) [38]: they prune the search space using a set of input–output examples,
which impose a coarse over-approximation of the true equivalence relation on
programs. In the cegis setting, equivalence reduction can be beneficial when,
for instance, (i) evaluating a program to check if it satisfies the examples is
expensive, e.g., if one has to compile the program, simulate it, evaluate a large
number of examples; or (ii) the verification procedure does not produce coun-
terexamples, e.g., if we are synthesizing separation logic invariants.

A number of works sample programs from a probabilistic grammar that
imposes a probability distribution on programs [11,25,28]. It would be inter-
esting to investigate incorporating equivalence reduction in that context, for
instance, by truncating the distribution so as to only sample irreducible pro-
grams.

Recently, Wang et al. [40] introduced syngar, where abstract transition
relations are provided for each component of a synthesis domain. The synthe-
sis algorithm over-approximates equivalence classes by treating two programs
equivalent if they are equivalent in the abstract semantics. The abstraction is
refined when incorrect programs are found.

Completion and Term-Rewriting Systems. A number of classic works [12,
34] used completion procedures to transform an equational specification into a
program—a terminating rewrite system. Our setting is different: we use comple-
tion in order to prune the search space in modern inductive synthesis tools.

Kurihara and Kondo’s multi-completion [23] sidesteps the issue of picking a
reduction order by allowing completion procedures to consider a class of reduc-
tion orders simultaneously. Klein and Hirokawa’s maximal completion algorithm
[19] takes advantage of smt encodings of reduction orders (such as Zankl et al.’s
kbo encoding [46]) to reduce completion to a series of maxsmt problems in
which the parameters of the reduction order are left free. Completion tools like
omkbTT [43] and Slothrop [41], rely on external termination provers [1,22].
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