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Summary 
Understanding the molecular programs that guide differentiation during development is a major 
challenge. Here, we introduce Waddington-OT, a new approach for studying developmental time 
courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. 
We apply Waddington-OT to reconstruct the landscape of reprogramming from 315,000 scRNA-
seq profiles, collected mostly at half-day intervals across 18 days. We reveal a wider range of 
developmental programs than previously characterized. Cells gradually adopt either a terminal 
stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations 
related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer 
subpopulations. We predict transcription factors and paracrine signals that affect fates, and 
experimentally validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming 
efficiency. Our approach sheds new light on the process and outcome of reprogramming and 
provides a framework applicable to diverse temporal processes in biology. 
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Introduction 

Waddington introduced two metaphors that shaped biological thinking about cellular 
differentiation: first, trains moving along branching railroad tracks and, later, marbles rolling 
through a developmental landscape (Waddington, 1936, 1957). Studying the actual landscapes, 
fates and trajectories associated with cellular differentiation and de-differentiation — in 
development, physiological responses, and reprogramming — requires us to answer questions such 
as: What classes of cells are present at each stage? What was their origin at earlier stages? What 
are their likely fates at later stages? What regulatory programs control their dynamics?  
Approaches based on bulk analysis of cell populations are not well suited to address these 
questions, because they do not provide general solutions to two challenges: discovering cell classes 
in a population and tracing the development of each class.  
The first challenge has been largely solved by the advent of single-cell RNA-Seq (scRNA-seq) 
(Tanay and Regev, 2017). The second remains a work-in-progress. Because scRNA-seq destroys 
cells in the course of recording their profiles, one cannot follow expression the same cell and its 
direct descendants across time. While various approaches can record information about cell 
lineage, they currently provide only very limited information about a cell’s state at earlier time 
points (Kester and van Oudenaarden, 2018; McKenna et al., 2016). 
Comprehensive studies of cell trajectories thus rely heavily on computational approaches to 
connect discrete ‘snapshots’ into continuous ‘movies.’ Pioneering work to infer trajectories 
(Saelens et al., 2018) has shed light on various biological systems, including whole-organism 
development (Briggs et al., 2018; Farrell et al., 2018; Fincher et al., 2018; Plass et al., 2018; 
Wagner et al., 2018), but many important challenges remain. First, with few exceptions (Lönnberg 
et al., 2017; Marco et al., 2014; Rashid et al., 2017; Wagner et al., 2018), most methods do not 
explicitly leverage temporal information in a time course. Historically, most were designed to 
extract information about stationary processes, such as adult stem cell differentiation, in which all 
stages exist simultaneously. However, time-courses are becoming commonplace. Second, many 
methods model trajectories in terms of graph theory, which imposes strong constraints on the 
model, such as one-dimensional trajectories (“edges”) and zero-dimensional branch points 
(“nodes”). Thus, gradual divergence of fates is not captured well by these models (Briggs et al., 
2018; Farrell et al., 2018; Wagner et al., 2018). Third, few methods (Weinreb et al., 2017) account 
for cellular growth and death during development.  
Here, we describe a conceptual framework, implemented in a method called Waddington-OT, that 
aims to capture the notion that cells at any time are drawn from a probability distribution in gene-
expression space, and each cell has a distribution of both probable origins and probable fates 
(Figure 1). It uses scRNA-seq data collected across a time-course to infer how these probability 
distributions evolve over time, by using the mathematical approach of Optimal Transport (OT).  
We apply this framework to the challenge of understanding cellular reprogramming, following 
transient overexpression of a set of transcription factors (TFs) (Takahashi and Yamanaka, 2016). 
We aim to address questions such as: What classes of cells arise in reprogramming? What are the 
developmental paths that lead to reprogramming and to any alternative fates? Which cell intrinsic 
factors and cell-cell interactions drive progress along these paths? Can the information gleaned be 
used to improve the efficiency of reprogramming toward a desired destination? 
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Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) (Takahashi and 
Yamanaka, 2006) has been largely characterized to date by fate-tracing of cells based on a handful 
of markers, together with genomic profiling studies of bulk populations (Hussein et al., 2014; 
O’Malley et al., 2013; Polo et al., 2012). Some studies (Mikkelsen et al., 2008; O’Malley et al., 
2013; Parenti et al., 2016) have noted strong upregulation of several lineage-specific genes from 
unrelated lineages (e.g., neurons), but it has been unclear whether this reflects coherent 
differentiation of specific cell types or disorganized gene expression (Kim et al., 2015; Mikkelsen 
et al., 2008). A recent study (Zhao et al., 2018) profiled ~36,000 cells with scRNA-seq in chemical 
rather than TF-based reprogramming, but identified only a single bifurcation event. 
Analyzing >315,000 cells sampled densely across 18 days of reprogramming mouse embryonic 
fibroblasts (MEFs) into iPSCs, we find that reprogramming unleashes a much wider range of 
developmental programs and subprograms than previously characterized. Using Waddington-OT 
to reconstruct the landscape of differentiation trajectories and intermediate states that give rise to 
these diverse fates, we describe a gradual transition to either stroma-like cells or a mesenchymal-
to-epithelial transition (MET) state. Trajectories emerge from the MET state to iPSCs, 
extraembryonic cells and neural cells. Based on the trajectories, we infer TFs predictive of various 
fates and suggest paracrine interactions between the stromal cells and other cell types. We 
experimentally showed that two top predictions indeed enhance reprogramming efficiency.  
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Results 
Reconstruction of probabilistic trajectories by Optimal Transport 
Our goal is to learn the relationship between ancestor cells at one time point and descendant cells 
at another time point: given that a cell has a specific expression profile at one time point, where 
will its descendants likely be at a later time point and where are its likely ancestors at an earlier 
time point? We model a differentiating population of cells as a time-varying probability 
distribution (i.e., stochastic process) on a high-dimensional expression space. By sampling this 
probability distribution ℙ# at various time points t, we wish to infer how the differentiation process 
evolves over time (Figure 1A). From a large number of cells at a given time point (Figure 1B), 
we can approximate the distribution at that time point, but, because different cells are sampled 
independently at different time points, we lose the joint distribution of expression between pairs 
of time points, called temporal coupling. Absent any constraint on cellular transitions, we cannot 
infer the temporal coupling, but if we assume that cells move short distances over short time 
periods, then we can infer the temporal coupling by using the mathematical technique of optimal 
transport (Figure 1A, STAR Methods). 
Optimal transport was originally developed to redistribute earth for the purpose of building 
fortifications with minimal work (Monge, 1781) and soon applied by Napoleon in Egypt. 
Kantorovich generalized it to identify an optimal coupling of probability distributions via linear 
programming (Kantorovich, 1942), minimizing the total squared distance that earth travels, subject 
to conservation of mass constraints.  

However, the application to cells differs in one key respect: unlike earth, cells can proliferate. We 
therefore modify the classical conservation of mass constraints to accommodate cell growth and 
death (STAR Methods). Leveraging techniques from unbalanced transport (Chizat et al., 2018), 
we estimate cellular growth and death rates based on prior estimates from signatures of cellular 
proliferation and apoptosis (STAR Methods). 
Using optimal transport, we calculate couplings between consecutive time points and then infer 
couplings over longer time-intervals by composing the transport maps between every pair of 
consecutive intermediate time points. The optimal-transport calculation (i) implicitly assumes that 
a cell’s fate depends on its current position but not on its previous history (i.e., the stochastic 
process is Markov) and (ii) captures only the time-varying components of the distribution (see 
Discussion).  
We define trajectories in terms of “descendant distributions” and “ancestor distributions”. For any 
set C of cells at time ti, its “descendant distribution” at a later time ti+1 is the mass distribution over 
all cells at time ti+1 given by transporting C according to the temporal coupling (Figure 1C). 
Conversely, its “ancestor distribution” at an earlier time ti-1 is the mass distribution over all cells at 
time ti-1, obtained by “rewinding” time according to the temporal coupling (Figure 1D). Shared 
ancestry between two cell sets is revealed by convergence of the ancestor distributions (Figure 
1E). The trajectory from C is the sequence of descendant distributions at each subsequent time 
point, and similarly the trajectory to C is the sequence of ancestor distributions (Figure 1C,D). 
Thus, we use the inferred coupling to calculate a distribution over representative ancestors and 
descendants at any other time. We can then determine the expression of any gene or gene signature 
along a trajectory by computing the mean expression level weighted by the distribution over cells 
at each time point.  
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To identify TFs that regulate the trajectory, we sample cells from the joint distribution given by 
the couplings to train regulatory models. One approach uses ‘local’ information, identifying TFs 
that are enriched in cells having many vs. few descendants in a target cell population. A second 
approach builds a global regulatory model, composed of modules of TFs and modules of target 
genes, to predict expression levels of gene signatures at later time points from expression levels of 
TFs at earlier ones (Figure 1F). 
We implemented our approach in a method, Waddington-OT, for exploratory analysis of 
developmental landscapes and trajectories, including a public software package (STAR Methods). 
The method: (1) Performs optimal-transport analyses on scRNA-seq data from a time course, by 
calculating temporal couplings and using them to find ancestors, descendants and trajectories; (2) 
Infers regulatory models that drive the temporal dynamics; (3) Uses Force-Directed Layout 
Embedding (FLE) to visualize the cells in 2D (Jacomy et al., 2014; Weinreb et al., 2016; Zunder 
et al., 2015), and (4) Annotates cells by types, ancestors, descendants, trajectories, expression, and 
more. 
A dense scRNA-seq time course of iPS reprogramming 
We generated iPSCs via a secondary reprogramming system (Figure 2A). We obtained MEFs 
from a single female embryo which constitutively expresses a Dox-inducible polycistronic cassette 
carrying Pou5f1 (Oct4), Klf4, Sox2, and Myc (OKSM), and an EGFP reporter incorporated into the 
endogenous Oct4 locus (Oct4-IRES-EGFP). We plated MEFs in serum, added Dox on day 0 to 
induce the OKSM cassette (Phase-1(Dox)), withdrew Dox at day 8, and transferred cells to either 
serum-free N2B27 2i medium (Phase-2(2i)) or maintained them in serum (Phase-2(serum)). Oct4-
EGFP+ cells emerged on day 10 as a reporter for successful reprogramming to endogenous Oct4 
expression (Figure 2A, S1A). 
We performed two time-course experiments. In the first, we collected 65,781 scRNA-seq profiles 
at 10 time points across 16 days, with samples taken every 48 hours. In the second, we profiled 
259,155 cells collected at 39 time points across 18 days, with samples taken every 12 hours (every 
6 hours between days 8 and 9) (Figure 2A, STAR Methods, Table S1). The two experiments 
were consistent (STAR Methods, Figure S1B, Figure S1C). We focused on the second 
experiment (Table S1), retaining 251,203 high quality cells, sequenced at a depth enabling robust 
analysis, as shown by downsampling (STAR Methods). Comparison to bulk RNA-seq indicated 
that, with few exceptions, there is minimal sampling bias among cell types (STAR Methods). 
Overview of the developmental landscape 
We visualized the 251,203 cells in a two-dimensional FLE (Figure 2B), annotated according to 
condition (Figure 2C) sampling time (Figure 2D, Movie S1), and expression scores of gene 
signatures (Figure 2E). We identified notable features, discussed below, including sets of cells 
classified as pluripotent-, epithelial-, trophoblast-, neural-, and stromal-like by expression of 
characteristic signatures (Figure 2E,F, Table S2). The proportions of these subsets differ between 
serum and 2i conditions (Figure 2G). 
Using Waddington-OT, we identified trajectories to these cell sets (Figure 2H). The ancestors of 
stromal-like cells begin to diverge from the rest as early as day 1.5, and the distinction sharpens 
over the next several days (Figure 2I). By contrast, the ancestors of the pluripotent-, epithelial-, 
trophoblast-, and neural-like populations are indistinguishable until after day 8, when the cells 
appear to undergo a mesenchymal-to-epithelial transition (MET), as we detail below. 
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The model is predictive and robust 
Because current experimental approaches for tracing cell lineage do not describe the 
transcriptional profile of a cell set’s ancestors, we developed a computational approach to validate 
the model. Given three time-points $% < $' < $(, we used OT to predict the distribution of cells at 
time $', by interpolating the trajectory from $% to $( (STAR Methods). We compared our 
prediction to batches of observed cells at time $', they were are roughly as good as could be 
expected given batch-to-batch variation (Figure 2J and S1D-F). As expected, the quality of 
interpolation decreases over longer intervals (Figure S1D). 
Our analysis is robust to data perturbations and parameter settings. We down-sampled the cells 
and reads at each time point, perturbed our initial estimates for cellular growth and death rates, 
and perturbed the parameters for entropic regularization and unbalanced transport (Figure S1G-I, 
STAR Methods). In all cases, the interpolation results are stable across wide range. 
 
In initial stages of reprogramming, cells progress toward stromal or MET fates 
Reprogramming begins with all cells exhibiting a rapid increase in cell-cycle signatures and a 
decrease in MEF identity (Figure 2E). Over time, cells assume either Stromal or MET identities 
(Figure 3A,B,C). Cells in the Stromal Region (SR) show distinctive signatures of extracellular 
matrix (ECM) rearrangement, senescence, cell cycle inhibitors, and a secretory phenotype (SASP) 
(Figure 3D,E). By contrast, the MET Region contains cells with increased proliferation and loss 
of fibroblast identity (Figure 3D,F).  
While expressing signatures of embryonic mesenchyme and long-term cultured MEFs (Figure 
S2A), the SR does not simply reflect “MEF reversion” (Figure S2B). In particular, signatures of 
neonatal muscle and neonatal skin are enriched 20 to 30-fold in the SR. 
The proportion of stromal cells peaks on days 10.5 to 11 and then declines through day 18 (Figure 
2G). This is not due to cells exiting the SR (Figure S2C), but rather low proliferation and 
expression of an apoptosis signature. 
Among the differentially expressed genes along the two trajectories were early markers of 
successful MET, including known markers such as Fut9 (which synthesizes the glycoantigen 
SSEA-1) and novel candidates such as Shisa8, the most differentially expressed gene at day 1.5. 
It is expressed in 50% of cells most likely to transition to MET (top quartile) but only 5% of cells 
in the bottom quartile (Table S3). At later time points, both Shisa8 and Fut9 are strongly expressed 
along the trajectory toward successful reprogramming, and lowly expressed in other lineages 
(Figure S2D). Shisa8 is a little-studied mammalian-specific member of the single-transmembrane, 
adapter-like Shisa family, that play developmental roles (Pei and Grishin, 2012).  
Trajectory analysis allows us to trace how these fates are gradually established: the ancestor 
distributions of cells in the Stromal and MET Regions differ by 30% at day 3 and by 60% at day 
6 (Figure 2I). A powerful predictor of a cell’s fate is its expression level of the OKSM transgene, 
whose expression level explains ~50% of the variance in the log fate ratio between MET vs. 
stromal fate by day 2 and 75% by day 5 (Figure S2E). The divergence is gradual rather than a 
sharp branch point. 
Regulatory analysis identifies TFs associated with the two trajectories. Three TFs (Dmrtc2, Zic3, 
and Pou3f1) show higher expression along the trajectory to the MET Region (Figure 3C,F,G). 
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Zic3 is required for maintenance of pluripotency (Lim et al., 2007), Pou3f1 for self-renewal of 
spermatogonial stem cells (Wu et al., 2010), and Dmrtc2 for germ cell development (Gegenschatz-
Schmid et al., 2017). Four TFs (Id3, Nfix, Nfic, and Prrx1) show higher expression in cells with 
stromal fate (Figure 3B,E,G) which is maintained only in stromal cells following dox withdrawal. 
Nfix represses embryonic expression programs in early development, while Nfic and Prrx1 are 
associated with mesenchymal programs (Froidure et al., 2016; Messina et al., 2010). Higher 
expression of Id3 along the trajectory toward stromal cells may seem surprising, because its forced 
expression increases reprogramming efficiency (Liu et al., 2015). Id3 might cause increased 
efficiency by acting in stromal cells, which secrete factors that enhance iPSC reprogramming 
(below), or in non-stromal cells, in which it is expressed through day 8, albeit at lower levels. 
iPSCs emerge through a tight bottleneck from cells in the MET Region 
The iPSC trajectory encompasses ~40% of all cells at day 8.5, but only ~10% of cells at day 10 in 
2i conditions and only ~1% at day 11 in serum conditions. This suggests that only a small and 
distinct subset of cells transitioning out of the MET Region has the potential to become iPSCs. 
These iPSC progenitors have not yet fully acquired the pluripotency signature but are changing 
rapidly toward this fate. They reside along certain thin ‘strings’ in the FLE representation (Figure 
2H, white arrow and 4A, green). While the FLE shows what appears to be alternate paths (e.g., 
through trophoblasts), the vast majority of ancestors of iPSCs do not go through these routes by 
our model (especially in 2i), highlighting a key difference between the OT-model and 
visualization-based interpretation.  
By day 11.5-12.5, some cells begin to show a clear signature of pluripotency, including canonical 
marker genes such as Nanog, Zfp42, Dppa4, Esrrb and an elevated cell-cycle signature (Figure 
4B,C). In 2i conditions, these iPS-like cells account for 12% of cells by day 11.5 and 80-90% from 
days 15 through 18 (Figure 2G), reflecting rapid proliferation. In serum conditions, the trend is 
similar, but the process is delayed and less efficient: the pluripotency signature is found in 3.5% 
of cells by day 12.5 and peaks at just 10-15% from days 15.5 through 18.  
Recent studies reported that a small subset of cells in 2i conditions show a signature characteristic 
of the embryonic 2-cell (2C) stage (Kolodziejczyk et al., 2015). In our data ~1% of iPSCs showed 
a 2C signature in both 2i and serum conditions (Table S2, Figure S3A). 
Clustering genes by expression trend along the trajectory to iPSCs revealed groups of activated 
genes regulating pluripotency and repressed genes involved in metabolic changes and RNA 
processing (Figure S3B). We identified 24 candidate markers of fully reprogrammed cells 
(including Ooep, Fmr1nb, Lncenc1, and Tcl1) (Table S4).  
Regulatory analysis identifies a sequence of TF activity along the trajectory to iPSCs (Figure 4C). 
The earliest predictive TFs are expressed on days 9-10 (Nanog, Sox2, Mybl2, Elf3, Tgif1, Klf2, 
Etv5, Cdc5l, Klf4, Esrrb, Spic, Zfp42, Hesx1, and Msc). Of these 14 TFs, 9 have previously 
described roles in regulation of pluripotency (Nanog, Sox2, Mybl2, Klf2, Cdc5l, Klf4, Esrrb, Zfp42, 
and Hesx1) (Aaronson et al., 2016; Boheler, 2009; Buganim et al., 2012; Hu et al., 2009; Jeon et 
al., 2016; Li et al., 2015; Shi et al., 2006). A second wave is activated on days 12-14, including 
Obox6, Sohlh2, Ddit3, and Bhlhe40. Notably, Obox6 and Sohlh2 are not expressed in the 
trajectories to any other cell fate, and have roles in maintenance and survival of germ cells (Park 
et al., 2016; Rajkovic et al., 2002), but have not been previously implicated in pluripotency. 
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Finally, our trajectory analysis directly identifies the correct order of events in X-chromosome 
reactivation (Pasque et al., 2014): Xist is downregulated, then pluripotency-associated proteins are 
expressed, and finally the X-chromosome is reactivated (Figure 4D,E, STAR Methods).  
 
Development of extra-embryonic-like cells during reprogramming 
Another cell subset emerges from the MET Region, gains a strong epithelial signature by day 9, 
and expresses a trophoblast signature (Figure 5A-C) by day 10.5, peaking at day 12.5 (~20% of 
all cells) (Figure 2G and 5B).  
Previous studies have noted the expression of some trophoblast-related genes (Cacchiarelli et al., 
2015), but trophoblasts have not previously been characterized in reprogramming. We observe a 
remarkable diversity of subtypes. In normal development, the extraembryonic trophoblast 
progenitors (TPs) give rise to the chorion, which forms labyrinthine trophoblasts (LaTBs), and the 
ectoplacental cone, which forms spongiotrophoblasts (SpTBs) subtypes and trophoblast giant cells 
(TGCs), including spiral artery trophoblast giant cells (SpA-TGCs). Scoring our cells for 
signatures and markers of these cells (Figure S4A, Table S2, Figure 5C), we find TPs and SpTBs 
in 2i and serum and SpATGs in serum (Figure S4A), with cells that express LaTBs markers in a 
separate cluster (~200 cells in 2i but not serum) (Figure S4A). Another 181 cells from a single 
collection expressed a signature for primitive endoderm (XEN-like cells) (Figure S4B), as 
previously reported (Parenti et al., 2016). 
Regulatory analysis identified TFs at day 10.5 that are predictive of subsequent trophoblast fate 
(Figure 5B). Several regulate trophoblast self-renewal (Gata3, Elf5, Mycn, Mybl2) (Kidder and 
Palmer, 2010) and early trophoblast differentiation (Ovol2, Ascl2, Phlda2, Cited2) (Latos and 
Hemberger, 2016; Tunster et al., 2016; Withington et al., 2006). Others are known to be expressed 
in trophoblasts, but have no known roles in trophoblast differentiation (Rhox6, Rhox9, Batf3 and 
Elf3). 
Other TFs are predictive of specific subtype fates. Ancestors of TP-like cells expressed Gata3, 
Pparg, Rhox9, Myt1l, Hnf1b, and Prdm11. Gata3 is necessary for trophoblast progenitor 
differentiation (Ralston et al., 2010) and Pparg is necessary for trophoblast proliferation and 
differentiation of labyrinthine trophoblasts (Parast et al., 2009). Others are known to be expressed 
in placenta, but roles in differentiation has not been studied in most cases. Ancestors of SpTB- or 
LaTB-like cells expressed Gata2, Gcm1, Msx2, Hoxd13, and Nr1h4. Gata2 is necessary for 
regulation of trophoblast programs (Ma et al., 1997). Gcm1 and Msx2 have roles in LaTB 
differentiation, EMT and trophoblast invasion (Liang et al., 2016; Simmons and Cross, 2005), 
respectively. Nr1h4 is expressed in placenta. Ancestors of SpA-TGC-like cells expressed Hand1, 
Bbx, Rhox6, Rhox9, and Gata2. Hand1 is necessary for trophoblast giant cell differentiation and 
invasion (Scott et al., 2000). Bbx is a core trophoblast gene induced by Gata3 and Cdx2 (Ralston 
et al., 2010).  
RNA expression reveals genomic aberrations in trophoblast-like and stromal cells 

Trophoblasts are known to selectively amplify specific functional genomic regions by endocycles 
of replication (Hannibal and Baker, 2016), and we hypothesized that they might harbor detectable 
genomic aberrations. Similarly, because our stromal cells express stress and apoptosis genes that 
are often associated with DNA damage, we speculated they too may have aberrations. 
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We thus analyzed the scRNA-seq data to infer large copy number aberrations from coherent 
increases or decreases in gene expression, as previously done for tumor cells (Patel et al., 2014), 
but requiring no consistency across cells (STAR Methods). We found evidence for whole-
chromosome aneuploidy in 4.0% of trophoblast cells and 2.1% of stromal cells (vs. 1.1% of all 
other cells), mostly suggesting loss or gain of a single copy (Figure 5D).  
We next searched for evidence of sub-chromosomal aberrations. We found evidence for events in 
6.9% of trophoblasts and 3.2% of stromal cells (vs. 1.2% in most other cell types and 0.4% in 
neural cells) (Figure 5E). Our method has high specificity, but only 45% sensitivity (Figure S4C, 
STAR Methods).  
In trophoblasts, one region, containing 74 genes appears to be highly enriched for sub-
chromosomal aberrations (Figure 5F; 8.6% of trophoblasts); it includes Wnt7b, required for 
normal placental development (Parr et al., 2001); Prr5, which mediates Pdfgb signaling required 
for labyrinthine cell development (Ohlsson et al., 1999; Woo et al., 2007); and several ‘core 
trophoblast genes’ (Cyb5r3, Cenpm, Srebf2, Pmm1). The top 15 recurrent events also included the 
amplification of the prolactin gene cluster on chromosome 13 in 1% of cells. Thus, the trophoblast-
associated mechanisms of genomic alteration may occur in the trophoblast-like cells.  
Stromal cells frequently amplified a region containing cell cycle inhibitors Cdkn2a, Cdkn2b, and 
Cdkn2c, and frequently lost a region contained Cdk13, which promotes cell cycling, and Mapk9, 
loss of which promotes apoptosis. These genomic alterations may reflect and contribute to stromal 
cell function.  
Neural-like cells also emerge from the MET Region during reprogramming in serum  
In serum (but not 2i) conditions, neural-like cells also emerge from the MET Region, forming a 
prominent spike in the FLE (Figure 5G). Their ancestors diverge from the ancestors of 
trophoblasts and iPSCs by day 9 (Figure 2I), and undergo a rapid transition at day 12.5, losing 
epithelial signatures, gaining neural signatures, and entering the “neural spike” (Figure 5G,H). 
Cells near the base of the spike express radial glial and neural stem-cell markers, and cells further 
out along the spike express markers of neuronal differentiation (Figure S4D,E). 
In normal development, neuroepithelial cells lose their epithelial identity and turn into radial glial 
cells (RGCs), which then give rise to astrocytes, oligodendrocytes, and neurons. We used scRNA-
seq from mouse brain to derive signatures for these three mature cell types (Table S2), as well as 
three types of RGCs expressing Id3, Gdf10, or Neurog2 (Figure S4D) (STAR Methods). 
About 70% of neural-like cells express at least one of the six signatures. Cells with the three radial 
glial signatures appear first, concurrent with the loss of epithelial identity and gain of neural lineage 
identity on day 12.5 (Figure 5I). Cells expressing mature neurons and glia signatures emerge on 
day 14 and increase thereafter. Their ancestors are concentrated in the RGCs on day 13.5, 
especially Gdf10 RGCs. While the glial populations overlap substantially, the neurons form a 
distinct population with substantial substructure, including excitatory and inhibitory neurons 
(Figure 5J and S4C-E, STAR Methods).  
Regulatory analysis identified TFs predictive of neural fate, many with known roles in early 
neurogenesis (Rarb, Foxp2, Emx1, Pou3f2, Nr2f1, Myt1l, Neurod4), late neurogenesis (Scrt2, 
Nhlh2, Pou2f2), survival of neural subtypes (Onecut1, Tal2, Barhl1, Pitx2), and neural tube 
formation (Msx1, Msx3). 
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The developmental landscape highlights potential paracrine signals 
We next asked how these cell types might affect each other as they reprogram concurrently. 
Paracrine signaling plays a key role in normal development and secretion of inflammatory 
cytokines has been shown to enhance reprogramming (Mosteiro et al., 2016). In our data, 
concurrent expression of ligand-receptor pairs across cell sets reveals rich potential for paracrine 
signaling (Figure 6A,B, Figure S5A, Table S5). We defined an interaction score based on the 
product of the fractions of (1) cells of type A expressing ligand X and (2) cells of type B expressing 
the cognate receptor Y, at the same time t (Figure 6A,B and S5A,B, STAR Methods). We 
observed high interaction scores for several SASP ligands in stromal cells with receptors expressed 
in iPSCs, such as Gdf9 with Tdgf1 and Cxcl12 with Dpp4 (Figure 6C,F, S5C).  
Neural-like cells exhibit potential interactions involving Cntfr (Figure 6D,G, S5D), an Il6-family 
co-receptor whose activation plays critical roles in neural differentiation and survival (Elson et al., 
2000; Nakashima et al., 1999). On day 11.5 in serum conditions, one day before the neural-like 
cells appear, their ancestors upregulate expression of Cntfr; expression is 4.6-fold higher in 
epithelial cells that are neural ancestors versus those that are not. One day earlier stromal cells 
begin expressing three activating ligands for Cntfr (Crlf1, Lif, Clcf1). These events may help 
trigger the program of neural differentiation in a subset of epithelial cells in serum. The same 
ligand-receptor interactions are seen in 2i conditions, but the MEK inhibitor in 2i medium would 
be expected to block Cntfr signaling and subsequent neural differentiation. 
Trophoblast-like cells also show notable interaction scores, including Csf1 and Csf1r (Figure 
6E,H, S5E). In early placental development, Csf1 is expressed in maternal columnar epithelial 
cells and Csf1r is expressed in fetal trophoblasts, suggesting a functional role of this interaction in 
trophoblast development. Many other top-ranked interactions for trophoblasts are between a single 
receptor (Cxcr2) and a multi-member ligand family (Cxcl5, Cxcl1, Cxcl2, Cxcl3, and Cxcl15) 
(Figure 6E,H, S5E). Cxcr2 is necessary for trophoblast invasion in human (Wu et al., 2016). 
Experimental validation confirms that transcription factor Obox6 and cytokine GDF9 
enhance reprogramming  
We experimentally tested one of the TFs and one of the paracrine interactions that our analyses 
predicted might promote reprogramming.  
We first tested the TF Obox6, which was the TF most strongly correlated with reprogramming 
success among those not previously implicated in the process (Figure 7A, S6A). Obox6 is a 
homeobox gene of unknown function that is preferentially expressed in the oocyte, zygote, early 
embryos and embryonic stem cells (Rajkovic et al., 2002). While it is expressed in a small fraction 
of cells (<1%) before day 12, almost all cells expressing it (94%) are biased toward the MET 
Region (Figure 7A, S6A). 
To test whether Obox6 can boost reprogramming efficiency, we expressed it together with OKSM 
during days 0-8. We infected our secondary MEFs with a Dox-inducible lentivirus carrying either 
Obox6, the positive control Zfp42 (Rajkovic et al., 2002; Shi et al., 2006), or no insert as a negative 
control. Both Obox6 and Zpf42 increased reprogramming efficiency of secondary MEFs by ~2-
fold in 2i and even more so in serum (Figure 7B,C, and Figure S6B-F). Assays in primary MEFs 
showed similar increases (Figure S6E,F). Our results support a potential role for Obox6 in 
reprogramming.  
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We next tested the cytokine GDF9, the ligand with the highest paracrine interaction score for the 
iPSC lineage, which is predicted to interact with the receptor Tdgf1 (Figure 6C,F). Tdgf1 is known 
to help maintain the pluripotent state (Klauzinska et al., 2014), but a role in the establishment of 
pluripotency has not been reported, and efforts to increase reprogramming efficiency through 
addition of GDF9 at the initial stages of reprogramming (days 0-2) were unsuccessful (Gonzalez-
Muñoz et al. 2014). 
In our reprogramming landscape, Gdf9 and Tdgf1 are expressed in the ancestors of iPSCs and 
stromal cells, respectively, beginning at day 8. The strength of the predicted interaction increases 
until day 14 (Figure S5C). We tested whether addition of recombinant mouse GDF9 enhances 
reprogramming in serum by adding the cytokine daily, starting at day 8 (STAR Methods). We 
measured the abundance of cell types at day 15 (STAR Methods). 
In multiple independent experiments, GDF9 substantially increased reprogramming efficiency in 
a dose-dependent manner, with the highest dosage producing an average increase of 4-to-5-fold as 
assayed by (i) counting number of Oct4-GFP positive colonies, (ii) bulk RNA-seq and (iii) scRNA-
seq (Figure 7D-F and S6G-I). These results support a role for Gdf9 in reprogramming.  
Interestingly, GDF9 also increased the fraction of cells with neural fates (Figure 7F, S6I), possibly 
in a competitive way with iPSCs. While Gdf9 has no reported function in neurogenesis, the Tgfb 
superfamily has been reported to play important roles in various neural lineages specification and 
maintenance (Aigner and Bogdahn, 2008); this observation warrants further attention. 
 
Discussion 
Understanding the trajectories of cellular differentiation is essential for studying development and 
for regenerative medicine. Here, we describe a new analytical approach to reconstructing 
trajectories, and its application to a dataset of 315,000 cells from dense time-courses of 
reprogramming fibroblasts into iPSCs, shedding new light on this problem, and providing a 
template for studies in other systems. 
An optimal transport framework to model cell differentiation 
Waddington-OT describes transitions between time points in terms of stochastic couplings, 
derived from optimal transport. This yields a natural concept of trajectories in terms of ancestor 
and descendant distributions, without strict structural constraints on the nature of these processes. 
This allows us to recover shared vs. distinct ancestry between two cell sets, and to infer TFs 
involved in activating expression programs (Figure 1). Moreover, it can be applied to even a single 
pair of time points. We validated Waddington-OT by its ability to accurately infer cellular 
populations at held-out time points and its results are robust across wide variation in parameters.  
To set Waddington-OT in context, we comprehensively reviewed 62 other approaches (Table S6), 
which fall into three classes: category 1 (33 tools) is not applicable to developmental time-courses 
with scRNA-seq; category 2 (25 tools) is applicable but does not incorporate time information; 
and category 3 (4 tools) leverages time information, but does not model cell growth rates over 
time. When we applied several of the most widely used methods from categories 2 and 3 on our 
data, the results revealed key limitations (STAR Methods, Figure S7). Category 2 methods 
produced trajectories that are completely inconsistent with the time course—making huge leaps 
across time points and, in some cases, going backward in time. For example, Monocle2 produced 
trajectories in which Day 0 cells give rise to Day 18 cells, which then give rise to Day 8 cells. 
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Similar problems are evident in a Monocle2 analysis in a recent analysis of chemical 
reprogramming (Zhao et al., 2018), in which the program places late-stage cells at the beginning 
of the trajectory. Category 3 methods encounter a distinct challenge, as they do not account for the 
higher growth of iPSCs and consequently infer that many apoptotic stromal cells must transition 
to iPSCs. In addition, two of these Category 3 tools produced trajectories to incoherent final 
destinations, consisting of mixtures of very different cell types.  
Waddington-OT is the only approach that incorporates temporal information and models cell 
growth over time (which we can consider a new Category 4). It is the only approach that produced 
reasonable trajectories on our data, suggesting that these features are critical for robust analysis of 
developmental processes. Moreover, it brings the powerful framework of optimal transport to 
biology and is the first application of OT to estimate the temporal coupling of a stochastic 
processes in any field. 
Optimal-transport analysis is only intended to capture the time-varying components of a 
distribution ℙ#. For systems in dynamic equilibrium, ℙ# does not change over time and optimal 
transport would infer that each cell is stationary. (An example would be cells that are 
asynchronously undergoing cell division. Although each cell is changing, the overall distribution 
ℙ# is constant across time.) Our focus is on out-of-equilibrium systems, where the distribution ℙ# 
undergoes major changes over time. 
Tracking cell differentiation trajectories and fates in a diverse reprogramming landscape 
Although the reprogramming of fibroblasts to iPSCs has been intensively studied, our work 
provides new insights that could only be obtained from large-scale profiling of single cells across 
dense time courses and appropriate analysis. 
We uncovered remarkable diversity in the reprogramming landscape, with large classes of cells 
having distinct biological programs related to distinct states and tissues. Earlier studies based on 
bulk RNA analysis have detected expression of individual lineage-specific genes, but could not 
identify coherent cell types (Mikkelsen et al., 2008; O’Malley et al., 2013; Parenti et al., 2016). 
Further work will be need to characterize the cells’ full identity and relation to natural types.  
This extensive diversity raises several key questions, including: (1) What are the differentiation 
and fate trajectories that span these cell subsets? What are their ancestors and when do they 
diverge? (2) What cell intrinsic regulatory mechanisms may drive each fate, especially TFs? (3) 
How do cells of different types affect each other’s development through paracrine signaling?  
Our trajectory and regulatory analyses provide a systematic view of differentiation trajectories 
(Figure 7G). Cells gradually progress towards two initial fates: MET or Stromal (Figure 7G, blue 
and purple). There is an explosion of diversity following dox withdrawal at day 8: the MET state 
gives rise to iPSC-, trophoblast-, neural-, and epithelial-like cells. The ancestors of iPSCs pass 
through a narrow bottleneck before proliferating into iPSCs. Other cells in the MET region first 
assume an epithelial-like state which gives rise to trophoblasts and neural cells (in serum). 
By characterizing events that occur along the trajectory toward any cell class, we identify TFs that 
regulate cell fates (Figure 7G). Along each trajectory, we rediscover known TFs known to play a 
role in the differentiation or reprogramming process, validating our approach, but also identify 
several new TFs not previously implicated in the process. We demonstrate the role of Obox6 in 
increasing reprogramming efficiency.  
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Finally, we identify a rich potential for paracrine interactions with stromal cells which may play 
key roles in the initial differentiation and maintenance of iPS-, neural- and trophoblast-like cells. 
Of these interactions, we experimentally validated that GDF9 increases reprogramming efficiency.  
Future prospects for models and studies of differentiation and development 
Our method can be extended to capture additional features of differentiation. First, the framework 
currently assumes that a cell’s trajectory depends only on its current gene-expression levels. One 
could incorporate other types of information like epigenomic state. Second, our framework for 
learning regulatory models assumes that trajectories are cell autonomous, but might be extended 
to incorporate intercellular interactions, such paracrine signaling, by using optimal transport for 
interacting particles (Ambrosio et al., 2008; Santambrogio, 2015) (STAR Methods). Third, 
various methods exist for obtaining lineage information about cells, based on the introduction of 
barcodes at discrete time points or continuously (Frieda et al., 2017; McKenna et al., 2016). 
Barcodes can be used to recognize cells that descend from a recent common ancestor cell, but do 
not currently directly reveal the full gene-expression state of the ancestral cell. However, they 
might be incorporated into our optimal-transport framework to better estimate temporal couplings. 
Finally, our method can be refined to analyze all time points simultaneously, rather than just 
consecutive pairs; this can be particularly useful for situations where the number of cells at 
different time points varies significantly. 
In summary, our findings indicate that the process of reprogramming fibroblasts to iPSCs 
unleashes a much wider range of developmental programs and subprograms than previously 
characterized. In Waddington’s metaphor, the reprogrammed cells roll through a rich landscape of 
valleys. Ultimately, the analysis of natural and artificial trajectories has much to teach us about the 
genetic circuits that control organismal development and regulate cellular homeostasis. 
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Modeling developmental processes with optimal transport.  
 (A) A temporal progression of a time-varying distribution ℙ# (left) can be sampled to obtain finite 
empirical distributions of cells ℙ)#*  at various time points $%, $', $( (right). Over short time scales, 
the unknown true coupling, ,#-,#., is assumed to be close to the optimal transport coupling, /#-,#., 
which can be approximated by /0#-,#.  computed from the empirical distributions ℙ)#-and ℙ)#.. (B) 
Single-cell profiles (individual dots) are colored by the time of collection. (C) Descendants of a 
cell set (black) at later times. (D) Ancestors at earlier times. (E) Shared ancestry of two cell sets 
(black). Ancestors of each population shown in red and blue, shared ancestors in purple. (F) 
Expression of gene signatures (left; green, high expression; grey, low expression) can be predicted 
from earlier expression of transcription factors (middle; black, high expression; grey, low 
expression) in a gene regulatory model by analyzing trends along ancestor trajectories (right).  
Figure 2. 
A single cell RNA-Seq time course of iPSC reprogramming. 
(A) Reprogramming of secondary (2o) MEFs from E13.5 embryos. Each dot represents a collection 
time-point. (B-F) FLE visualization of scRNA-seq profiles (individual dots). (B) Intensity 
indicates density of cells in the 2D FLE. (C) Cells colored by condition, with Phase-1 (dox) in 
black and Phase 2 in blue (serum) and red (2i). (D) Cells colored by time point, with Phase-2 points 
from only either 2i condition (left) or serum condition (right). Grey points represent Phase-2 cells 
from the other condition. (E) Patterns of gene signature scores on the FLE. (F) Cell set 
membership. (G) Relative abundance (y-axis) of each cell set (colored lines) plotted over time in 
2i (top) and serum (bottom). (H) Schematic representation of trajectories. (I) Ancestor divergence 
for pairs of trajectories. Divergence (y-axis) is quantified as 0.5 times the total variation distance 
between ancestor distributions. (J) Quality of interpolation in serum for OT (red), null models with 
growth (blue) and without growth (teal). Shaded regions indicate 1 standard deviation. Note that 
OT is almost as accurate as the batch-to-batch baseline (green). See also Figure S1, S7, Table S1, 
S2, S6 and Movie S1. 
Figure 3 
In initial stages of reprogramming, cells progress toward stromal or MET fates 
(A) The log-likelihood of obtaining stromal vs. MET fate shows a gradual emergence of fates from 
day 0 through 8. (B) Ancestors of day 18 stromal cells in serum. Color shows day, intensity shows 
probability. (C) Ancestors of day 8 MET cells have a distinct trajectory. (D) Activity of gene 
signatures and individual gene expression (log(TPM+1)) that are associated with stromal activity 
and senescence. (E) and (F) Gene signature trends along indicated trajectories. (G) TF expression 
trends along stromal and MET trajectories. See also Figure S2 and Table S2, S3. 
Figure 4 
iPSCs emerge from cells in the MET Region 
(A) Ancestor trajectory of day 18 iPSCs in 2i (left) and serum (right) (color shows day, intensity 
shows probability). (B) Expression (log(TPM+1)) of pluripotency marker genes. (C) Expression 
trends along ancestor trajectory in serum for gene signatures (top) and TFs (bottom). (D) X-
reactivation signature (mean z-score) and Xist expression (log(TPM + 1)) on the FLE. (E) Trends 
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in X-inactivation, X-reactivation and pluripotency (Table S4) along the iPSC trajectory in 2i. Each 
curve has a different y-axis, indicated by color. See also Figure S3 and Table S2, S4. 
Figure 5 
Extra-embryonic and neural-like cells emerge during reprogramming  
 (A) Ancestor trajectory of day 18 trophoblasts in 2i (left) and serum (right) (color shows day, 
intensity shows probability). (B) Expression trends along trophoblast trajectory in serum for gene 
signatures (left) and individual TFs (right). (C) An embedding of trophoblasts, colored by 
signature scores (-log10( FDR q-value)) of TPs, SpA-TGCs, and SpTBs, or by expression of LaTB 
marker gene Gcm1 (log(TPM + 1)). (D) Average expression of housekeeping genes on 
chromosomes in single cells (dots) with evidence of genomic amplification (left) or loss (right), 
relative to all cells without evidence of aberrations (y-axis). (E) Cells are colored by statistical 
significance (-log10(q-value)) of sub-chromosomal aberrations. (F) Average expression of genes 
on chromosome 15 in trophoblast-like cells with evidence of a recurrent sub-chromosomal 
amplification (y-axis, fold change (FC) in expression relative to other cells). (G) Ancestors of day 
18 cells in the neural region. (H) Expression trends along the neural trajectory for gene signatures 
(left) and individual TFs (right). (I) Abundance of neural subtypes. (J) A Neural FLE colored by 
significance of signature scores (-log10(FDR q-value)) and expression of markers (log(TPM + 1)). 
See also Figure S4 and Table S2. 
Figure 6 
Paracrine signaling 
(A) High paracrine signaling interactions occur between groups of cells with high expression of 
ligand in one group and cognate receptor in the other group. (B) Net paracrine signaling interaction 
scores in serum. Each dot shows the net score for a pair of cell clusters (Figure S5A). (C-E) 
Potential ligand-receptor pairs between ancestors of stromal cells and iPSCs (C), neural-like cells 
(D), and trophoblasts (E). (F-H) Expression level (log(TPM+1)) of ligands (above) and receptors 
(below) for top interacting pairs between stromal cells and iPSCs (F), neural-like cells (G), and 
trophoblasts (H). See also Figure S5 and Table S5. 
Figure 7 
Obox6 and GDF9 enhance reprogramming 
(A) Log-likelihood ratio of obtaining iPSC vs non-iPSC fate on each day (x-axis) in 2i. Obox6+ 
cells in red. (B) Bright field and fluorescence images of iPSC colonies generated in 2i by 
overexpression of OKSM with either Zfp42 or Obox6 (or negative control). (C) Percentage of 
Oct4-EGFP+ colonies in 2i on day 16, for one of five experiments (Figure S6D). Error bars show 
standard deviation of three biological replicates. (D-F) Effect of varying concentration of GDF9 
(red) vs control (grey) on (D) Oct4-EGFP+ colonies (error bars show standard deviation); (E) the 
strength of iPSC signature score in bulk RNA-Seq; and (F) cellular composition assayed by 
scRNA-seq. (G) Schematic of the reprogramming landscape in serum. Color indicates cell-set 
membership. Color of TFs indicates which cell set they regulate. Color of cytokine indicates the 
cell class to which they signal. See also Figure S6.	  
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I. Modeling developmental processes with optimal transport

We developed a method to model development based on Optimal Transport. Section 1 reviews the con-
cept of gene expression space and introduces our probabilistic framework for time series of expression
profiles. Section 2 introduces our key modeling assumption to infer temporal couplings over short time
scales. Section 3 shows how we can compute an optimal coupling between adjacent time points by solv-
ing a convex optimization problem, and how we can leverage an assumption of Markovity to compose
adjacent time points and estimate temporal couplings over longer intervals. Section 4 describes how to
interpret transport maps. Specifically, Section 4.1 shows how to compute ancestors and descendants of
cells, and Section 4.3 shows how we learn gene regulatory networks to summarize the trajectories.

1. Developmental processes in gene expression space

A collection of mRNA levels for a single cell is called an expression profile and is often represented
mathematically by a vector in gene expression space. This is a vector space that has dimension equal to
the number of genes, with the value of the ith coordinate of an expression profile vector representing the
number of copies of mRNA for the ith gene. Note that real cells only occupy an integer lattice in gene
expression space (because the number of copies of mRNA is an integer), but we pretend that cells can
move continuously through a real-valued G dimensional vector space.

As an individual cell changes the genes it expresses over time, it moves in gene expression space and
describes a trajectory. As a population of cells develops and grows, a distribution on gene expression
space evolves over time. When a single cell from such a population is measured with single cell RNA-
seq, we obtain a noisy estimate of the number of molecules of mRNA for each gene. We represent
the measured expression profile of this single cell as a sample from a probability distribution on gene
expression space. This sampling captures both (a) the randomness in the measurement process (due to
subsampling reads, technical issues, etc.) and (b) the random selection of a cell from the population. We
treat this probability distribution as nonparametric in the sense that it is not specified by any finite list
of parameters.

In the remainder of this section we introduce a precise mathematical notion for a developmental

process as a special type of stochastic process (with a modified notion of coupling to accommodate
cellular growth and death). Our primary goal is to infer the ancestors and descendants of subpopulations
evolving according to an unknown developmental process. This information is encoded in the temporal
coupling of the process, which is lost because we kill the cells when we perform scRNA-Seq. We claim
it is possible to recover the temporal coupling over short time scales provided that cells don’t change too
much. We show in the remainder of this appendix how to do this with optimal transport.

1.1. A mathematical model of developmental processes

We begin by formally defining a precise notion of the developmental trajectory of an individual cell and
its descendants. Intuitively, it is a continuous path in gene expression space that bifurcates with every
cell division. Formally, we define it as follows:

Definition 1 (single-cell developmental trajectory). Consider a cell x(0) 2 RG
. Let k(t) � 0 specify the

number of descendants at time t, where k(0) = 1. A single-cell developmental trajectory is a continuous
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function

x : [0, T ) ! RG ⇥ RG ⇥ . . .⇥ RG
| {z }

k(t) times

.

This means that x(t) is a k(t)-tuple of cells, each represented by a vector in RG
:

x(t) =
�
x1(t), . . . , xk(t)(t)

�
.

We refer to the cells x1(t), . . . , xk(t)(t) as the descendants of x(0).

Note that we cannot directly measure the temporal dynamics of an individual cell because scRNA-
Seq is a destructive measurement process: scRNA-Seq lyses cells so it is only possible to measure the
expression profile of a cell at a single point in time. As a result, it is not possible to directly measure
the descendants of that cell, and the full trajectory is unobservable. However, one can hope to learn
something about the probable trajectories of individual cells by measuring snapshots from an evolving
population.

Published methods typically represent the aggregate trajectory of a population of cells by means of a
graph structure. While this recapitulates the branching path traveled by the descendants of an individual
cell, it may over-simplify the stochastic nature of developmental processes. Individual cells have the
potential to travel through different paths, but any given cell travels one and only one such path. Our
goal is to assign a likelihood to the set of possible paths, which in general are not finite and therefore
cannot be a represented by a graph.

We define a developmental process to be a time-varying probability distribution on gene expression
space. One simple example of a distribution of cells is that we can represent a set of cells x1, . . . , xn by
the distribution

P =
1

n

nX

i=1

�xi ,

where �x denote the Dirac delta (a distribution placing unit mass on x). Similarly, we can represent a set
of single-cell trajectories x1(t), . . . , xn(t) with a distribution over trajectories. This is a special case of
a developmental process, which we define as follows:

Definition 2 (developmental process). A developmental process Pt is a time-varying distribution (i.e.

stochastic process) on gene expression space.

Recall that a stochastic process is determined by its temporal dependence structure. This is specified
by the coupling (i.e. joint distribution) between random variables at different time points. Given that a
cell has a particular expression profile y at time t2, where did it come from at time t1? This is precisely
the information lost by not tracking individual cells over time.

Definition 3 (temporal coupling). Let Pt be a developmental process and consider two time points s < t.
Let Xt ⇠ Pt denote the expression profile of a random cell at time t and let Xs denote the expression

profile of its cell of origin at time s.
The temporal coupling �s,t is defined as the law of the joint distribution:

�s,t = L(Xs, Xt).

Equivalently, Z

x2A

Z

y2B
�s,t(x, y)dxdy = Pr{Xs 2 A,Xt 2 B}

for any sets A,B ⇢ RG
.
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The temporal coupling �s,t is not technically a coupling of Ps and Pt in the standard sense because it
does not necessarily have marginals Ps and Pt:

Z
�s,t(x, y)dx = Pt(y), but

Z
�s,t(x, y)dy 6= Ps(x).

Biologically, this is the case when cells grow at different rates. Then proliferative cells from the earlier
time point will be over-represented when we look for the origin of cells at the later time point. In the
following definition, we introduce a relative growth rate function to describe the relationship between
the expression profile of a cell and the average number of living descendants it gives rise to after certain
amount of time.

Definition 4. A relative growth rate function associated with a temporal coupling is a function g(x)
satisfying Z

�s,t(x, y)dy = Ps(x)
g(x)t�s

R
g(x)t�sdPs(x)

.

The integral on the left-hand side represents the amount of mass coming out of x and going to any y.
The term P(x) on the right hand side accounts for the abundance of cells with expression profile x, and
the function g(x) represents the exponential increase in mass per unit time.

Having defined the notion of developmental processes and temporal couplings, we now turn to esti-
mating these from data.

2. The optimal transport principle for developmental processes

ScRNA-Seq allows us to sample cells from a developmental process at various time points, but it does
not give any information about the coupling between successive time points. Without making any as-
sumptions, it is impossible to recover the temporal coupling even given infinite data in the form of the
full distributions Ps and Pt. However, we claim that it is reasonable to assume that cells don’t change
expression by large amounts over short time scales. This assumption allows us to estimate the coupling
and infer which cells go where.

We begin with a simple one-dimensional example to build intuition.

Example 1. Let X0 ⇠ N (0,�2) and X1 ⇠ N (µ,�2) be one dimensional Gaussian variables repre-

senting the location of a particle at time 0 and at time 1. If we believe that the particle cannot move very
far over a short amount of time, then how can we infer the coupling � specifying the joint distribution

of the pair (X0, X1)? One simple heuristic to estimate �̂ is to minimize the squared distance that the

particle moves from time 0 to time 1:

�̂  argmin
⇡

E⇡kX0 �X1k2.

We minimize over all couplings ⇡ with marginals N (0,�2) and N (µ,�2). One can check that the

optimal joint distribution is a two dimensional Gaussian with the following dependence structure:

X1 = X0 + µ.

This heuristic to couple marginals is called optimal transport (OT) (Villani, 2008). If c(x, y) denotes
the cost of transporting a unit mass from x to y, and the amount we transfer from x to y is ⇡(x, y), then
the total cost of transporting mass according to such a transport plan ⇡ is given by

ZZ
c(x, y)⇡(x, y)dxdy.
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In this paper we focus exclusively on the cost defined by the squared-Euclidean distance

c(x, y) = kx� yk2,

on an appropriate input space (see the section Waddington-OT: Concepts and Implementation for
details). We make this choice to focus on this cost function because of the many well-known attractive
theoretical properties it enjoys over other cost functions (Villani, 2008).

The optimal transport plan minimizes the expected cost subject to marginal constraints:

⇡(P,Q) = minimize
⇡

ZZ
c(x, y)⇡(x, y)dxdy

subject to
Z

⇡(x, ·)dx = Q
Z

⇡(·, y)dy = P.

(1)

Note that this is a linear program in the variable ⇡ because the objective and constraints are both linear
in ⇡. The optimal objective value defines the transport distance between P and Q (it is also called the
Earthmover’s distance or Wasserstein distance). Unlike many other ways to compare distributions (such
as KL-divergence or total variation), optimal transport takes the geometry of the underlying space into
account. For example, the KL-Divergence is infinite for any two distributions with disjoint support, but
the transport distance depends on the separation of the support. For a comprehensive treatment of the
rich mathematical theory of optimal transport, we refer the reader to (Villani, 2008).

2.1. The optimal transport principle

We propose to use optimal transport to estimate the temporal coupling of a developmental process. We
make two modifications to classical optimal transport to adapt it to our biological setting.

1. Classical optimal transport has conservation of mass built into the constraints (1). We account for
growth by rescaling the distribution Pt before applying OT.

2. The coupling identified by classical optimal transport is purely deterministic in the sense that
each point is transported to a single point1. However, for cells whose fates are not completely
determined, the true coupling should have a degree of entropy to it. We therefore add a term to
the objective to promote entropy in the transport coupling.

Injecting a small amount of entropy also makes sense even for a population of cells with truly
deterministic descendant distribution. When we sample finitely many cells at time t2, the true
descendants of any given t1 cell are not captured. Therefore entropy in the transport map can be
used to represent our statistical uncertainty in the inferred descendant distribution.

In order to state the optimal transport principle, we first introduce some notation. Let Pt denote
a developmental process with temporal coupling �s,t and with relative growth function g(x). Let Qs

denote the distribution obtained by rescaling Ps by the relative growth rate:

Qs(x) = Ps(x)
gt�s(x)R

gt�s(z)dPs(z)
.

1There may be non-deterministic plans achieving the same cost (e.g. if all points are equidistant), but there is always an
optimal plan that is deterministic.
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Finally, let ⇡s,t(✏) denote the entropy-regularized optimal transport coupling of Qs and Pt, defined as
the solution to the following optimization problem:

⇡s,t(✏) = minimize
⇡

ZZ
c(x, y)⇡(x, y)dxdy � ✏

ZZ
⇡(x, y) log ⇡(x, y)dxdy

subject to
Z

⇡(x, ·)dx = Qs

Z
⇡(·, y)dy = Pt.

(2)

We now state the optimal transport principle for developmental processes:

s ⇡ t =) ⇡s,t(✏) ⇡ �s,t.

In words, over short time scales, the true coupling is well approximated by the OT coupling. In section 3,
we show how to estimate ⇡s,t(✏) from data (we occasionally omit the dependence on ✏ and write ⇡s,t).
This in turn gives us an estimate of �s,t.

3. Inferring temporal couplings from empirical data

In this section we show how to estimate the temporal couplings of a developmental process from data.

Definition 5 (developmental time series). A developmental time series is a sequence of samples from

a developmental process Pt on RG
. This is a sequence of sets S1, . . . , ST ⇢ RG

collected at times

t1, . . . , tT 2 R. Each Si is a set of expression profiles in RG
drawn independently from Pti .

From this input data, we form an empirical version of the developmental process. Specifically, at each
time point ti we form the empirical probability distribution supported on the data x 2 Si. We summarize
this in the following definition:

Definition 6 (Empirical developmental process). An empirical developmental process P̂t is a time vary-

ing distribution constructed from a developmental time course S1, . . . , ST :

P̂ti =
1

|Si|
X

x2Si

�x. (3)

The empirical developmental process is undefined for t /2 {t1, . . . , tT }.

In order to estimate the coupling from time t1 to time t2, we first construct an initial estimate of the
growth rate function g(x). In practice, we form an initial estimate ĝ(x) as the expectation of a birth-death
process on gene expression space with birth-rate �(x) and death rate �(x) defined in terms of expres-
sion levels of genes involved in cell proliferation and apoptosis (see Estimating birth and death rates

and computing transport maps). We ultimately leverage techniques from unbalanced transport (Chizat
et al., 2018) to refine this initial estimate to learn cellular growth and death rates automatically from data
(seeWaddington-OT: Concepts and Implementation).
We then form the rescaled empirical distribution

Q̂t1(x) = P̂t1(x)
ĝ(x)t1�t2

R
ĝ(z)t1�t2dP̂ti(z)

,

and compute the optimal transport map ⇡̂t1,t2 between Q̂t1 and P̂t2 .
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3.1. Estimating couplings between adjacent time points

In order to identify an optimal transport plan connecting Q̂t1 and P̂t2 , we must solve an optimization
problem with a matrix-valued optimization variable. In the classical zero-entropy setting, the optimiza-
tion problem (2) is a linear program (when ✏ = 0). While the classical optimal transport linear program
can be difficult to solve for large numbers of points, fast algorithms have been recently developed (Cu-
turi, 2013) to solve the entropically regularized version of the transport program. Entropic regularization
speeds up the computations because it makes the optimization problem strongly convex, and gradient
ascent on the dual can be realized by successive diagonal matrix scalings called Sinkhorn iterations (Cu-
turi, 2013). These are very fast operations.

The scaling algorithm for entropically regularized transport has also been extended to work in the
setting of unbalanced transport (Chizat et al., 2018), where the equality constraints are relaxed to
bounds on the marginals of the transport plan (in terms of KL-divergence or total variation or a general
f-divergence). In our application this is very attractive from a modeling perspective for the following
reasons:

1. We may have misspecified the growth rate function ĝ(x). Unbalanced transport adjusts the input
growth rate in order to reduce the transport cost. This allows us to automatically learn growth
rates from scratch (seeWaddington-OT: Concepts and Implementation).

2. Even if the growth rates are completely uniform, the random sampling can introduce what looks
like growth. For example, suppose there is a rare subpopulation of cells consisting of 5% of the
total. If at one time point, we randomly sample fewer of these cells so that they comprise 4%
of the total, and at the next time point we sample 6%, then it will look like this population has
increased by 50%. Unbalanced transport can automatically adjust for this apparent growth.

We use both entropic regularization and unbalanced transport. To compute the transport map between
the empirical distributions of expression profiles observed at time ti and ti+1, we solve the following
optimization problem:

⇡̂ti,ti+1 = argmin
⇡

X

x2Si

X

y2Si+1

c(x, y)⇡(x, y)� ✏

ZZ
⇡(x, y) log ⇡(x, y)dxdy

+ �1KL

2

4
X

x2Si

⇡(x, y)
���dP̂ti+1(y)

3

5+ �2KL

2

4
X

y2Si+1

⇡(x, y)
���dQ̂ti(x)

3

5
(4)

where ✏,�1 and �2 are regularization parameters. We provide guidelines for tuning these parameters in
Waddington-OT: Concepts and Implementation.
This is a convex optimization problem in the matrix variable ⇡ 2 RNi⇥Ni+1 , where Ni = |Si| is the

number of cells profiled at time ti. It takes about 5 seconds to solve this unbalanced transport problem
using the scaling algorithm of (Chizat et al., 2018) on a standard laptop with Ni ⇡ 5000.

Note that by default the densities (on the discrete set Si) of the empirical distributions specified in
equation (3) are simply dP̂ti(x) = 1

Ni
. However, in principle one could use nonuniform empirical

distributions (e.g. if one wanted to include information about cell quality).
To summarize: given a sequence of expression profiles S1, . . . , ST , we solve the optimization prob-

lem (4) for each successive pair of time points Si, Si+1. For the pair of time-points (ti, ti+1), this gives
us a transport map ⇡̂ti,ti+1 . When we have enough data, this is a good estimate of ⇡ti,ti+1 because it is
well known that transport maps are consistent in the sense that

lim
Ni,Ni+1!1

⇡̂ti,ti+1 = ⇡ti,ti+1 .
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Taken together with the optimal transport principle:

⇡ti,ti+1 ⇡ �ti,ti+1 ,

we therefore can estimate �ti,ti+1 from ⇡̂ti,ti+1 when Ni is large enough.

3.2. Estimating long-range couplings

We rely on an assumption of Markovity (or memorylessness) in order to estimate couplings over longer
time intervals. Recall that a stochastic process is Markov if the future is independent of the past, given
the present. Equivalently, it is fully specified by the couplings between pairs of time points. We define
Markov developmental processes in a similar spirit:

Definition 7 (Markov developmental process). A Markov developmental process Pt is a time-varying

distribution onRG
that is completely specified by couplings between pairs of time points in the following

sense. For any three time points s < t < ⌧ , the long-range coupling �s,⌧ is equal to the composition of

short-range couplings:

�t,⌧ � �s,t = �s,⌧ .

Note that the optimal transport maps ⇡̂s,t do not necessarily have this compositional property! Com-
posing the OT coupling from time s to t and then from t to ⌧ is not the same as optimally transporting
from s directly to ⌧ . In general, we do not recommend computing OT maps directly between distant
time points.

We leverage the Markovity assumption to estimate couplings over long time intervals by composing
estimates over shorter intervals. Formally, for any pair of time points ti, ti+k, we estimate the coupling
�̂ti,ti+k by composing as follows:

�̂ti,ti+k = ⇡̂ti,ti+1 � ⇡̂ti+1,ti+2 � . . . � ⇡̂ti+k�1,ti+k .

These compositions are computed via ordinary matrix multiplication.
It is an interesting question to what extent developmental processes are Markov. On gene expression

space, they are likely not strictly Markov because, for example, the history of gene expression can influ-
ence chromatin modifications, which may not themselves be fully reflected in the observed expression
profile but could still influence the subsequent evolution of the process. However, it is possible that
developmental processes could be considered Markov on some augmented space.

4. Interpreting transport maps

In the previous section we introduced the principle of optimal transport for time series of gene expression
profiles. Given a time series of expression profiles S1, . . . , ST , we use this principle to compute a
sequence of transport maps between subsequent time slices. In this section we define the ancestors

and descendants of any subset of cells from this sequence of transport maps in section 4.1. Finally,
in section 4.3 we describe a connection between optimal transport, gradient flows, and Waddington’s
landscape.

4.1. Defining ancestors, descendants and trajectories

We now define the descendants and ancestors of subgroups of cells evolving according to a Markov (i.e.
memoryless) developmental process.
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Our definition of ancestors and descendants relies on a notion of pushing sets of cells through a trans-
port map. Before defining ancestors and descendants, we introduce this terminology. As a distribution
on the product space RG ⇥ RG, a coupling � assigns a number �(A,B) to any pair of sets A,B ⇢ RG

�(A,B) =

Z

x2A

Z

y2B
�(x, y)dxdy.

This number �(A,B) represents the amount of mass coming from A and going to B. When we don’t
specify a particular destination, the quantity �(A, ·) specifies the full distribution of mass coming from
A. We refer to this action as pushing A through the transport plan �. More generally, we can also push
a distribution µ forward through the transport plan � via integration

µ 7!
Z

�(x, ·)dµ(x).

We refer to the reverse operation as pulling a set B back through �. The resulting distribution �(·, B)
encodes the mass ending up at B. We can also pull distributions µ back through � in a similar way:

µ 7!
Z

�(·, y)dµ(y).

We sometimes refer to this as back-propagating the distribution µ (and to pushing µ forward as forward
propagation).

Equipped with this terminology, we define ancestors and descendants as follows:

Definition 8 (descendants in a Markov developmental process). Consider a set of cells C ⇢ RG
, which

live at time t1 are part of a population of cells evolving according to a Markov developmental process

Pt. Let �t1,t2 denote the coupling from time t1 to time t2. The descendants of C at time t2 are obtained
by pushing C through �.

Definition 9 (ancestors in a Markov developmental process). Consider a set of cellsC ⇢ RG
, which live

at time t2 and are part of a population of cells evolving according to a Markov developmental process

Pt. Let ⇡ denote the transport map for Pt from time t2 to time t1. The ancestors of C at time t1 are

obtained by pulling C back through �.

Trajectories: We define to the ancestor trajectory to a set C as the sequence of ancestor distributions
at earlier time points. Similarly, we refer to the descendant trajectory from a set C as the sequence of
descendant distributions at later time points.

4.2. Interpreting the entropy regularization parameter

In this section we explain a physical interpretation of entropy-regularized optimal transport.
Consider a collection of N indistinguishable particles undergoing Brownian motion with diffusion

coefficient ✏. Suppose we observe the positions ofN particles at times 0 and 1. But because the particles
are indistinguishable, we don’t know which particle at time 0 corresponds to each particle at time 1. If
N = 1, this is of course not an issue, and the distribution on paths connecting the starting and ending
point is called a Brownian bridge.

For N > 1, the distribution over possible paths connecting the starting and ending points involves
two components:

1. A coupling of the particles specifying which particle goes where (because the particles are indis-
tinguishable, this is not uniquely specified by the observations).
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2. Given a matching, the distribution on paths for each matched pair is a Brownian bridge.

The coupling is a random permutation that matches points at time 0 to points at time 1. The distri-
bution of this random permutation depends on the variance (or diffusion coefficient) of the Brownian
motion. If the diffusion coefficient is larger, then it is more likely that particles will swap positions over
larger distances. It turns out that the expected (i.e. average) coupling can be computed by maximum
entropy optimal transport. These ideas can be traced back to Schrodinger’s 1932 work in statistical elec-
trodynamics (Schrodinger, 1932), but the connection to optimal transport was not made explicit until
recently (Cuturi, 2013; Léonard, 2014). We summarize this in the following theorem:

Theorem 1. Entropy regularized optimal transport gives the expectation of the distribution over cou-

plings induced by Brownian motion, when the diffusion coefficient of the Brownian motion is equal to

the entropy regularization parameter.

4.3. Gradient flow and Waddington’s landscape

In this section we show how optimal transport can be interpreted as a gradient flow in gene expression
space (capturing cell-autonomous processes) or in the space of distributions (capturing cell-nonautonomous
processes). For a full treatment of the rich OT theory of gradient flows, we refer the reader to (Ambrosio
et al., 2005; Santambrogio, 2015).

We begin by considering the simple setting described by Waddington’s landscape, which describes
a gradient flow in gene expression space and is a special case of what we can capture with optimal
transport. Mathematically, Waddington’s landscape defines a potential function � assigning potential
energy �(x) to a cell with expression profile x. The cells roll downhill according to the gradient of � to
describe a trajectory x(t) satisfying the differential equation

dx

dt
= �r�(x). (5)

This equation governing the trajectory of individual cells induces a flow in the distribution of the popu-
lation of cells:

dPt

dt
= div[r�(x)Pt]. (6)

Intuitively, this equation states that the change in mass for each small volume of space (on the left-hand
side) is equal to the flux of mass in and out (given by the divergence on the right hand side).

Optimal transport can capture this type of potential driven dynamics: the true coupling specified by (5)
is close to the optimal transport coupling over short time scales. To motivate this, we appeal to a classical
theorem establishing a dynamical formulation of optimal transport.

Theorem 2 (Benamou and Brenier, 2001). The optimal objective value of the transport problem (1) is
equal to the optimal objective value of the following optimization problem:

minimize
⇢,v

Z 1

0

Z

RG
kv(t, x)k2⇢(t, x)dtdx

subject to ⇢(0, ·) = P, ⇢(1, ·) = Q

r · (⇢v) = @⇢

@t

. (7)

In this theorem, v is a vector-valued velocity field that advects2 the distribution ⇢ from P to Q, and the
objective value to be minimized is the kinetic energy of the flow (mass ⇥ squared velocity). In our
2
Advection, a term borrowed from fluid mechanics, refers to the transport of a substance by bulk motion. The constraint that
the divergence of the flow is equal to the rate of change of ⇢ means that ⇢ flows according to the velocity field v, without
gaining or losing mass.
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setting, the two distributions are snapshots Ps and Pt of a developmental process at two time points, and
the theorem shows that the transport map ⇡s,t can be seen as a point-to-point summary of a least-action
continuous time flow, according to an unknown velocity field. In the special case when the velocity field
is the gradient of a potential � (i.e. Waddington landscape), the theorem implies that the coupling (5)
achieves the optimal transport cost. In other words, OT can capture potential driven dynamics. In
addition, optimal transport can also describe much more general settings. This velocity field could
change over time and also depend on the entire distribution of cells, so optimal transport can describe
very general developmental processes including those with cell-cell interactions, as we describe below.

We will show that the evolution (6) is a special case of a Wasserstein gradient flow to minimize the
linear energy functional

E(P) =
Z

�(x)dP(x).

We will then describe non-linear gradient flows, which can capture cell-cell interactions.
To understand gradient flows, let’s start with the familiar notion of gradient descent:

xk+1 = �⌘rE(xk) + xk.

This can be rewritten as a proximal procedure, where one seeks to minimizeE over all x in the proximity
of xk:

xk+1 = argmin
x

E(x) +
1

2⌘
kx� xkk2. (8)

We can perform a similar proximal procedure in the space of distributions, replacing the Euclidean norm
k · k2 with the Wasserstein distance:

Pk+1 = argmin
⇢

E(⇢) +
1

2⌘
W 2

2 (⇢,Pk). (9)

This produces a sequence of iterates P0,P1, . . . ,Pk. The gradient flow is the limit obtained as we shrink
the step-size ⌘ # 0. In (Jordan et al., 1998), it’s proven that for the linear energy functional

E(P) =
Z

�(x)dP(x),

the limiting gradient flow converges to a solution of (6).
Going beyond the linear energy functional associated with Waddington’s landscape, one could de-

scribe cell-cell interactions with an interaction energy of the form

E(P) =
ZZ

I(x, y)dP(x)dP(y).

Gradient flows for interaction potentials are discussed in chapter 7 of (Santambrogio, 2015).

Learning models of gene regulation Motivated by this interpretation of optimal transport as a
gradient flow according to an unknown vector field, we describe a strategy to estimate such a vector
field from data in Waddington-OT: Concepts and Implementation. We interpret the vector field as a
model of gene regulation – it predicts gene expression at later time points as a function of transcription
factor expression at current time points. We assume that the vector field does not change over time, and
describes a cell-autonomous flow, but we do not assume that it comes from a potential function.
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II. WADDINGTON-OT : Concepts and Implementation

Building on the theoretical foundations developed in Modeling developmental processes with optimal
transport, we developed WADDINGTON-OT: our method for computing ancestor and descendant trajec-
tories, interpolating developmental processes, inferring gene regulatory models, and visualizing devel-
opmental landscapes. We begin with an overview in Section 1, and we then describe the specific details
in Sections 2 - 8.

1. Overview

To apply WADDINGTON-OT to a dataset, we pursue the following steps. The code is available on
GitHub:

https://github.com/broadinstitute/wot/

Specifically, in the sections below we describe our procedures for

• computing transport maps

• computing trajectories to cell sets

• fiting local and global regulatory models

• interpolating the distribution of cells at held-out time points.

To keep the focus here general-purpose, we defer all reprogramming-specific details to the subsequent
sections of STAR Methods.

Input data: The input to our suite of methods is a temporal sequence of single cell gene expression
matrices, prepared as described in Preparation of expression matrices.

Computing transport maps: Waddington-OT calculates transport maps between consecutive time
points and automatically estimates cellular growth and death rates. In Section 2 below we provide
guidelines for defining the cost function, selecting regularization parameters and (optionally) providing
an initial estimate of growth and death rates.

Ancestors, descendants, and trajectories: We describe in Section 3 how we compute trajec-
tories plot trends in gene expression. Briefly, the developmental trajectory of a subpopulation of cells
refers to the sequence of ancestors coming before it and descendants coming after it. Using the trans-
port maps, we can calculate the forward or backward transport probabilities between any two classes of
cells at any time points. For example, we can take successfully reprogrammed cells at day 18 and use
back-propagation to infer the distribution over their precursors at day 17.5. We can then propagate this
back to day 17, and so on to obtain the ancestor distributions at each previous time point. This is the
developmental trajectory to iPS cells. We can then readily plot trends in gene expression over time.
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Fitting regulatory models: We describe our method to fit a regulatory model to the transport maps
in Section 4. Transcription factors (TFs) that appear to play important roles along trajectories to key des-
tinations are identified by two approaches. The first approach involves constructing a global regulatory
model, related to the framework we describe in Section I.4.2. Pairs of cells at consecutive time points
are sampled according to their transport probabilities; expression levels of TFs in the cell at time t are
used to predict expression levels of all non-TFs in the paired cell at time t + 1, under the assumption
that the regulatory rules are constant across cells and time points. (TFs are excluded from the predicted
set to avoid cases of spurious self-regulation). The second approach involves local enrichment analysis.
TFs are identified based on enrichment in cells at an earlier time point with a high probability (> 80%)
of transitioning to a given fate vs. those with a low probability (< 20%).

Geodesic interpolation: To validate the temporal couplings, Waddington-OT can interpolate the
distribution of cells at a held-out time point. The method is performing well if the interpolated distri-
bution is close to the true held-out distribution (compared to the distance between different batches of
the held-out distribution). Otherwise, it is possible that the method requires more data or finer temporal
resolution.

Section 5 describes our method to interpolate the distribution of cells at a held-out time point. The
specific application for validation of our method on iPS reprogramming data is presented in the subse-
quent section on Validation by geodesic interpolation. We performed extensive sensitivity analysis to
show that our temporal couplings produce valid interpolations over a wide range of parameter settings
perturbations to the data (downsampling cells or reads). See QUANTIFICATION AND STATISTI-

CAL ANALYSIS for this sensitivity analysis.

2. Computing transport maps

Recall that for any pair of time points we compute a transport plan that minimizes the expected cost of re-
distributing mass, subject to constraints involving the relative growth rate (seeModeling developmental

processes with optimal transport for a precise statement of the optimization problem).
The transport map ⇡̂t1,t2 connecting cells from time t1 to cells from time t2 has a row for each cell

x at time t1 and a column for each cell y at time t2. Each row specifies the descendant distribution

of a single cell x from time t1. The descendant mass is the sum of all the entries across a row. This
row-sum is proportional to the number of descendants that x will contribute to the next time point. Intu-
itively, the descendant distribution specifies which cells at time t2 are likely to be descendants of x (see
section 4.1 of Modeling developmental processes with optimal transport for the formal definition of
descendants in a developmental process).

Similarly, each column specifies the ancestor distribution of a cell y from time t2. The ancestor mass
is usually the same for each cell y. The ancestor distribution tells us which cells at time t1 are likely to
give rise to the cell y.

To compute these transport matrices, we need to specify a cost function, numerical values for the
regularization parameters, and (optionally) an initial estimate for the relative growth rate.

2.1. Cost function

To compute the cost of transporting each individual point x from time t1 to position y at time t2, we first
perform principal components analysis (PCA) on the data from this pair of time points. This dimension-
ality reduction is performed separately for each pair of adjacent time points. We define the cost function
to be squared Euclidean distance in this ‘local-PCA space’.
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Finally, we normalize the cost matrix by dividing each entry by the median cost for that time interval.
Here the cost matrix is the matrix with entries Ci,j = c(xi, yj) for each xi form time t1 and yj at time t2.
This rescaling of the cost allows us to refer to specific numerical values of the regularization parameters,
without worrying about the global scale of distances.

2.2. Regularization parameters

The optimization problem (4) involves three regularization parameters:

• The entropy parameter ✏ controls the entropy of the transport map. An extremely large entropy
parameter will give a maximally entropic transport map, and an extremely small entropy parameter
will give a nearly deterministic transport map. The default value is 0.05.

• �1 controls the degree to which transport is unbalanced along the rows. Large values of �1 impose
stringent constraints related to relative growth rates. Small values of �1 give the algorithm more
flexibility to change the relative growth rates in order to improve the transport objective. The
default value is 1. To visually inspect the degree of unbalancedness, we recommend plotting the
input row-sums vs the output row-sums of the transport map (Figure S1D-F).

• �2 controls the degree to which transport is unbalanced along the columns. The default value is
�2 = 50. This large value essentially imposes equality constraints for the column marginals. A
smaller value of �2 would allow different amounts of mass to transport to some cells at time t2.
We strongly recommend keeping a large value for �2 so that the results are balanced along the
columns. To visually inspect the degree of unbalancedness, one can plot the input column-sums
vs the output column-sums of the transport map.

As we demonstrate in QUANTIFICATION AND STATISTICAL ANALYSIS, our validation results
are stable over a wide range of values for ✏ and �1.

2.3. Estimating relative growth rates

Our method solves the optimization problem (4) several times, using the output row-sums of the optimal
transport map ⇡̂t1,t2 as a new estimate for the relative growth rate function ĝ(x). By default, we initialize
with

ĝ(x) = 1,

so that all cells grow at the same rate. If one has some prior knowledge of growth rates (e.g. based on
gene signatures of proliferation and apoptosis), this can be incorporated in the initial estimate for ĝ(x).
For our reprogramming data, we show how we formed an initial estimate for relative growth rates in
Estimating growth and death rates and computing transport maps.

3. Ancestors, descendants, and trajectories

Given a set of cells C, we can compute the descendant distribution of the entire set by adding the de-
scendant distributions of each cell in the set. This can be computed efficiently via matrix multiplication
as follows: Let S1 denote all the cells from time point t1, and let

p(x) =

(
1 x 2 C

0 otherwise
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denote the uniform distribution on C ⇢ S. The descendant distribution of C is given by ⇡̂t1,t2p. We
compute ancestor distributions in a similar way, except instead of taking the sum we compute an average.
In particular, we define a function p(x) as above, then normalize it to sum to 1 and then form the matrix-
vector product

pT ⇡̂t0,t1

to obtain the ancestor distribution on time t0.
After computing the trajectory to or from a cell set C (in the form of a sequence of ancestor and

descendant distributions), we compute trends in expression for any gene or gene signature of interest
along the trajectory. For each time point, we compute the mean expression weighting each cell according
to the probability distribution defined by the ancestor or descendant distribution.

4. Learning gene regulatory models

We employ two strategies to summarize the transport maps by learning models of gene regulation. The
first model uses local enrichment analysis to identify transcription factors (TFs) enriched in ancestors of
a set of cells. The second model is motivated by the dynamical systems formulation of optimal transport,
as described above in Section I.4.3.

4.1. Local model: TF enrichment analysis of top ancestors

We perform local enrichment analysis as follows. Given a set of cells C at time t2, we first compute
the ancestor distribution of C at an earlier time t1, as described in Section II.3 above. We then select
cells contributing the most mass to the ancestor distribution, until a certain amount of mass is accounted
for (e.g. 30% of the ancestor mass). We refer to these as the top ancestors at time t1 of the cell set C.
Finally, we compare the top ancestors to a null set of cells from the same time point. For example, this
null cell set could be:

• all cells except for the top ancestors,

• the bottom ancestors (defined to be all cells except for the top ancestors of a less-strict cut-off),

• the bottom ancestors restricted to a specialized subset (e.g. all other trophoblasts when C is a
specific subset of trophoblasts like spongiotrophoblasts).

4.2. Global model: learning a cell-autonomous gradient flow

To learn a simple description of the temporal flow, we assume that a cell’s trajectory is cell-autonomous
and, in fact, depends only on its own internal gene expression. We know this is wrong as it ignores
paracrine signaling between cells, and we discuss models that include cell-cell communication below.
However, this assumption is powerful because it exposes the time-dependence of the stochastic process
Pt as arising from pushing an initial measure through a differential equation:

ẋ = f(x). (10)

Here f is a vector field that prescribes the flow of a particle x. Our biological motivation for estimating
such a function f is that it encodes information about the cell-autonomous regulatory networks that
create the equations of motion in gene-expression space.

We propose to set up a regression to learn a regulatory function f that models the fate of a cell at time
ti+1 as a function of its expression profile at time ti. Our approach involves sampling pairs of points
using the couplings from optimal transport:
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• For each pair of time points ti, ti+1, we sample pairs of cells
�
Xti , Xti+1

�
from the joint distribu-

tion specified by the transport map ⇡̂ti,ti+1 .

• Using the training data generated in the first step, we set up the following regression:

min
f2F

E⇡̂ti,ti+1

��Xti+1 � f(Xti)
��2 ,

where F is a rectified-linear function class defined in terms of a specific generalized logistic function
` : R 7! R:

`(x; k, b, y0, x0) =
ky0

y0 + (k � y0)e�b(x�x0)
,

where k, b, y0, x0 2 R are parameters of the generalized logistic function `(x).
We define a function class F consisting of functions f : RG ! RG of the form

f(x) = U`(WTx),

where ` is applied entry-wise to the vector WTx 2 RM to obtain a vector that we multiply against
U 2 RG⇥M . Here T 2 RGTF⇥G denotes a projection operator that selects only the coordinates of x that
are transcription factors, and GTF is the number of transcription factors. Intuitively, this gives a set of
low-rank, linear functions with sparse factors. Each rank-1 component can be interpreted as a regulatory
module of transcription factors acting on a module of regulated genes.

We set up the following optimization over matrices U 2 RG⇥M andW 2 RM⇥GTF :

min
U,W

Er

��Xti+1 � U`(WTXti)
��2 + ⌘1kUk1 + ⌘2kWk1,+⌘3kWk22

s.t. U � 0.
(11)

where (Xti , Xti+1) is a pair of random variables distributed according to the normalized transport map
r, and kUk1 denotes the sparsity-promoting `1 norm of U , viewed as a vector (that is, the sum of the
absolute value of the entries of U ). Each rank one component (row of U or column of W ) gives us
a group of genes controlled by a set of transcription factors. The regularization parameters ⌘1 and ⌘2
control the sparsity level (i.e. number of genes in these groups).

Implementation: We designed a stochastic gradient descent algorithm to solve (11). Over a se-
quence of epochs, the algorithm samples batches of points (Xti , Xti+1) from the transport maps, com-
putes the gradient of the loss, and updates the optimization variables U and W . The batch sizes are
determined by the Shannon diversity of the transport maps: for each pair of consecutive time points, we
compute the Shannon diversity S of the transport map, then randomly samplemax(S ⇥ 10�5, 10) pairs
of points to add to the batch. We run for a total of 10, 000 epochs.

Cell non-autonomous processes: The gradient flow (10) addresses cell-autonomous processes.
Otherwise, the rate of change in expression ẋ is not just a function of a cell’s own expression vector
x(t), but also of other expression vectors from other cells. We can accommodate cell non-autonomous
processes by allowing f to also depend on the full distribution Pt:

dx

dt
= f(x,Pt). (12)

Concretely, we could allow f to depend on the mean expression levels of specific genes (expressed by
any cell) encoding, for example, secreted factors or direct protein measurements of the factors them-
selves. For a theoretical description of gradient flows with interactions, see Section 4.3 of Modeling

developmental processes with optimal transport.
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5. Geodesic interpolation for validation

Optimal transport provides an elegant way to interpolate distribution-valued data, analogous to how
linear regression can be used to interpolate numerical or vector-valued data. Given two numerical data-
points, the simplest way to interpolate is to connect them with a line; this is the shortest path connecting
the observed data. Given two distributions, we interpolate by finding the shortest path in the space of
distributions. To do this we need a notion of distance between distributions, and for this we use the
metric induced by optimal transport. This metric space is called Wasserstein space, and this form of
interpolation is called geodesic interpolation (Villani, 2008).

We derive a modified version of geodesic interpolation that takes into account cell growth. Ordinarily,
an interpolating distribution is computed by first computing a transport map between the distributions,
and then connecting each point in the first distribution to points in the second according to the transport
map. Finally, an interpolating point cloud is produced by from the midpoints of those line segments.
(More generally, instead of taking just midpoints, one one can also construct a family of interpolations
that sweep from the first distribution to the second). We extend this framework to accommodate growth
by changing the mass of the point we place at the midpoint (to account for the fact that cells will have a
different number of descendants at time t1 than they will at time t2).

Specifically, to interpolate at time s 2 (t1, t2), we first renormalize the rows of the transport map so
they sum to roughly ĝ(x)s�t1

R
ĝ(x)s�t1dP̂t1

instead of ĝ(x)t2�t1
R
ĝ(x)t2�t1dP̂t1 (x)

. This takes into account the descendant
mass each cell will have by time s instead of by time t2. We then sample points z1, . . . , zN as follows:

1. Sample a pair of points (x, y) from the joint distribution specified by the transport map.

2. Identify the point
z = ↵x+ (1� ↵)y

along the line segment connecting x and y. Here ↵ is given by s = ↵t1 + (1� ↵)t2.

By repeating the steps above, we accumulate a point-cloud of points z1, . . . , zN . Finally, we define the
interpolating distribution as

P̂(s) = 1

N

NX

i=1

�zi .

Equipped with this notion of interpolation, we can test the performance of optimal transport by com-
paring the interpolated distribution to held-out time points. Using the data from time ti and ti+2, we
interpolate to estimate the distribution Pti+1 . We then compute the Wasserstein distance between the in-
terpolated distribution and the observed distribution. We compare this distance to a null model generated
from the independent coupling where we sample pairs (x, y) independently x ⇠ P̂ti and y ⇠ P̂ti+2 in
step 1 above. We also compare the interpolated distance to distance between batches of Pti+1 . Optimal
transport is performing well if the interpolated point cloud is as close to the batches of the held out time
point as the batches are to each other, and the null-interpolated point cloud is farther away.

We present our application for validation in the case of IPS reprogramming inValidation by geodesic

interpolation.
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III.  Experimental methods 
  
1. Derivation of secondary MEFs 
 
OKSM secondary Mouse embryonic fibroblasts (MEFs) were derived from E13.5 female embryos 
with a mixed B6;129 background. The cell line used in this study was homozygous for ROSA26-
M2rtTA, homozygous for a polycistronic cassette carrying Oct4, Klf4, Sox2, and Myc at the 
Col1a1 locus and homozygous for an EGFP reporter under the control of the Oct4 promoter 
(Stadtfeld et al., 2010). Briefly, MEFs were isolated from E13.5 embryos from timed-matings by 
removing the head, limbs, and internal organs under a dissecting microscope. The remaining tissue 
was finely minced using scalpels and dissociated by incubation at 37°C for 10 minutes in trypsin-
EDTA (Thermo Fisher Scientific). Dissociated cells were then plated in MEF medium containing 
DMEM (Thermo Fisher Scientific), supplemented with 10% fetal bovine serum (GE Healthcare 
Life Sciences), non-essential amino acids (Thermo Fisher Scientific), and GlutaMAX (Thermo 
Fisher Scientific). MEFs were cultured at 37°C and 4% CO2 and passaged until confluent. All 
procedures, including maintenance of animals, were performed according to a mouse protocol 
(2006N000104) approved by the MGH Subcommittee on Research Animal Care. 
 
2. Derivation of Primary MEFs 
 
Primary MEFs were derived from E13.5 embryos with a B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae/J x 
B6;129S4-Pou5f1tm2Jae/J background. The cell line was homozygous for ROSA26-M2rtTA, and 
homozygous for an EGFP reporter under the control of the Oct4 promoter. MEFs were isolated as 
mentioned above. 
 
3. Reprogramming assay 
 
For the reprogramming assay, 20,000 low passage MEFs (no greater than 3-4 passages from 
isolation) were seeded in a 6-well plate. These cells were cultured at 37°C and 5% CO2 in 
reprogramming medium containing KnockOut DMEM (GIBCO), 10% knockout serum 
replacement (KSR, GIBCO), 10% fetal bovine serum (FBS, GIBCO), 1% GlutaMAX (Invitrogen), 
1% nonessential amino acids (NEAA, Invitrogen), 0.055 mM 2-mercaptoethanol (Sigma), 1% 
penicillin-streptomycin (Invitrogen) and 1,000 U/ml leukemia inhibitory factor (LIF, Millipore). 
Day 0 medium was supplemented with 2 µg/mL doxycycline Phase-1(Dox) to induce the 
polycistronic OKSM expression cassette. Medium was refreshed every other day. At day 8, 
doxycycline was withdrawn, and cells were transferred to either serum-free 2i medium containing 
3 µM CHIR99021, 1 µM PD0325901, and LIF (Phase-2(2i)) (Ying et al., 2008) or maintained in 
reprogramming medium (Phase-2(serum)). Fresh medium was added every other day until the 
final time point on day 18. Oct4-EGFP positive iPSC colonies should start to appear on day 10, 
indicative of successful reprogramming of the endogenous Oct4 locus. 
  
4. Sample collection 
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We profiled a total of 315,000 cells from two time-course experiments across 18 days in two 
different culture conditions: in the first we profiled 65,781 cells collected over 10 time points 
separated by ~48 hours; in the second we profiled 259,155 cells collected over 39 time points 
separated by ~12 hours across an 18-day time course (and every 6 hours between days 8 and 9). 
In the larger experiment, duplicate samples were collected at each time point.                                                                                                                                                                                                                                                                                                                                                                  
Cells were also collected from established iPSCs cell lines reprogrammed from the same MEFs, 
maintained either in Phase-2(2i) conditions or in Phase-2(serum) medium. For all time points, 
selected wells were trypsinized for 5 mins followed by inactivation of trypsin by addition of MEF 
medium. Cells were subsequently spun down and washed with 1X PBS supplemented with 0.1% 
bovine serum albumin. The cells were then passed through a 40 micron filter to remove cell debris 
and large clumps. Cell count was determined using Neubauer chamber hemocytometer to a final 
concentration of 1000 cells/µl. 
  
5. Single-cell RNA-seq 
 
ScRNA-seq libraries were generated from each time point using the 10X Genomics Chromium 
Controller Instrument (10X Genomics, Pleasanton, CA) and ChromiumTM  Single Cell 3’ Reagent 
Kits v1 (65,781 cells experiment) and v2 (259,155 cells experiment) according to manufacturer’s 
instructions. Reverse transcription and sample indexing were performed using the C1000 Touch 
Thermal cycler with 96-Deep Well Reaction Module. Briefly, the suspended cells were loaded on 
a Chromium controller Single-Cell Instrument to first generate single-cell Gel Bead-In-Emulsions 
(GEMs). After breaking the GEMs, the barcoded cDNA was then purified and amplified. The 
amplified barcoded cDNA was fragmented, A-tailed and ligated with adaptors. Finally, PCR 
amplification was performed to enable sample indexing and enrichment of the 3’ RNA-Seq 
libraries. The final libraries were quantified using Thermo Fisher Qubit dsDNA HS Assay kit 
(Q32851) and the fragment size distribution of the libraries were determined using the Agilent 
2100 BioAnalyzer High Sensitivity DNA kit (5067-4626). Pooled libraries were then sequenced 
using Illumina Sequencing. All samples were sequenced to an average depth of 87 million paired-
end reads per sample (see Experimental Methods), with 98 bp on the first read and 10 bp on the 
second read. In the larger experiment, we profiled 259,155 cells to an average depth of 46,523 
reads per cell. 
 
  
6. Lentivirus vector construction and particle production 
 
To test whether transcription factors (TFs) improve late-stage reprogramming efficiency, we 
generated lentiviral constructs for the top candidates Zfp42, and Obox6. cDNAs for these factors 
were ordered from Origene (Zfp42-MG203929, and Obox6-MR215428) and cloned into the FUW 
Tet-On vector (Addgene, Plasmid #20323) using the Gibson Assembly (NEB, E2611S). Briefly, 
the cDNA for each TF was amplified and cloned into the backbone generated by removing Oct4 
from the FUW-Teto-Oct4 vector. All vectors were verified by Sanger sequencing analysis. For 
lentivirus production, HEK293T cells were plated at a density of 2.6x106 cells/well in a 10cm dish. 
The cells were transfected with the lentiviral packaging vector and a TF-expressing vector at 70-
80% growth confluency using the Fugene HD reagent (Promega E2311), according to the 
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manufacturer’s protocols. At 48 hours after transfection, the viral supernatant was collected, 
filtered and stored at -80°C for future use. 
 
7. Paracrine signaling assay 
 
To determine the effect of GDF9 on reprogramming, we plated secondary MEFs at a concentration 
of 5,000 cells per well of a 24-well plate and added either recombinant mouse GDF9 (R&D 
Systems, 739-G9-010, lot SOZ0516121) daily from day 8 onward, or control (0.1% Bovine Serum 
Albumin in 4 mM HCl, R&D Systems, RB04). We initially tested different doses (0, 0.1 µg/ml, 
0.5 µg/ml, and 1 µg/ml) and then confirmed results seen at the highest dose in multiple independent 
experiments. We used three distinct approaches to determine the proportion of pluripotent cell at 
day 15: (i) counting the number of Oct4-EGFP+ colonies using a fluorescence microscope, (ii) bulk 
RNAseq (Quantseq, Lexogen) and (iii) scRNAseq (as above). For each assay, experiments were 
performed in biological triplicates (each assay using separate replicates). 
  
8. Reprogramming efficiency of secondary MEFs together with 
individual TFs 
 
We sought to determine the ability of the candidate TFs to augment reprogramming efficiency in 
secondary MEFs; the use of secondary MEFs for reprogramming overcomes limitations associated 
with random lentiviral integration events at variable genomic locations. Briefly, secondary MEFs 
were plated at a concentration of 20,000 cells per well of a 6-well plate. Cells were infected with 
virus containing ZFP42, OBOX6, or an empty vector and maintained in reprogramming medium 
as described above. At day 8 after induction, cells were switched to either Phase-2(2i) or Phase-
2(serum). On day 16, reprogramming efficiency was quantified by measuring the levels of the 
EGFP reporter driven by the endogenous Oct4 promoter. FACS analyses was performed using the 
Beckman Coulter CytoFLEX S, and the percentage of Oct4-EGFP+ cells was determined. 
Triplicates were used to determine average and standard deviation. 
  
9. Reprogramming efficiency of primary MEFs with individual TFs 
and OKSM 
 
We also independently tested the performance of TFs in primary MEFs. To this end, lentiviral 
particles were generated from four distinct FUW-Teto vectors, containing OCT4, SOX2, KLF4, 
and MYC, previously developed in the Jaenisch lab. MEFs from the background strain 
B6.Cg-Gt(ROSA)26Sortm1(rtTA*M2)Jae/J x B6;129S4-Pou5f1tm2Jae/J were infected with these lentiviral 
particles, together with a lentivirus expressing tetracycline-inducible ZFP42, OBOX6 or no insert. 
Infected cells were then induced with 2 µg/mL doxycycline in ESC reprogramming medium (day 
0). At day 8 after induction, cells were switched to either Phase-2(2i) or Phase-2(serum). On day 
16, the number of Oct4-EGFP+ colonies were counted using a fluorescence microscope. Triplicates 
for each condition used to determine average values and standard deviation. 
  
IV. Preparation of expression matrices 
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To compute an expression matrix from scRNA-seq data, we aligned sequenced reads to obtain a 
matrix U of UMI counts, with a row for each gene and a column for each cell. To reduce variation 
due to fluctuations in the total number of transcripts per cell, we divide the UMI vector for each 
cell by the total number of transcripts in that cell. Thus, we define the expression matrix E in terms 
of the UMI matrix U via: 

1 =
345

∑ 345
7
48%

	× 10<. 

In our subsequent analysis, we make use of two variance-stabilizing transforms of the expression 
matrix 1.  In particular, we define  

1. 1>  to be the log-normalized expression matrix.  The entries of 1>  are obtained via 
1	? = @AB(145 + 1) 

2. 1F  to be the truncated expression matrix.  The entries of 1F  are obtained by capping the 
entries of 1F  at the 99.5% quantile. 

When we refer to an expression profile, by default we refer to a column of 1>  unless otherwise 
specified.  
 
1. Read alignment 
 
The 98 bp reads were aligned to the UCSC mm10 transcriptome, and a matrix of UMI counts was 
obtained using Cellranger from the 10X Genomics pipeline (v2.0.0) with default parameters 
(https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/installation). Quality control metrics about barcoding and 
sequencing such as the estimated number of cells per collection and the median number of genes 
detected across cells are summarized in Table S1. To estimate expression of exogenous OKSM 
factors from OKSM cassette, we extracted RBGpA sequence (839 bp) from the OKSM cassette 
FASTA file, and generated a reference using the mkref function from the Cellranger pipeline. 
 
2. Downsampling and filtering expression matrix 
 
The expression matrix was downsampled to 15,000 UMIs per cell. Cells with less than 2000 UMIs 
per cell in total and all genes that were expressed in less than 50 cells were discarded, leaving 
251,203 cells and G= 19,089 genes for further analysis. The elements of expression matrix were 
normalized by dividing UMI count by the total UMI counts per cell and multiplied by 10,000 i.e. 
expression level is reported as transcripts per 10,000 counts.  
 
3. Selecting variable genes  
 
We used the function MeanVarPlot from the Seurat package (v2.1.0) (Satija et al., 2015) to select 
1,479 variable genes. First, we divided genes into 20 bins based on their average expression levels 
across all cells. Second, we compute Fano factor of gene expression in each bin and then z-scored. 
The Fano factor, defined as the variance divided by the mean, is a measure of dispersion. Finally, 
by thresholding the z-scored dispersion at 1.0, we obtained a set of 1479 variable genes. After 
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selecting variable genes, we created a variable gene expression matrix by renormalizing as 
described above.  
 
V. Visualization: force-directed layout embedding 
 
In this section we introduce our two dimensional visualization technique based on force-directed 
layout embedding (FLE) (Jacomy et al., 2014). FLE is large-scale graph visualization tool which 
simulates the evolution of a physical system in which connected nodes experience attractive forces, 
but unconnected nodes experience repulsive forces. It better captures global structures than tSNE. 
Initial FLE algorithms used simple electrostatic and spring forces, but modern FLE algorithms 
allow for more elaborate interactions that can depend on the degree of nodes or include gravity 
terms that attract all nodes to the center (this is especially important for disconnected graphs, which 
would otherwise fly apart). Starting from a random initial position of vertices, the network of nodes 
evolves in such a manner that at any iteration a new position of vertices is computed from the net 
forces acting on them.  
 
We apply FLE to visualize the nearest neighbor graph generated from our data. 
 
Implementation: Our visualization takes as input the expression matrix of highly-variable genes, 
selected as described in “Secion IV. Preparation of expression matrices”. First, we reduce to 100 
dimensions by computing a 100 dimensional diffusion component embedding of the dataset using 
SCANPY (v0.2.8) with default parameters. Second, for each cell we compute its 20 nearest 
neighbors in 100-dimensional diffusion component space to produce a nearest neighbor graph. For 
this step, we used the approximate k-NN algorithm Annoy from the R package RCPPANNOY 
(v0.0.10). Finally, we compute the force-directed layout on the k-NN graph using the ForceAtlas2 
algorithm (Jacomy et al., 2014) from the Gephi Toolkit (v0.9.2). 
 
VI. Creating gene signatures and cell sets 
 
1. Gene signatures  
 
We then constructed curated gene signatures from various databases of gene signatures. Given a 
set of genes, we score cells based on their gene expression. In particular, for a given cell we 
compute the z-score for each gene in the set. We then truncate these z-scores at 5 or −5, and define 
the signature of the cell to be the mean z-score over all genes in the gene set.  
 
The table below summarizes the sources from which we obtained signatures. In two cases (neural 
identity and epithelial identity) we constructed signatures manually using marker genes. A 
pluripotency gene signature was determined in this work using the pilot dataset. We performed 
differential gene expression analysis between two groups of cells: mature iPSCs and cells along 
the time course D0 to D16 and took the top 100 genes with increased expression in mature iPSCs. 
A proliferation gene signature was obtained by combining genes expressed at G1/S and G2/M 
phases.  
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In several places, we also compute gene signatures based on co-expression with a given gene of 
interest. For instance, in the stromal region we noticed several genes (Cxcl12, Ifitm1, and Matn4) 
with expression patterns that were distinct from a signature of long-term cultured MEFs (Figure 
S2B). For each gene, we computed a co-expression signature by finding the set of genes with 
expression levels in stromal cells that were >15% correlated with the gene of interest. We found 
that these gene signatures were significantly overlapping (p-value < 0.01, hypergeometric test) 
with signatures of stromal cells in neonatal muscle and neonatal skin in the Mouse Cell Atlas. 
Similarly, in the neural region we derived signatures of genes co-expressed with Gad1 and with 
Slc17a6 (Figure S4D). These signatures significantly overlapped signatures of inhibitory and 
excitatory neurons, respectively, derived from the Allen Brain Atlas. 
 
 
 

Gene Signature Source 

MEF identity (Chen et al., 2013; Han et al., 2018; Lattin et al., 2008) 

Pluripotency This work. 

Proliferation (Tirosh et al., 2016) 

ER stress GO:0034976, Biological Process Ontology 

Epithelial identity This work.  
Marker genes: (Li et al., 2010; Takaishi et al., 2016; Whiteman et 
al., 2014) 

ECM rearrangement GO:0030198, Biological Process Ontology 

Apoptosis Hallmark P53 Pathway, MSigDB 

Senescence (Coppé et al., 2010) 

Neural identity This work.  
Marker gene sources: (Fonseca et al., 2013; Gouti et al., 2011; Kan 
et al., 2004; Lazarov et al., 2010; Sakakibara et al., 2001; Sansom 
et al., 2009; Watanabe et al., 2017) 

Trophoblast (Han et al., 2018) 

X reactivation chromosome X 

XEN (Lin et al., 2016) 

Trophoblast progenitors (Han et al., 2018) 

Spiral Artery Trophpblast Giant Cells (Han et al., 2018) 

Oligodendrocyte precursor cells (OPC) (Tasic et al., 2016) 

Astrocytes (Tasic et al., 2016) 

Cortical Neurons (Tasic et al., 2016) 

RadialGlia-Id3 (Han et al., 2018) 

RadialGlia-Gdf10 (Han et al., 2018) 
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RadialGlia-Neurog2 (Han et al., 2018) 

Long-term MEFs (Han et al., 2018) 

Embryonic mesenchyme (Han et al., 2018) 

Cxcl12 co-expressed This work. 

Ifitm1 co-expressed This work. 

Matn4 co-expressed This work. 

2C (Han et al., 2018) 

 
 
2. Cell sets 
 
Using the gene signatures described above, we created coarse cell sets defining the broad regions 
of the landscape (iPSC, Trophoblast, Neural, Stromal, Epithelial, and MET), and cell subtype sets 
defining different cell types within a region (stromal, trophoblast, and neural subtypes, along with 
2-cell stage). 
 
To define the coarse cell sets, we first computed a rough partitioning of the landscape by clustering 
cells using the Louvain method of spectral clustering to obtain 65 cell clusters using k=5 nearest 
neighbors (Figure S5B). By examining signature score activity levels over clusters, we grouped 
several clusters to form cell sets for the iPSC, Stromal and Neuronal regions. Because our densely 
sampled data does not always segregate into distinct clusters, we defined some additional coarse 
cell sets by signature scores. We define the trophoblast cell set to include all cells with Trophoblast 
signature greater than 0.7. We defined the epithelial cell set to include all cells with epithelial 
identity signature greater than 0.8, minus all cells included in other cell sets (mostly removing the 
trophoblasts with epithelial signature). Finally, we defined the MET Region as the ancestors of 
iPS, Trophoblast, Neural and Epithelial cells. In particular, we computed the top ancestors of each 
major cell set, then merged these cell sets and removed the cells in each major cell set.  
 
Within the Stromal, Trophoblast, Neural and iPSC cell sets, we then conducted more sensitive 
statistical tests for cell subtype signatures. We did this by calculating empirical p-values for the 
subtype signature score for each (region-specific) subtype in each cell. In each of 100,000 
permutation trials, we randomly and independently shuffled the expression levels of each gene 
across the cells within a region. In each cell, we then computed signature scores in the permuted 
data, and generated p-values by determining the frequency at which the permuted score was greater 
than the original score. While the results shown in figures and discussed in the main text are based 
on shuffling genes across cells, we similarly permuted the expression levels within each cell, and 
found consistent results. Finally, we controlled for multiple hypothesis testing by calculating FDR 
q-values, and used a threshold FDR of 10% to define cell subtype sets. 
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VII. Estimating growth and death rates and computing transport 
maps 
 
1. Initial estimate of growth rates 
 
We form an initial estimate of the relative growth rate as the expectation of a birth-death process 
on gene expression space with birth-rate β(x) and death rate δ(x) defined in terms of expression 
levels of genes involved in cell proliferation and apoptosis. Multi-state birth-death processes have 
been used before to model growth, death, and transitions in iPS reprogramming (Liu et al., 2016). 
A birth-death process is a classical model for how the number of individuals in a population can 
vary over time. The model is specified in terms of a birth rate β and death rate δ: During a time 
interval ∆t, the probability of a birth is β∆t and the probability of a death is δ∆t. The doubling time 
for a birth death process is defined as follows. Starting with N(0) = n, the time G it would take to 
get to an expected population size of HI($) 	= 	2K is  

G =
ln 2

N − P
 

The half-life can be computed in a similar way. We apply a sigmoid function to transform the 
proliferation score into a birth rate. The sigmoid function smoothly interpolates between maximal 
and minimal birth rates. We specify the maximal birth rate to be NQRS = 	1.7. Therefore the fastest 
cell doubling time is  

UV '

%.W
≈ 0.41	Z[\]	 ≈ 	9.6	ℎAab], 

by the doubling time equation above. We define the minimal birth rate as NQcd = 0.3. Therefore 
the slowest cell doubling time is  

UV '

f.(
= 2.3	Z[\]	 = 	55	ℎAab]. 

 
Similarly, we transform the apoptosis signature into an estimate of cellular death rates by applying 
a sigmoid function to smoothly interpolate between minimal and maximal allowed death rates. We 
define the minimal death rate parameter to be PQcd = 0.3, and the maximal death rate parameter 
as PQRS = 1.7. By the calculations above, these correspond to half-lives of 55 and 9.6 hours 
respectively.  
 
2. Learning growth rates and computing transport maps 
 
Using the growth rates defined in the previous section as an initial estimate, we compute transport 
maps and automatically improve these growth rates using the Waddington-OT software package 
(see Section Computing transport maps). For the cost function, we use squared Euclidean distance 
in 30 dimensional local PCA space computed on the variable gene data from the relevant pair of 
time points. We use the following parameter settings:  
h = 0.05, ij = 1, ik = 50, growth_iters = 3. 
The parameters ij and ik control the degree to which the row-sums and column-sums are 
unbalanced. A larger value of ij induces a greater correlation between the input and output growth 
rates. The Waddington-OT package iterates the procedure of computing transport maps based on 
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input growth rates, and then using the output growth rates as new input growth rates to recompute 
transport maps. We ran this for growth_iters = 3 total iterations.  
 
This gives us a set of transport maps between each pair of time points, which can be used to 
estimate the temporal coupling. From this estimate of the temporal coupling, we compute ancestor 
and descendant distributions to each of the major cell sets defined in the previous section.  
 
VIII. Regulatory analysis 
 
We performed regulatory analysis to identify modules of transcription factors regulating modules 
of genes with our global regulatory model from the Waddington-OT software package, described 
in Section Learning gene regulatory models. The optimization begins by specifying the number 
of gene modules, and establishing an initial estimate for each. We used spectral clustering to 
initialize the modules: genes were clustered into 50 sets, with one module corresponding to each 
set, and weights set to 0 for genes outside the set, and 1 for genes within the set. 
 
We then specify a time lag between TF and gene module expression. In order to test for potential 
regulatory interactions on different time scales, we computed global regulatory models with three 
time lags: 6hrs, 48hrs, and 96hrs. This allowed us to identify factors that are predictive several 
days in advance -- for instance, Nanog is a very early predictor of pluripotency and was found to 
be associated with a pluripotency associated gene expression module in the 96 hour model -- as 
well as those predictive on shorter time scales -- for instance, we TFs that are predictive of neural-
associated expression modules in the 6 and 48 hour models, but do not find such predictive TFs in 
the 96 hour model. 
 
Finally, we set regularization and stochastic block size parameters. Default values available in the 
code online were used in this study. Briefly, regularization parameters were tuned on small training 
datasets to enforce sparsity (l1 penalties) and reduce model complexity (l2 penalty) while still 
achieving a good fit (>60% correlation between predicted and observed expression) in training 
data. These parameters may have to be specifically tuned in new datasets. The stochastic block 
size and number of epochs were set according to available hardware resources. 
 
IX. Validation by geodesic interpolation 
 
We validate Waddington-OT by demonstrating that we can accurately interpolate the distribution 
of cells at held out time points. We applied geodesic interpolation (described in Waddington-OT: 
Concepts and Implementation) to our reprogramming data to predict the distribution of cells at 
each time point, using only the data from the previous and next time points. In other words, we 
sought to predict the distribution ℙ#. at time $' from the distributions at neighboring time points: 
ℙ#- and ℙ#l (Figure 2J, S1D-F). To determine a baseline for performance, we examined the 
distance between the two different batches of the held-out distribution.  
 
To compute the optimal transport coupling from ℙ#- to ℙ#l, we used the Waddington-OT package 
with default parameters. For the cost function we compute 30 dimensional local PCA coordinates 
using only the points from time $%and $(. We then embedded the data from time $' into the 30 
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dimensional local PCA space which was computed using only the data from time $%and $(. Finally, 
we use Wasserstein-2 distance to compute distance between point clouds.   
 
We compare the performance of OT to four null models: 

• Null 1 and Null 2: a point cloud is constructed by interpolating with the independent 
coupling. Null 1 uses growth in the interpolation. Null 2 does not use growth.  

• Null 3 and Null 4: the observed distributions from earlier (Null 3) or later (Null 4) time 
points are used as the interpolating point cloud.  

 
To estimate the standard deviation of the quality of interpolation, we interpolate using different 
batches of ℙ#- and ℙ#l.  
 
We investigated the time-scale over which optimal transport accurately recovers temporal 
couplings by interpolating over longer intervals. With 2-day intervals (Figure S1D) we see some 
performance degradation compared to 1-day intervals (Figure 2J). 
 
X. Paracrine signaling  
 
1. Predicting ligand-receptor interaction pairs 
 
To characterize potential cell-cell interactions between contemporaneous cells during 
reprogramming, we first collected a list of ligands and receptors found in the GO database. The 
set of ligands (415 genes) is a union of three gene sets from the following GO terms:  

1) cytokine activity (GO:0005125), 
2) growth factor activity (GO:0008083), and  
3) hormone activity (GO:0005179).  

The set of receptors (2335 genes) is defined by the GO term receptor activity (GO:0004872). Next, 
we used a curated database of mouse protein-protein interactions (Mertins et al., 2017) and 
identified 580 potential ligand-receptor pairs. 
 
First, we defined an interaction score IA;B;X;Y;t as the product of (1) the fraction of cells (FA;X;t) in cell-
set A expressing ligand X at time t and (2) the fraction of cells (FB;Y;t) in cell-set B expressing the 
cognate receptor Y at time t. We define the aggregate interaction score IA;B;t as a sum of the 
individual interaction scores across all pairs: 
 

mR;o;# = p mR;o;S;q;#
r@@	s⋅u	v[wb]

= p xR;S;#
r@@	s⋅u	v[wb]

	xo;q;# 

 
We depicted the aggregate interaction scores for all combinations of cell clusters in Figure 6B, 
S5A.  
 
Second, we sought to explore individual ligand-receptor pairs at a given day and condition between 
cell ancestors of interest. For this purpose we define the interaction score IA;B;X;Y;t as the product of 
(1) the average expression of the ligand X in ancestors at time t of a cell set A and  
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(2) the average expression of the cognate receptor Y in ancestors at time t of a cell set B.  Values 
of the interaction scores IA;B;X;Y;t are high for ubiquitously expressed ligands and receptors at a given 
day and may be nonspecific to a pair of cell ancestors of interest. Thus, we used permutations to 
generate an empirical null distribution of interaction scores. In each of the 10,000 permutations, 
we randomly shuffled the labels of cells and calculated the interaction score Is

A;B;X;Y;t. We then 
standardized each ligand-receptor interaction score by taking the distance between the interaction 
score IA;B;X;Y;t and the mean interaction score in units of standard deviations from the permuted data  
((IA;B;X;Y;t - mean(Is

A;B;X;Y;t))/sd(Is
A;B;X;Y;t)).  

 
We depicted examples of standardized interaction scores ranked by their values in Figure 6C-E 
and S5C-E. Replacement of the average expression of the ligand with the total expression of the 
ligand in the calculation of the standardized interaction score does not affect the results.   
 
2. Testing of Gdf9 effect on reprogramming efficiency 
 
To experimentally test the impact of GDF9 on reprogramming efficiency, we added GDF9 daily 
(at 0, 0.1, 0.5, and 1 µg/ml) to cells grown under serum conditions, beginning at day 8. Samples 
on day 15 were assessed for the number of Oct4-GFP positive colonies and collected for bulk 
RNAseq (Moll et al., 2014 ) and scRNAseq (10X genomics), in three biological replicates. 
 
Bulk RNAseq data were analyzed as follows: reads (83 bp) were aligned to the UCSC mm10 
transcriptome, and a matrix of read counts was obtained using the QuantSeq processing pipeline 
(http://rpubs.com/chapmandu2/171024) with the reference genome sequence and gene annotations 
(GTF file) from the Cellranger 10X Genomics pipeline (v2.0.0) 
(https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/installation). Bulk RNAseq data were used to compute the 
ratio of iPSC signature scores to the sum of signature scores of other major cell types (iPSC, 
trophoblast, neural, epithelial and stromal) in each sample (Figure 7E).  
 
Single-cell RNAseq data were analyzed as follows: reads were aligned and processed as described 
in “Section IV: Preparation of expression matrices” and cells in which fewer than 1,000 genes 
were detected were filtered out, yielding 47,540 cells for further analysis. We assigned cells to the 
major cell sets (iPSC, trophoblast, neural, epithelial and stromal) by clustering and annotation with 
gene signature scores. (To remove batch effects, we used tools in Seurat (Butler et al., 2018).) 
Cell-type proportions are shown in Figure 7F, S6H,I.  
 
XI. Classification of differential genes along the trajectory to iPSCs 
 
To identify differential genes along the successful trajectory to iPSCs we computed the average 
expression (TPM) of all 19,089 genes in ancestors of iPSCs. The average expression values were 
log2 transformed and we filtered out genes for which the difference between maximal and 
minimal expression value between day 0 and day 18 is less than 1, leaving 2311 genes for further 
analysis. The genes were classified into 15 groups by k-means clustering as implemented in the R 
package stats. To identify the number of clusters we applied a gap statistic (Tibshirani et al., 2001) 
using the function clusGap from R package cluster v2.0.6.  
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We performed functional enrichment analysis on the identified gene clusters using the findGO.pl 
program from the HOMER suite (Hypergeometric Optimization of Motif Enrichment, v4.9.1) 
(Heinz et al., 2010) with Benjamini and Hochberg FDR correction for multiple hypothesis testing 
(retaining terms at FDR < 0.05). All genes that passed quality-control filters were used as a 
background set.  
 
XII. Identifying large chromosomal aberrations 
 
We have previously developed methods to identify copy number variations (CNVs) in scRNA-seq 
data from tumor samples (Patel et al., 2014; Tirosh et al., 2016). That analysis differed from our 
current study in two key aspects: (1) the data were based on full length scRNA-seq (SMART-
Seq2), and sequenced to greater depth in each cell, and (2) there we could rely on the clonal 
expansion of CNVs to make it easier to identify recurring chromosomal aberrations.  
 
We performed three types of analysis to detect aberrant expression in large chromosomal regions. 
First, we searched for cells with significant up- or down-regulation at the level of entire 
chromosomes. Second, we ran a coarse analysis to identify cells with significant net aberrant 
expression across windows spanning 25 broadly-expressed genes. Focusing on regions that were 
enriched for cells with significant aberrations found by this coarse filter, we then performed a more 
sensitive test to compute the significance of aberrations in each window in each cell. 
 
Empirical p-values and false discovery rates (FDRs) were computed by randomly permuting the 
arrangement of genes in the genome, as described below. In each of 100,000 permutations we 
randomly shuffle the labels of genes in the entire dataset, while preserving the genomic coordinates 
of genes (with each position having a new label each time) and the expression levels in each cell 
(so that each cell has the same expression values, but with new labels). We then compute either 
whole chromosome or subchromosomal aberration scores for each cell. 
 
To identify whole-chromosome aberrations scores in each cell, we begin by calculating the sum 
of expression levels in 25Mbp sliding windows along each chromosome, with each window sliding 
1Mbp so that it overlaps the previous window by 24Mbp. For each window in each cell, we then 
calculate the Z-score of the net expression, relative to the same window in all other cells. We then 
count the fraction of windows on each chromosome with an absolute value Z-score > 2. This 
fraction serves as the whole-chromosome aberration score for each chromosome in each cell. To 
assign a p-value to the whole-chromosome score for cell(i) chromosome(j), we calculate the 
empirical probability that the score for cell(i) chromosome(j) in the randomly permuted data was 
at least as large as the score in the original data.  
 
Subchromosomal aberration scores were computed as follows. We begin by identifying the 20% 
of genes with the most uniform expression across the entire dataset. This is done by calculating 
the Shannon Diversity yz∑ {|} UV{|}|  for each gene g (where 1~�  is the expression matrix as defined 
above in Preparation of expression matrices), and taking the 20% of genes with the largest 
values. Using these genes, we subset the expression matrix and renormalize by TPM, and then 
compute in each cell the sum of expression in sliding windows of 25 consecutive genes, with each 
window sliding by one gene and overlapping the previous window (on the same chromosome) by 
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24 genes. In each window, we calculate the Z-score relative to all cells at day 0. The net (coarse 
filter) subchromosomal aberration score for a cell is calculated as the l2-norm of the Z-scores 
across all windows. To assign a p-value to the subchromosomal aberration score for cell(i), we 
calculate the empirical probability that the score for cell(i) in the randomly permuted data was at 
least as large as the score in the original data. 
 
Finally, to identify the specific region(s) of genomic aberrations in each cell, we conduct a more 
sensitive test using just the cells in the stromal and trophoblast regions. Again using 25 
housekeeping gene windows, we compute the average z-score of gene expression for genes in each 
window in each cell. We then compare the scores in all windows in all cells to similar scores 
computed for each cell in 100,000 random permutation trials, and then assign p-values based on 
the frequency of extremely high (gain) or low (loss) expression values. 
 
For each of the aberration scores and associated p-values described above, we controlled for 
multiple hypothesis testing by calculating FDR q-values, using a false discovery threshold of 10%. 
 
We tested the sensitivity and specificity of our method using labeled data from Tirosh et al 2016 
(Figure S4C). 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  
 
I. Analyzing the stability of optimal transport 
 
To test the stability of our optimal transport analysis to perturbations of the data and parameter 
settings, we downsampled the number of cells at each time point, downsampled the number of 
reads in each cell, perturbed our initial estimates for cellular growth and death rates, and perturbed 
the parameters for entropic regularization and unbalanced transport. We found that our geodesic 
interpolation results are stable to a wide range of perturbations, summarized in the following table: 
 
Number 
of cells 
per batch 

Number 
of UMIs 
Per cell 

Max  
Growth 
NÄÅÇ 

Min 
Growth 
NÄÉÑ 

Max 
Death 
PÄÅÇ 

Min 
Death 
PÄÉÑ 

Entropy 
regularization 

h 

Unbalanced 
transport 

i 

Down to: 
200 

Down 
to: 
1000 

33 hrs  
to 
5.5 hrs 

None 
to 
9.5 hrs 

33 hrs  
to 
5.5 hrs 

None 
to 
9.5hrs 

5 × 10zÖ 
to 
0.5 

 0.1 
 to  
 32 

 
To generate this table, we ran geodesic interpolation with all but one of these settings fixed to 
default values. The default parameter values that we used are:  
h = 0.05, i% = 1, i' = 50, NQRS = 1.7, PQRS = 1.7, NQcd = 0.3, PQcd = 0.3. 
Moreover, by default we use all reads per cell and all cells per batch. 
 
II. Benchmarking: comparing to other trajectory inference methods 
 



 53 

We compared Waddington-OT to other trajectory inference methods. While many algorithms have 
been proposed to recover trajectories from single cell RNA-seq data, Waddington-OT is unique in 
its ability to model cellular growth, death and development over time. The benchmarking results 
below demonstrate that these features are crucial for accurate analysis: the other approaches 
considered fail in key respects because they do not leverage measured information about time, or 
because they do not model cellular growth and death rates.    
 
1. Categorizing single cell trajectory inference methods 
 
We comprehensively reviewed 62 methods — consisting of 59 methods noted in the recent review 
by Saelens et al 2018, plus three more recent methods: FateID (Herman et al., 2018), STITCH 
(Wagner et al., 2018), and URD (Farrell et al., 2018). 
 
The methods fall into four categories: 

(1) methods that are not applicable to developmental time courses with scRNA seq— because 
they do not handle branching trajectories or apply only to systems at equilibrium; 

(2) methods that do not use information about the time of collection; 
(3) methods that use information about time of collection, but do not model cell growth rates 

over time;      
 

From each category, we selected several of the best (most widely used) methods and applied them 
to our data.  
 
Category Defining feature Number in 

category 
Methods tested 

Category 
1 

Not applicable to  
developmental time courses 

33 None 
(because not applicable) 

Category 
2 

Does not use information  
about time of sampling 

25 FateID, URD, Approximate 
Graph Abstraction, Monocle2 

Category 
3 

Uses information about sampling 
time, but does not model growth 

4 STITCH, GPfates, scDiff 

  
We describe the performance: 
         Category 1. (33 methods). These methods cannot be used to analyze developmental time 
courses. 

Category 2. (25 methods). All the tested methods in category 2 produce trajectories that 
are inconsistent with the time course, make huge leaps across time points and in some cases go 
backward in time in the sense that late time point cells are inferred to be at early time point. 
For example, Monocle2 produces trajectories with highly inconsistent temporal ordering — with 
Day 0 cells giving rise to Day 18 cells, which then give rise to Day 8 cells.  
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Category 3. (4 methods). All of the tested methods in category 3 are thrown off by the 
much higher growth rate of certain cell types (e.g., iPSCs) than others (e.g., apoptotic stromal 
cells). In order to account for the increase in iPSCs, the methods infer that a large fraction of 
apoptotic stromal cells must transition to iPSCs. 

In addition, two of the methods (GPfates, scDiff) produced trajectories to incoherent final 
destinations (that is, sets composed of mixtures of radically different cell types). 
          
  
2. Benchmarking details 
 
2.1 Category 2 results 
 
Monocle2. This program (Qiu et al., 2017) computes a graph embedding of scRNA-seq data. 
Applied to our data, Monocle2 produces a graph consisting of 5 segments (Figure S7A). The 
trajectories are problematic in several respects. First, the trajectories disagree with known 
information about time. For example, they put day 18 Stromal cells together with Day 0 MEFs at 
the root of the tree (Branch 1). This gives rise to a branch (Branch 3) consisting of a group of cells 
spanning days 1.5 to 8 that give rise to a subsequent branch (Branch 4) consisting of a group of 
cells from day 4 – 9. So, the progression is out of order (with day 18 cells giving rise to day 8 cells 
which then give rise to day 4 cells). Second, Monocle2 fails to distinguish iPS, Neuronal, and 
Trophoblast fates as distinct destinations: these populations are all assigned to a common branch 
(Branch 5). These problems appear to be due to the fact that the method does not leverage known 
information about time, and because its fully unsupervised approach does not identify meaningful 
cell sets in the data. 
 
URD. This program (Farrell et al., 2018) computes a tree connecting a set of root cells to a set of 
terminal destinations by performing a large number of random walks. Applied to our data (40,000 
serum cells, 1,000 per timepoint) with Day 18 iPSCs, Stromal, Neural, and Trophoblasts as 
terminal destinations, URD inferred a tree consisting of 7 segments (Figure S7B). The trajectories 
are problematic in several respects. First, fates are determined unreasonably early: the trophoblast 
lineage is specified by day 0.5 and all branches are specified by day 2. Second, URD predicts that 
the Neural and iPS lineages arise from Stromal cell set, which is unlikely because the Stromal 
population expresses signatures of senescence and apoptosis. Third, URD fails to assign over half 
of all cells to any trajectory. Over 85% of cells from days 4 through 8 are not assigned to any 
trajectory (96% of cells from day 6 and 94% from day 7). These problems appear to arise due to 
the failure to incorporate temporal information and to model rates of cellular growth and death. (It 
might be possible to modify the random walks of URD to account for this). 
 
FateID. This program (Herman et al., 2018) takes as input a set of terminal destinations and 
computes a “fate-bias probability” for each cell by iteratively classifying cells with a random-
forest classifier. When we applied it to our data (2i conditions), FateID showed serious problems 
with the trajectories (Figure S7C). First, the fates of iPSCs, Trophoblast, and Stromal remain 
divergent through the beginning of the time-course (cells do not seem to share a common ancestor 
at day 0). Second, the trajectories are inconsistent with the temporal information in the sense that 
trajectories essentially skip over time points. For example, the Stromal trajectory effectively leaps 
over days 3 through 5, and the iPSC and Stromal trajectories do not contain any cells on day 0. 
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These behaviors are likely due to the fact that FateID does not leverage time-course information 
in its present formulation. (It might be possible to modify FateID to connect individual pairs of 
time-points, as in our optimal transport approach).  
 
Approximate graph abstraction. This program (Wolf et al., 2017) connects clusters to identify 
a graphical representation of trajectories. We ran the method to connect 65 clusters in our data (2i 
conditions). The clusters are visualized in the left pane of Figure S7D and the connections inferred 
by AGA are in the right pane below. The program yielded trajectories that are clearly inconsistent 
with the temporal information – for example, with cells of day 0 (cluster 1) going directly to late-
stage Stromal cells at days 14 through 18 (clusters 63 and 58). In addition, AGA infers extensive 
transitions from the Stromal region to the iPSC region; this is not biologically plausible because 
the Stromal cells express strong senesce programs. These problems appear to arise due to the 
failure to incorporate temporal information and to model rates of cellular growth and death. 
 
2.2 Category 3 results 
 
STITCH. This method was developed by (Wagner et al., 2018), in an application to zebrafish 
embryonic development. The method constructs a k-NN graph within the cells at each time point 
and then stitches these together by connecting various cells from adjacent time points. Figure S7E 
shows the resulting graph when applied to our reprogramming data (2i conditions). The STITCH 
graph shows iPSCs are largely arising from the Stromal region (that is, the majority of edges 
connecting to the iPSC region come from the Stromal region). This inference is biologically 
implausible, as the Stromal cells express strong signatures of senescence and apoptosis. This 
method appears to fails on our data because it does not model the rapid proliferation of iPSCs — 
and thus concludes that iPSCs at later time points must come from other sources. (It might be 
possible to modify STITCH to incorporate cell growth by connecting each cell to a different 
number of neighbors, based on an estimate of growth).  
 
scDiff. This method (Rashid et al., 2017) produces a tree of clusters by clustering cells at each 
time point, moving cells between time points to account for asynchronicity, and assigning to each 
cluster a single parent cluster. Applied to our data (serum conditions), the method fails to identify 
iPS, Neural, Trophoblast and Stromal as coherent categories. It produces a tree with 54 leaves, 
only 4 of which consist of day 18 cells. Some of the leaves consist of day 2 cells. The method 
appears to fail on our data because its fully unsupervised approach fails to identify meaningful cell 
sets. 
 
GPfates. This method (Lönnberg et al., 2017) identifies trajectories by fitting a mixture of 
Gaussian processes to model a set of branching trajectories over time. Applied to our data (2i 
conditions), GPfates identifies trajectories to incoherent locations (Figure S7F). Multiple 
trajectories lead to cells sets containing both iPS and Stromal cells. This implies that iPSCs have 
significant ancestry in the Stromal region, where apoptotic and senescent programs are highly 
expressed. The method appears to fail on our data because its fully unsupervised approach does 
not identify meaningful cell sets and it does not model cell growth. 
 
III. Sampling bias 
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In principle, sampling bias could be introduced in sample preparation (in which trypsinized cells 
are filtered to remove clumps prior to encapsulating the single cell suspension) or in single cell 
library preparation. To determine whether the proportion of cell types observed in our single-cell 
data accurately reflected the proportion of cell types in the biological sample, we performed two 
experiments.  
 
First, we examined the effect of the filtering process by comparing bulk RNA-seq profiles of 
material collected before and after filtering. Samples were collected in triplicate at days 4, 8, 12, 
14, and 16 in serum and 2i conditions. To test the effect of filtering, we compared the correlations 
between groups (prefiltered and post-filtered) to the variation within each group. We observed that 
the pre- and post-filtered samples were indistinguishable at all time-points, with the exception of 
day 16 in serum conditions (for which the pre- vs. post- correlation is lower than the pre- vs. pre- 
correlation and the post- vs. post- correlation.  
 
Second, we examined the effect of the overall process, including both sample and library 
preparation. We collected bulk RNA-seq profiles directly from cells in the plate on days 12 and 
16 in both 2i and serum (4 profiles). We compared these profiles to additional scRNA-seq data 
collected in singlicate at these days and conditions, as well as to the scRNA-seq data collected in 
duplicate in our main experiment (12 profiles, of which one was discarded as discordant with all 
of the time points in our main experiment). We examined whether the cell type proportions in the 
single-cell data were consistent with the bulk RNA-seq profile, based on gene signatures of each 
cell type. The results were consistent at all time-points, with the exception of day 16 in serum 
conditions (at which trophoblasts appear to be underrepresented by ~3-fold in the single-cell data). 
 
To test whether such an underrepresentation of trophoblasts at day 16 in serum conditions would 
have an effect on our inferred trajectories, we reweighted the empirical distributions in our optimal 
transport framework and repeated our analyses. Because the reprogramming process was 
essentially complete by day 16, the reweighting had no impact on any of our biological conclusions 
(and had no significant on the optimal transport results apart from slightly increasing transitions 
to stromal cells from day 16 to day 18).  
 
IV. Pilot study 
 
In our pilot study, we collected 65,000 expression profiles over 16 days at 10 distinct time points 
(and 9 in serum). We compare results from the larger study to the pilot study in Figure S1B,C, 
where we show trends in expression along trajectories to each major cell set: iPSCs, Neural-like, 
Trophoblast-like (placenta-like in pilot), and Stromal. We find that the expression trends are 
reasonably similar. Moreover, by comparing the ancestor divergence plots for the two studies, we 
find that in both studies the stromal population gradually diverges early in the time course and 
there is a sharp divergence of iPSC from Neural and Trophoblast just after removal of Dox at day 
8.  
 
DATA AND SOFTWARE AVAILABILITY  
 
We have uploaded our data to NCBI Gene Expression Omnibus. The identification number is: 
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Single cell RNA-seq raw data GSE122662 
 
Our data is also available on the Broad Single Cell Portal: 
 
https://portals.broadinstitute.org/single_cell/study/optimal-transport-analysis-of-ipsc-
reprogramming 
 
Our software package is available on GitHub: 
 
https://github.com/broadinstitute/wot 
 
ADDITIONAL RESOURCES  
 
We have developed an interactive software package complete with simulated examples and 
tutorials: 
https://broadinstitute.github.io/wot/ 
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Supplemental Information 

 
SUPPLEMENTAL FIGURE LEGENDS 
Figure S1. Related to Figure 2: Validation, stability, and comparison to pilot study. 
(A) Bright field images of day 2 (Phase1-(Dox)), day 4 (Phase1-(dox)) and day 18 cells during 
reprogramming in (Phase-2(2i)) and (Phase-2(serum)) culture conditions. BF (bright field). GFP 
(Oct4-GFP). (B-C) Comparison to pilot dataset. (B) Trends in signature scores along ancestor 
trajectories to iPSC, Stromal, Neural, and Trophoblast cell sets. Trends for the pilot dataset are 
shown with open circles and trends for the large dataset are shown with solid lines. (C) Shared 
ancestry results for pilot dataset (solid lines) and for the larger dataset (dashed lines). (D,E,F) 
Validation by geodesic interpolation for serum conditions over 2-day intervals (D), for 2i over 1-
day intervals (E). As in Figure 2J (which shows serum over 1-day intervals), the red curve shows 
the performance of interpolating held-out time points with optimal transport. The green curve 
shows the batch-to-batch Wasserstein distance for the held-out time points, which is a measure of 
the baseline noise level. The blue and teal curves show the performance of two null models: 
interpolating according to the independent coupling including growth (blue) or without growth 
(teal). (F) Validation by geodesic interpolation for serum conditions over 1-day intervals with 
alternate null models. The purple curve shows the distance between the third time point and the 
middle time point, and the orange curve shows the distance between the first time point and the 
middle time point. (G,H,I) Unbalanced transport can be used to tune growth rates. (G) When the 
unbalanced regularization parameter is large (i =16), growth constraints are imposed strictly, and 
the input growth (x-axis; determined by gene signatures- see STAR Methods) is well-correlated to 
the output growth (y-axis; implicit growth rate determined from the transport map). (H) When the 
unbalanced parameter is small  (i =1), the growth constraints are only loosely imposed, allowing 
implicit growth rates to adjust and better fit the data. (I) The correlation of output vs input growth 
as a function of i.  
 
Figure S2. Related to Figure 3: Divergence of Stromal and MET fates during the initial stages 
of reprogramming. 
(A) Cells from the stromal region were re-embedded by FLE, and scored for signatures of long-
term cultured MEFs (left) or stromal cells in the embryonic mesenchyme (right) found in the 
Mouse Cell Atlas. (B) Day 0 MEFs (D0; black dots) we re-embedded together with cells from the 
stromal set (red dots) in a TSNE plot. (C) The Stromal region is a terminal destination as evidenced 
by (1) the large flow of cells into the region around day 9 (green spike, first and second panels) 
and (2) essentially zero flow out of the region (blue curves, first and second panels). By contrast, 
the MET region is a transient state as evidenced by the blue curves in the right two panels showing 
significant transitions out of MET. (D) Fut9+ and Shisa8+ expression patterns visualized in a fate-
divergence layout. Each dot represents a single cell, colored by expression of either Fut9 (left) or 
Shisa8 (right). The x-axis shows time of collection and the y-axis shows the log-likelihood ratio 
of obtaining MET vs Stromal fate, as predicted by optimal transport. (E) Ectopic OKSM 
expression levels are predictive of MET fate. The y-axis shows correlation between OKSM 
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expression and the log-likelihood of obtaining MET fate. Color (red vs blue) distinguishes the two 
batches at each time point (x-axis).  
 
Figure S3. Related to Figure 4: iPSCs. 
(A) False discovery rate q-values for expression of 2 cell signatures on iPSC-specific FLE. (B) 
Heatmap showing trends in expression of 1479 variable genes (STAR-Methods) along the ancestor 
trajectory to iPSCs. Color indicates fold-change in expression relative to day 0 (white). Each row 
shows the mean expression trend for a single gene, where the mean is computed with respect to 
the ancestor distribution. Genes are clustered into groups with similar trends. Terms on the right 
indicate significant gene set enrichment (GSEA, all adjusted p-values < 0.01) in one of several 
databases (M, MSigDB; BP, GO biological process; W, WikiPathways; C, chromosome; CC, GO 
cellular component).  
 
Figure S4. Related to Figure 5: Trophoblast and Neural subtypes. 
(A) Expression of individual marker genes (red color bars, log(TPM +1); see also Table S2) for 
each subtype on the trophoblast FLE (as in Figure 5C). TP, trophoblast progenitors; SpA-TGC, 
spiral artery trophoblast giant cells; SpTB, spongiotrophoblasts; LaTB, labyrinthine trophoblasts. 
(B) Cells with a gene signature of extra-embryonic endoderm (XEN) arise in a single batch on day 
15.5 (red color bar, average z-score). (C) Performance of CNV inference. Shown are precision and 
recall precision and recall at an FDR of 10% (intersecting red lines) for our CNV inference in 
published scRNA-Seq data that include annotated, clonal CNVs. (D-F) Cells in the neural region 
were re-embedded by tSNE and annotated with various features. (D) Marker gene expression (red 
color bar, log(TPM + 1)) of neural subtypes on the neural tSNE. OPC refers to oligodendrocyte 
precursor cells. (E) Cells with significant expression (black dots) of indicated signatures from the 
Allen Mouse Brain Atlas on the neural tSNE at an FDR of 10%. (F) Cells in the neural region 
present from days 12.5-14.5 (left) or days 17-18 (right). 
  
Figure S5. Related to Figure 6: Temporal patterns of paracrine signaling.  
(A) Temporal pattern of the net potential for paracrine signaling between contemporaneous cells 
in 2i condition. Each dot represents the aggregated interaction score across all ligand-receptor pairs 
for a given combination of clusters from (B) (see STAR Methods for details). (B) Cell clusters 
determined by Louvain-Jaccard community detection algorithm. (C-E) Changes in the 
standardized interaction scores for top ligand-receptor pairs between ancestors of stromal cells and 
ancestors of iPSCs (C), neural-like cells (D), and trophoblast cells (E).  
 
Figure S6. Related to Figure 7: Impact of Obox6 + and GDP9 on reprogramming 
(A-C) Log-likelihood ratio of obtaining iPSC vs non iPSC fate on each day (x-axis) in serum. 
Obox6+ cells in red. (D) Percentage of Oct4-EGFP+ cells at day 16 of reprogramming from 
secondary MEFs by lentiviral overexpression of Oct4, Klf4, Sox2, and Myc (OKSM) combined 
with either Zfp42, Obox6, or an empty control, in either 2i or serum conditions. Oct4-EGFP+ cells 
were measured by flow cytometry. Plot includes the percentage of Oct4-EGFP+ cells in three 
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biological replicates (for Zfp42 and Obox6 overexpression, or an empty control) from five 
independent experiments (Exp). (E, F) Number of Oct4-EGFP+ colonies at day 16 of 
reprogramming from primary MEFs by lentiviral overexpression of individual Oct4, Klf4, Sox2, 
and Myc combined with either Zfp42, Obox6, or an empty control in (E) 2i and (F) serum 
conditions. Plot includes the number of Oct4-EGFP+ cells in three biological replicates (for Zfp42 
and Obox6 overexpression, or an empty control) from two independent experiments (Exp). (G) 
The number of Oct4-EGFP+ cells at day 15 of reprogramming from four independent experiments 
(Exp) where mouse recombinant GDF9 were added at three different concentration. (H,I) Impact 
of GDF9 on cell proportions. (H) tSNE of day 15 cell profiles collected in serum condition 
supplemented with GDF9 (1 µg/ml) and controls from four independent experiments. Cells are 
colored by five cell sets by graph-clustering. (I) Proportion of cells from each cluster in (H) in 
each experiment. 
 
Figure S7. Related to Figure 2: Benchmarking analysis 
(A) Monocle2 computes a graph upon which each cell is embedded. The graph, which consists of 
5 segments, is visualized in the upper-left pane. The 5 segments are visualized on our FLE in the 
5 remaining panels of (A). Segment 1 (green) consists of day 0 cells together with day 18 Stromal 
cells. Segments 2 and 3 consist of cells from day 2 - 8 that supposedly arise from Segment 1 cells. 
Segment 3 gives rise to Segments 4 (purple) and 5 (red). Segment 4 contains the cells we identify 
as on the MET region and Segment 5 contains the iPSCs, Trophoblasts, and Neural populations, 
which Monocle2 infers come directly from the non-proliferative cells in segment 3. (B) The URD 
tree is displayed in the first panel, and the 7 segments are numbered and color coded. Each 
remaining panel displays the cells from a single segment on the FLE. Segment 1 (magenta) 
contains the day 0 MEF cells. The first bifurcation occurs on day 0.5, where segment 2 (consisting 
of day 0.5 cells) splits off from segment 3 (consisting of day 12-18 Stromal cells). Segment 2 splits 
to give rise to Segment 4 (consisting of day 2 cells) and Segment 5 consisting of day 12-18 
Trophoblasts and Epithelial cells. Segment 4 splits on day 3 to give rise to Segment 6 (consisting 
of a diverse population including day 3 cells and day 14-18 iPSCs) and Segment 7 (consisting of 
a diverse population including day 3 cells and day 12-18 Neural-like cells). (C) The fate bias 
probabilities computed by FateID visualized on our FLE. Color: fate bias probability in barycentric 
coordinates. Pure green falls near the Trophoblast vertex in the triangular legend and represents 
100% chance of Trophoblast fate, while teal, which falls on the edge of the triangle between 
Trophoblast and Stromal, represents 50% likelihood for each of these two fates and 0% for iPSC. 
Black points (at the center of the barycentric triangle) have an equal chance of obtaining any of 
the three fates. Note that bright green and red colors exist before day 8, indicating early fate 
specification, and note that Day 0 is essentially all blue but there are essentially no blue cells near 
day 3.5. (D) Our clusters are visualized on the left and the graph computed by Approximate Graph 
Abstraction is on the right. Note that cluster 1 connects to cluster 58. (E) The STITCH graph 
visualized on our FLE. Cells are colored by time of collection and edges of the STITCH graph are 
indicated with lines connecting cells. An abundance of edges connects the Stromal region to the 
iPSC region. (F) The 3 trajectories inferred by GPfates. Trajectories 2-3 all terminate in both the 
Stromal and iPSC region. 
  
 

















 61 

 
Supplemental Tables  
Table S1: Summary of single cell sequencing statistics and sample information.   
Table S2: List of genes comprising gene signatures.   
Table S3: Differential genes between top ancestors of MET vs. top ancestors of stromal cells.   
Table S4: List of genes for 15 groups of genes along the successfully reprogrammed trajectory 
reported in Figure S3B   
Table S5: Potential ligand-receptor pairs between stromal cells and iPSCs, neural-like cells, and 
trophoblast cells ranked by standardized interaction scores. 
Table S6: Categorization of single cell trajectory inference methods. 
 
Supplemental Movie  
Movie S1: Visualizing the flow of cells through time in the FLE.   
 
 
 
 
 
 
 
 


