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Abstract

We study the phase stability, mechanical properties, and electronic structure of two quasi-binary
ceramic systems, TijxScxN and Ti;xYiN (0 < x < 1), using first principles methods based on density
functional theory, cluster expansion formalism, and Monte Carlo techniques. Owing to the similarity in
ionic radii and electronegativities of their respective transition metals, strong exothermic mixing of TiN
and ScN is predicted, with four ordered intermetallic phases lying on the convex hull: TiScN,,
TiScgNy, TiScoNjg, and TizScoNs. These structures form layered rocksalt-type configurations to
minimize strain energy while maximizing occupation of bonding states. The fully-detailed phase
diagram including these predicted ground states and known end members is constructed, revealing an
upper consolute temperature of 660 K. In contrast to Ti; xScxN, the mismatched properties of TiN and
YN lead to large structural distortions and positive strain energies. As a result, endothermic mixing
with significant upward bowing in the formation energy is observed at intermediate concentrations. The
phase diagram of Ti; YN shows that miscibility may only be achieved at either low/high
concentrations or at temperatures above 7225 K. TiN, ScN, and YN are found to display hardness
values of 24.2, 25.1, and 20.6 GPa respectively, in good agreement with experimental data. The
intermetallic phase Ti3Sc,Ns is predicted to exhibit an exceptionally high hardness of 27.3 Gpa. From
analysis of projected electronic density of states and Crystal Orbital Hamiltonian Populations, we
attribute enhanced hardness to strong d-p hybridization, being related to 3d e, occupation, and
decreased tendency towards shearing, being related to minimal 3d f,, occupation. These features extend
to the case of random solutions, which we model using special quasirandom structures, showing a
maximum hardness at a valence electron concentration of 8.4. Based on these findings, we suggest Ti;.

ckN alloys for implementation in hard coating applications.
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1. Introduction

During past couple of decades, transition metal (M) nitrides (TMNs) have drawn significant
attention as coating materials due to their high hardness, as well as their resistance to wear and
oxidation [1-12]. Many TMNs of the cubic binary form have been explored in the quest for hard
coating materials [13-21]. Of these, TiN remains the most widely used compound for modern
applications due to its high hardness, robust thermal stability, and low cost of synthesis [22-24, 96, 97].
However, recent works have shown that improved properties may be achieved by alloying TiN with
various other transition metals, such as Zr, Hf, V, Nb, Ta, Mo, W [25-35]. Generally, substitution
of Ti with these elements, which causes an increase in the valence electron concentration (VEC), leads
to enhanced ductility and toughness, coupled with decreased hardness. In contrast, Jhi and Thm showed
that hardness can be increased by decreasing the VEC through replacement of nitrogen with carbon in
the TiCyN;« system [3, 4]. Further work by Holleck indicated that the hardness of carbonitrides is
maximized at a VEC of 8.4 electrons per formula unit [7]. These findings suggest a pathway to
enhanced hardness in alloys through changes in bonding behavior, which may also affect
microstructural features, which may be influenced by VEC.

Recent investigation into TiN-AIN alloys, synthesized with epitaxial ScN inclusion,
have shown enhanced hardness with respect to the end members; however, the application of this sys-
tem is limited due to its low maximum operating temperature and phase decomposition [36]. Despite
their limitations in terms of stability, the properties of Ti;xAlyN support the theory that mechanical
properties of TMN alloys may be finely tuned through controlled electron valency. Ti;.xScN has also
been studied, showing thermodynamic stability throughout a much wider range of temperatures and
concentrations than Ti; AliN, though the electronic and mechanical properties remain unexplored [37,
38]. Considering the similarity in VEC between Ti;4xSciN and Ti; <AliN, as well as previous findings
regarding the carbonitrides, increased hardness is likely in the TiN-ScN system. If this prediction is
confirmed, these alloys would be highly-suitable candidates for hard coating applications.

In this work, we aim to utilize the concept of alloy hardening through controlled VEC to engi-
neer next-generation hard coating systems in the form of Ti;ScN and Ti; YN alloys for 0 < x <
1. We employ state-of-the-art computational modeling techniques based on DFT, cluster expansion
techniques, and Monte Carlo formalisms to study the phase stability, electronic structure, and mechani-
cal properties of these materials. In doing so, we identify several novel intermetallic phases exhibiting
enhanced hardness with respect to the end members. Additionally, these properties are clearly ex-
plained through analysis of projected densities of states (PDOS) and Crystal Orbital Hamiltonian Popu-
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lations (COHP), each of which elucidating the interplay between eg-p hybridization
and 72, occupation. Our analysis is also extended to the high-temperature case of cation-disordered
compounds, modeled by special quasirandom structures (SQS). The computed mechanical properties of
these alloys enrich the database of hard coating materials, which may facilitate the experimental syn-

thesis of such materials with appropriate material selection and design for hard coatings application.

2. Computational Methods

We performed first-principles computations based on density functional theory (DFT) using the
Vienna Ab initio Simulation Package (VASP) [39-42]. The projector augmented wave (PAW) [43, 44]
method was implemented with the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation
(GGA) [45, 46]. Pseudo-potentials Ti_sv, Sc_sv and Y_sv, for which semi-core s and p electrons are
treated as valence states, and the standard N pseudopotential were chosen from the VASP database
[47]. A 400 eV kinetic energy cut-off was selected for the plane-wave basis set in the expansion of
electron-wave functions. For all the structures, Monkhorst-Pack k-points meshes [48-51] were created
with k-points per reciprocal atom (KPPRA) of density 4000. Electronic minimization was done with
Gaussian smearing of width 0.1 eV by setting the convergence criterion to 107 eV/atom, whereas, ionic
relaxation was performed using conjugate-gradient algorithm with a force criterion of 0.02 eV/A. For
the end members TiN, ScN and YN, we fit the computed energies of 5 volumes, varied about the
estimated minimum, to the 3" order Birch-Murnaghan [52, 53] equation of state, allowing accurate
equilibrium energies, volumes, and bulk moduli to be obtained as described in earlier works [17-20, 54,
55].

The MIT Ab initio Phase Stability (maps) [56, 57] code from the Alloy Theoretic Automated
Toolkit (ATAT) package [56-59] was used to generate the Cluster Expansion (CEs) and energy
landscapes for Ti;xSckN and Ti; YN alloy systems. Their phase diagrams were generated from the
output of Monte Carlo simulations performed using Easy Monte Carlo Code (emc2 and phb) [58, 59]
within ATAT. Phonon vibrational contributions were neglected.

To study the properties of random solid solution for these two alloy systems at varying atomic
compositions, ranging from x = 0.125 to 0.875 in a step of 0.125, we generated special quasi-random
structures (SQSs) [60-62] using the code sqs2tdb from ATAT. Each SQS contained 64 total atoms with
32 exchangeable metal sites. The SQSs were used to compute the elastic constants using the energy-
strain method from two robust Python workflow packages; pyvasp-workflow [63] and pydass_vasp

[64], each of which implement routines from Pymatgen [65]. To obtain the three independent elastic
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constants, Cyj, Cj» and Cy4 for these random solid solutions assuming symmetry of the cubic rocksalt
system with space group Fm3m, the pymatgen elasticity package was used. Elastic constants for the
end members and predicted ground states were also calculated using the method of energy-strain, i.e.,
applying strains to the unit cell and then fitting the energies and strains to a second order polynomial as
detailed in [17-20, 54, 55]. For the intermetallic structures, which exhibit slight deviation from cubic
symmetry of the rocksalt system, the elastic constants were averaged arithmetically over the directions
as described in [35, 103], i.e., Ci1, Cx2 and Cs3 were averaged yielding C11, whereas, Cys, Css and Ceg
were averaged yielding C 4.

From these three independent elastic constants, other derived mechanical properties such as
Bulk modulus (B), Shear modulus (G), Pugh’s ratio (k), Poisson’s ratio (v), Young’s modulus (E) were

calculated using the following equations.

B = (Ci1 +2C12)/3. Eq. (1)
Gy = [(C11- C12) + 3C44]/5, Eq. (2)
Gr = [5(Cy1 - C12) Caq]/(4C4y + 3Cy1 - 3Cy13), Eq. 3)
G = (G, + Gp)/2. Eq. (4)
k=G/B Eq. (5)
v=(3-2k)/[2(3+k)] Eq. (6)
E =9G/(3+k). Eq. (7)

Gv and Gy are polycrystalline shear modulus in Voigt and Reuss approximation while G is their Hill’s
arithmetic mean. The Vickers hardness (Hy) of all structures in the Ti;«SciN and Ti; YN alloy
systems was calculated using the equation from Tian’s model [66], given by,
Hy = 0.92k" 177 G*7%® Eq. (8)
To test for the mechanical (elastic) stability of all the calculated structures, the following stability
criteria of Born [67, 68] was used,
Cii>Ci, C11+2C12>0,Cs4>0 Eq. (9)

To observe any correlation between the hardness of the SQSs and the charge transfer from metal
atoms to nitrogen atom, we utilized Bader charge analysis [69-72] with Bader’s division scheme [73,
74] using Fast Fourier Transform (FFT) grids of 200x200x200. The local density of states (LDOS) for
the predicted ground states and end member compounds were calculated with GGA using tetrahedron
method with Blochl corrections [75]. To investigate detailed bonding characteristics, Crystal Orbital

Hamiltonian Populations (COHP) were computed using the LOBSTER package [76-80].



3. Results and Discussions

3.1 Properties of end member compounds TiN, ScN, and YN

Calculated equilibrium lattice parameters, elastic constants (Cyj, Cjz, Cyg), and derived moduli
for the end member compounds are listed in Table 1. Experimental values, with which our data agrees,
are also listed in Table 1 for comparison. TiN, ScN, and YN are found to exhibit volumes (per formula
unit) of 19.2, 23.11, 19.53 in A®. These cell sizes are directly linked to ionic radii of the corresponding
transition metals: Ti*' (0.61 A), Sc* (0.75 A) and Y>* 0.9 A) [81]. The elastic constants C;; and Ci,
are inversely related to cell volume owing to the weakened stiffness of corresponding metal-nitrogen
bonds at increased lengths. In contrast, Cs4 shows no clear correlation with volume, but is instead more
closely related to underlying electronic properties, as will be discussed in the next paragraph. In
agreement with previous works [17 -20], Vickers hardness (Hy) is shown to be strongly dependent on
Cu, whereas C;; and Cj, have only minor effects. The importance of Cy4 can be attributed to its shear-
resistant nature, which is crucial to maintain high hardness within the rocksalt structure. Thus, TiN,
ScN and YN all display high Ci4 values and hence good hardness Hy (24.2, 25.1 and 20.6 in GPa
respectively), with ScN being the hardest compound among the three end members. These calculated
values of hardness agree well with available experimental values [7, 93, 95]. Regarding the bulk (B),
shear (G), and Young’s moduli (E), anticorrelation with volume is observed, i.e., materials exhibiting
greater density are more highly resistant to structural deformations. Hence, due to its relatively large
volume, YN exhibits low bulk and shear moduli, leading to a low hardness of 20.6 GPa.

The mechanical properties of these end members, specifically Css and hardness, can be
explained through analysis of projected density of states (PDOS). As shown in Figure 1, clear splitting
of the metal 7,, and e, states is observed due to the octahedral ligand field within the rocksalt structure.
For all end members, the bonding e, orbitals are completely occupied and exhibit significant ¢ overlap
with the N p orbitals as reflected by strong d-p hybridization at low energies in the PDOS. Occupation
of the 1, orbitals, which exhibit minimal bonding-antibonding splitting, is strongly dependent on the
transition metal. As TiN is nominally d', it contributes one itinerant electron to the partially-filled I2g
manifold and is therefore metallic. In contrast, the configurations of ScN and YN cause them to be
zero-gap semiconductors [98] within the framework of GGA. However, the effects of electron
correlation, arising from the presence of strongly localized 3d orbitals, are known to enhance the band
gap magnitudes to approximately 0.9 eV for each compound [99-101]. With respect to hardness, the 5,

and e, orbitals play opposing roles, i.e., occupied e, bonding orbitals are strongly resistant to shearing
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and compression whereas, occupied ty, orbitals favor shearing due to enhanced o overlap among
second-nearest neighbor metal atoms [85]. Hence, the filled e, bonding states and unfilled 75,
nonbonding states of ScN allows it to retain a shear modulus and hardness higher than that of TiN, in
which the #,, states are partially filled. However, d-p hybridization is weaker in ScN owing to the low
electronegativity of Sc. As for YN, the discussed effects of enhanced covalent interaction are
dominated by the large volume expansion as discussed previously, leading to decreased hardness.
Therefore, to achieve maximum hardness, we aim to balance highly covalent metal-nitrogen bonds, low

occupation of the #,, states, and minimal volume expansion.

3.2 Energy landscapes and phase diagrams

Table S1 of the supplemental material summarizes the number of structures calculated with
DFT, number of clusters (pairs, triplets and quadruplets) used, and cross-validation (CV) scores for the
cluster expansion of Ti;xSckN and Ti;\YxN. Computed energy landscapes of the two quasi-binary
systems, Ti;xScxN and Ti; YN, are displayed in Figure 2. We find that the mixture of TiN and YN is
strongly endothermic and significant upward-bowing (concavity) is observed in the formation energies
(AEy) of all enumerated structures, with AE; reaching values as high as 500 meV per atom. Such strong
rise in enthalpy can be attributed to the large differences in the size, ionic radius, and electronegativity
of Tiand Y [81, 82], causing structural distortions (to be discussed in section 3.4) and strain energy in
the resulting mixtures. Ti and Y display electronegativities of 1.32 and 1.11 respectively. Hence, this
difference will lead to enhanced charge transfer according to the relation for charge transferred per
atom, AZy, and the difference in electronegativity, Ag, AZy, = (1.2) (1-cy) (Ag) [83], where cy is the
concentration of Y within the alloy. See Figure S1 of the supplemental material. Greater charge
transfer, as well as larger differences in ionic radii, lead to substantial changes in the volume as
observed in Figure S2 of the supplemental material and therefore positive strain energy. As a result, the
end members are the only stable ground states of this solid solution. However, contributions of
configurational entropy to the Gibbs free energy of Ti;«YxN may be significant enough to stabilize
random solutions throughout intermediate concentrations. Due to large formation energies of the
enumerated structures, a large miscibility gap can be expected for this system.

As opposed to TijxY«N, exothermic mixing is possible in Ti;4ScyN due to the similarity
of Ti and Sc in size, ionic radius, and electronegativity. The electronegativities of Ti and Sc, 1.32 and
1.2 respectively, are only slightly different; hence, only minor changes in charge transfer and volume

occur as seen in Figures S1 and S2 of the supplemental material. This allows the effects of chemical
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bonding, controlled mostly by changes in valency, to lower the overall energy of the system [84]. As
shown in Figure 2 (a), a decrease in formation energy with a downward-bowing (convexity) nature is
observed for many enumerated structures at intermediate concentrations. We find four novel ground
states which lie on the convex hull: TiScN,, TiScgNy, TiScoNjo, and Ti3ScoNs. Their formation energies
are -17.968, -16.832, -15.264 and -17.987 in the units of meV respectively. All ground states are
thermodynamically stable with Ti3Sc,Ns being the most stable phase. As there are many enumerated
structures exhibiting negative AE;, disordering can be expected with the miscibility gaps closing at
moderate temperatures.

The calculated phase diagram of Ti; YN is displayed in Figure 3 (b). Ti; YN features a
miscibility gap far above the room temperature. For this system, the upper consolute temperature (7¢),
above which complete miscibility is achieved, is predicted to be 7225 K. Considering that melting will
almost surely occur below this temperature, we conclude that alloying in the Ti; YN system may only
be implemented at moderately low or high concentrations, for which configurational entropy dominates
to allow solubility. In such a case, Y will diffuse into the grain boundaries and enhances the oxidation
resistance and mechanical properties. Hence, the low solubility of YN provides opportunities to
engineer hard coatings with segregated concentration variations as reported by Lewis et al. [104] and
Choi et al. [105]. Detailed properties of these random solutions will be discussed in Section 3.3.

In Figure 3 (a), boundaries representing phase equilibria of the novel ground states and end
members corresponding to the Ti;ScyN system are shown. We identify five major phase regions
representing stability of unique heterogenous mixtures. Region I, representing the coexistence
of TiN and Ti3Sc,Ns, covers a significant portion of the phase diagram; this indicates high tolerance of
these phases with respect to variance in composition and temperature. More specifically, stability is
maintained throughout Sc concentrations ranging from about 0 to 50% and temperatures ranging from
0 to 500 K. Ti3ScyNs also coexists with TiScN; in region III near concentrations of 50% at moderately
low temperatures. The strong stability of TizSc,Ns can be attributed to its low formation energy with
respect to the other ground states. Coexisting at higher temperatures (500 to 660 K) and moderate Sc
concentrations (0 to 50%) is the mixture of TiN and TiScN; owing to configurational entropy
contributions of TiScN,. Within this range of concentrations, the miscibility gap disappears above 660
K and complete miscibility is achieved. At higher Sc concentrations (> 50 %), significantly different
properties are observed. TiScN, coexists with TiScgNo in region IV at Sc concentrations ranging from
50% to 90%. However, a random configuration becomes energetically favorable at a low temperature

of about 225 K. In region V, characterized by stability of TiSocN;p and ScN, miscibility occurs at an
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even lower temperature of only 65 K. As will be discussed in greater detail in section 3.3, the
low consolute temperature within this region of high Sc concentration can be attributed to the minimal
formation energy difference between the SQSs and order ground states. Our result of computed upper
consolute temperature of 660 K, where the miscibility gap completely disappears for all concentration
of Sc in the TijxScxN quasy-binary system, compares well with the previous work
of Kerdsongpanya et al. [37, 38], in which they have used first-principles calculations to predict
a typical temperature of 800 °C (1073 K) at which Sc;TixN changes its phase from ordered solid
solution to disordered solid solution at x = 0.5. Our calculation also supports the experimental result of
Gall et al. [102] in which they have demonstrated the synthesis of single-crystal rocksalt-structured Ti;.

¢ epitaxial layers by reactive magnetron sputtering at 750 °C.

3.3 Properties of TiN-ScN intermediate phases

The intermetallics TiScNj, TiScgNg, TiScoNjg, TizScoNs are predicted to crystallize in
rhombohedral, hexagonal, triclinic, and monoclinic symmetries respectively due to cation ordering.
However, the rocksalt-type structure of the parent lattice is preserved in each case. Additionally, all
structures are characterized by layering of Ti and Sc atoms, allowing strain energy to be minimized.
Table 1 lists the lattice type, volume per nitrogen atom (V/N), three independent averaged elastic
constants (€11, C12, C44) and derived moduli and constants for these intermediate phases, with detailed
structures and lattice parameters provided in Figure S3 and Table S2 of the supplemental material. As
only slight deviations from cubic symmetry occur due to cation ordering and lattice strain, a nearly-
ideal symmetrized elastic tensor corresponding to cubic symmetry remains, i.e., components within the
following groups are nearly equal: (i) Cij, Cy, and Cssz, (ii) Cus, Css, and Cgg (iii) Cip, Ci3, and Cps.
Hence, average elastic constants (Ci1, C12, Cas) are reported as discussed in the computational methods.
Our results indicate that all four intermetallics, as with the end members, satisfy the mechanical
stability criteria of Born [67, 68]. As listed in Table 1, high hardness is achieved in the intermediate
phases as compared to the end members, with TizSc,Ns being the hardest compound (27.3 GPa). A mild
anticorrelation between volume and hardness is observed for all phases. As shown in the phase diagram
of Ti;xSciN system, TizSc,Ns is thermodynamically stable throughout a wide range of temperature
from 0 K up to almost 500 K in the Sc composition ranging from 0 to 50 % as mentioned in previous
section. Therefore, we suggest TizScoNs as a highly-suitable candidate for hard coating applications

along with other three novel ground states as its competitors.



The high hardness of TizScoNs may be analyzed from a chemical and structural perspective.
First, as shown in the PDOS in Figure 4, exceptionally strong d-p hybridization is observed throughout
a wide range of energies (-7 eV to -2 eV), being directly associated with strong ¢ overlap of the metal
3d e, orbitals with the nitrogen p orbitals. Further insight into the M-N bond strength is provided by the
COHP curves in Figure 4, showing complete occupation of states with high bonding character. By
integrating the COHP curves below the Fermi level, we obtain average M-N -IpCOHP and M-M -
IpCOHP values for the end members as well as for the novel ground states and these values are listed in
Table S3 of the supplementary material. The M-N -IpCOHP value of 1.721 eV for Ti3ScoNs is
significantly higher than that of the end member compounds, e.g., 1.415 eV and 1.428 eV for TiN and
ScN respectively. Hence, greater covalent/directional character of these bonds leads to increased
resistance to shearing and compression. Secondly, both the PDOS and COHP curves indicate decreased
occupation of the metal 7, orbitals, with respect to TiN, owing to the valence electron concentration
(VEC) of Ti3Sc,Ns (8.6) being less than that of TiN (9). As discussed previously, shear modulus is
maximized when occupation of the f,, states, which favor shearing due to metal-metal bonding, is
minimized. Lastly, Ti3Sc,Ns displays the lowest volume as seen from Table 1, and therefore highest

density, of the intermetallic phases; thus, contributing further to its high hardness.

3.4 Effects of cation disorder

Formation energies of the fully-relaxed SQSs are displayed in Figure 2. For Ti; YN, these
energies closely resemble the general trend of enumerated structures within the cluster expansion;
significant upward-bowing is observed. Hence, the high consolute temperature of Ti; YN can be
attributed to the large and unfavorable difference between the formation energy of the SQSs at
intermediate concentrations in comparison to those of the end members TiN and YN. As for Ti;xSckN,
the SQS formation energies are strongly dependent on composition. At low to intermediate Sc
concentrations, the SQS energies lie about 20-30 meV/f.u. above those of the respective ground states,
leading to miscibility at temperatures above 660 K. In contrast, the SQS energies at high Sc
concentrations lie only slightly above (5-10 meV/f.u.) the convex hull, resulting in much lower
consolute temperatures ranging from 65 to 225 K.

The energetics of these systems are closely related to their underlying structures. Figure 5
displays distributions of nearest-neighbor metal-nitrogen-metal bond angles within the SQSs of Ti;.
ScxN and Ti; xYxN. As expected, cation-disordering causes numerous atomic displacements to occur

within each locally octahedral environment. For Ti; (YN, these octahedral distortions become
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unusually large at intermediate concentrations, with individual bond angles varying by as much as 20°.
Such major structural deviations, owing to the mismatch in ionic radii of Ti and Y, are known to
enhance occupation of antibonding orbitals within octahedral ligand fields [86, 87] and therefore cause
energetic instability within Ti; xYxN. As for Ti;«ScxN, for which the cation radii are more similar, only
minor distortions take place, with bond angles generally lying within the range of 86°-94°. Hence, this
causes only a relatively low rise in the formation energy for Ti;.«SciN. Interestingly, at high Sc
concentrations, some degree of short-range order begins to emerge. This effect, which is indicated by
grouping of bond angles above and below the ideal value of 90°, accounts for the lowered SQS
formation energy at high Sc concentrations as shown in the energy landscape of Ti;«ScN (Figure 2
().

Elastic constants (Cj;, Cj; and Cs4) and derived mechanical properties (bulk modulus, shear
modulus, and Vickers hardness) of the SQSs are displayed in Figure 6 as a function of Sc and Y con-
centration for Ti;.xSciN and Ti;« YN respectively, with detailed numeric values listed in Table S4 of
the Supplementary Material. All the random solid solutions satisfy the mechanical stability criteria of
Born [13, 14, 67, 68] as other compounds discussed previously. Our results show that bulk modulus,
being directly related to Cj;, and Cj,, decreases at increased Sc and Y concentrations owing
to volumetric expansion and decrease in metal-nitrogen bond length stiffness. Regarding Cu4 and the
remaining moduli, significantly different behaviors are observed in Ti;xSckN and Ti;xYxN. In the lat-
ter, substantial weakening, reflected by decreases in shear moduli and hardness, occurs at higher Y
concentrations. This result can be attributed to strong structural distortions, as well as the increase in
spatial extent of the diffuse 4d orbitals contributed from Y, which are less shear-resistant than the
strongly localized 3d orbitals of Ti. In contrast, Ti;xScyN exhibits an increase in Cy4, and therefore in
hardness, at intermediate concentrations. A maximum Vickers hardness of 27 GPa is found to occur at
62.5% atomic concentration of Sc, corresponding to a VEC of about 8.4. This result agrees with our
earlier findings showing maximum hardness in the predicted intermetallic phase
TizSc,Ns with intermediate VEC of 8.6. We also observe that the hardness of the random solution
is very slightly lower (~0.3 GPa) than that of the ordered phase due to the enhanced structural distor-
tions resulting from disorder.

Our findings regarding the correspondence of hardness with VEC indicate that the mechanical
properties within Ti;xSciN are clearly influenced by electron valency. To further support this, the
PDOS of the cation-disordered Tig375Sco625sIN configuration is displayed in Figure S4 of the supple-

mental material. In a similar manner to Ti3ScoNs, exceptionally strong d-p hybridization,
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mediated by c-overlap of the highly-localized 3d e, and 2p orbitals, is observed through a wide range
of energies (-6 eV to -2 eV) below the Fermi level. Additionally, relatively minimal occupation of the
3d t, orbitals occurs. Each of these factors contribute to the increased hardness of TijScN at
the VEC of 8.4. These results agree well with the previously studied system of TiCxN;x, which has

been shown to exhibit maximum hardness at a VEC of 8.4 [7].

4. Conclusion

In summary, we have investigated the phase stability of two quasi-binary ceramic systems, Ti;-
ScxN and Tij YN (0 < x < 1) using first principles methods based on DFT, CE, and MC simulations.
Owing to the similarity in the size, ionic radius, and electronegativity of Ti and Sc, a strong exothermic
mixing is predicted in Ti;_«ScxN, allowing the formation of four thermodynamically stable intermetallic
phases: TiScN,, TiScgNog, TiScoNo, and TizSc,Ns. These novel compounds, for which stability is char-
acterized in the phase diagram, are predicted to crystallize in layered rocksalt-type structures to mini-
mize strain energy. Of these phases, Ti3Sc,Ns uniquely maintains stability throughout a wide range of
concentrations (0 to 50% Sc) and temperatures (0 to 500 K). In contrast to Ti;xSckN, the system of Ti;.
xYxIN 1s found to exhibit strong endothermic mixing due to the large lattice mismatch between Ti and
Y. Hence, solubility is achieved only at low/high Y concentrations or at very high temperatures (>7225
K).

We have characterized the mechanical properties of Ti; «ScxN and Ti; YN, with the end mem-
bers exhibiting Vickers hardness values of 24.2, 25.1, and 20.6 GPa respectively. The predict-
ed intermetallics of the Ti;xSckN system are shown to display increased hardness with respect to the
end members TiN and ScN. Of these compounds, TizSc,Ns achieves the highest hardness of 27.3 GPa.
To compare these findings with the properties of the respective cation-disordered alloys occurring at
high temperatures, we have studied the SQSs of Ti;x«ScxN and Ti;«YxN. The latter exhibits weakened
mechanical properties due to significant volumetric expansion and decreased electron localization. In
contrast, the former shows enhanced hardness, being directly related to an increase in Cy4, at intermedi-
ate concentrations. A maximum hardness of about 27.0 GPa is achieved at a VEC of 8.4, which is in
agreement with previous findings in related systems [7]. However, a slight decrease in hardness with
respect to the ordered phases is observed due to structural distortions.

Lastly, to provide clear explanation of the trends in mechanical properties, we have studied the
underlying electronic structure of Ti;ScxN and Ti; x\YxN using PDOS and COHP curves. Each system

is characterized by strong hybridization of bonding character occurring at low energies, being related to

11



c-overlap of d e; and 2p orbitals, and at higher energies some degree of (nearly) nonbonding d
Iy, states, for which occupation may be tuned by changes in VEC. The e, states contribute to high
hardness due to their shear-resistant nature within the rocksalt structure, whereas 7, states cause
decreased hardness as they favor shearing owing to increased overlap with equivalent orbitals of the
2"_nearest neighbors through metal-metal bonding. Hence, we find that hardness is maximized at
intermediate Sc concentrations, corresponding to VEC ranging from 8.4-8.6, due to enhanced d-
p hybridization and minimized f;, occupation, shown by the PDOS and COHP curves
of Ti3ScoNs and Tip3755¢o625N. In the case of TijxYxN, maximum hardness may not be achieved, as
structural distortions and volumetric expansion dominate over electronic effects.

We conclude that the high hardness and robust thermal stability of the Ti;.xSciN alloys make
them promising candidates for improved hard coating applications. Moving forward, we suggest exper-
imental synthesis by cathodic arc deposition or through reactive magnetron sputter deposition as previ-
ously demonstrated [88, 89]. In addition to the direct practical applications of this work, the methodol-
ogy developed here could be applied to discover next-generation structural and functional alloys, with
mechanical properties finely tuned through controlled electron valency, using a purely materials-by-

design approach derived from first-principles.
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Table 1

Table 1. Lattice constant (a), volume per formula unit (V/f. u.), elastic constants (Ci1, Ci2, Cs4),
Bulk modulus (B), Shear modulus (G), Pugh’s ratio (k), Poisson’s ratio (v), Young’s modulus (E)
and Vickers hardness (Hv) of the three end member compounds and the predicted four novel
ground states. For the four intermetallic phases, volume per nitrogen atom (V/N) is provided for

comparison.
End V/f. u. C11 Clz C44 B G E HV
a(A) k N
Members (A% (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
4.25 24.2
19.19 263.1 444.7
TiN 4.245° 563.2 113.1 158.6 182.5 0.69 0.22 20.2f
19.1° 318° 590¢
4.21¢ 21¢
4.52 199.3 372.5 25.1
ScN 23.11 389.5 1042 166.8 156.7 0.79 0.19
4.501¢ 182 + 40¢ 388 £20¢ 24.4+1.34
4.52¢
YN 491 29.53 3185 76.8 122.6 157.4 121.9 0.77 0.19  290.7 20.6
V/N Cu Cn Caa B G E Hy
Intermetallics ~ Lattice Type k N
(A (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
TiScN» Rhombohedral 20.57 4834 1354 186.5 2514 1814 0.72 0.21 438.7 25.2
TiScsNo Hexagonal 22.14 440.7 1125 164.7 221.9 1645 074 0.2 395.6 243
TiScoNio Triclinic 2221 444 1043 168.6 217.5 169.1 0.78 0.19  402.8 26.1
Ti3ScaNs Monoclinic ~ 20.51 488.6 125.1 190.5 246.3 1869 0.76 0.2 447.6 27.3

#Expt. from [90]
®Expt. from [91]
“Expt. from [92]
dExpt. from [93]
*Expt. from [94]
PExpt. from [95]
£Expt. from [7]
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states respectively while blue short-dashed lines indicate nitrogen p states.
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Table S1. Numbers of structures calculated with DFT, numbers of clusters in pairs, triplets and
quadruplets, and cross-validation (CV) score of Ti;xScxN and Ti;xYxN.

Alloys Num. of Num. of clusters CV Score
structures (pair + trip + quad) (meV)
Ti;«ScN 83 154243 4.04
Ti; <Y N 91 16+12+16 19.3




Table S2. The structural details (Lattice type, Hermann-Mauguin [1] notation for Space group -
symbol and number, and Lattice parameters) of the four predicted novel ground states.

Space Group

Lattice Parameter
and Number attice Paramete

Predicted Ground States Lattice - Type

R3m (166) |a=b=c=535A,

TiScN, Rhombohedral a=p=y=3332°

a=b=546 A,
B c=772A,
P31m(162) o = B = 90 vy =

TiScgNy Hexagonal 120°

a=546 A, b=6.31
A, c=7.06A,
P1(2) o=102.91°,

B =97.39°,
y=106.83°

TiScoNig Triclinic

a=b=3.07 A,
c=12.69 A,

a = 90.00°,

B =83.02°,

v = 60.00°

Ti3ScoNs Monoclinic C2/m (12)




Table S3. Integrated Crystal Orbital Hamilton Populations (IpCOHP) for different bonding states
(Metal: Metal and Metal: Nitrogen) for the three end members and four predicted novel ground
states.

Compound M-N —-IpCOHP M-M -IpCOHP

TiN 1.415 0.137
ScN 1.428 0.012
YN 2.420 0.009
TiScN 1.408 0.043
Ti3ScoNs 1.721 0.078
TiScsNo 1.255 -0.008
TiScoNjg 1.228 -0.009




Table S4. Concentration (x), elastic constants (C;, Ci2, Ca4), Bulk modulus (B), Shear modulus
(G), Pugh’s ratio (k), Poisson’s ratio (v), Young’s modulus (E) and Vickers hardness (Hy) of the

SQS of Ti;Y,N.

SQSs Concentration Cu Ci Cu B G k y E Hy
(x) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
0 563.2 113.1 158.6 263.1 182.5 0.69 0.22 4447 24.2
0.125 517.3 136.5 161.1 263.5 172.2 0.65 0.23 424.2 21.7
0.25 497.6 129.9 159.5 252.4 168.8 0.67 0.23 414.2 22
0.375 473.7 123.7 163.3 2404 167.9 0.7 0.22 408.6 23
Ti1xScxN 0.5 472.2 110 170.4 230.7 174.6 0.76 0.2 418.3 25.9
0.625 460.6 104.3 172.5 223.1 174.7 0.78 0.19 415.7 27
0.75 439.5 104.6 168.2 216.2 167.9 0.78 0.19 400.2 26
0.875 419.3 103.8 168.8 209 164.3 0.79 0.19 390.6 25.9
1 389.5 104.2 166.8 199.3 156.7 0.79 0.19 372.5 25.1
0 563.2 113.1 158.6 263.1 182.5 0.69 0.22 4447 24.2
0.125 477.2 124.6 142.5 242.1 155.2 0.64 0.24 383.5 19.7
0.25 4334 103 133.7 213.1 145.5 0.68 0.22 355.6 20.3
0.375 295.7 107.7 121.6 170.3 109.7 0.64 0.23 270.9 15.5
Ti YN 0.5 272.5 77 121.4 142.2 111.3 0.78 0.19 264.8 19.6
0.625 278.5 79.3 123.7 145.7 1134 0.78 0.19 270.2 19.7
0.75 293.5 83.1 126 153.2 117.2 0.77 0.2 280.2 19.8
0.875 279.7 75.8 117.9 143.8 111.2 0.77 0.19 265.3 19.3
1 318.5 76.8 122.6 157.4 121.9 0.77 0.19 290.7 20.6
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