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Nuggets—yvery large stable bound objects arising in the presence of a sufficiently attractive and long-
range force and in the absence of a dark Coulomb force—are a smoking gun signature for asymmetric dark
matter (ADM). The cosmology of ADM nuggets is both generic and unique: nuggets feature highly
exothermic fusion processes, which can impact the shape of the core in galaxies, as well as give rise to rare
dark star formation. We find, considering the properties of nuggets in a generic extended nuclear model
with both attractive and repulsive forces, that self-interaction constraints place an upper bound on nugget

masses at the freeze-out of synthesis in the ballpark of M., < 10'© GeV. We also show that indirect
detection strongly constrains models where the scalar mediator binding the nuggets mixes with the Higgs.
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I. INTRODUCTION

Asymmetric dark matter (ADM) [1-3] with an attractive
force may give rise to bound states, called nuggets [4,5].
Depending on the relative strength of the attractive and
repulsive forces binding the nugget, nuggets can grow to be
quite large, with millions or more constituents per bound
state [6] (see also [7]). Such large bound states could give
rise to new direct detection signatures [8,9], requiring novel
direct detection techniques. In addition, complementarity
between direct, indirect, structure formation, and collider
constraints can differ substantially from the standard
WIMP paradigm, leading to new dark matter (DM) model
building possibilities. Examples of the striking implications
for DM phenomenology when a substantial component is
in the form of bound states can be found in mirror dark
matter [10-14], WIMPonium [15-17], atomic dark matter
[18,19], dissipative dark matter [20,21], and dark nuclei
[22] scenarios.

Large bound states generally require fermionic constitu-
ents to provide a stabilizing pressure, and must be com-
posed of an asymmetric component for synthesis to be
efficient in the early Universe. Thus, large dark matter
bound states are a smoking gun signature of fermionic
asymmetric dark matter. Conversely, the existence of
large bound states is generic within an ADM scenario;
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in particular a light mediator of strong self-interactions
serves as an effective annihilation channel for depleting the
symmetric DM component in the early Universe [1,23]. If
that mediator is a scalar, the self-interactions are attractive
and lead to nuggets.

One may wonder why such large bound states do not
arise in the standard model (SM). In the SM, attractive
nuclear forces are effectively mediated by pseudoscalar and
scalar bound states, such as the pion and the o. There,
however, arbitrarily large nuclei are not synthesized
because of the presence of bottlenecks in the early
Universe, and, more importantly, because of the presence
of a Coulomb barrier. As we argue quantitatively in
Appendix A, the absence of a Coulomb barrier makes
an enormous difference in the predicted size of synthesized
bound states by permitting fusion at small velocities.
Furthermore, analogs of the strong A = 8 bottleneck in
the absence of a Coulomb force may easily be circum-
vented in a more general nugget model, as ®Be is only
barely unstable. We conclude that with very modest
modifications to the structure of the hidden sector relative
to the SM, the synthesis of very large composite states of
ADM could proceed unblocked, though this will require
solving low-N bound state problems to verify.

Large bound states, characterized typically by N > 10*
constituents, are interesting to consider as a DM candidate
because their observational signatures—from early Universe
cosmology, to impacts on the formation of DM halos, to
direct and indirect detection—are quite distinct from other
DM candidates that have been widely studied:

(1) As we argue in Sec. II C, once one proceeds past

the low-N dark nuclei, the size of the synthesized
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nuggets is quite insensitive to the UV physics of the
model, and instead depends on only a few infrared
parameters. This fact allows us, in combination with
astrophysical constraints, to make general state-
ments about the size of the nuggets, targeting the
features of the nuggets relevant for searches.

(i) Nuggets, being large composite states, tend to have
large self-interactions, which can impact the shapes
of DM halos in the late Universe. Unlike the
standard self-interacting DM (SIDM) scenario, how-
ever, nuggets are generally as likely to interact by
fusing as they are to elastically scatter. Fusion is of
course highly inelastic and, in the class of models we
consider, remains exothermic up to arbitrarily large
size; cold fusion is realized in these models due to
the absence of the analog of electromagnetism.
Nugget self-interactions can lead to accelerated mass
aggregation at galactic centers, which may provide
an efficient way to feed supermassive blackholes.

(iii) The exothermic and dissipative fusion reactions
allow for the possibility of star formation in early
protohalos.

(iv) The by-products of a single fusion interaction can
include (many) force mediators and/or nugget frag-
ments analogous to the common by-products of SM
nuclear interactions: photons, alpha particles, and
neutrons. If the fusion by-products are allowed to
decay to SM final states, the observed flux of
photons in the galaxy may place a constraint on
these models.

(v) Nuggets are extended, massive objects, whose direct
detection signals are different from those of WIMPs.

In [24,25], we explored the properties and synthesis of

nuggets, focusing on the most deeply bound nuggets with
only a scalar mediator. Models with DM coupled only
through a light scalar mediator contain the minimal matter
content necessary to assemble large ADM bound states; the
light mediator is solely responsible for binding both the large
and small nuggets, and for allowing the first step of synthesis
to proceed kinematically—the analog of deuterium forma-
tion, which proceeds through photon emission. Thus this
minimal model is fairly predictive but also restrictive.

Here we consider a more general scenario. In general, the

size nuggets at freeze-out (fo) of synthesis in the early
Universe, Ng,(Mj,), is largely determined by three dimen-
sionful parameters: number density of bound nucleons, 74,;
mass per constituent, iy, of large nuggets; and the nugget
synthesis temperature Ty, [6]. Although many of our
results do not depend on details of the model, in order
to be explicit, we consider a concrete effective model in
which the dark sector contains a conserved and stable
fermionic species in addition to multiple species of medi-
ators: vector, pseudoscalar, and pseudovector in addition
to a scalar. The addition of such mediator states opens up
(Ngaes iy, Toyy) parameter space significantly as compared

to the scalar-only model studied in [4,5,25]. For instance,
as occurs for nuclear matter, a repulsive vector and
attractive scalar interaction can almost cancel one another,
leading to a large hierarchy between binding energy per
constituent and the constituent mass. Additionally, spin-
dependent pseudoscalar-mediated interactions can decou-
ple properties of small and large bound states, changing
Ty, relative to my.

One important result of our analysis is generic bounds
on the largest possible sizes of DM bound states; these
bounds will impact search techniques for nuggets.
Assuming nuggets are the dominant form of DM, the
combination of conservative astrophysical limits on self-
interactions discussed in Sec. III, with general consider-
ations for the nugget properties discussed in Sec. II,
translate into upper bounds on synthesized nugget size.
We will show explicitly that large synthesized nuggets
require a relatively flat potential for the scalar mediator
binding the nugget together, such that a large scalar mean-
field can be sustained in a nugget. These constraints are
summarized in Fig. 1, as a function of the scalar potential
quartic, 4. Note that the quartic is normalized such that the

4
interaction is given by 3‘%% (see Sec. II for details). Given
that there is no symmetry forbidding a quartic term in the
potential, models with large synthesized nuggets are tuned.
Taking 4 > 1073, a bound M, < 10'® GeV is obtained.
This paper systematically explores the dominant astro-
physical features of, and constraints on, ADM nuggets.
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FIG. 1. Maximum achievable nugget size Ny, (purple) and

nugget mass My, (red) as a function of the maximum scalar force
mediator quartic coupling 4,,,,. Given a conservative constraint on
late-universe DM nugget interaction cross sections opy/mpy <
1 ecm?/g (solid) or opy/mpy < 1073 ¢cm?/g (dashed), maximum
possible sizes are realized when only a scalar mediator contributes
to large nugget properties (i.e., when effects of a vector mediator
are negligible). A, serves as a measure of fine tuning for
achieving large nuggets, as radiative corrections tend to drive A
to be relatively large. The synthesis temperature is (conservatively)
taken to be Ty, = (my —m x)/ 15—the maximum possible 2-body
binding energy times a typical Boltzmann suppression factor,
1/30. A typical model is expected to have lower synthesis
temperature and therefore smaller freeze-out sizes and masses.
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In Sec. I we will summarize and extend results from
previous work on nugget properties and synthesis that set
the foundation for our quantitative analysis of the cosmol-
ogy and astrophysics of nuggets. Then, in Sec. III we derive
general constraints in (ng,, fity, Tsy,) parameter space from
DM self-interactions, and discuss scenarios where grav-
othermal collapse of galactic halos are a relevant constraint.
In Sec. IV we will argue that diffuse x-ray and gamma-ray
flux observations constrain models in which mediators can
decay to SM particles; this includes the Higgs portal model
of [5]. Nugget-SM interactions can also lead to novel direct
detection signals and implications for ADM capture in
stars, and detailed studies can be found in Refs. [8,9]. We
also show that ADM star formation in early protohalos is
possible, though rare, in viable regions of parameter space.
Lastly, we discuss how nugget synthesis changes in the
presence of a bottleneck similar to the ®Be bottleneck in
the SM.

II. EXTENDED MODEL FOR LARGE BOUND
STATES OF FERMIONS

For very large bound states to be realized in our
Universe, (a) large bound state solutions must exist and
(b) the bound states must be synthesized efficiently in the
early Universe. To satisfy (a), we consider fermionic
constituents with a generic Lagrangian given by

_ 1 1 1
L=X(ip = mx)X +3 (0)* + > (0a)? — 1 Vi
1 1 1 1

= X[(95¢ + ig.ar’) + (gvV + gar A)|X
“V(p.a,V,A). (1)

In addition to describing bound states of elementary
fermions with both vector and scalar force mediators, such
a Lagrangian can arise from QCD-like interactions. The
scalar ¢ and pseudoscalar a are analogous to the isospin
singlet f(500) (formerly ) and # mesons, and the vector
V, and pseudovector A, are analogous to the isospin singlet
w and f; mesons. We ignore a tensor field (the analog
of f,) and other higher spin states for simplicity. In general,
there may be additional flavor indices for all the fields.
In our regime of interest, where the constituent number is
large, relativistic mean field theory (RMFT) is a good
approximation and flavor nonsinglet fields are expected to
have zero expectation values and thus be negligible.1

'Large stable SM nuclei violate isospin due to electromag-
netism. Absent an analog of electromagnetism, large bound states
are flavor symmetric and only flavor singlet fields are important.
The effect of flavor is then simply an increase of the fermionic
degrees of freedom (d.o.f.) from 2 to 2f, with f the size of the
flavor group.

Additionally, we expect the total effect of spin-dependent
interactions within very large nuggets to be highly sub-
dominant to that of spin-independent ones, leading to very
small expectation values of pseudoscalar and pseudovector
fields relative to those of a scalar or vector fields.”
Therefore the pseudoscalar and pseudovector a and A,
can be safely ignored in the limit where RMFT applies.
This limit of Eq. (1) is known as the 6 — @ model [26], and
it well describes the bulk properties (radius and energy
density) of large SM nuclei.

Although a and A, (and flavor nonsinglet fields includ-
ing the analog of pions) are ignored in our large bound state
calculations, they could be very important in determining
the properties of small-N states. A light a would lead to
a more strongly bound 2X state while a light A, could
destabilize it. Additionally, *X or *X can be destabilized if
their binding energies become too small compared to %X,
which may lead to strong bottlenecks. Given strong model
dependence for small N nugget properties, we will remain
agnostic about the dynamics of dark nucleosynthesis for
these states, and assume, in the absence of the bottleneck,
that synthesis is able to quickly proceed well beyond the
size where RMFT calculations are valid. The discussion for
synthesis in the presence of a strong bottleneck is reserved
for Sec. V, where we assume a small fraction of nuggets are
able to squeeze through a strong bottleneck beyond %X. In
either case, the small-N physics is roughly parametrized by
Ty, the temperature when synthesis begins.

A. Saturation properties

For a simple scalar-mediator-only model, and using
RMFT, we showed in Ref. [24] that large bound states
eventually saturate: their density approaches a constant,
N, independent of size, N. In this limit, the geometric
cross section of a nugget simply scales as

drng\ 3
oy ~ R} ~ 7[<%> N:. (2)

As we will justify in Sec. I B, oy is also the interaction
cross section up to O(1) factors. We also showed that the
saturation limit is valid as long as the nugget size exceeds
the force range of the mediator inside the nugget, and that
the nugget mass is well described by the liquid drop model,

My = Nmy —BEy & Nitiy + €4,N*/3, (3)

where BEy, is the VX binding energy, iy is the energy per
constituent (the chemical potential) in the N — oo limit,
and e, > 0 characterizes the surface energy of the nugget.

*We expect the ground states to be close to spherically
symmetric and parity even. For spherically symmetric, parity-
even states, (a), (A#), and (V') must all vanish.
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saturated nugget
(N > Ngas)

My = Ny + €gutN?/3

dr N 1/3
e (52

3 Nsat
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mg = effective force range
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[also (V') # 0 if vector V# present]

FIG. 2. Pictorial representation of saturated nuggets: bound
states VX of N fermions, X, with N > N,. The rest energy per
constituent, my, and density, ng,, are determined as functions
of Lagrangian parameters. See Eqgs. (6) and (7). Even if
pseudoscalars (a) and pseudovectors (A*) mediate DM inter-
actions, we expect only a scalar (¢) and vector (V#) mediator to
contribute to large-N properties. Saturated bound state solu-
tions are generic as long as the scalar interaction is sufficiently
strong so that my < my.

Total energy per constituent decreases as /ity + €g,fN~/3
and therefore it is energetically favorable to form ever
larger nuggets. This is in stark contrast to SM nuclei, where
nuclei are destabilized (in the sense that fission is exother-
mic) beyond °Fe due to electroweak interactions. In the
absence of electromagnetism in the dark sector, we expect
saturation properties to hold as long as the nugget size
exceeds the effective force range of all mediators inside the
nugget—that is, when N 2 N, where

_Am ngy
Nsat = ? 3 -
Mg

4)

For scalar only models, mqy = \/mé +2V({($))/(p)? is

the effective mass of the scalar inside the nugget. See Fig. 2
for a summary of saturated nugget parameters.

Since the surface energy eg,s is only relevant when
considering details of fusion processes, nugget bound states
are well characterized by just two dimensionless quantities
imy/my and ng,/imy, along with my that sets the scale of
the system. In the RMFT approximation, the constituents
inside a nugget are described as a free Fermi gas with Fermi
momentum kp, with a Dirac mass shifted by the scalar
mean-field, m, = my — g,(¢), and a chemical potential
(mmy) shifted by the vector mean-field. The calculations are
detailed in Appendix B, and here we summarize key results
(also see e.g., [27,28]). We have

ﬁ’lX = gV<V0> =+ \/ k%: =+ mz, and

ke dPk i3
Ngat = <XTX> = Ydof W = gdof@, (5)
where 1y is the mass per constituent (chemical potential)
and g4 =2 the fermionic d.o.f. Binding requires

my < my, and thus the effective mass must always be

smaller than my. The vector field equation of motion leads

to (V°) =2 (X'X), while the scalar field equation of
\4

motion relates krp to m,. Together with the equilibrium
condition of zero pressure, iy and ng, are determined as
functions of Lagrangian parameters. The saturation density
is constrained by the inequality ng, /my < gqor/(67%), with
the upper bound realizable only in the scalar-only and
ultrarelativistic kp/m, — O limit.

In Appendix B we also derive analytic formulas for the
nugget properties applicable in the ultrarelativistic limit
(kp/m, > 1), which includes regions of large geometric
cross section with ng,/m3y < ggor/ (67%). They depend on
two dimensionless quantities,

2 2
gy my
C? = — and
38 ml,
2 m> 265V (m -1
UL P M
3% m,, iy, my

where we have set g4, = 2 for simplicity, and V(¢) is the
potential for the scalar mediator. We derived analytic
formulas for the dimensionless variables ng,/my and
iy /my, valid in the regime CyC,*><1 and Cj,C;>>1,
and accurate within 33% throughout intermediate values:

1 v o1
7 o <3
Ngat ¢
=3 4\ 17-3
m 1 ]1 Cy\3 o1
X S S I 4 —_v v 1
e {2+ (c;) ] 7R
1 4
23 Sy 1
iy (C;) C{’;SS
— = (7)
my | 1 i, (G)s] Gou
b c? 2”8
(CyCy)3 b ¢

As expected from Eq. (5), we see that the inclusion of a
vector generally decreases ng/my. In order for the
solution to be self-consistent, it must be binding
(my < my). This is possible as long as Cy < C,. The
approximations break down as my/my — 1.

It is instructive to fix a benchmark potential to see
explicitly how the nugget parameters (ng,/my, iny/my)
are constrained based on Lagrangian parameters. Assuming
the scalar potential contains only a quartic term, V(¢) =

4
39%%, we have C;z :SEZmé/(gémi) + A. Given that

there is no symmetry forbidding the existence of a quartic
term, a small A generally requires tuning. Even in the limit
where there is an approximate shift symmetry controlled
by g4 4 is expected to be sizable given our choice of
normalization.

Aslong as A # 0, we see that C;Z is nonvanishing even in
the limit m, — 0, which will impose an upper limit on the
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FIG. 3. Available physical parameter space (ng /iy, iy /my)
for an extended nuclear model as described in Sec. II with

4
V(p) = 3%/1(;54. The orange boundaries indicate the maximal
allowed value for 4, which indicates fine-tuning. [See Egs. (6), (8)
and surrounding discussion.] The dashed red (solid purple) shows
the maximum achievable typical freeze-out nugget mass (number
of constituents) My, (Ny,) given opy/mpy < 1 cm?/g in the late
Universe. [See Eqs. (23) and (22).] The synthesis temperature is
(conservatively) taken to be Ty, = (my —my)/15. A typical
model is expected to have lower synthesis temperature and to
require lower opy/mpy to accord with galactic structure ob-
servations and therefore smaller nugget freeze-out sizes and
masses.

binding energy. Physically, we can interpret this as coming
from the effective mass for the scalar mediator in the
nugget, which caps the strength of the binding force.
Conversely, given (ng/my,iny/my), one can solve for
C;z to derive a maximum quartic coupling Amax’

1 1 3n’ng (iny 41 1 [3n°ng\ '3
maX_Cﬁ,_ my  \my 2\ my

« <when X < /2). (8)

my

We see that for small ng,/my and 7iy/my, Ap., must
be small as well. The requirement of a small quartic can
also be understood intuitively: A small ng, demands a large
Fermi pressure, which forces us to consider relativistic
constituents; this requires a large scalar mean-field to lower

*With only a quartic term in the scalar potential, there are two
independent equations relating five dimensionless parameters:
i, gfbmg(/m;, A, kg/my, and m,/my. One therefore needs to
specify three of the parameters to be able to fully determine the
nugget properties. In particular, with only ng,/my and iny/my
specified, only two of the remaining three d.o.f. are fixed. The
parameter A, is the maximum A allowed for a given ng, / rhi and
my/my (corresponding to 1y — 0 in the parameter space where

the effective mass. So the quartic coupling must remain
small in order to keep my small.

Connecting Eq. (8) to early Universe synthesis, as we
will see below in Sec. IIC, fusion of large nuggets
generally requires small ng (leading to larger cross
sections) and/or my (leading to larger number density).
For a fixed 4,,,,, the largest nugget consistent with SIDM
constraints is synthesized in the scalar only limit. This is
illustrated in Fig. 3, which shows the available physical
parameter space (ng, /my, ity /my) for an extended nuclear

4
model with a potential term V(¢) = 3g 4 % The synthesis
temperature is taken to be Ty, = (my — iny)/15, which, as
we discuss in Sec. IIC, is a conservative upper bound.
Models with generic coupling and modest hierarchy
myy S my largely populate the upper right corner of the
physical space. The solid orange lines indicate contours of
Amax from numerical calculations. We see that in order to
populate the lower left corner, 4 needs to be very small.
The right most vertical curve shows the boundary of the
densest nugget possible, obtained when the vector is
decoupled, Cy — 0. The right most orange line sits at

sat — 1 -~ . . . .
fh—?: = 3,2 at small /my /my as expected in the ultrarelativistic

limit, up until Z—i = 1/2, where our analytic formulas
become less accurate.

Below we will discuss the detailed dependence of
synthesized size My, and N¢, on model parameters. Our
conclusion is that large synthesized sizes require small
Ny /iy and ity /my, which can only be achieved for a very
flat scalar potential—i.e., when A is tuned to very small
values.

B. Scattering and fusion cross sections

For nuggets that are synthesized up to saturation sizes in
the early Universe, both the size of the synthesized nugget
and the interaction cross section in a halo today are
controlled by the geometric cross section. Here we briefly
justify this claim and summarize standard results from
nuclear physics that we will utilize in the rest of the analysis.

For large nuggets deep in the saturation limit, the range
of the binding force is much smaller than the geometric size
of the nugget. Since the nugget constituents must be
relatively strongly interacting to bind in the first place,
whenever two nuggets physically overlap, an interaction
will very likely occur. Closely following the discussion
in [29], below we show that both the fusion and elastic
scattering cross sections of saturated nuggets should be of
order the geometric cross section under this assumption.

Consider the interaction of two nuggets with radii R; and
R,. In all of our considerations, the interaction will occur in
the nonrelativistic limit. Given the strong interaction and
large spatial extent of the nuggets, the scattering problem
can be solved via the Schrodinger equation for a potential
with depth of the order N (my — my) and width of order the
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size of the nuggets R; + R,. We consider a general
expansion of the cross section in terms of partial waves.
For an incoming wave with wave number k = pv, where v
is the relative speed and u the reduced mass of the initial
state nuggets, the geometric constraints of the nuggets
translate to dominance of angular momentum modes
I Sk(Ry + R,) in scattering processes. In terms of the
partial wave amplitude 7, the scattering cross sections can
be parameterized

> @+ n—pl (9)

ISKk(R+R;)

T
Osc ~ 75

In the strongly interacting limit, all the non-scattered waves
are absorbed in fusion processes, and the fusion cross
section is given by

T
Ofus ~ 75

S+ na-mP). (10

I<k(R,+R,)

Geometric cross sections ¢ ~ z(R; + R,)? are recovered

when k(R; + R,) > 1, and for 7, independent of /. Noting
that |7;| < 1 due to unitarity, it is also immediately apparent
that oy, > op, and that the maximal fusion cross section
corresponds to 6y = 6 = 7(R; + R,)%. In any case, as
long as |1;| % 1, we expect the fusion and scattering cross
sections to be of the same order. The details of the cross
sections will depend on the specifics of #;. In the following,
we will only be interested in order of magnitude estimates,
and taking o ~ o ~ 7(R; + R,)? will be sufficient.
For very low relative speeds, where 1/k = (R, + R,),
[ =0 scattering will dominate and the geometric cross
section could be a significant underestimate. For fusion of
two nuggets of similar size ~N, we expect any such

enhancement to be irrelevant as long as Niiyv > (%2)1/3;

1
372

long as N = 10*. However, the enhancement could be
relevant when a small nugget V2X interacts with a large
one, as will be the case in the presence of a bottleneck
discussed in Sec. V. In this case the cross section can be
approximated as (see Ch. VIII of [29])

since 24 < -, the enhancement is irrelevant in our galaxy as
X

: 4pp’
afusNﬂ(Rl +1/p)27 with T:m, (11)

where we have taken R, < R; and k~p with p =

E; —mj, the small nugget momentum, and p’' =

E3 — (myN,)? is its effective momentum once inside
the larger nugget.

C. Size of synthesized bounds states

In the absence of strong bottlenecks at low A early
Universe synthesis proceeds until the typical size of
nuggets reaches [6,25]

4rn. \ 23 |T
Ny, =755 with y~ |2 g ( 22 sat X 12
o =77 with y lHﬂ 3 ix | (12)

syn

where ny is the conserved dark matter number density,
H is the hubble parameter, Ty is the dark matter sector
temperature, and iy, is the time when synthesis begins
which is set by the two-body bound state binding energy
(Teyn ~BE,/O(10)). Here, (yH)™' < H™! is the interac-
tion timescale. The estimate is insensitive to initial con-
ditions [30] and is therefore self-consistent if Ny, > N, so
that geometric cross sections apply toward the end of
synthesis. Since ny(7,) and H(T,) are known in the era
of interest, the typical size of nuggets depends only on ng,
and my once Ty, is specified. Taking Ty ~ T, we find,

Ny = 1072 9(Tgn)\ (1 GeV\ 5 m_§( 3 Toyn %.
° 10 ﬁ1X Ngat ﬁ’lX
(13)

The estimate in Eq. (13), is strictly valid when fusion
results in at most two nuggets and ov scales homo-
geneously as a function of N [6,25,30]. For the minimal
model we considered in [25], we argued that fusion will
generally result in a single nugget in the final state
(coagulation) along with many radiated mediators. With
two nuggets in the final state, we showed that the final
distribution becomes slightly broadened around Ny, rela-
tive to the coagulation case. In models with multiple small
nugget fragments in fusion final states, as long as the
fragments are much smaller than the typical size we still
expect the estimate to hold approximately, with perhaps
some broadening of the final distribution about Ny,.

Synthesis begins when the rate for dissociation of small-
N states drops below the formation rate. Thus 7'y, depends
on the cross sections and binding energies of low-N bound
states, which further depend on model details that are
separate from the large-N, saturated nugget descriptions.
Given that we wish to constrain the maximum sizes and
masses of nuggets, we will take the conservative bound

BE2 <mX —I’T’lx

Tn~30 =15

(14)
We have assumed BE, <2(my —my) since otherwise
large nuggets will dissociate into 2X in the large-N limit.
In loose binding models, where the binding energy

“We reserve the details of the strong bottleneck scenario
for Sec. V.
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per constituent of large-N states, my — iy, is a small
fraction of my, we expect synthesis to begin well after
ADM freeze-out, Tapy ~ myx/30 (when the constituents
X will have just become nonrelativistic and the symmetric
DM component will have just annihilated away). However
for strongly bound models in which my < my our
conservative bound on Ty, butts up against this ADM
freeze-out time. In realistic models—especially for strongly
bound models—we expect Ty, to be typically much
smaller, leading to smaller final nugget sizes. In any case
our restriction on Ty, leads to an upper bound on Ny, and
M, which we discuss in the next section.

Imposing the conservative constraint, Ty, < (my —iny)/
15, in the limit when A, is small so Eq. (8) holds and

ntN/1 my\—4
4~ ()77, we find

Nf0510”<

+(Tsyn 3501 g
5101°<g (1 2 )> ( (_}ev)szmzx (< 1)

where the second inequality follows from maximizing
x’3(1 = x)°/ in the interval 0 < x < 1. With a set mass
scale, my, we see that Ny, is directly limited by natural-
ness alone.

D. Products of fusion

Here we address fusion by-products, as predicted by the
compound nucleus (CN) model. This is critical for under-
standing both heat loss through fusion relevant for galactic
halo evolution and indirect detection constraints. We will
find that fusion generally produces an abundance of either
force mediators (analogous to photons) or small nugget
fragments (analogous to neutrons or alpha particles), as
shown schematically in Fig. 4. The CN model allows us to
predict both the number of these fusion by-products, as
well as their energy spectra.

The essential feature of the CN model is that when two
nuggets interact, they rapidly thermalize into an excited
compound nucleus, which then decays through thermal
emissions. The cross section for any given fusion process
with initial state i and final state f factorizes as

- f)

oli.f) = oli > €)= prey

(16)

where C* denotes the compound state whose characteristics
depend only on the total energy, number of DM constitu-
ents, and angular momentum of the initial state. Assuming
the CN has a large density of states that is only slightly
perturbed by particle emissions, the partial decay widths
into various final states can then be assumed to take the

9.(Toyu)\3/5 (1GeV %,1‘%‘ i \E( i)}
10 iy max iy iy

a2 & - &

NX N+NX*

FIG. 4. Schematic picture of large nugget fusion in the
compound nucleus (CN) model. Cold fusion is possible due to
the absence of a Coulomb barrier, and fusion remains exothermic
up to arbitrarily large N. In the early Universe, synthesis begins at
temperature Ty, S %X binding energy x Boltzmann factor, and—
absent a bottleneck at small N—proceeds to fusion processes as
depicted above until reaching freeze-out due to number density

. . . ny _Amngn\-2/3 [T |6/3
depletion at typical size Ny, ~ [FX m(F) ™ [ . In the

late Universe, 7P ~ g( _Nn‘ )23 . SIDM bounds translate to

; N
upper bounds on N fo, and there are stronger bounds from indirect
detection if the fusion by-products decay to SM particles.
Furthermore, since the energy carried off by fusion by-products
is generally not redeposited, fusion is a cooling mechanism that
can lead to accelerated core collapse at the centers of galaxies
or collapse of (rare) early protohalos to form primordial black
holes or exotic compact stars. Refer to Fig. 2 for definitions of
parameters.

form of a thermal spectrum characterized by a temperature,
T [31]. More specifically, the partial decay width of a CN of
size N into a another CN state of size N — k and a small
nugget fragment X or light mediator °X is given by

N
M (E) = g / (dz -

where g, are the d.o.f. of the state ¥X, Q is the heat release,
E* is the excitation energy of the YX*), p is the momentum
of the fusion product X, and oy_ (P) is the cross section

e QUBNTE) g v, (17)

for KX absorption by the Y~*X*) nucleus. The heat release
0 = Ey — Ej,_, is the difference in the excitation energies
of the compound nucleus before and after emitting an KX
fragment. The excitation energy is given by Ej} =

My — Mj(\(,)), where Mg\?) is the nugget mass in its ground
M+ 52 = MY + MY~

\/M3 + p* — kiny, where kmy approximates the differ-

ence in the ground state masses of the X and VMKX
nuggets. In terms of the fragment’s kinetic energy,

state. Thus we have Q =

M% + p? — M, the spectrum takes the form,

dr’y gre~Mikm) [Ty, o /T
= — e € 2M,,). 18
dQde (2n) elele+2My). (1)
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TABLE 1. Based on the compound nucleus (CN) model, a summary of expected fusion by-products in formation of VX, according to
the lightest mediator mass, moy, free-X mass my, 2-body bound state mass, M,, and average mass per constituent of saturated nuggets,
iny. Emitted small nuggets (nugget fragments, X with 1 < k < N) are generally nonrelativistic. This picture assumes a nonrelativistic
initial state and that cross sections for small nugget fragment or mediator capture on a large nugget do not depend strongly on the identity

or momentum of the fragment or mediator being captured.

Weak binding (my — my << my)

Strong binding (my — iny = iy)

Heavy mediator
(MOX ~ ZmX - Mz)

coupling is large.
Light mediator
(moy <K 2my — M)

temperature.

CN largely decays through emission of small KX,
similar to neutron and o emissions for SM nuclei.
Highly excited CN can decay into many low-k
states, which are emitted nonrelativistically.
Mediator emissions can also be important if the

Mediators will be readily emitted, although small
kX emissions may contribute significantly as well.
Mediators may be emitted relativistically or
nonrelativistically depending on the CN

CN decay is exponentially suppressed, as there is
typically not enough energy locally to emit
mediators or induce fragmentation. The detailed
spectrum depends on mediator masses and binding
energies; emission of the single particle species with
minimum M, — kmy will strongly dominate.

Emission of the lightest mediator strongly dominates;
they can be relativistic or nonrelativistic, depending
on the CN temperature.

For mediator emissions, say ¢ for instance, k = 0 and
M) — kimy = my, and the exponential is simply a
Boltzmann factor for ¢. In the limit where oy_;; is
independent of p, the peak of the distribution is at
=i Pk
energy is generally of order the temperature. The fusion
by-products are emitted nonrelativistically when T <« M
and relativistically when 7 > M,. When oy_; is
p-independent, Eq. (18) can be integrated:

the fragment’s Kkinetic

Ty (E*) = e~ Mt/ oy Ioq2op 7). (19)

T
We see that the emission spectrum depends exponentially
on T, with a weighting factor due to phase space and a
coupling-dependent 6y_; ;. One can estimate 7" by model-
ing an excited nugget as a low-temperature Fermi gas, such

that T ~ +/E*my/N 2 For fusion of two ground-state
nuggets of size ~N/2, the excitation energy is order E* ~

€qurtN?? + iy Nvg, so that T ~ iy | [ N™'3 4 o7 The

degenerate Fermi gas estimate of temperature is valid only
when T < my. Based on nuclear matter and our explicit
calculations in Ref. [24], we expect €4, to be of order the
binding energy per particle, my — my. Thus as long as
my < N3y, and the fusing mother particles are non-
relativistic, 7 < my and our approximation remains
valid. Together with M > kmy, we see that nonmediator
fragments (X with k # 0) are generally emitted nonrela-
tivistically. For weakly bound models, the binding energy
term M, — kiny ~ k(my — iny) can be comparable to T,
and a large variety of small ¥X fragments can be emitted.

*Recall that the heat capacity, %, of a Fermi gas is propor-

tional to NT/er at low temperature, 7T < ¢, and note that
€ = iy, here.

For deeply bound models, one expects M; > kimy > T,
and the exponential factor dominates nugget emissions.
Emissions will typically be dominated by one or two decay
by-products corresponding to the minimum of M, — kiny.
The minimum could occur for mediators (denoted by °X);
requiring that synthesis can begin with X + X — 2X + X
implies moy < 2my —m, < 2(my — imy). Thus, mediator
emissions will likely dominate unless moy is very near its
maximum value, in which case emissions of 2X may be
significant as well.

Our conclusions about the qualitative picture for fusion
by-products are summarized in Table I. In IVA we will
set limits on models in which fusion by-products include
mediators that can decay to SM states—potentially models
in all four quadrants of the table. The limits have a mild
dependence on whether the mediators are emitted relativ-
istically or not.

III. NUGGET INTERACTIONS AND THE
STRUCTURE OF THE MILKY WAY GALAXY

In the late Universe, the same interactions that lead to
early nugget synthesis will also lead to dark matter self-
interactions. These interactions can alter halo structures and
possibly lead to indirect detection signals. Because inter-
action rates scale as ’W, and since ppy and v are
determined by observations, self-interactions are generally
parametrized by opy/mpy, Which for a nugget with
geometric cross sections and characteristic nugget number
Ny, 1s given by

OpM zﬂ<47m3m> =01 | (20)
37 ingNj,

A sizable opy/mpy ~0.1-1.0 cm?/g can soften dark
matter cores and lead to better agreement with DM halo
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profiles [32,33]. Additionally, nugget fusion is highly
inelastic, such that one interaction per DM nugget in a
halo lifetime can lead to contraction and potentially
accelerated gravothermal collapse [34,35]. While under-
standing these effects in detail requires N-body simula-
tions, we will address the effect of nugget fusions on
central halo structure qualitatively in Sec. III B. Before
that, in Sec. Il A, we examine the consequences of the
conservative constraint, opy/mpy < 1 cm?/g, coming
from the bullet cluster [36] and galactic structure (see
[37] and references therein).

A. Self-interaction bounds for nuggets

At first glance Eq. (20) suggests that larger nuggets (with
large Ny,) more easily evade a self-interaction constraint
opm/mpm < 1 cm?/g. However, as seen in Eq. (13), Ny,
depends strongly on the nugget density and constituent
mass. Taken together, we will see here that SIDM con-
straints actually put an upper bound on Ny, and My,.

More specifically, the SIDM bound opy/mpy =
ﬂ(%)_z/ 3ﬁ1,}1Nf_ol/ 3 < (6pm/MpM) ey effectively  con-
strains the three-dimensional parameter space (ny, My,
Tyn) because Ny, is itself a function of these three
parameters. The constraint reads,

0.4 MeV\ 11/5 Ngat =2/5 g*(Tsyn) -1/ TS}’“ =3/5
ﬁ'lX ﬁi:;( 10 ﬁ’lX

< (M) (21)

cm?/g

. . . T
Holding the dimensionless parameters 2% and % fixed,
X

both Ny, and My, scale as negative powers of iy, which
leads to upper bounds on both Ny, and M, as follows,

N <1020%_f_‘9_*‘_9‘ﬁ%
o~ 3 10) \ my

12/11
_6 LT 2
M. < 1016 GeV Ngat 1T & [ syn \ 11
for~ m 10) \my
(GDM/mDM)m X e
() -

The bounds on M;, can be readily translated into an
upper bound on the freeze-out nugget radius through

2 < (%pm max
nRf, S (G2)  ME™. We have

e\ 7T (G \1T [ Toyn \ 11
R. <1 sat Ix syn
fo~ © KL (m} 10 iy

o 9/11
% <( Dl\ii:;l;l:g/l)max> (24)

These bounds are independent of the details of the nuclear
model; they apply as long as large-large nugget fusions
dominate near the end of synthesis and are described by
geometric cross sections.

The constraints can be relaxed if some nugget parameters
exhibit large hierarchies: if Ty, > my or ng < my.
However, Ty, is bounded above as early Universe syn-
thesis cannot occur when dissociation is efficient. We
expect Ty, to be at least an order of magnitude smaller
than the two-body bound state energy BE,, which must be
smaller than 2(my — my) in order for large nuggets to be
stable [cf. Eq. (14)]. Substituting 7 < (my — my)/15 and
g, ~ 10 leads to the conservative bounds,

Nfo < 1017 <’/fsgt) —4/11 <<ﬁ1X> -1 B 1)27/11
my my

12/11
% <(GDM/";];M)max> and
cme/g

—-6/11 Y -1 24/11
M, < 10 Gev (2t M)
ﬁ'l:;( my

% <(GDM/mDM)max> 7/11'

g (25)

Fig. 3 shows the SIDM bounds on Ng, and My, in the
e/ My, My /my plane, taking Ty, ~ (my —imy)/15 but
still accounting for the variation of g,.

Equation (25) makes it clear that achieving sizes sig-
nificantly larger than Ny ~ 10" and M, ~ 10'* GeV
requires small ng/my and/or small iny/my. However,
our extended nuclear model reveals that achieving very
small values for these dimensionless parameters is typically
unnatural. This is shown by the orange contours in Fig. 3,
which indicate the maximum allowed value of quartic
coupling, 4, required to achieve a given range of parameters
(ng/ My, iy /my); alongside the corresponding maximum
achievable N, and My, contours (solid purple and dashed
red contours, respectively), we see that achieving Ny, >
10'7 and/or My, > 10" GeV would require 4 < 1. We
expect a similar conclusion to hold for more general models
with multiple flavors and additional terms in the scalar and
vector interactions, as a small ng/my or iny/my is not
protected by any specific symmetry.

Figure 5 recasts these results in the ng, — my plane for
two different model extremes. The left plot corresponds to
the scalar only limit, with ng,/my ~1/(3z%) and Tyn ~
BE,/30 ~ aémX/IZO with ay = 0.3. The right figure
corresponds to fixing my = 0.9 my, and choosing BE, =
2(my — iy) so that Ty, = BE, /30 = my/150. This choice
of the synthesis temperature is motivated as dissociation
decouples typically at least a factor of 30 below the
two-body binding energy. The blue regions are excluded
by the SIDM constraint opy/mpy < 1 cm?/g. The lower
gray regions, where m3 < 37%n,, is a region of parameter
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Nugget size constraints for a scalar-binding model [left] and a benchmark loose-binding model (7my = 0.9my) [right], when no

bottleneck is present. The dashed red (solid purple) contours indicate the characteristic mass (size) of the nuggets exiting synthesis,
where Ty, = BE,/30 = aém x/120 in the left panel and Ty, = my /150 in the right panel. The light blue regions are excluded by the
SIDM constraint oy /nipy < 1 cm?/g. The dotted blue line shows contours of oy /mpy ~ 107! and 1073 cm?/g, indicating possible
formation of a collapsed galaxy core. The solid orange curves indicate the maximum allowed scalar quartic coupling A for given my
and ng,. In order to reach regions of larger my at fixed ng,, 4 must be progressively smaller. Small A values may imply fine-tuning.

[See Egs. (6), (8) and surrounding discussion.]

space not realizable in an effective theory as defined in
Eq. (1); cf. Eq. (5). The upper gray regions, where
N S Ny (Tgyy), is a region where our model for synthesis
would not apply; in particular, the model assumes that
aggregation proceeds dominantly through 2-body inter-
actions. The orange lines correspond to boundaries of the
parameter space given a maximum A. In both cases, a
progressively smaller quartic is required to access regions
with large nugget sizes and masses. For the scalar only case,
/iy ~ (1/37%) throughout most of the parameter space
and the nugget size is largely controlled by my (or the
effective mediator mass inside the nugget), with efficient
synthesis requiring strong binding with my < my. This
leads to strong dependence on my for both Ny, and My,. For
the loose binding case, Ny, depends on my only through
g*(Tsyn),() leading to an almost my-independent contour
for Ny,.

Additional constraints may be derived when additional
model input is included. For instance, when the effective
force range far exceeds the Bohr radius so that the 2-body
interaction is effectively Coulombic, the binding energy
is simply given by BE, ~a3myx/4 when a, <1, and
synthesis occurs roughly when Ty, <BE,/30 [25]. For
synthesis to begin, the 2-body formation rate must exceed
the Hubble rate at some point, which leads to a, 2
0.1(my /100 GeV)'/3 [5]. Since the SIDM constraint
Eq. (21) puts a lower bound on the mass scale my (or
imy), this constraint along with 7', < a3my /120 leads to
the bound,

*Note

that Eq. (13) is equivalent to N~
(T 3/5 /(1 GeV)3\ 3 Toynn 2
1012(%) (( n:,l ) )5(71)5

L /= 3 _Z
o (52 3)
X X

% <(0DM/’/’;DM)maX> _%‘ (26)
cm-/g

We now turn to considering whether the highly inelastic
and dissipative fusion interactions of nuggets require
opm/Mpy to be significantly less than the naive SIDM
limit opy/mpy ~ 1 cm?/g in order to remain consistent
with observed galactic structure.

B. Halo core gravothermal collapse

A collisional gravitating system exhibits an instability as
the core heats up and contracts, which leads to eventual
gravothermal collapse [34,35,38]. Most SIDM scenarios
that have been studied include only simple elastic scattering
processes. Nugget fusion processes, by contrast, are highly
inelastic; both the binding energy and a significant fraction
of the kinetic energy are lost to the fusion by-products—
usually light force mediators or small nugget fragments.
As the core evolves toward gravothermal collapse, its
density sharply increases, allowing all the hidden sector
particles to thermalize. At the core boundary, the produced
force mediators and nugget fragments are able to escape
and dissipate heat. These by-products may be reabsorbed
by other nuggets. However, the absorption cross section is
expected to be of the same order as the fusion reaction cross
section, and the associated mean-free-path of these by-
products is typically very long compared to the core radius,

0.4 GeV 3 1 2
/lmprO.4MpC< © /Cm>< com /g> (27)
DM opm/Mpm
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implying that nugget fusion is an extremely efficient energy
loss mechanism.

In the case of elastic SIDM, it was shown in [38]
that core collapse occurs soon after the core density is
large enough such that the mean-free-path of the DM,
Amfp ~ Mpm/ (PpMODM)> becomes shorter than the Jeans’
length A; ~v/\/4nGppy, where v is the velocity
dispersion. Numerical calculations showed that the time-
scale for this to occur is roughly given by

20 ("DM>_1’ (28)

C
PpmVe \MpMm

telaslic
collapse

where p¢ (v.) is the central dark matter energy density
(velocity dispersion) before the collapse. This timescale is
an (O(200) factor larger than the naive estimate
te ~ 1/[phmve(opm/mpm)]-

By contrast with the elastic SIDM case, the nugget
fusion case features an average loss of an O(1) fraction of
the DM kinetic energy in each collision, which will result in
infalling DM. It has been shown in N-body simulations that
inelastic processes can lead to enhancement of the central
DM density [39]. Since numerical analysis shows that
increase in core density is a strong indicator of collapse, the
collapse time with inelastic collisions is likely to be closer
to, and perhaps even faster than,” the naive estimate
te ~1/[pimve(opm/mpy)]. For the Milky Way halo,
and assuming an NFW profile up to the edge of the core,
the cross section corresponding to a cooling rate of 10'° yrs
roughly corresponds to 3 x 1072 cm?/g (6 x 1073 cm?/g)
at 1 kpc (0.1 kpc). To illustrate when gravothermal collapse
may be relevant, and for benchmark purposes, we show
contours of opy/mpy ~0.1 and 1072 cm?/g. These
smaller cross sections could possibly yield significantly
different core structures than observed and may already be
constrained. A detailed analysis is reserved for future work.

IV. OTHER NUGGET CONSTRAINTS

A. Indirect detection

In fusion processes, as described by the compound
nucleus (CN) model (see Sec. IID), many dark force
mediators and/or nugget fragments (analogous to neutrons
or alpha particles) may be emitted. The nugget fragments
are stable due to conserved DM number, while the
mediators may decay back to the SM. The decays can
be mediated by couplings between the dark sector and the
SM. For instance, the scalar may mix with the Higgs and
the vector may kinetically mix with hypercharge. Decay of
the DM mediator fusion by-products into SM particles can
lead to injection of energy into the cosmic microwave
background (CMB) or excess photon flux from galaxies,

"We thank Haibo Yu for a discussion of this point in reference
to their forthcoming work.

mimicking the case of DM decay or annihilation. Here we
discuss indirect detection constraints from the CMB and
photon flux, in turn.

If charged particles or photons are produced in the decay,
they can disrupt the CMB spectra after recombination.
This places a constraint on the energy deposited into the
hydrogen gas, which can be written as [40,41]

O v
{ eff< oM )} <107 em?/g, (29)
Mpm 2~600

where f.; is an efficiency factor that depends on the
annihilation processes. For WIMPs that annihilate into
gauge bosons or fermions, f.¢ ranges from ~0.1-0.5. For
nuggets, one expects f.¢ to be significantly suppressed as
fusion reactions only release a small fraction of the rest
energy of the DM; namely, we expect

%
E €surf

~f 1 (30)

4
by 3
2mef0

where f, is an O(1) efficiency factor proportional to the
fraction of the released energy ejected into the CMB. Here
E* ~ ey N f({ 3 is the excitation energy in the small velocity

limit. The velocity here is small v ~ /T /(Ng,my),® which
leads to a further suppression of the constraint, and we have

my (0.1 ( N : (31)
2T\ f, ) \10'°)

This bound can compete with the naive SIDM bound
opm/mpm < 1 cm?/g, depending on the ratio iy /€gysg.

Much stronger constraints can be derived from the
galactic photon flux. Depending on the mass of the
mediator, and whether it is emitted relativistically or
nonrelativistically, x-ray or gamma ray constraints may
dominate. To derive bounds on nugget fusion cross sections
from decay of fusion by-products within galaxies, here we
will follow [42] which derives bounds on DM annihilation
and decay rates. To be concrete, we consider only scalar
mediators that primarily decay into u™u~ or ete™; con-
straints will only become stronger if decay to hadrons
(including pions, which go directly to yy) is permitted.
Other models involving DM vector mediators or other
alternative decay channels can also be constrained, but we
do not expect the constraints to be substantially different as
compared to the scalar decay case. The incoming photon
flux can be computed as

OpM 2
——<1cem’/g
mpm

*If the nuggets have fallen out of kinetic equilibrium, the
velocity will be even smaller as it scales like 7'/my.
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d®, g P2DM (60)pm dN,
— 1 — DMUMo, 32
dE 8z md, " dE (32)

where rg ~ 8.5 kpc, ppy ~ 0.3 GeV/cm? is the local DM
density, Ny is the average number of scalar mediators
emitted per fusion event, and dN,/dE is the average
differential energy spectrum for each emitted mediator.
The factor J is an O(1 —10) dimensionless number
characterizing the squared density of the DM along the
line-of-sight and solid angle for a given observation. We
will ignore extragalactic contributions, which could,
depending on the amount of substructure [43], significantly
enhance the signal.

The number of mediators emitted per fusion event, N,
can be estimated using the CN model (see Sec. II D). The
average energy of each emitted mediator is approximately
my + T*, where T* is the temperature of the excited CN.
The CN’s excitation energy and thus temperature decreases

v/ E*my/Ns,. If only ¢’s are

~ —(my + T*(E")) so that

with each emission since T ~

emitted, we have 4£- dN

P my \ T To/my
1 Nfonﬁxvfe] 2
~ V. 33
max{m¢, T(,;} < 4 + Esurf V1o ( )

It is convenient to absorb the dependence on N, into a
dimensionless factor f;,4, defined as

N, max{m,, T* 2 C 1
Fing = MM T v Gt ()
mMpm 4 my

The indirect constraint can then be rewritten as a bound on
find times oy /mpy. Using fing = v2 ~ 107° then leads to
a conservative upper bound on opy/mpy-

Following the calculations in [42], we consider the y
spectrum from soft collinear splitting of photons from
the charged decay products of a scalar mediator.
Conservatively, we have ignored additional flux that can
come from hard bremsstrahlung and muon decay, which
could only tighten the bounds. Here we focus on two
topologies: ¢ — utu~y and ¢ - e*e”y. For a mediator
decaying from rest,

@zzaEM {1 _&Jr (1 _&+2E2>
dE rE, mg my m¢

m? 2E

¢ Y
1 — 1= s 35
e |:“ll2 < ”l(/)>:|} ( )

where m; = m, , and the spectrum is assumed to be zero
when the logarithm goes to zero at large enough E,. For
nonrelativistic emissions (7" < my), Eq. (35) gives the

differential photon spectrum. For relativistic emissions
(T* > my), the photon spectrum is approximated by

my

———==— dN,

dn, f dQd3ve V-t (7£d6)s- boosted (36)
m(/)

dE fd?’ﬁe \/ﬁT*

where we have boosted Eq. (35) according to the ¢
emission spectrum as estimated by the CN model.
Figure 6 shows the constraints on fiq(opm/mpy) for
the decay channel ¢ — uTp~y (top) and ¢ — eTey
(bottom). The left panels show the constraints for non-
relativistic emissions, where the spectrum is given by
Eq. (35). The right panels show the constraints for
relativistic emissions with different 7%, combining all
experiments. These constraints are generally stronger than
SIDM bounds, and perhaps comparable to a gravothermal
collapse bound discussed in Sec. III B, which will translate
to similar limits on my and Ny, through Egs. (21) and (22).

Now we apply indirect detection constraints to the
scalar-only model studied in [5]. Here, all the nugget
properties can be explicitly computed from Lagrangian
parameters [24], and we take Ty, ~ aém x/120. Since the
nuggets are deeply bound in this regime, the binding energy
dominates over the kinetic energy in fusion reactions, and

Sind ~ esurfo_ol/ 3 /my. The excited nugget is also expected

to have very low excitation temperature where nonrelativ-

istic emissions dominate. Then using Egs. (13) and (20)

with % ~ # [see Eq. (7) and Fig. 3], the indirect detection
X

constraint can be rewritten as

(esurf/mX> ( 10 )2/5 <@>6/5 <100 GGV>7/5
10 g*(Tsyn) my my

1\ 12/5
x <O_> «\, (fdeDg/[/mlz)M>max (37)
ay 1077 cm*/g
1/4
Keep in mind that binding requires ’"X ~ (22 ) <1

2ay m
And for synthesis to begin and proceed eff1c1ently in the

. . a,
carly Universe, one requires 3% 32 (j0dy)"° and

_mx, respectively [5]. This last condition
3/4

mgy < BE, =
implies - mx Sa, . Ina model where ¢ decays primarily
to muons e.g., at the most generous the constraint is
(fina®pM/MDM)max ~ 1077 Satisfying the constraint along
with the conditions just mentioned requires @, 2 0.1 and

x 2 20 GeV; though note that as @, becomes nonper-
turbative, the estimate for BE, (and thus T\,) and the D¢
formation rates that fed into the % > (j5745)"/® condition
break down. Overall, our constraints are competitive with
those studied in [5], and a scalar-only model with moderate
my and a, can still be viable.
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B. Cooling in early protohalos

We now consider dark star formation in the early
Universe, through cooling of smaller protohalos that
virialize and break away from the Hubble flow at high
redshifts. In contrast to the SM where the Coulomb force
provides a means to dissipate energy to form a disk, which
then fragments to form stars, one expects dark star
formation to proceed directly through the highly efficient
and exothermic fusion processes in these protohalos. Note
that this is also in contrast to models where dark star
formation has been considered in the presence of a dark
Coulomb force (e.g., [20,44-46]). We show that at the
beginning of structure formation, if nuggets are the primary
DM component, an SIDM bound not too much stricter than
opm/Mpm ~ 1 cm? /g allows for only very rare protohalos
to have completely collapsed to stars due to cooling
through fusion.

Within a model of bottom-up hierarchical structure
formation (see e.g., [47,48] for a review), up to corrections
of order Q,,(z) — 1, the density of overdense regions
relaxes 0 peon(z) ~ 187%peii(z) after breaking away from
the Hubble flow and virializing, where p.;(z) ~
Perit(0)Q,,(1 + ) is the critical density at the redshift z
of the collapse. The velocity dispersion at the virial radius
is given by

(38)

3GM _3 M \}
Vs~ \[5 T 310 V”Z(m)

where M is the halo mass. The cooling timescale can be
estimated as (pv %)‘1 , which needs to be at least less than

Hy! for gravothermal collapse to be relevant. The proper
timescale should in fact be somewhat lower as we have not
included here the effects of tidal stripping on star formation.
Even with this generous formation time allowance, we will
find that only very rare protohalos can form dark stars. With
this requirement, the cross section for a protohalo to form
interesting structure is thus

15 1
IOM > 50 em2/a(1 + 21 Mo} (39
D2 50 enfg(1 +2)% (<72 ) L (9

In the Press-Schechter model, regions collapse and
virialize roughly when the linear density perturbation
smoothed over spherical regions with mass scale, M,
modeled as a Gaussian random field with M-dependent
variance 2, fluctuates above a certain z-dependent critical
value. So a halo of given mass collapsing at redshift z
corresponds to a certain number of standard deviations, o,
fluctuation. Figure 7 shows the ¢ contours (solid red) in the
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Hy! assuming opy/mpy ~ (1,1071,1072) cm?/g.

halo mass versus redshift plane.9 The dashed green line
shows the required opy;/mpy for the cooling time to be of
order Hy'. At the boundary of the naive SIDM constraint,
opm/mpm < 1 cm?/g, halos corresponding to 3 — ¢ fluc-
tuations could have a small enough cooling time to have
undergone gravothermal collapse entirely, and assuming
that the maximum stable mass of ADM stars is less than
that of the protohalo mass, a black hole could form with
mass on the order of the protohalo mass. We will show
in work to appear that the maximum stable halo mass is
M¢@ ~ (%Y)? and so we expect black holes to form only if
my 2 MeV. On the other hand, we expect black holes
seeded by DM fusion cooling to be vanishingly rare if
opm/mpm < 0.1 cm?/g. There may be additional con-
straints or signatures from indirect detection or gravita-
tional waves, which we reserve for future work.

V. LARGE NUGGET SYNTHESIS THROUGH
A BOTTLENECK

Without a strong bottleneck at low nugget size, synthesis
proceeds through fusion of pairs of similarly sized nuggets
until the reaction rate freezes out due to depleted number
density—at typical nugget size Ny,. In this scenario, we
have seen above that achieving N, = 10!7 requires fine-
tuning in regions of parameter space not clearly ruled out
by SIDM constraints. As discussed in [6,25], it is actually
possible to synthesize larger nuggets if they are built up
through capture of a dominant population of much smaller
nuggets that persists because of a strong bottleneck at
low N. Such a bottleneck could occur if, e.g., both 3X and
4X were unstable. But a very small fraction of DM could
squeeze through the bottleneck due to, e.g., a 3-body

*The contours were digitized from Fig. 6 of [47]. The assumed
6%(M) spectrum is from [49].

interaction producing °X. Then the few nuggets that
squeezed through the bottleneck could grow by capturing
small nuggets. If squeezing through the bottleneck is
sufficiently rare, the small nugget density controlling the
capture rate can remain essentially constant even as the
size of large nuggets increases many fold. This allows for
freeze-out of nugget capture to occur at larger N.

In particular, we showed in Ref. [24] (see also [6]) that
the characteristic nugget size exiting synthesis in this
bottleneck scenario is given by,

4 ~2/3
Ni =y} with y, ~ [271(7[;”‘) <UT>:| (40)
Tsyn

where 7 is a velocity-dependent transmission factor caused
by a possibly abrupt change of the effective mass of the
constituent inside a saturated nugget. For interactions
between two saturated nuggets, 7 = 1 since the effective
constituent masses are roughly the same. When 7 =1, y,
and y in Eq. (12) are the same, and we see that
N, ~ (Ng,)*?; potentially much bigger nuggets can be
synthesized in the bottleneck scenario. However, strong
bottlenecks tend to occur at small N, which is typically
much smaller than the saturation size. Thus, the effective
masses between the small and large nuggets are signifi-
cantly different, leading to a transmission factor (v7) ~ v?
that can suppress the fusion rate [see Eq. (11)], making
the contrast in size slightly less stark. In this scenario, we
note that,

o (BTon) Y 2 (1 Gev 2 (3
10 my Nsat
o (Lom)* (x (41)
my Mpgn

where Mgy is the mass of the dominant DM species (at the

2 ~ Tsyn
Mgn*

bottleneck) and we have taken (7 v) ~ v

It is also important to note that the approximation
Eq. (40) breaks down when the fraction of total dark
number density in large nuggets approaches 1. If p is
the probability of a given nugget to squeeze through the
bottleneck at the beginning of synthesis, and N is the (rare)
large nugget size, then this breakdown occurs when
pN ~ O(1). At this point, fusion could continue through
pairs of large nuggets. All told, in the bottleneck scenario
we find

1
N, ~min {yz,——l—yg}, (42)
p

where y is the remaining interaction time after all the small
nuggets are depleted, and it is computed by using Eq. (12)
with 7', replaced by the temperature where the transition
to large-large nugget fusion occurs. One can easily check
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bottleneck is present. The dashed red (solid purple) contours indicate the characteristic mass (size) of the nuggets exiting synthesis,
where Ty, = BE,/30 = af/, my /120 in the left panel and T'sy,, = my/150 in the right panel. Left: The region left of the dashed blue line
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SIDM curve is not shown as it is strongly model dependent. On both plots, the solid orange curves indicate contours of constant scalar
quartic. Small A values may imply fine-tuning. [See Eqgs. (6), (8) and surrounding discussion.] It is possible to evade all SIDM constraints

if synthesis ends when all small nuggets are depleted, in which case Nf, ~ p

~! as described in Eq. (42). For scenarios where p (the

probability to pass the bottleneck) is large enough such that small nuggets are quickly depleted and fusion is quickly dominated by large
nuggets fusion, the standard analysis in Sec. II C applies, and we refer to Fig. 5 for the relevant parameter space.

that nugget freeze-out size saturates to 1/p when all the
small nuggets in the Hubble volume are captured onto the
large nugget nucleation sites. A lower bound on p is
obtained by requiring at least one nucleation site in a
Hubble volume, which corresponds to the requirement
p > H(Tyy,)? /ng(Tgy,). This condition will be easily
satisfied over the entire parameter space we are interested in.

Compared to the case without a bottleneck, the SIDM
constraints with a bottleneck are much more model
dependent. For instance, if small nuggets remain the
dominant DM component in the late Universe, increased
number density along with the fact that small nugget
scattering may be effectively long-range can severely limit
the parameter space. If all the small nuggets are fused into
large ones, the SIDM constraints scale as Nfo‘% which
will depend on p as in Eq. (42). The left panel of Fig. 8
shows an example of the relevant constraints in the scalar
only model. We took Ty, = BE,;/30 = ajmy/120 for
computing Ny and My, as in Fig. 5. The blue dashed
curve is the SIDM bound assuming 2X remains the
dominant DM component. To model 2X-2X scattering
interactions we assumed X is a pointlike particle and have
used the transfer cross section for an attractive potential
(in the classical regime) as given in [50,51] with ay = 4ay.
The SIDM constraint here rules out a majority of the
parameter space and limits Nj, <10'" and M}, <10 GeV.
The right panel of Fig. 8 shows a similar parameter space
for a benchmark loose binding model, where my = 0.9 my,
and we have again taken Ty, = my /150 as in Fig. 5. The
SIDM constraint is model-dependent in this case and thus
not shown in the figure. In the scenario where synthesis

ends once small nuggets are depleted, Ny, is maximized to
be p~!; in this case opy/mpy < 1073 cm?/g is always
satisfied in the available parameter space in Fig. 8.
Despite the lack of general SIDM constraint, there are
self-consistency constraints that can become important
when my or ng, is small. In particular, our estimates for
synthesized size assume that aggregation proceeds pri-
marily through two-body interactions. This approximation
will break down if ng, is comparable to or smaller than
ny at any point during synthesis; if ng < ny(Tgyy), the
Universe will begin as one single nugget and a phase
transition will occur at some point, causing fragmentation
into nuggets with sizes of order the Hubble size. Such a
synthesis mechanism could be interesting but is beyond the
scope of this work. Requiring ng 2 ny(Ty,) gives

@210—9 I GeV b 3.
my iy My

We see that such an inequality is generally satisfied unless
my is very small.

(43)

VI. CONCLUSIONS

We have studied the cosmology of ADM nuggets, and
found several unique and generic signatures. First, ADM
nugget interactions are highly inelastic and exothermic—
nuggets behave like clay putty when interacting, forming a
compound state which then decays to the ground state
through mediator or small nugget emission. This means
that most of the kinetic energy is lost in an interaction,
implying a very effective cooling process in the late
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Universe. This, combined with their huge size, gives rise to
very efficient processes for changing the shape of DM
halos, in particular in the core of a galaxy. Such DM can
efficiently feed the black hole in the galactic center. On
the flip side, requiring that our halo not be too greatly
affected places an effective upper limit on the nugget size of
around 10!® GeV, for models that are not too fine-tuned
(A= 107%), as shown in Fig. 1. The highly inelastic and
exothermic nature of ADM nugget interactions means that
many force mediators are emitted in the process of the
compound state relaxing to the ground state; if the radiated
force mediators decay to the SM (via, e.g., mixing with the
Higgs), we found that the parameter space in severely
constrained, and the constituent masses must be quite
heavy. Lastly, the fusion processes allow for the formation
of dark stars, though we find that once self-interaction and
galactic core constraints are satisfied, these stars are formed
only very rarely.

Large dark nuggets will form in the absence of a long
range repulsive force (such as provided by electromagnet-
ism in the standard model) given a sufficiently large
attractive self-coupling (typically when ay > aymg/mg
and a, > 50mj/my). The generic presence of the bound
states in models of ADM, as well as their qualitatively
different astrophysical and experimental signatures from
those of elementary particle DM, makes them ripe for
further study.
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APPENDIX A: WHY NUGGET SYNTHESIS
IS DIFFERENT FROM STANDARD
MODEL SYNTHESIS

Large nuclei are not synthesized in the SM. Here we
argue that much larger nuclei would be synthesized in the
absence of the Coulomb force. We further argue that in
the absence of the Coulomb force, a small change in the
structure of the dark sector could imply the absence of a
bottleneck.

1. In the absence of a bottleneck

We first consider synthesis in the absence of a
bottleneck, but with the presence of the Coulomb force.

With no bottleneck, the size, N, of a typical bound state
evolves as

AN N dN

- ~N - — = N
At (nov)™! T dr ONTINEN

— N00N2/3e—2n(1N2/vN%UN (Al)

where the exponential term in the cross section character-
izes the Coulomb barrier. We will assume that vy scales as
vy = v,N~'/2 Tt is convenient to define the dimensionless
timescale as in Eq. (12)

dy
— = OpghxU,.

7 (A2)

Then the evolution equations for average size N are

an — N6 N (A3)
dy

If v/ (y,)Ay is very small compared to v,(y.), then, defining
B =2ra/v,(y,) we have

2‘8—1]\]—5/36/}N5/2 if ﬂNS/Z >2

y = /N‘l/ﬁeﬂNS/szz{s .
8 N3/6 if N2 < 1
(Ad)

In the SM, with the synthesis starting around 0.1 MeV due
to the deuterium bottleneck, y ~ 3000, v, ~ v/ Tggn/GeV~
1072. Solving for N, one obtains N ~ 2 due to the strong
exponential dependence, indicating the inefficiency of SM
synthesis (and correctly predicting that synthesis stops
at around Z = 2, helium). On the other hand, if the
Coulomb barrier were absent, the same calculation would
predict N ~ 10%,

2. In the presence of a bottleneck

If there is a bottleneck at low N, large nuggets can build
up by capture of small bound states on sparse nucleation
sites that squeeze through the bottleneck. Suppose the
bottleneck is at size k. The the size of the nucleation sites
grows as

dN
—_ = kl’lkUkN’Uk.

o (AS)

Taking kny, =ny (1 — pN) and 64y = 6,N*/3 e 27N/ £ (1)
with f(v;) a possible suppression factor due to quantum
reflection effects we have

;H\i — (1 _ pN)N2/3e—2n'akN/vk
4

(A6)
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where

dy*
drt

= o.nyvif (vy)- (A7)
Here p is the probability of squeezing through the

bottleneck. In the limit where v, is approximately constant
over the interaction timescale and if pN <« 1 then

dN
W:N2/3€_ﬁN (Ag)
so that
PINT2BPN if pN =2
*= [ N2BePNGN ~ {
! / 3N!/3 if pN < 1
(A9)

Again using SM-like parameters in an example, with
y* ~3000, k~1, my~GeV and f~2x one predicts
N ~ 2. If the Coulomb barrier were absent, however, one
would predict N ~ 10°.

3. Are bottlenecks present in the dark sector?

The synthesis of large N nuggets, and their abundance in
the late Universe, depends crucially on the presence or
absence of a bottleneck at small N. From analogue with the
SM, one might think that bottlenecks are a generic feature
of bound states. Here we argue that in the absence of the
Coulomb barrier, and with very slight tweaks to the strong
interaction physics that determines the “He and ®Be binding
energies, bottlenecks would be absent in the SM.

Our estimates above show that the Coulomb barrier is
primarily responsible for the BBN bottleneck at “He. But if
the deuterium bottleneck were not so strong so that BBN
happened slightly earlier, this barrier would not be so huge.
At higher temperatures, SM fusion is suppressed also
because ®Be is unstable. This is tied to the fact that as a
“doubly magic” nucleus with both protons and both
neutrons paired, filling the L = 0 orbitals, “He is especially
tightly bound. In contrast, consider the unstable *He and
8Be nuclei:

(i) The third neutron in “He is unpaired and in the L = 1
orbital (2nd “shell”), leading to a total >He binding
energy less than that of “He. Thus He rapidly decays
to “He + n.

(ii) All neutrons and protons in ®Be are paired, though
the last two protons (neutrons) fill only 1/3 of the
1p (2nd shell) states. The ®Be binding energy per
particle is the smallest of any isotope with A =5
to 11, but it is just barely smaller than that of ‘He."”

10BE(“He)/4 _
BrBes — | = 0.0016.

This means ®Be decays rather quickly (through the
strong interaction) to “He + “He.

Now consider the existence of analogous bottlenecks in
nugget synthesis. First, there will be no obstruction due
to a Coulomb barrier. One could expect, however, for the
angular momentum-dependent pairing and shell filling
effects to modify the behavior of binding energy per
particle especially at low N, which in principle could
destabilize nuggets at certain N. Specifically, we might
expect the binding energy per particle to shift down for
odd-N nuggets (with an unpaired constituent) relative to
even-N nuggets (with all constituents paired) or to have
upward fluctuations in binding energy per particle at the
magic numbers (N = 2,8, 20, ...).11 The analog to an
absence of stable A = 5 and A = 8 states for nuclei would
be an absence of stable N =3 and N = 4 nuggets; this
would require the total binding energy of 2X to be larger
than that of 3X, and the binding energy per particle for *X to
be (even slightly) smaller than that for 2X. Unstable X and
4X would constitute a strong bottleneck to fusion of larger
nuggets; the majority of DM could exist as %X after early-
Universe synthesis. However, if only one of *X or X were
unstable, we could expect fusion to proceed to large N.

To definitively answer the question of the small-N
structure of bottlenecks requires detailed numerical calcu-
lations (see e.g., [52-57]), though given how close the
A = 5and A = 8 nuclei in the SM totter towards stability, it
is not hard to imagine that a dark sector with a different
structure could provide for the absence of low-N
bottlenecks.

APPENDIX B: SATURATION PROPERTIES
FROM RELATIVISTIC MEAN FIELD THEORY

With only the scalar and vector contributing to large-N
nugget properties, our EFT mimics the same behavior as
the o-® model of nuclear physics. In [24] we examined the
saturation properties of nuggets given only a scalar media-
tor and a quartic scalar potential as well as for scalar and
vector mediators but no mediator potential. Here we sketch
the derivation of saturation properties of nuggets for
completeness. We omit many details that can be found
in textbooks such as [27,58].

In mean field calculations the mediator fields are set to
their expectation values and treated classically. It is useful
to rewrite the Lagrangian using an alternative parametriza-
tion of the couplings and dimensionless fields,

2gdofa¢.v m_%(

! 9¢<¢>U IuEngﬁ‘

C: = ="
¢V 3z m¢v my my

(B1)

"0One can expect the larger-N magic numbers to be different
than the magic numbers for nuclei because the strength of the
spin-orbit interaction, which leads to reordering of shell energies,
will generically be different.
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The potential term can be rewritten as

gdofm§(
o @)

Vip) = (B2)

Here g4, is the number of d.o.f. of the fermionic constitu-
ent. In a model with flavor symmetry, gqor = 2%fayors- WE
take gq4or = 2 in all numerical calculations but include gy.¢
explicitly here partly to compare to the nuclear o-w model
in which Jdof = 4.

The equations of motion for the vector and scalar fields
in the saturation limit become

i3
v, = 80—t (B3)
u y m}
kg /my 2 1-—
——CAW'(¢) +3C3 R Ul ) B
0 VX4 (1—g¢)?

and the equilibrium (zero pressure) condition is

4\ -1 2 3
Gdot My 4 vy [k
_ = —_-— o e — W
P ( 61> ) 2 (mx> (v)

kp/mx x4
e,
0 X2+ (1 —¢@)?

(BS)

Here kj is the Fermi momentum and m, = myx(1 — @) is
the effective mass of the fermion constituents. Solving
Egs. (B3),(B4),(B5),(B6),(B7),(BS),(B9), one can obtain
the mean field values (vy, @, kr). The physical properties
can then be derived

0k3 = k 2
nsat—g“fﬂ—vw\/(l—@u (—) . (B6)

67 my my

where ng, is the nugget number density and 7y is the
energy per nugget number. One immediately sees

nsat<gdof 1 k?’ @L
my ~ 2 3z (kx +m?)¥? = 2 3z*°

(B7)

The bound on n, /iy is saturated when C3 = 0 and in the
ultrarelativistic limit, where m,/kr — 0. Generically, the
presence of a vector field increases the pressure, and lowers
both the nugget binding energy and saturation density.
Defining W (@) = % + W(e), and z = kp/my and
¢

substituting in for v,, the equations for saturation become

z (1—)
\/x +(1—¢

W/eff<¢) (B8)

C2

=—z +

West (@) (B9)

\/x + ( 1—

For binding to occur, one must have rhx < my, SO by
Eq. (B7), binding requires z < 1 and C3z* < 1. Also note
that 0 <1 —¢p < 1.

Equation (B8) and (B9) both go to zero as z — 0. Thus,
small saturation densities (z < 1) requires small W ()
and W.,(¢). This can be achieved either by making the
coefficients of W () very small, or requiring ¢ < 1.
However, as my/my > |1 — ¢, it is difficult to achieve
binding in this limit. In the ultrarelativistic limit (z > 1),
the equations simplify, and we will show that a consistent
limit can be achieved as long as Wz (1) < 1.

Relativistic limit. Suppose saturation occurs in the
ultrarelativistic limit, where 1 —¢ <« z. We’ll take the
limit and then see when it is consistent. When 1 —¢p <z
we have

3
Wi (@)/ (1 = 9) “522 (B10)
1 2 .6 1 4
Weff<¢)zzcvz +ZZ . (Bll)

First of all, since, for binding to occur, we need z < 1,
we can see that 1 —¢ < 1 in the ultrarelativistic limit,
implying that @~1 and so Wg(p)~ W(1) +
W.(1)(¢ — 1) + - - -. Then Egs. (B8) and (B9) become

WD) = (324 WEe(1) ) (1 = ) + WA (1)1 =

+0((1-9)*z.(1-9)%) (B12)
Weff(l) (ZC Zz_”%) +Wetf( )(1_90)
+0(Z(1-9).(1-9)%). (B13)

For binding to occur, C%z? < and z < 1. Therefore

O(z*) < Wee(1) <O(23) < 1. A consistency condition

on W is
2w (1) 1- 1 -
3 Veff P
o~ < 1. (Bl4
W (P 20~ 2 (B14)

which, noting that W and its derivatives evaluated at 1
must be of the same order assuming positive coefficients,
implies that W (1) < 1 and therefore z < 1 is necessary
for the limit to be consistent. Therefore, we have

Wi (1) ~ Gf)(l - )

(B15)
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1 1 The following formulas describe the solution Eq. (B18) to
Wee(1) = z* (5 C372 + Z) (B16)  within 33% within the entire range:
along with
: 2=2Wel(l)  CiWer(1)S1/16  (B19)

% —_
Ve my
P =5 e~ 2(Cyz2 + 1) (B17)

1

where (1-¢)<z<1 and Cyz?> < 1/z. We see that 2= <2W67f2f<1)> " CyWe(1) 2 1/16  (B20)

saturation densities are small in th1s limit and a large range Cy

of binding energies is self-consistently achievable. Namely,

C37* <1 corresponds to strongly bound nuggets and

C% 7% ~ 1 corresponds to weakly bound nuggets.
Equation (B16) is a cubic equation for z> whose

and, correspondingly,

solution is T {(2 Wl W16
=
s -1/3 my U/ 2We(1)/Cy CHWer(1)=1/16
2 6C2 {( fer — 5) ( fer — —f) _1}; iw(1)/Cv CyWe(1)2 1/
E=1-216Cy Weg(1). (B18)  and
|
1/2 4
w [ (2VWalD) CiWer(1) $1/16 .
— = B22
| (V2War(1)/€0) 70+ QCHWar(1)'F) - CoWen(1) 2 1/16
ith the consistency conditions, Ty — il
w istency ! C,> = (romy)™ <7mx o > and
my
%«1 [CIWe(1)S1/16]  (B23) iy —ry!
WD) W)= Gt = (ramy? (") i
my
ro! <iny < my when
4 A=2\1/3 _ =
2w (1) (CVC)' ~iyrg—121/2 (B26)
37 eff 4
<1 [CyWe(1) 2 1/16].  (B24)
(V2Wes (1)) and
1 mx 4 1 01 4
Very large Cy can destabilize nuggets, corresponding to C(Zz - 3 <—> =5 ( > and
fy/my = 1. In the limit (2C%W;(1))/3 > 1 we have i "X o X
Z—; — Cyy/2W,;(1) and thus we see the limit for binding Cy =0 asry — iy (B27)
where we have defined
CIWei(1)<1/2 when C{Wei(1)>1  (binding limit).
vite v e el E<37T2”sat)1/3- (B28)
(B25)
Combining Egs. (B26) and (B27) we find
Let us redefine C(f =2W.(1). We may invert the o ; s
formulas for ng and my to give C;>2=2W.(1) and C‘ <3z 2 Msar (11X 1_1 37 sa (B29)
’ my \m 2\ m3 '
C?. We find X X X
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