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We consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of
ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with
both attractive and repulsive interactions, and solve the Tolman-Oppenheimer-Volkoff equations to find

equilibrium sequences and maximum masses of ADM stars. Gravitational wave searches can utilize our
solutions to model exotic compact objects (ECOs). Our results for attractive interactions differ substantially
from those in the literature, where fermionic ADM with attractive self-interactions was employed to

destabilize neutron stars more effectively than noninteracting fermionic ADM. By contrast, we argue that

fermionic ADM with an attractive force is no more effective in destabilizing neutron stars than fermionic

ADM with no self-interactions.

DOI: 10.1103/PhysRevD.99.083008

I. INTRODUCTION

Work on hidden sector dark matter has exploded over
the last decade [1]. One conclusion of this work is that
even modest extensions of the standard paradigm of dark
matter—as a single, stable, weakly interacting particle
coupling only via Standard Model forces—to include the
dynamics of dark forces can easily change the cosmology,
astrophysics, and terrestrial signatures of the dark sector
[2]. A leading example of this is theories of asymmetric
dark matter (ADM), where coupling to dark forces arises
naturally as a means to annihilate the symmetric abundance
of dark matter [3—6], similar to the annihilation of electron-
positron pairs to photons in the early Universe. When dark
forces are present, the cosmology of dark matter (DM) is
generically modified due to self-interactions [4,7-12].

When dark ADM forces are sufficiently strong and
attractive, bound states can form, similar to the formation
of nuclei in the Standard Model [13-15]. If the dark sector
simultaneously lacks a repulsive long range force (the
analogue of the photon), very large states—nuggets—are
generically synthesized [13,16-19].

The same dynamics that leads to nugget formation in the
early Universe can also lead to the formation of ADM stars
in the late Universe, via condensation arising from radiation
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of dark force mediators or small nugget fragments [19].
Self-interacting or not, ADM may also collect in neutron
stars. If the ADM is a scalar particle, a black hole can form,
destroying the parent neutron star [20-27]. If the ADM is a
fermion, Fermi degeneracy pressure tends to stabilize the
ADM, though in principle attractive self-interactions can
help to overcome degeneracy pressure.

The primary results in this paper are a self-consistent set
of mass-radius relationships and stability bounds of exotic
compact objects (ECOs) comprised of fermionic ADM
with attractive and/or repulsive self-interactions. We also
consider the impact of such fermionic ADM on neutron star
stability. We focus on a model with a single stable Dirac
spin-1/2 fermion, X, as the dark matter candidate, with
attractive self-interactions mediated by a real scalar, ¢, and
repulsive self-interactions by a vector, V#':

_ 1 1
L =X[ip — gvV — (mx — g4)]X _Zvﬁu +§m%/Vﬁ

30,00~ m3 ) - V(@) (1)

We solve the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions for this theory to determine the stability against
gravitational collapse. We will argue that for ECOs
composed of fermionic constituents with arbitrary self-
interactions, the smallest maximum stable ECO size for a
given mass scale per constituent, my, is approximately

"The choice of the signs on gy and gy make (¢) and (V°)
positive when gy and g, are positive.
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realized in this model when only a scalar mediator with
negligible potential is present. Then we will see that this
minimum is of the same order of magnitude as Landau’s
estimate for Fermi degeneracy supported matter: N, ~
Mlil/m%v M pax ~ Mlél/mg( [28].

We find in particular that spin-1/2 ADM with an
attractive force never collapses neutron stars (NSs) over
their lifetime in our Universe unless (perhaps) the fermionic
constituents are heavier than order 10° GeV. This means
that fermionic ADM with an attractive force does not in
general solve the missing pulsar problem [29-31], have
limits from imploding NSs [32], or lead to nonprimordial
solar mass black holes [33]. We also find a different
equilibrium sequence for stars made of self-attractive
ADM than derived elsewhere [34]. The most important
difference between our work and previous treatments is use
of a fully consistent equation of state (EoS), instead of
utilizing a Yukawa potential valid only in the nonrelativistic
and low-density limit in the case of scalar-mediated
interactions. The difference only becomes apparent at high
densities, where the self-consistent EoS guarantees that the
effective Dirac mass for the fermion, sourced by the scalar
field binding the nuggets, asymptotes to a constant value
and makes a positive contribution to the energy density (see
e.g., Ref. [35] and references therein).2 This crucially
changes both the impact on NS stability and the ADM
star equilibrium sequence. Our fully relativistic treatment
extends to a fully general relativistic treatment of ECOs
composed of two possibly interacting but separately con-
served constituents—in our case baryonic matter and
fermionic ADM.

The potential structure and stability of fermionic dark
matter ECOs [34,36] and of ADM-admixed NSs [37-43]
has been examined before, and there has been renewed
interest in such objects in the context of gravitational wave
observations [44-50]. This work gives a comprehensive
account of the effect of interactions, including the first
correct treatment of attractive self-interactions that cause
binding, and baryon-ADM interactions in the case of
admixed stars.

The outline of this paper is as follows. In Sec. I we
specify and interpret the EoS for spin-1/2 dark matter with
attractive and/or repulsive scalar- and/or vector-mediated
self-interactions. In Sec. III we find and interpret the
sequence of gravitationally stable stars composed of such
matter. Then in Sec. IV, employing results from the
previous section, we argue that ADM with spin-1/2
constituents smaller than about 10° GeV cannot collapse
NSs, regardless of whether the constituents are self-
interacting. Finally, in Sec. V we conclude. Appendix A
explains nongeneric features of ADM at the cusp of being

*The EoS derived from the Yukawa potential is identical to the
fully relativistic EoS in the vector-mediated case but not in the
scalar-mediated case.

self-bound. Appendix B lays out the general relativistic
equations appropriate for determining structure and gravi-
tational stability of static stars composed of multiple
separately conserved, possibly interacting, components.
It details methods we used to obtain numerical solutions
that confirm the less technical arguments presented
in Sec. IV.

II. EQUATION OF STATE FOR
SELF-INTERACTING SPIN-1/2 ADM

The EoS for fermionic matter described by Eq. (1) is
given by [35,51-54]

4 2 6
my % z(kF/mX)
=X AP W)+ 2 )
‘T3 <2C<2,§“L @)+ 6=
kp/m
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0
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with @; = g7 /4n, kp the X Fermi momentum, W(p)=

% V(mxp/g,), and ¢ = g,(¢)/my is defined through the
transcendental equation

7} ki /my 1- [
a +Wi(p) =3 X

The effective Dirac mass [cf. Eq. (1)] is m, = mx(1 — ¢)
Pk _ kg
(27)° 7 32*
The equations above assume zero temperature, though
generalization to nonzero temperature is straightforward
and has been worked out in the context of the o-w model
(see e.g., Refs. [35,54]). The equations are derived in the
mean field limit, where scalar and vector fields are
approximated by their mean values. Additionally, the mean
fields are assumed to be static and spatially uniform. This
last assumption is inconsistent with solutions to the general
relativistic equilibrium equations when order one variations
in star density occur over length scales comparable to or
smaller than the force range, 1/mg, 1/my. For example,

with Ci fixed, the approximation breaks down in the
decoupling limit, a;, — 0. We explored the transition where

dx. (5)

and the number density is given by n =2 [’ kr
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spatial uniformity breaks down for self-bound matter
in Ref. [15].

Equations (2) and (3) are related through the thermo-
dynamic relation

__E __8(6/11)_%”_ =un—e, (6)
P= V|sy  O(1/n)  on cH '

where y = % is chemical potential. Note that rest energy
per constituent, ¢/n, is necessarily minimized when p = 0.
For large enough attractive interactions, there are solutions
where p = 0, a_f; > 0, and the binding energy per particle is
positive (my — e/n > 0), meaning that large stable self-
bound states exist, elsewhere called nuggets [14,15,18,19].

Figure 1 shows the rest energy per particle as a function of
number density for C3 = 0.5, 10, C3, = 0,and V(¢) = 0, as
computed from Eq. (2) by solving the equation of motion for
the scalar field in Eq. (5). The solid and dotted lines show
Eq. (2) while the “semi-relativistic”” dashed lines show the
energy computed assuming € = €y;, + €y with potential
energy given by the nonrelativistic expression ey =
—gnlay [ [ €SI dPFd T /vol, with indices i and j run-

T

ning over particles, and ey, = 2 [* \/k* + m% (‘21% as was
done explicitly or implicitly in Refs. [29-34], for example.
As number density grows and the constituents grow
more relativistic, the fully relativistic and semi-relativistic
expressions diverge. Were it correct, the semi-relativistic
expression would imply that self-attractive ADM is micro-
scopically unstable such that the energy per constituent
becomes negative at high density and is unbounded below.
By contrast, the fully relativistic expression for energy per
constituent remains positive but can develop a local or global
minimum at nonzero density. This happens because Fermi
pressure overcomes the attractive force at high density and
the pressure grows again. More specifically, as density
grows, (¢) grows, initially decreasing pressure, but simul-
taneously decreasing the effective Dirac mass, accelerating
the growth of Fermi degeneracy pressure.

For Cj > 1.09 there is a global minimum in ¢/n, with

energy per constituent at this minimum less than my
(the value at n = 0), indicating the existence of large stable
bound states, or nuggets,3 that form without the aid of
gravity through a fusion process. This situation is shown in
the Ci =10 curve in Fig. 1. The dotted curve lies in a

density region with mostly negative pressure, representing
the instability of ADM to condensation into large, dense
nuggets by a fusion process—the matter goes through a
burning and cooling stage before hitting a point where a
zero-temperature description is again applicable. The exact
evolution of the process is beyond the scope of this paper

*For large enough €2, local and global minima also exist when
C3 #0, V(¢) #0. See e.g., Refs. [15,19].
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FIG. 1. Energy per particle per my (top) and pressure per
density per my (bottom) as functions of number density for

Cé = %”Z—% = 0.5 (thin) and 10 (thick) using a semi-relativistic
treatment (dashed) alongside the expressions obtained using
relativistic mean field theory (solid). When C% = 10, ADM is
self-bound; the dotted line shows the analytic EoS in the density
range below the density of self-bound nuggets, where the matter
is unstable to coalescence.

and would require some knowledge of the star formation
process.4 The end point of this process is clear, however,
and is marked by a dot in Fig. 1, corresponding to the
saturation density. The saturation density is reached once
the matter has stopped fusing and is once again cold
[15,55]. The relevant equation of state at higher densities
and zero temperature is subsequently represented by the
thick solid line in Fig. 1; it begins at zero pressure but
nonzero (corresponding to saturation) density.

Numerical solutions to Egs. (2) and (5) for 0.840 <

Cj < 1.09 reveal a local minimum with e/n > my, indi-

cating a phase change at positive pressure. At this pressure,
zero-temperature matter jumps from a gaslike state at low
density to a liquidlike state at higher density. The liquid
state can be realized only with the help of another force—
for example with the aid of gravity in the core of a star.
See Appendix A 1 for further discussion.

4Among other possible details, one would need to know the
spectrum of small-N states to discern fusion rates at varying
densities and temperatures. The spectrum, in turn, can depend on
details of the specific model including the masses and relative
couplings of all light force carriers [15,18,19]. One might also
need to follow the nonlinear, possibly far-from-equilibrium
evolution of overdense patches of matter.
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C’f = 4.24 x 10*, Ultra Low Density
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FIG. 2. Energy per particle per my (top) and pressure per
density per my (bottom) as functions of number density for
Cé = 4.24 x 10* in the low density regime where nonrelativistic
approximations are valid. In this low density range, the semi-
relativistic and analytic fully relativistic expressions agree, and
the pressure transitions from positive to negative. The pressure
then remains negative for densities up to twelve orders of
magnitude greater, see Fig. 3.

We show this same phenomenon of fusion and cooling to
saturation density for a choice of a larger self-coupling,
C?2 =424 x 10* in Figs. 2 and 3, in order to make contact

with typical model parameters shown in Figs. 4, 5, as well
as the case examined in Ref. [34] with my = 100 GeV,
my =10 MeV, and a, = 107, They show, as in Fig. 1,
energy per constituent per mass, ¢/ (myn), and pressure per
rest mass density, p/(myn), but now in an extreme non-
relativistic density range (Fig. 2) and in a higher density
range where the semi-relativistic and fully relativistic EoSs
diverge (Fig. 3). As density initially increases from zero,
pressure and energy per constituent increase. But as noted
in Ref. [34], the pressure turns negative around when
n = n, with 37°n,/my ~ 10715, marked by the vertical
gray line in Fig. 2. Reference [34] interpreted this density as
an absolute upper limit, with the matter collapsing to a
black hole at this point. By contrast, we find that following
the EoS to higher densities, as shown in Fig. 3, the pressure
turns once again positive at the saturation density, marked
by the red dot. Shown by the dashed red line, as in Fig. 1,
the EoS has an intermediate regime below the saturation
density where the ADM fuses; once fusion has completed
and the star has cooled again, saturation is reached and the
pressure turns positive again, indicating the possibility for a
stable equilibrium between gravitational forces, binding
forces, and Fermi degeneracy pressure.

C2 = 4.24 x 10*, High Density
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FIG. 3. Energy per particle per my (top) and pressure per
density per my (bottom) as functions of number density for
C2 =4.24 x 10%, in the high density regime, approaching the
saturation density (indicated by the red dot). The (incorrect) semi-
relativistic treatment (dashed) is shown alongside the expressions
obtained using relativistic mean field theory (dotted, solid). The
dotted line shows the analytic EoS in the density range approach-
ing the saturation density, where the matter is unstable to coalesce
via a fusion process. Once the fusion process is complete, the
pressure becomes positive again, indicating that stars made of
self-attractive ADM can be stable even at these high densities and
large self-couplings.

With the EoS for ADM self-interacting through scalar
and vector exchange in hand, we now explore the structure
of self-gravitating objects composed of such matter.

ITII. ADM STAR STABILITY AND
EQUILIBRIUM SEQUENCE

In the previous section, we showed that self-attractive
fermionic ADM is microscopically stable. Our main objec-
tive here is to pinpoint when cold ADM stars become
gravitationally unstable. In particular we will show that
the maximum stable mass cannot deviate much below
Landau’s estimate, M&mion ~ M3 /m?% [28] (see also
Ref. [55]). An implication is that self-attractive fermionic
ADM cannot seed collapse of neutron stars more efficiently
than non-self-interacting fermionic ADM.

We restrict our attention to spherically symmetric com-
pact objects such that the Tolman-Oppenheimer-Volkoff
(TOV) equation governing such objects reads,

d_p: _(p+€)(GM(r)/r+47rGr2p) 7)
dr r(1=2GM(r)/r) '
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FIG. 4. Equilibrium sequences for varying my represented by star mass as a function of radius for spin-1/2 matter with
repulsive (top), no (middle), and attractive (bottom) self-interactions with fixed mediator mass and coupling. See also Table I.
Asterisks mark the stable equilibrium sequence end points corresponding to the global maximum in M as a function of central density.
The gray region corresponds to R < R, = 2GM and the cyan contour represents maximum compactness, GM /R = 0.354. Compare
Fig. 3 in Ref. [34]; the repulsive case agrees but the attractive case dramatically differs due to differences in the EoS. Right-hand plots
show energy density for a benchmark star (marked with A in the left-hand plots) as a function of distance from its center. The cutoffs at
finite density in the bottom right-hand plot indicate the discontinuity in energy density at » = R due to self-boundedness. For
comparison, the middle plot also shows the equilibrium sequence for a sample NS matter EoS (magenta) consistent with NS
observations to date—the HB EoS as defined in Ref. [56]. The NS benchmark is a 1.5 M, star, and the shaded magenta region is
digitized from Ref. [57].
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or equivalently

(GM(r)/r + 42Gr?p)
(1=2GM(r)/r)

Czdlnn__
“dinr

(8)

where r is the radial coordinate, M(r) = 4x [Jerdr,
c2 :% is squared sound speed that characterizes the
stiffness of matter, and we have used Eq. (6). Given an
EoS relating ¢ and p, this single integro-differential
equation can be solved for any given choice of central
energy density by integrating out from r = 0 to the edge of
the star r = R where p(R) = 0. Equations (2) and (3)
represent a parametric EoS, {p(n), e(n)}, which leads to an
integro-differential equation for number density, n, as a

Repulsive Interactions
mx=100 GeV, my=10 MeV

107"
— ay=1072 )
[ — ay=1073
b avzj/oflf/
S 102)
s C
10—3 MR FE T I S S R
107"
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Attractive Interactions
mx=100 GeV, my=10 MeV
| — =102 d
— a¢=‘|0‘3
107°F— gu=104
)
S
=
1073}

102
R [km]

FIG.5.

function of r. The number of constituent particles in the star
is given by Ny = [n(r)/\/1=2GM(r)/rd*}.

The gravitational stability of ADM stars is calculated from
the equilibrium configurations, which are solutions to the
TOV equations for a given central density. Maxima in mass as
a function of central density indicate a transition from stable
to unstable [55]. Figures 4, 5, and 6 show the mass and radius
of solutions to the TOV equations for spin-1/2 ADM with
various self-interaction strengths. Figures 4 and 5 show
similar results to those in Refs. [34,36] for repulsive inter-
actions. However, for my ~ {10 GeV, 100 GeV, 1 TeV} the
attractive interactions corresponding tom, = 10 MeV, ay €
{1072,1073, 10~*} increase the maximum mass (and maxi-
mum number of constituents, Ny) of a stable gravitationally
bound ECO relative to the case of noninteracting fermions of

Density Profiles, Benchmarks (2)
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Equilibrium sequences for varying a represented by star mass as a function of radius for spin-1/2 matter with repulsive (top) or

attractive (bottom) self-interactions with fixed mediator and constituent mass. Compared to Fig. 4 in Ref. [34], the repulsive cases agree

but the attractive cases disagree. See Fig. 4 for further detail.
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FIG. 6. Top: Squared sound speed, ¢2 = > as a function of (kp/my)? for spin-1/2 dark matter with attractive (red), repulsive (blue),
both attractive and repulsive (purple), and no (thick black) self-interactions. The strength of attractive and repulsive self-interactions
is characterized by Cé and C?, respectively, as defined in Eq. (4). Here kj is Fermi momentum and X number density is n = k3./37°.

The dotted section of the red c2 curve corresponds to the dotted region in Fig. 1, where matter is unstable to condensation into large
self-bound states with density marked by the dot. Bottom: Mass and radius of static, spherically symmetric stars composed of such
matter, representing the equilibrium sequence. The curves cut off at the maximum-mass gravitationally stable stars, denoted with
asterisks. Gray regions correspond to (R < Ry = 2GM). The cyan boundary marks % = 0.354, corresponding to the theoretically most

compact non-black-hole objects [60,61].

the same mass, in contrast to the results in Ref. [34], where the
authors examined ADM in a metastable supercooled vapor-
like state, interpreting a transition from positive, increasing
pressure to a zero in pressure at extreme nonrelativistic
densities as an absolute upper limit on the ADM density. (See
Fig. 2 and surrounding text.) They interpreted cold stars
whose centers reach this density as maximum-mass gravi-
tationally stable stars. Our fully relativistic treatment and
consideration of the microscopic picture—such matter fuses,
forming bound states without the need for extra attraction
provided by gravity—Ileads to a very different physical
picture. In the star formation process, the matter fuses,
forming ever larger self-bound states. The physically appro-
priate EoS applying to cold ADM has nonzero density at
zero pressure, with pressure increasing up until a true

gravitationally unstable end point. For comparison, the
magenta region in Fig. 4 includes equilibrium configurations
for NS matter that can support a 2 M, star, satisfy the
90% confidence level constraint on tidal deformability from
the NS binary inspiral gravitational wave observation,
GW170817 [58,59], and are consistent with known limits
on the baryonic matter EoS at (low) nuclear densities and at
very high densities [57].

The attractive self-interaction parameters shown in

Figs. 4 and 5 all correspond to C2, = %"Z—% > 100 and thus
N ¢

to the case of strong self-binding; the growth of radius with
mass until near the gravitational stability end point (here
marked with asterisks) is characteristic of compact objects
made of self-bound matter such as those of hypothetical
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TABLE L

GM

Mass, M, number of constituents, N, and compactness, <,

for the static spherically symmetric maximum-mass stars made

of spin-1/2 matter with large attractive, repulsive, both attractive and repulsive, and no interactions. The dimensionless constants

C? = 42 ™y characterize interaction strength. In the attractive case, the matter is strongly self-bound with the chemical potential at zero

3z ml2

pressure equal to |, = iy = my(2/ Cé) 1/4 In all other cases shown the matter is not self-bound so | p—o = my. For quick reference,

note: My, = 1.63 Mg GeV>.

No interactions Attractive Both Repulsive

C%,:Ci:O C%,:O,Cé»l C%,:Cé»l C‘2,>>1,C§):O
Nonax 0.399M3, /m% 0.34(C5/2)%/* M3, /m3, 0.61\/Cy M3, /m3 0.69+/C3 M3, /m3,
M pax 0.384M3, /m% 0.28(C5/2)** M3, /m3 0.47\/Cy M3,/ m% 0.63\/Cy M3, /m%
GO 0.115 0.27 0.35 0.21

self-bound strange quark matter stars [62]. The increased
gravitational stability of these objects relative to their non-
interacting counterparts stems from their effectively stiffer
EoS due to enhanced Fermi degeneracy pressure all the way
out to the edge of the star. For self-interactions satisfying
Ci > 1 and negligible scalar potential, we have identified
universal formulas for N, M.« and (%)max. We report
these in Table I alongside analogous relations for the
cases of no interactions, purely repulsive interactions, and
attractive-repulsive interactions with C?, = Cfb.s The for-
mulas work well when CZZ 2> 10. In the attractive case, the
asymptotic values may alternatively be written Nattractive —
0.34M3, /iy, Maumetive — 028M3 /in%, where iny is the
zero-pressure chemical potential, equivalent to the average
mass per constituent of large nuggets. For Cé > 1,
my = (2/C5)"* [15,19]. An alternative explanation of
the enhanced gravitational stability of matter with large
attractive self-interactions is that these interactions decrease
the effective constituent mass scale: my < my. The Landau
limit Mo, ~ M3,/m? still applies but with m to be inter-
preted as my.

A scalar potential term of the form A¢* with A > 0 tends
to limit /my from below [15,19], reducing the possibility of
substantially raising M, for fixed my. In general, such a
term tends to push c2 closer to its form with no interactions,
indicating that scalar potentials tend to push the maximum
mass and other equilibrium sequence characteristics closer
to that for no interactions.

Figure 6 shows equilibrium sequences for matter with
more moderate (C3, C3 < 10) attractive, repulsive, or both
attractive and repulsive self-interactions side by side with
squared sound speed, c? = ‘2—’;, characterizing the stiffness
of the matter. The figure demonstrates that softer equations
of state lead to smaller maximum masses and vice versa:
the larger the density range where c¢? lies below the no-
interactions curve, the smaller the maximum mass relative

*Our formula for M, in the purely repulsive case matches
that reported in Ref. [36].

to the no-interactions case and vice versa. In the top left
plot, we see that any softening of the EoS relative to the no-
interactions EoS accelerates the approach to the high
density limit, ¢?~1/3. And in the top right figure,
comparing purple to blue, we again see that attractive
interactions soften the EoS at low densities but stiffen it at
larger densities, accelerating the approach to the high
density limit when a vector is present, ¢~ 1. In all
examples, the more extreme the softening at lower den-
sities, the more extreme the stiffening at higher densities.
This can also be seen analytically as follows.

The chemical potential for the model Eq. (1) is given by

k3
= Cy—5 o+ \ [k + m2 (k). )
X

with m, (ky) determined through Eq. (5). With a scalar
potential guaranteeing positive energy density and there-
fore microscopic stability, one can show that m,
approaches zero in the large-density limit; and larger Cé
drives m, to zero faster while a quartic potential term
moderates the decrease. For spin-1/2 matter in general,

2=19= %f&“,ﬁi by Eq. (6) and n = k3./3z%. In the large

density limit, vector repulsion dominates pressure and y ~
k3./m% if a vector is present, or fermi pressure dominates
and y ~ kg if the vector is absent; thus ¢2 — 1 or 1/3 with
or without vector repulsion, respectively. Furthermore since
attractive interactions cause m, to decrease, though this
initially drives c¢? below its value absent the attractive
interactions, it also accelerates the approach to the asymp-
totic limit. This explains the tendency of attractive inter-
actions to soften the matter at lower densities and stiffen it
at higher densities.

The left plots in Fig. 6 represent matter with attractive
self-interactions, including examples of non-self-bound
matter (C2 = 0.5) and self-bound matter (C{Z/) = 10). The

equilibrium sequence for C(Z/) = 0.5 begins at low central

density and large radius following the no-interactions
sequence, but ends at lower maximum mass and smaller
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radius. By contrast, since self-bound matter fuses before
reaching a cool state, the Cé = 10 equilibrium sequence
begins at relatively large densities and small radii, and
never meets up with the no-interactions sequence. For
Ci < 0.516 and Cfb > 1.09, the first maximum in M as a
function of central density is the global maximum.

In the purely attractive, V(¢) = 0 case, the equilibrium
solutions for 0.516 < Cﬁ) < 1.09 hug the no-interactions
sequence at low central density and large radius, and then
develop a local maximum at low compactness before
reaching the global maximum at larger compactness,
indicating the existence of two separate sequences analo-
gous to the white dwarf and NS sequences (see e.g.,
Refs. [35,63]). We further discuss this range in
Appendix A 2, but note that the first local maximum occurs
in the range 0.04M3/m% <M < 0.15M3,/my—Iess
than a factor of 10 lower than the no-interactions global
maximum of 0.38M;,/m%—except in the narrow
range 1.05 < C < 1.09.

For purely attractive interactions and fixed my, the global
maxima in the entire C range satisfy My, > 0.23M3,/m3,
Npax > 0.24M3,/m3, and (GM/R),, > 0.092 with the
bounds saturated when Cé = 0.45, Cfp =0.42, and
Cﬁ, = (.26, respectively. In each case, the parameter
decreases from the no-interactions value to the value at
the minimum, and then increases monotonically toward the
asymptotic value in Table I.

In the case of equal strength attractive and repulsive
interactions, as the interactions become more extreme with
Cﬁ) = C? > 1, the speed of sound curve approaches a step

function, ¢? ~@(n — ng;). Matter with such behavior is
thought to produce the theoretically most compact stars,
and indeed we find that (%) ~~0.354, the posited
maximum in the literature assuming subluminal sound
speed [60,61], for C3 = C3, >> 1. (See also Table L)

We now consider self-interacting fermionic ADM more
generally. If the cost of softening matter at a given density
through attractive interactions is accelerating the approach
to the asymptotic limit, generally, then the softness of
microscopically stable fermionic matter is limited, and
therefore the amount that self-interactions can reduce the
maximum stable mass below that for free fermionic matter is
limited. On this basis, and based on the minima for M, and
N« 10 the attractive interactions case described above, we
conjecture that M, = 0.1M3,/m%, Ny 2 0.1M3 /m3
holds true for spin-1/2 ADM, generally.

IV. IMPLICATIONS FOR NEUTRON
STAR COLLAPSE

So far we have focused on ADM-only stars, including
pinpointing the maximum mass of gravitationally stable
self-attractive ADM stars. Based on a semi-relativistic

calculation, Refs. [29-33] have claimed that ADM with
an attractive force, captured inside of NSs, can destabilize
and destroy them. Here we argue that relativistic effects
stabilize the NS over most of the parameter space, and
destabilization can occur only for very large ADM mass of
order PeV.

A. ADM capture

The amount of ADM captured in a NS in a time ¢ is at
most the amount that impacts the NS [20],

mXNXcap S/<”b%naxpDMvDM>dtv (10)

where b, = ,/ﬁ%%%ﬁ is the impact parameter cor-

responding to DM that just scrapes the surface of the NS at
6 .

closest approach.” Here the energy density ppy and

velocity scale vpy; are to be taken asymptotically far away

from the NS. For typical NSs, GM/R ~ 0.2 and R ~ 10 km

leading to

200 km t
mXNXcap < (3 x 1071 MO) Pou 3 /S 10 .
GeV/ecm®  wvpy 10" yrs

(11)

The upper bound is realized only when on average 100% of
the DM passing through the NS deposits enough energy to
be captured. For DM with mass of order GeV to PeV, the
minimum required baryon-DM cross section for this to
occur is order 2 x 107 c¢cm? [20]. For my < GeV, Fermi
blocking suppresses the scattering [27], and for my 2 PeV,
multiple scatters are required for gravitational capture [64]
and therefore greater cross sections are required to realize
the upper bound in Eq. (11). If the ADM is bound in large
composite states at the time of capture, additional consid-
erations apply [65]. In general since the density and
velocity scales entering Eq. (11) are not vastly different
from the fiducial values, the amount of ADM captured is a
tiny fraction of the total mass of a NS (order 1.5 M). One
can speculate about other ways to realize ADM-admixed
NSs stars with a much larger fraction of ADM than can be
collected gradually through capture over the NS lifetime.
One interesting possibility is copious production and
capture of dark matter in the core-collapse supernova of
the NS’s progenitor [46].

B. ADM-admixed neutron stars

For ADM captured by a NS over its lifetime to induce its
collapse, a self-gravitating ADM star of the same mass as
the captured ADM must itself be unstable to collapse.

®If the ADM is already bound as nuggets at the time of capture,
then replace my with my in Egs. (10) and (11).
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Based on this observation, we argue that capture of
spin-1/2 ADM—self-interacting or not—with constituent
masses smaller than order 10° GeV by NSs cannot in any
circumstances induce collapse.

As detailed in Appendix B, we solved the general
relativistic equilibrium equations for NS matter admixed
with cold ADM as modeled in Sec. II. In general, the
maximum number of ADM constituents, (Nx|y,20)maxs
possible in a stable ADM-admixed NS with fixed baryon
number can be smaller than the maximum number of ADM
constituents in an ADM-only star (Nx|y, ). Made of
the same kind of ADM. However, we find that any
appreciable  differences between (Ny|y,z0)max and
(Nx|n,—0)max 0ccur only if my (Ny|y, _o)max is comparable
to a solar mass. Including baryon-ADM interactions does
not affect this conclusion. And including thermal effects
only increases stability.

Now assume the amount of captured ADM is a small
fraction,

f = (mXNXcap)/MNS < 17 (12)

of the NS mass, as predicted by Eq. (11), and that the NS is
not already teetering at its stability bound with mass greater
than 2 M. Then as long as an ADM-only star of size
Ny = Nxyp does not collapse, neither will an ADM-
admixed NS with the same amount and type of ADM.
From our treatment of fermionic ADM-only stars, since

myNymoe "™ 2 0.1M3 /m3, (13)
taking Mg ~ 1.5 M we find
My coltapse 2 (10f)71/% GeV. (14)

Assuming maximally efficient ADM capture over 10 billion
years and galactic ADM densities ppy ~ 1-100 GeV/cm?
and the velocity scale vpy ~ 200 km/s, we find

My eoltapse = 2 X 10°=2 % 106 GeV. (15)

We have not yet argued that ADM can collapse NSs,
but rather only that ADM with spin-1/2 constituent mass
my < (10f)~1/2 GeV cannot collapse NSs if f < 1.
Now we consider whether ADM can collapse NSs in
certain cases when my > (10f)~/2 GeV. More specifi-
cally, if an ADM-only star with constituents Ny = Nyqp i$
unstable to gravitational collapse, then is an ADM-admixed
NS with Ny = N, also unstable? If there is a process to
cool the ADM sufficiently that it self-gravitates, the answer
is yes. Let us briefly consider the ADM cooling process
after capture. Reference [66] estimates the cross section
needed to maximize ADM capture, saturating Eq. (11), and
the time required for the ADM to deposit most of its kinetic
energy in the NS. When my = 10% GeV and Eq. (11) is
saturated, for example, a captured ADM particle deposits

most of its kinetic energy in less than a day. The ADM heats
the NS, which will be detectable by the next generation of
infrared telescopes [66]. Again if the ADM-baryon cross
section is anywhere near the level required to maximize
ADM capture, then according to the estimates in Ref. [23],
thermalization of the ADM with baryonic matter happens
quickly. Accounting for NS heating through ADM capture,
the maximum blackbody temperature of NSs near Earth is
expected to be 1750 K (0.15 eV) [66], which is a minuscule
fraction of the Fermi momentum of near-collapse ADM
with my > 10% GeV. The ADM indeed cools to effectively
zero temperature and for ADM with Mao ™™ « M o
once the amount of captured ADM approaches this
maximum, the ADM core density within the NS far
exceeds the baryon density. The ADM core self-gravitates
and its structure is unaffected by the baryonic matter. When

Nxcap > N ADM-only ' the ADM core is unstable to collapse.

V. CONCLUSIONS AND OUTLOOK

We have argued that the capture of spin-1/2 ADM by
neutron stars cannot lead to their implosion unless the mass
of the spin-1/2 ADM constituents exceeds approximately
1 PeV. This includes ADM with attractive or other varieties
of self-interactions. Thus the existence of old NSs can only
set limits on ADM-baryon cross sections for spin-1/2
ADM constituent masses larger than about 1 PeV. Once the
next generation of infrared telescopes comes on-line, limits
from dark kinetic heating of NSs in this mass range may
compete with any such limits [66,67]. If there is a positive
detection of dark kinetic heating of NSs, the existence of
old neutron stars will provide complementary information
on possible models of ADM with my = PeV.

After deriving and interpreting the equation of state for
cold spin-1/2 ADM self-interacting through scalar and/or
vector mediators, we found solutions to the general
relativistic gravitational equilibrium equations for cold
static spherically symmetric ADM stars and identified
the maximum size of gravitationally stable ADM stars.
We found formulas for this maximum stable size in the case
of strong self-interactions (see Table I). We also found that
the maximum size at fixed my generically does not drop
below M = 0.1M3/m%, and we conjectured that a
similar limit holds for spin-1/2 ADM with arbitrary self-
interactions.

If fermionic ADM stars are realized in our Universe, they
might be detectable by gravitational wave observatories
[68,69] in the event of mergers with other compact objects
[44]. The masses and radii of these objects can be
drastically different from those of NSs, though not neces-
sarily so. As compared to a NS binary merger, we expect
the electromagnetic signature of a merger involving at least
one ADM star to be a smoking gun signal of the difference
even if the gravitational wave form does not reveal the
presence of the ECO. As compared to a black hole binary
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merger, the waveform will be modified due to the ADM
star’s spatial structure and tidal deformability. We leave the
prospects of gravitational wave detection of ADM stars for
future work.
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APPENDIX A: PHASE CHANGE AND
SECONDARY EQUILIBRIUM SEQUENCES

Purely self-attractive ADM with Ci > 1.09 is self-
bound, not relying on gravity for its boundedness. Here
we focus on ADM that is not quite self-bound.

Zero temperature matter with purely attractive inter-
actions of strength 0.840 < Ci < 1.09 and V(¢) =0, as
modeled in Sec. II, undergoes a phase change at positive
pressure  and number density. Further, when
0.516 < Ci < 1.09, the equilibrium sequence obtained
by solving the TOV equations has an additional unstable
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FIG. 7. EoS as represented by energy per constituent per mass, ¢/ (myn) (top left), and sound speed squared, c? = % (top right) as
functions of density, alongside solutions to the TOV equations as represented by star mass versus star radius (bottom left) or versus
central number density, 7(0) (bottom right) for matter with attractive interaction strengths C(Z/) =0.52,0.75, 1. Blue dots on the C; =1
curve mark the matching points for Maxwell’s construction; the matter is in its liquid phase at densities n > npg, in its gas phase at
densities n < n,, and coexisting in both phases in between. The dotted red lines in the top panels represent the unphysical analytic EoS
in the coexistence density range. In a star, the phases do not coexist but rather density abruptly jumps from n, to np at a given radius, and
equilibrium solutions with central density n, < n(0) < np do not exist; this region is marked with a dotted red line in the bottom right
panel, which maps onto the cusp in the bottom left panel. The asterisks mark the maximum mass stable star in the higher-density NS-like
sequence while diamonds mark that of the lower-density white dwarflike sequence. Dashed gray lines indicate gravitationally unstable
equilibrium solutions between the two sequences. See the text for further detail.
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region as compared to the sequences described in the main
text. Rest energy per constituent, sound speed, and gravi-
tational equilibrium mass and density configurations are
shown for this range of couplings in Fig. 7. The dotted
regions show unphysical solutions to Egs. (2)—(5), signaled
by a local minimum in energy per constituent as a function

of number density and a negative squared sound speed,

¢2 =492 The dashed regions in the bottom plots represent
s de

unphysical solutions to the TOV equations, separating two
separate gravitationally stable equilibrium sequences that
emerge due to a temporary stall in the growth of sound
speed with density. In the next two subsections we discuss
how the physical solutions are constructed, first examining
the equation of state, and then considering the equilibrium
sequence obtained from the TOV equations.

1. Phase change and Maxwell’s construction
for the equation of state

We first consider the rest energy per constituent and
speed of sound, shown in the upper two panels of Fig. 7.
The local minimum in the analytic ¢/n, Ci =1 curve at
nonzero density indicates a phase change. Matter lying near
the local maximum in e/n can lower its energy per
constituent (and pressure) by condensing, and matter
between the local maximum and minimum has negative
pressure. As seen in the upper right panel of Fig. 7, sound
speed also becomes imaginary near the local maximum.
These features all signal the unphysical nature of the
analytic EoS in this density domain. The physical EoS
is obtained by choosing end points n, and ny that lie at
equal pressure on either side of the density region with
dp/on < Osuch that (%), = (%), = =&, This construc-
tion is equivalent to Maxwell’s construction in standard
thermodynamics [55], and is shown by the solid red line
labeled “physical” in Fig. 7. Matter at densities less than 4
exists in a stable gaslike state and matter at densities greater
than np exists in a stable liquidlike state. When there is a
phase change, we use “liquid” and “gas” to refer to the
high-density and low-density phases, respectively. Matter
in the density region between n, and np coexists in two
different density states (liquid and gas). The phase change
occurs at nonzero pressure; to realize this nonzero pressure,
some other force must be applied—for example, gravity.
The liquid state can exist in the cores of gravitationally
bound stars; in static spherically symmetric stars an abrupt
transition from liquid core to gas crust occurs at a given
radius.

2. Two equilibrium sequences when 0.516 < Cfb < 1.09

Next we consider solutions to the TOV equations. For
purely attractive interactions and 0.516 < Cé) < 1.09, the
sequence of solutions to the TOV equations contains a local
maximum in M as a function of central density before
hitting a global maximum, as shown in the bottom right

panel of Fig. 7. The local maximum at lower density occurs
at larger radius and lower compactness, as shown in the
bottom left panel. This same behavior occurs for cold
catalyzed matter due to a relative softening of the EoS near
the neutron drip density; near this density the speed of
sound temporarily decreases (softening) before increasing
again (stiffening) as a function of density (see e.g.,
Refs. [35,55,63]). Correspondingly, a local maximum
and minimum in star mass as a function of central density
develops near the neutron drip density, matching onto the
stability end point of the white dwarf sequence and the
beginning of the NS sequence, respectively. In Fig. 7,
analogs of the white dwarf sequence are represented by
solid lines stretching from low central density and larger
radius up to the local maxima marked by diamonds.
Analogs of the NS sequence are represented by solid lines
that stretch from the local minima in mass to the global
maxima at higher central densities and smaller radii,
marked by asterisks.

Another way of characterizing the feature of cold
catalyzed matter that leads to the separate white dwarf
and NS sequences is that its sound speed growth (or
stiffening) temporarily stalls near the neutron drip density.
This is similar to what we see in the top right panel of the
figure. For C% = 0.52, the stall is moderate, with c?

continuing to increase but at a lower rate near densities

3
n~02 ;% Correspondingly, as seen in the bottom right
panel, the growth of gravitational mass with central density

near n(0) ~ O.Zg stalls so much that a local maximum
develops, signaling an instability to contraction. The
dashed gray region lying between local maximum and
minimum represents gravitationally unstable solutions to
the TOV equations. In this case, the instability is relatively
mild, with stability taking hold again at only slightly higher
central densities. For Cé = 0.75, the stall in sound speed

growth is more severe. Correspondingly, the minimum in
star mass as a function of central density is deeper, and the
density gap between equilibrium sequences is larger. The
stall grows more severe with increasing Ci.

As demonstrated by the Cg) = 1 curve of the bottom left
panel, for matter with a phase change, a cusp develops near
the local maximum in the TOV solutions for M(R) and is
associated with the discontinuity in density because of the
phase change. Solutions to the TOV equations with central
densities corresponding to the coexistence density range do
not exist; there is a gap in the mass versus central density
curve where ny < n(0) < ng, marked by the dotted red line
in the lower right panel. This entire gap is mapped onto the
cusp in the lower left panel. Such behavior also occurs in
models of compact stars that include QCD phase changes,
see e.g., Refs. [70,71].

Understanding the final states of stars or ADM cores
within NSs that reach the white dwarflike stability end
point—be they NS-like or black holes—is beyond the scope
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of this work. But we remark that the white dwarflike mass
end points lie within a factor of 10 below the no-interactions
global stability end point except in the range very near the
transition to self-bound matter, 1.05 < Cé < 1.09.

APPENDIX B: ADM-ADMIXED NEUTRON STARS
AND BARYON-ADM INTERACTIONS

In the bulk of the paper we focused on ADM-only stars.
Here we lay out the equations for baryon-ADM admixed
stars. Then based on our solutions to these equations, we
argue that, unless the mass of the ADM and baryons in
the star is of the same order, the amount of ADM that
destabilizes a NS is little modified from the amount that
destabilizes an ADM-only star.

1. Gravitational equilibrium equations

To investigate ADM-admixed NSs, we need the analog
of the TOV equations for two interacting but separately
conserved matter species. The TOV equations are equiv-
alent to extremizing mass,

M= /e(r)47zr2dr, (B1)
with baryon number,
drrdr
Ny = [ sl S
1 =2GM(r)/r

held fixed [55]. To generalize to multiple conserved
species, we extremize M with each conserved species
number separately held fixed through the method of
Lagrange multipliers. That is, for ADM-baryon stars,
extremize the functional F = M — u;, N;, — uxNy, treating
baryon density, n;,, and ADM density, ny, as independent
functions. The Lagrange multipliers y; are gravity-inclusive
chemical potentials. The derivation is worked out for N
such species in detail in Ref. [72]. One finds,

w; = e’ = constant, (B3)

on;
with

dv GM(r)/r+4zGrp
dr r(1=2GM(r)/r) °

(B4)

where u; is the gravity-inclusive chemical potential of
species i, € is the total energy density of ADM and baryonic
matter, p = Zi%ni —e€ is total pressure, and v is a

metric function defined by |g,,| = €. The TOV equation,
Eq. (8), is equivalent to ) ,n; % u; = 0, with v eliminated
through Eq. (B4).

The total mass M, constituent numbers Ny, N,, and
radius R, are determined by the equilibrium equations,
Egs. (B3)-(B4), along with the equations defining M and

N;, Egs. (B1)-(B2), for given central baryon and ADM
number densities, {n;,(0), ny(0)}.” We interpret the largest
stable star at fixed baryon number, N, to correspond to the
first local maximum in M as a function of {n,(0), nyx(0)},
subject to the constraint N, = N,,. Since equilibrium
configurations satisfy dM = p,dN;, + uxydNy =0, and
since y; are finite for any equilibrium configuration, with
fixed N, = N0, M and Ny attain their maxima at the same
{n,(0), nx(0)}.* When the ADM constitutes a tiny fraction
of the star by mass, it is numerically easier to identify the
maximum in Ny.

Absent DM-baryon interactions, the total energy density
is given by € = ex(ny) + ¢,(n,) and the number density of
a given species affects the other only through the total
gravitational mass and pressure. In this case, Eqgs. (B3)
and (B4) are equivalent to

dpi __(pi+€)(GM(r)/r + 4xr°Gp)

dr r(1=2GM(r)/r) - (BY)

where p; = nlgz — €.

A DM-baryon interaction leads to additional contribu-
tions to the total energy density, e, dependent on a mixture
of the number densities of both species, invalidating
Eq. (BS). Given a large hierarchy between the densities
of the two species, as we will detail below, even a weak
DM-baryon interaction can dramatically affect the density
profile of the subdominant species where the two species
overlap; in this case it is important to use Eqs. (B3)—(B4)
rather than Eq. (B5). Furthermore, in such cases, we find
there can be multiple distinct equilibrium configurations
corresponding to zero central density of the component
with lighter constituents. In the next section we describe
how to include baryon-ADM interactions before discussing
our numerical solutions to the gravitational equilibrium
equations with and without ADM-baryon interactions in
Sec. B 3.

2. Modeling baryon-ADM interactions

Using relativistic mean field theory and the same
techniques used in the context of the 6-@ model of nuclear
physics (see e.g., Ref. [35,54]), we find that a vector-
mediated baryon-ADM interaction gives rise to an inter-
action energy density and pressure

(B6)

where ¢, and gy are the vector-nucleon and vector-ADM
coupling constants, respectively, and my is the vector

"We will discuss a caveat when significant baryon-ADM
interactions are present.

*We have generalized from the observation of Landau. See
Ref. [55].
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FIG. 8. Contours of constant mass M in units of Mg (multicolor shading), ADM number Ny as a fraction of Ny ..

0.399(Mp;/my)? (black), and baryon number N, as a fraction of N — 1 37(My /m,)? (magenta) for solutions to the
gravitational equilibrium equations, as functions of central ADM and baryon number densities, with my = 100m,, (left) or my = m,
(right) and m;, = 939.5 MeV (both). These plots demonstrate that, unless the amount of ADM is of the same order or larger than the
baryonic matter by mass (myNy 2 m,N}), the amount of ADM that destabilizes a NS is little modified from the amount that destabilizes
an ADM-only star. Configurations lying below the maximum in N, (at fixed Ny) and to the left of the maximum in Ny (at fixed N, ) are
stable. Other configurations are gravitationally unstable. The ADM is modeled as a free Fermi gas and the baryonic matter through a
spliced polytrope, HB as in Fig. 4. Note that the maximum mass of a baryons-only star for the same model is 2.12 M, (for reference the
dotted black line is the M = 2.115 M, contour). For free spin-1/2 ADM-only stars, the maximum mass is 0.627(GeV /my)?> M, [for
reference by the dotted white line is the M = 0.626(GeV /my)?> M, contour]. For nmy > 100m,, the plot is unchanged relative to that for
my = 100m,,. In the entire region of the left-hand plot, myNy <« m,;N,. Stable equilibrium configurations for any choice of Ny and N,
exist as long as they are smaller than the maximum value for the corresponding single-component stars. By contrast, myNy ~
my,Nj, ~ M toward the middle of the right-hand plot, where we see that stable equilibrium configurations with both Ny and N, near
their maxima for single-component stars do not exist. However, when myNy < m,N, ~ M (toward the top left of the plot) the

. . . . . . b _onl .
maximum mass of 2.12 M, is unaffected. In either case, configurations with any myNy <<€ m,Nj, < muNymar > exist as long as
ADM-only
N x < N X'max .

(energy densities) toward the centers of NSs are order
1072 GeV3(GeV*). Thus given interaction strengths near
current direct detection limits, interaction energy density
is comparable to baryon energy density when /gny>
10'° GeV?. The number density of free fermionic ADM
reaches order my in the cores of near-collapse stars,
implying the bound can be satisfied for my = TeV dark
matter.

The hierarchy €,, €, < ex with €; 2 ¢, naturally occurs
for my 2 TeV when ADM-baryon interactions are near

mediator mass. The low energy elastic nucleon-X scattering

2
section is given by o,y = & (£9%)? with g,y the reduced
A/

mass, so Eq. (B6) is alternatively written,

my +m
€ = P = \/TOpx (M> npny, (B7)

myniy,

where m;, ~ GeV is the nucleon mass scale. The total
energy density in an admixed star is € =€, + €y + €;

with ¢, independent of ny, and ey independent of n,,
and similarly for pressure.
Consider my > GeV. Current direct detection con-

straints on 6, in this range are 6,y < 107 ("X ) cm? ~

100 GeV
107 (555y) GeV~2 [73-75]. Baryon number densities

*This clean decomposition of energy density and pressure does
not occur for scalar mediators of ADM-baryon interactions.

current direct detection limits. In this case, both the
gravitational and nongravitational ADM-baryon inter-
actions affect the baryon density profile in the small
admixed core, while the dark matter density profile is
unaffected by the baryonic matter.

Conversely, direct detection bounds on sub-GeV dark
matter become weak, and furthermore for ADM masses
much smaller than a GeV, we expect X number (energy)
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FIG.9. Baryon number density (orange), ADM number density (blue), and compactness, GM (r)/r (green), as functions of star radius
for fermionic ADM with negligible self-interactions and my = 1 TeV admixed with baryonic matter. Since the number densities are
normalized by m? and m,, ~ GeV, the ADM number density in most of the core at small radius is more than 10° times greater than
typical baryon number densities. The total star mass is 1.5 Mg and Ny = 0.396(Mp/my)>. The left-hand plots assume no ADM-
baryon interactions while the middle and right-hand plots assume a repulsive ADM-baryon interaction as described in Sec. B 2 such that
opx =4 x 107 cm? and 4 x 10747 cm?, respectively. The EoS used for baryonic matter is as in Fig. 8.

densities to be much smaller than order GeV? (GeV*). In
this case ADM-baryon interactions can be important in

determining density profiles of sub-GeV dark matter within
ADM-admixed NSs.

3. Results: Numerical solutions
to the equilibrium equations

The left-hand plot in Fig. 8 shows contours of constant
Ny, N, and M as functions of central (r = 0) ADM and
baryon number densities for solutions to the admixed star
equations, Eqgs. (B3) and (B4), with noninteracting zero-
temperature, my = 100m,;, ADM, where m, = 939.5 MeV
is the nucleon mass scale. The baryonic matter was
modeled with the HB EoS as described in Ref. [76] and
shown in Fig. 4, though this detail is unimportant. The
important points are

(i) The constant Ny contours are independent of central
baryon density, and Ny, at fixed baryon number is
the same as for an ADM-only star, demonstrating
that baryonic matter affects neither the structure of
the ADM core nor its stability end point.

(i) The maximum M and N, at any fixed value of Ny
are the same as a baryons-only star up to negligible
fractions, demonstrating that the NS matter stability
end point is unaffected by the ADM. This is because
the ADM’s contribution to the total mass of the NS is
small: myNy << M. The curvature of the M, N,
contours indicates that the ADM affects the baryon
density profile at the center of the star, cf. Fig. 9.

(iii) The X number density and Fermi momentum for
solutions near the stability end points, where
Ny = (Nxly, ) max» are order 107my and my, re-
spectively—much greater than the baryon density,
and also relativistic so that even if the NS is
relatively warm, the zero-temperature approxima-

tion used for the ADM EoS is still valid.
We checked that these features also hold for self-interacting

ADM when M " S <« M. Thus for f < 1, Eq. (14)
is accurate.

By contrast, the right-hand plot of Fig. 8 shows similar
contours when my = m,,. The shape and overlap of M, N,
and Ny contours along the diagonal from near the bottom
left to top right are highly interdependent because here
the ADM and baryonic matter densities are similar and
both components contribute similarly to the total star mass.
For N, fixed at its value corresponding to a 1.5 My
nonadmixed NS (N, = 0.66 N ..), the maximum-mass
stable admixed star corresponds to M ~ 1.7 M, and
Ny ~0.4 Nypmax- The amount of my = m;, ADM that
destabilizes the NS is smaller than the amount that
destabilizes an ADM-only star. But the amount by mass
is a sizable fraction of the remainder of baryonic matter that
would destabilize a baryons-only NS, and by Eq. (11) far
exceeds the amount that can be captured.

The main message conveyed by Fig. 8 is: small amounts
of fermionic ADM by mass (myNy < M) cannot induce
collapse of a NS unless the ADM is concentrated in a
very dense (ey > GeV*) core. Due to Fermi degeneracy
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pressure, this can occur only when my > GeV. And in this
case, the amount of ADM that destabilizes the NS is
negligibly modified from the amount that destabilizes an
ADM-only star.

We find that dense ADM cores can dramatically affect
the density profile of baryonic matter overlapping the
core, even though as noted above the maximum mass,
radius, and baryon number at fixed ADM number is
affected by negligible fractions. This is shown in Fig. 9,
with baryon-ADM interactions as modeled in Sec. B 2
present or not. With even moderate ¢,y well below direct
detection constraints on large my ADM, there are classes
of solutions with vanishing n, at r = O—because of the
high ADM densities, the repulsive interaction between
ADM and baryonic matter wins over gravitational

attraction and expels the baryonic matter from most of
the core. In these cases we scan solutions by setting the
ADM density at » = 0 and the baryon density at the edge
of the ADM core. We checked that including the baryon-
ADM interaction at levels allowed by direct detection
does not affect the conclusions described in the previous
paragraphs.

Finally we note that it could be interesting to examine the
structure of NSs admixed with sub-GeV constituent mass
ADM given repulsive ADM-baryon interactions—the
ADM could be concentrated at the outer edge of the NS
and beyond, which could lead to larger-than-naively-
expected effects on the tidal deformability and/or moment
of inertia of the NS for a given total amount of col-
lected ADM.
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