ENTROPY DISSIPATION OF FOKKER-PLANCK EQUATIONS ON
GRAPHS
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ApsTrACT. We study the nonlinear Fokker-Planck equation on graphs, which is the
gradient flow in the space of probability measures supported on the nodes with respect
to the discrete Wasserstein metric. The energy functional driving the gradient flow
consists of a Boltzmann entropy, a linear potential and a quadratic interaction energy.
We show that the solution converges to the Gibbs measures exponentially fast. The
continuous analog of this asymptotic rate is related to the Yano’s formula.

1. INTRODUCTION

Optimal transport theory reveals many deep connections between partial differential
equations and geometry. For example, in the seminal work [17], it is proved that the
linear Fokker-Planck equation (FPE) is the gradient flow of a free energy in the probability
space equipped with Wasserstein metric [14, 24, 30, 31]. This gradient flow interpretation
has been extended to mean field settings, in which the free energy contains an interaction
energy [1]. Many studies have been carried out showing that the solution of FPE converges
to its equilibrium in an exponential rate, and this is known as the entropy dissipation in
the literature [4, 9, 21].

The goal of this paper is studying the entropy dissipation of FPE in discrete settings,
for example on finite graphs. Such a consideration is motivated by recent applications
in evolutionary game theory [8] and numerical schemes for partial differential equations
(PDEs) [6]. The optimal transport metric on graphs has been established by several groups
independently [7, 19, 22]. The gradient flow structure based on such a metric has attracted
a lot of attention in recent years. For example, Mass and Erbar studied the discrete heat
flow, and further gave the Ricci curvature lower bound in the irreducible Markov kernel
on a finite set [12]. More generalizations are followed in [13, 15, 20]. Mielke proposed the
discrete reaction diffusion equation [23|. Erbar, Fathi, Laschos and Schlichting introduced
a discrete McKean-Vlasov equation [11], which is the evolution equation for the probability
density function of the mean field Markov process.

Various properties of these metrics and gradient flows have been brought under a lot
of attention as well [5, 12, 15, 10, 16]. In addition, the discrete Wasserstein distance
on graphs has attracted communities interested in data analysis and more specially in
describing clustering and point clouds [27, 28, 29].

This work is partially supported by NSF Awards DMS-1419027, DMS-1620345, and ONR Award
N000141310408.
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Following the setups in [7], we further study the dynamical properties of the gradient
flows in the discrete Wasserstein geometry in this paper. Special attention is given to a
free energy containing a quadratic interaction energy, a linear potential and the Boltzmann
entropy. In this case, the gradient flow can be viewed as the nonlinear FPE on graphs,
which is a set of ordinary differential equations (ODEs). We show that the solution of
FPE converges to, the unique or one of the multiple when the free energy is non-convex,
Gibbs measure exponentially fast, which mimics the entropy dissipation property, but
in a discrete space. We further provide an explicit formula that bounds the asymptotic
convergence rate. The continuous analog of the asymptotic rate is related to Yano’s
formula in Riemanian geometry [32, 33].

It is worth mentioning that the gradient flow considered in this paper is closely related
to the novel work of [11]. The difference is at the various goals of studies, which result in
different definitions for the 2-Wasserstein metric, so as the gradient flows. The authors of
[11] aim at modeling the McKean-Vlasov Markov process on discrete states, in which the
Logarithm mean of probability weight (a concept defined in section 2) is used. They show
that the gradient flow structure arises as the limit of the N-particle dynamics when N
goes to infinity. In this paper, we study the dynamical properties of mean field gradient
flows motivated by numerical considerations and population games [6, 8], in which the
probability weight is often assumed to be linear.

The structure of this paper is arranged as follows. We review the discrete 2-Wasserstein
metric and Fokker-Planck equations on graphs in the next section, then study its conver-
gence in Section 3. In Section 4, we discuss some properties stemming from the convergence
rate, including the connection with Yano’s formula.

2. OPTIMAL TRANSPORT ON FINITE GRAPHS

In this section, we briefly review the constructions of the 2-Wasserstein metric and
corresponding FPE on a graph . We mainly follow the approaches given in [7, 19], with
some modified notations for a simpler presentation.

Consider a weighted connected finite graph G = (V, E,w), where V = {1,2,--- ,n} is
the vertex set, F is the edge set, and w = (wjj)i jev contains the weight of each edge,

0 otherwise

wij:{wjg>0 if (i,j) e E .

We assume that G is undirected and contains no self loops or multiple edges. The adjacency
set of vertex ¢ € V is denoted by

N@) ={jeV|(ij) eE}.

The probability set (simplex) supported on all vertices of G is defined by

n
P(C) = {(p)iy €R* | pi=1, pi20, foranyicV},

i=1
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where p; is the discrete probability function at node i. Its interior is denoted by P,(G).
We introduce the following notations and operations on G and P(G) and use them for the
construction of the discrete 2-Wasserstein metric.

A wvector field v = (vij)ijev € R™™™ on G is a skew-symmetric matriz on the edge set

FE:

0 otherwise

{—‘U;’j if (%,j‘) eFE
U.,;j = .

Given a function ® = (®;); € R™ defined on the nodes of G, a potential vector field
Va® = (Va®ij)ijev € R™*™ refers to

VQ(I’“ _ {4 ngj(@;' — '1’_;;) if (%,j‘) cF .

0 otherwise

For a given probability function p € P(G) and a vector field v, we define the product
pv € R™" called flur function on G, by

pv = (vi50i5(P)) (i j)eE »

where 6;;(p) are chosen as

0:i(p) = pi —|2- Pi , forany (i,7) € E .

Remark 1. There are many other choices of §;; for modeling and computations, such as
Logarithm mean [7, 19] and up-wind type [7]; see details in appendix.

We define the divergence of pv on G by

diva(pv) = —( > \/@Ua’ﬂa’j(ﬂ))

JEN(i)

cR"™.

n
i=1

Given two vector fields v, w on a graph and p € P(G), the discrete inner product is defined
by

1
(v,w)p = ) Z viwij0ij (p) -
(i.J)eE
The coefficient 1/2 in front of the summation accounts for the fact that every edge in G
is counted twice. In particular, we have

1
(v,0)p =5 > vi0i5(p) -
(i.J)eE

With these definitions, we introduce an integration by parts formula on graphs that
will be used throughout this paper: For any vector field v and potential function ® on a
graph, the following properties hold

— ) divg(pv)|i®; = (v,Vd), ,

i=1
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and

n
Z divg(pv)|i =0 .
i=1

Proof. From v;; 4 vj; = 0, we write

n n
— Zdivg(pfv}h@i :Z Z VWi vijbij @i
i=1

i=1 jEN (i)

1
=5( Y Vwigui®ibi+ Y Jfwvi®;0s)

(i.J)EE (J)eE
1
=5 D vig /@i (D — @5)6;
(i.J)eE
=(Vg®,v), .

Let ® = (1,---,1)T, then 3.7, divg(pv)|i = - >.0 (v, Vgl), =0.
O

We prefer not to replace #;; by its explicit formula, as done in [7, 19], to emphasize
the freedom of using different #;;, which can result in different definitions for the flux
function, divergence operator and inner product, and hence lead to different definitions
for the discrete 2-Wasserstein metric.

2.1. 2-Wasserstein metric on a graph. The discrete analogue of 2-Wasserstein metric
W, on probability set P,(G) can be given as following. For any given p°, p' € P,(G),
define

1
W3 (p°, p') == inf { /ﬂ (v(t), v()pydt : p(t)+divg(p(t)o(t) =0, p(0)=p", p(1)=p'},
(1)

where p(t) = %p(t] and the infimum is taken over all vector fields v on a graph, and p is
a continuously differentiable curve p: [0,1] — Py(G).

This is the corresponding Benamou-Brenier formula [2] in discrete space. Modifying a
similar proof as given in [19], one can show the following lemma; see details in [18].

Lemma 1. Given a vector field on a graph v = (vij)(i j)eg with vij = —vji, and a measure
p € Po(Q), there erists a unique decomposition, such that

v=Vg®+u, and divg(pu)=0,
where ® is a function defined on V. In addition, the following property holds,
(Ua U)P = (VG(I’a VG(I’}P + (ua u)ﬂ -
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One may view Lemma 1 as a discrete analogue of the well-known Hodge decomposition.
Using it, the metric (1) can be proven equivalent to

1
(W, p1))* Zigf{/ (Va®,Ve®)dt : p+diva(pVe®) =0, p(0) =p°, p(1) =p'},
0
(2)
where the infimum is taken over all potentials ®: [0,1] — R™.

Let us denote the tangent space at p € Po(G) as
T
TpPo(G) = {(0i)izs € R™ | Zf’i =0} .
i=1
We define a weighted graph Laplacian matrix L(p) € R™*":
L(p)=—D"6(p)D ,

where D € RIPI¥IVI ig the discrete gradient matrix

+/Wij ifi=k;
DijeErev = —/@5 ifj=Fk;
0 otherwise ;

and © € RIFIXIE| 5 the diagonal weighted matrix

o _{%@)H@ﬁ=@ﬁ63;
(i,j)€E,(k1)eE = 0

otherwise .
We would like to emphasize that the weights in L(p) depend on the distribution p.

Lemma 2. For any given o € T,Po(G), there exists a unique function ®, up to a constant
shift, satisfying

o= L(p)® = —divg(pV®) .

Proof. If p € Po(G), all diagonal entries of the weighted matrix ©(p) are nonzero. Consider
1
T
O L(p)® =5 D (Ri— ®))wijbij(p) =0,
(i,j)eE

then ®; = ®; for any (i,j) € E. Since G is connected, ®; = constant for any i &
V. Thus 0 is a simple eigenvalue of L(p) and L(p)(1,---,1)T = 0, ie. (1,---,1)T €
ker(L(p)). Hence dim(R" /ker(L(p))) = dim(Ran(L(p))) = dim(7,Po(G)) = n — 1. Since
S dive(pVa®); = 0, we have Ran(L(p)) C T,Po(G). Therefore

(R"/ker(L(p))) = Ran(L(p)) = T,Po(G) ,

which proves the lemma. [l
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Based on Lemma 2, we write

0

per| M=EO) _—

Amax (L(p))

where 0 < Agec(L(p)) < -+ < Amax(L(p)) are eigenvalues of L(p) arranged in ascending
order, and T is its corresponding eigenvector matrix. We denote the pseudo-inverse of

L(p) by

0
XL

L_l(p} _ T sec (,0)

1
AmaIL(p)
Then matrix L™!(p) endows an inner product on T,P,(G).

Definition 3. For any two tangent vectors o',0% € T,Po(G), define the inner product
9 : TpPo(G) X TyPo(G) — R by

90", 0%) == (@) TL(p)(@*) = (¢")T L7 (p)o? ,
where o' = L(p)®! and 0% = L(p)®2.

Hence metric (1) is equivalent to

1
(Wa(p®, ph)* = inf{/ﬂ pTL Y (p)pdt = p(0)=p", p(1)=p', peC}, (3)

where C is the set of all continuously differentiable curves p(t) : [0,1] — Po(G). From (3),
it is clear that (Po(G), W) is a finite dimensional Riemannian manifold.

2.2. Gradient flows on finite graphs. We now consider the gradient flow of F: P(G) —
R on the Riemannian manifold (P,(G), Ws).

Theorem 4 (Gradient flows). For a finite graph G and a constant § > 0, the gradient
flow of any functional F(p) € C%(P(G)) on (Po(G), W2) is

p=—L(p)V,F(p) ,

i.e.

dpi 4 o
d—'(; = Z wijé?@j(p}(a—pf(,o) - 3p,}_(p)) ' (4)
JEN (i) ! '

Proof. For any o € TyPo(G), there exists ® € R", such that o = —divg(pVe®) = L(p)®.
By Definition 3,

k3
. T - dp;
(B, 0)p==p" L (p)o = —d? o, . (5)

i=1
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On the right hand side,

mn
AF(p) -0 =Y 5-F(0) - 01 = F(p) L)

- " (6)

=®"L(p)F(p) = =Y _ ®:dive(pVaF (p)): ,
i=1
where we denote F(p) = (Fi(p)); = ( Bip,-}_ (p))i,. Recall the definition of gradient flow
on a manifold,
(p,0)p+dF(p)-0=0,

for any o = divg(pVa®) € TpPo(G). Substituting (5) and (6) into the above definition,

we have
mn

S % diva(pVaF ()} = 0.

i=1

Since (®;), € R™ is arbitrary, we must have

903 wisbs(0) (Filo) — Fy(p) = 0
JEN(i)

for all i € V, which is (4). O

Clearly, (4) is the discrete analog of Wasserstein gradient flow in continuous space

op é
=V VEF )

where %}_ is the first variation of F. In what follows, we consider a particular free
energy, which contains a quadratic interaction energy, a linear potential and the Boltzmann
entropy:

1 T
Flp)=5p"Wp+Vip+B) pilogpi ,
i=1
where V € R", and W € R"*" is a symmetric matrix. Its gradient flow becomes
do:
g = > wigbii (Vi — Vit (Wp); — (Wp)) + Y wijfy(logp; —logp;) . (7)
JEN() JEN (i)
which is the discrete analog of nonlinear FPE

dp

o =V V@) + [ Wanpltn)dn)] + Ap.

So we call (7) nonlinear FPE on graphs. A particular attention is given to
D wiiij(p)(log pj —log pi) ,
JEN(i)

which can be viewed as a nonlinear representation of Laplacian operator for p.
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3. ENTROPY DISSIPATION

In this section, we focus on the convergence properties of FPE (7). Denote the nonlinear
Gibbs measure

1 _(We™)+V; _wp™ )J +Vj

0o Wp™)itV;
P = g€ B , where K = Z

It is easy to verify that the Gibbs measure is the eq11111br1u1n of (7). Our main theorem
here is to show how fast p(t), the solution of FPE (7), converges to p>

We start with the result that F(p) is strictly convex in Pp(G). It ensures that the
equilibrium of gradient flow is unique. In this case, we find a convergence rate for this
unique equilibrium. If it is semi-positive definite, as in classical ODE system, it may exist
multiple, or a set of equilibrium. An asymptotic statement is provided in the next section.

Theorem 5. Assume p° € Po(G) and F(p) is strictly positive definite in P(G), then there
exists a constant C > 0, such that

Flp(t)) — F(p™) < e “UF(p") — F(p™)) . (8)
Furthermore,
. 1
C= Qm(pﬂ)/\sec(L))‘min(Hess}_)m 3
where

|HessFlly 1 —m(p°) Amax(L)
r = V2Deg(G) max w; F(p?) —F(p™) ,
a(C) B Amin(HessF)3 M(P0)2 Agee(L)2 v )

Deg(G) is the mazimal degree of the graph, L = DTD is the graph La'placmn matriz,
SEC(L) and /\max(L) are the second smallest and the largest eigenvalues of L respectively,

|HessF||1 = sup |HessF(p)|1 , Amin(HessF) = min Amin(HessF(p)) ,
pEP(G) PEP(G)
and
1 1 n—2 . 1
(o) = H(———— " min{———_ min ) > 0,
14 (2M)5 14 (2M)5 €V
with
M = e25WPicv ev Vil +Wi5| (9)

Before giving the complete proof, we want to point out the main difficulties that we
must overcome. Since F(p) is strictly convex and p* is its unique minimizer, it is not
hard to show p(t) converging to p™. In general, the rate of convergence is determined by
comparing the ratio between the first and second derivative of F(p(t)) along the gradient
flow. If one can find a constant C' > 0, such that

L F o) > ~C2F (1) (10)

holds for all t > 0, one can obtain, by 1ntegrat10n,

SIF@) = Fol)] 2 ~CIF () ~ Flo(0)]
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Then (8) is proved following Gronwall’s inequality.
For FPE (7), the first derivative of F along (7) gives

d . Ty — .
ZF(e(1) =F(p)' p=~F(p) L())F(p) = —p" L™ (p)p .
while the second derivative is

%f (p(t)) =2 p"HessF(p)L(p)F(p) — F(p)"L(p)F(p)

=2 p"HessF(p)p — pT L (p)L(H)L ™ (p)p ,
where L(p) = DTdiag(6:;(p))D.
Comparing 4 F(p(t)) with c%:g.}"_(p(t)}, we find

O i 207HessF(p)p  pTL7'(p)L(A)L'(p)p
" peB()  PTL7Y(p)p PTL=Y(p)p ' (11)
Quadratic Cubic

However, it is not simple to get an estimation of C. In the continuous case, there
are only a few examples [4], depending on special interaction potentials W, that allow
us to find C explicitly. In the discrete space, we overcome this difficulty by borrowing
techniques from dynamical systems. If p is close enough to the equilibrium (p is near
zero), estimating C in (11) becomes possible. This is because the cubic term of p in (11)
becomes one order smaller than g L~'(p)p, and the dominating quadratic term can be
estimated by a solvable eigenvalue problem.

Following this idea, the sketch of the proof is as follows: In lemma 6, we first show that
the solution of FPE (7) is well defined, and it converges to p*™. In fact, it can be shown
p € B(p"), a compact subset in P,(G). Then we estimate the convergence rate in B(p?)
by two parts, depending on a parameter > 0 controlling the closeness between p and
p>. If p(t) is far away from p°, the dissipation formula d%.}"_(p) = —F(p)TL(p)F(p) <0
gives one convergence rate 7 (z); If p(¢) is close to p™, estimating (11) is possible. Thus
(10) implies another rate ry(z). Combing the two together, we find a lower bound of
dissipation rate C by calculating

max min{ri(z),rz2(x)} .

Lemma 6. For any initial condition p° € P,(G), equation (7) has a unique solution
p(t) : [0,00) = P,(G). Moreover,
(i) There ezists a constant m(pg) > 0, such that

pi(t) = m(po) >0,
foralli €V andt > 0.
)
lim p(t) = p™ .

t—+o0
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Remark 2. It is worth mentioning in the proof of Lemma, we uses the requirement of graph
being connected. The requirement is needed to match many properties in continuous
states. It is used to show that p(t) stays in the interior of probability simplex and the
equilibria of gradient flow are the critical points of energy in the probability set. This
is consistent with the continuous settings. In addition, it is used to guarantee consistent
semi-discrete schemes for gradient flows [6] and Wasserstein metric [16].

Proof. First, we prove (i) by constructing a compact set B(p?) C Po(G). Denote a se-
quence of constants ¢, [ =0,1,--- ,n,

flzlmin{%,minpg} and quti—l“ forl=2,---,n,
2 1+ (2M)7 €V 1+ (2M)?
where M is defined in (9). Then we define

)
B(p°) = {(pi)iz1 € P(G) | > pi, <1—a@, forany L € {1,--+ ,n— 1},

r=1

and 1 <43 <--- <9 <mn}.

We shall show that if p° € B(p°), then p(t) € B(p") for all ¢ > 0. In other words, the
boundary of B(p°) is a repeller for the ODE (7). Assume p(t;) € dB(p°) at time t;, this
means that there exist indices iy, ,%; with [ < n — 1, such that

I
D pi(t)=1-a. (12)
r=1
We will show
d I
& > pin(@)le=t; <0
r=1

Let A= {i1,---,u} and A=V \ A. On the one hand, for any j € A€,

!
pi(t) 1= pi(t) =€ . (13)
r=1

On the other hand, since p(t;) € B(pp), for any i € A, then ZkeA\{i} pr(t) <1 —¢_q,
and from the assumption (12), p;(t;) + ZkeA\{z'} pr(t1) = 1 — €, we obtain
pilt)) 21— —(1—€g1)=€-1—¢€ . (14)
Combining equations (13) and (14), we know that for any i € A and j € A,
Fj(p) — Fi(p) = (V; + (Wp);) — (Vi + (Wp);) + B(log p; — log p;)

< 2 sup |V; + Wy;| 4 B(log e — log(e—1 — €)) (15)
i,jeVv
S - IOg 2 3

where the last inequality is from ¢ = —9=1  and M = SUp; jev e2(IVil+Wi;])
14+(2M)F
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Since the graph is connected, there exists ix € A, j« € A° N N(i4) such that

S Y biule(tr)) > big.(p(t1) > 0. (16)

i€eA jeAenN(i*)

By combining (15) and (16), we have

!
%Z Pir (t)[e=t1 :Z Z 0:5(P)[F(p) — Fi(p)]l p=p(t1)
r=1

icA jeN(i)
:Z{ Z 0ii(p)[Fj(p) — Fi(p)]

i€A jeANN (i)

+ ) 05(IF () — Fi(p)}Hp—pity)

jEACNN(4)
:Z Z i (p)[Fi(p) — Fi(P)]|p=ﬁ(31)
i€EA jeAeNN (1)
< —log2 Z Z 0i5(p(t1))
i€A jeAenN (i)

< —log2 9;’,_;,-', (p(tl)) <0,
where the third equality is from Z(é,j)efl 0;(F;—F;) = 0. Therefore, we have p(t) € B(p"),

thus min;ey >0 p(t) > m(p°). (ii) can be proved similarly as in [7], so we omit it here. [J

Lemma 7. For p € Po(G), then

ASEC(E') ~min p; < Asec(L(p)) < Amax(L(p)) < max p; - Amax(L) ,
ieV iV

and
L <ML € ML) < .
maX;ey i - Amax (L) B ~ minjey p; - Asee(L)
Proof. Since
. 1 1 1
min p;- Z wij(®i—®;)* < B Z wij (©;—®;)%0;;(p) < max p- o Z wij (P —;)?
(i,7)eE (i,.7)eE (i,7)eE
and the Laplacian matrix I has the simple eigenvalue 0 with eigenvector (1,---,1), then

for any vector ® € R™ with > 1" | (P; — %Z?’:l ®;)2 = 1, we have
min p; - )v.sec(f,) < ‘I’TL(p)‘I) < maxp; - )v.max(f,} .
icV ieV

This implies that

min p; - Agec(L) < Asee(L(p)) < Amax(L(p)) < max p; - Amax(L) .
ieV ieV

By the definition of L_l(p), we can prove the other inequality. [l
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Remark 3. The result is also true for general #;; by assuming min(p;, p;) < 6;; < max(p;, pj).

Write the weighted Laplacian matrix L(p) into quadratic form, i.e.

1 2 . T 1 2 1 2

5 Z (®;—®;)*min p; < BT L(p)® = - Z (®i—®;)%0; < 5 Z (@;—®;)*-maxp; .
(i,7)eE (i,7)eE (i,.7)eE

It is clear that the eigenvalue of L(p) depends on the upper and lower bound of probability

weight 6;;.

We are now ready to prove the main result.

Proof of Theorem 5. Given a parameter x > 0, we divide B(p°) into two parts:

B(®) ={p e B(p") : F(p)—F(p™)>z}U{pe B(p") : F(p) - F(p™) <z}
Bl B2

We consider the convergence rate in B first.

Lemma 8. Denote r(z) = Ciz, where

Cr= Zm(po})‘sec(f’)/\min(HESS'F)F(pD) _l}—(poo} :

Then
Fp() — F(p°) < e @Y F(p°) — F(p™)) , (17)
for any t <T =inf{r > 0: F(p(1)) — F(p>) = =}.

Proof. We shall show

minpe {F(p) LO)E(P)} 5 ¢
F(p°) = F(p™) -
If this is true, then for ¢t < T,

%}'(p(t)) =—F(p)"L(p))F(p)
| Flo(t) - (™)
< - ;251 F(p}TL(p)F(p)}_(p(t)} — }-(poo)
min,ep, T 00
< — CralF(pl®) — F(o™)]
From Gronwall’s inequality, (17) is proven.

By Taylor expansion on p, we have

F(p>)=F(p)+F(p)- (b —p) + %(p“’ — p)"HessF(p)(p™ — p)

where p = p + s(p™ — p), for some constant s € (0,1). Denote the Euclidean projection
matrix onto 7,P,(G) by

1

P=1->-11T,

n
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where 1 = [1,---,1]7 and T € R™ " is the identity matrix. Since PF(p) - (p — p>°) =
F(p)-(p— p™), then

(s 4] (s 4] 1 (s 4] — OO0
z < Fp) = F(p™) =PF(p) - (0 — p™) = 5(p — p) HessF(p) (p — o)
1
<IPE(p)ll2llp — p*ll2 = 5 Amin(HessF) o — o3 -
The above implies

x 1
>7 - ) _ s 9]
IPE(p)|l2 = e — P>l + 2)‘mm(HeSS-F}”P P |l2
2\/2mAmin(Hess}_) .

Thus by the Poincaré inequality on graph, i.e.

Fo Lp)F(p) =5 3 wis(Fi(p) — Fi(p))05(p)

(i,j)eE
>2 3 wu(Flp) — Fy(p)m(s”)
(i,j)eE
2 3 wl(E) - =3 Flp) - (F() — = 3 Fl(p) Pm(s?)
2 n n
(1.J)EE k=1 k=1

=m(p°)(PF(p))TL(PF(p))
>m(p°) Asee(L)|[PF(p) |12

2Zm(pﬂ})\min(Hess}_))\sec(f,)m ,
(18)
which finishes the proof. [l

Next we give the convergence rate in Bs.
Lemma 9. Denote ro(z) = Cy — C34/x, where
Cy = 2m(p°) Asec(L) Amin(HessF) ,

and
— D r
C3 = 2v/2Deg(G) max wjj | HessFlln 1 mgp }Amax({’) .
()EE ~ \/Amn(HessF) m(p”)  Agee(L)
Then

F(p(t)) — F(p™) < e BT (F(p(T)) — F(p™)) (19)
for any t > T = inf{r > 0: F(p(1)) — F(p>) = =}.

Proof. We shall show
. 2p"HessF(p)p — pT L7 (p)L(p)L~"
min

(p)p
pEBs STL1(p)p } > ra() .
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Suppose it is true, then

2
%}'(p(t}) > —Tz(i’)%f (p(?))

holds for all ¢ > T'. Integrating this formula in [t, +00), we obtain

LIFG™) ~ Fo®)] > ~ra(@)F (5) ~ Flp(t))]

By Gronwall’s inequality, (19) is proven.

We come back to estimate ro(x). Since F(p™®) = c[1,---,1]T is a constant vector, by
Taylor expansion, we have

z 2F(p) — F(p™)
=F(p™)-(p—p>™) + %(,0 — p®) HessF(p)(p — p)
Z%(p — p™) HessF (p)(p — p™)

1
> = Amin (Hess F)|p — p™l5 -

Thus
2
lp—p=2 < 1/ mﬁ
Since
pi = (L(p)F(p))i
< > wylFi(p) — Fj(p)16:5(p)
JEN(i)
<Deg(G) max wij max, [Fi(p) — Fj(p)| max p;
<Deg(G) max wi; max |Fi(p) — F3(p)|(1 — m(e°))
(1.3)eE " (L.7)eE
and

Ei(p) — Fj(p) =Fi(p™) +V,Fi(p) - (p — p™°) — Fj(p™) — V,Fj(p) - (p — p™)
=(VoFi(p) — V,oFj(p) - (p— p™)
<|IVoFi(p) — VoE;(p)l2llp — |2

<2 sup [V, Fi(p)l2llp — p™|l2
i€V, peP(G)

<2 sup |[[V,Ei(p)llillp — p™|2
ieV,peP(G)

=2||HessF|1llp— p~|l2 ,
where p, p are two discrete densities between the line segment of p and p*°.

Combining these two estimates, we get

2x

3lloo < 2 - Deg(G (1 —m(p"))|H N HesF
1Allc < eg( )(S?EXEW'&J( m(p"))|HessF||; Amin (HessF)



ENTROPY DISSIPATION ON GRAPHS 15

Denote
0

1 1
(KoL)’

1 1
(L))

and o = —+—— L3 9, thus
el PP

20" HessF(p)p  pTL™ ' (p)L(p)L~ (p)p
PTL=Y(p)p PTL=(p)p

L oP HessF(p)p ”p”mpTL—l(p) L-L7'(p)p
— pTL7Y(p)p PTL=1(p)p
=207 L3 (p)HessF (p) L% (p)o — a(x)oT L2 (p) LL ™2 (p)o
>2Amin(HessF)o? L(p)o — a(x) Amax(L)o? L™ (p)o
>2Amin(HessF)Asec(L(p)) — () Amaxc (L) Amax (L™ (p))
(@) Mmax(L)

m(p°) Asec(L)

>2Amin(HessF)m(p°) Asec(L)

:CQ - C3ﬁ ]

where the last inequality comes from Ageo(L(p)) > m(p°)Asec(L) and Apax(L™1(p))

<
1 .
m m Lemma 7 |:|

We are ready to find the overall convergence rate. By Lemma 8 and Lemma 9, one can
show that for any ¢ > 0,

Flo(t) = F(p) < - mmn@nEl(F (%) - F(p)) ,
for any = > 0. We estimate a constant rate C' by showing

maxmin{Cyz,Cy — C3\/z} > C .

x>0

It is clear that the maximizer x* > 0 is achieved at Ciz* = Cy — C3/x*, ie. z* =

—Ca+4/C3+4C1Cy Thus

20,
Oz (—C3 +\/C3 +4C1Cy)? (C3 4+4C1Cy — C3)?
Tr = =
! aC, 401 (C3 + \/CF + 4C1C5)?
16C2C2 c 1
2 =ly——F—"7
401 . 4(03 + \/0102}2 (\/_8"1_30_2 + 1)2

which finishes the proof. [l

Remark 4. For general choice 6;;(p) € C!, especially the Logarithm mean used in [11],
the rate can also be established. Following the proof in Lemma 9, one only needs to

replace r by 7 = rmaxX,ep(,),(ij)eE %i;f Since B(p°) stays in a compact set away from
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the boundary of probability set, then 7 < oo is a finite number. Thus the convergence
rate for generalized 6;; is given by

1
(F4+1)2°
In addition, when W = 0, Theorem 5 gives the exponential convergence of linear FPE on
graphs, for any potential V € R"™.

C = 2m(p°) Asee(L) Amin (HessF)

It is also important to understand how the constants scale with the graph size, i.e.
the number of nodes and edges. The general rate depends on the smallest value of p°,
which can be very small if it is given near the boundary of probability simplex. Due
to the definition of the discrete Laplacian, this eigenvalue problem depends on the size
of the graph. Our numerical calculations, in [6], indicate that the constants are smaller
for graphs with more nodes, but they become larger if more edges are presented (denser

graph).

In some cases, we can estimate the asymptotic rate analytically, an example is given
Remark 5.

3.1. Inequalities. In the literature, it is well known that the convergence of FPE can
be used to prove the so called Log-Sobolev inequality and a few others. We mimic this
result on graphs and further extend the inequality to the case that includes the nonlin-
ear interaction energy. For simplicity, we take 5 = 1 and consider F(p) = lpT Wp +
VTp+ > i pilog p;, which is strictly convex in P(G). Again, we denote p as the Gibbs
measure.

The Log-Sobolev inequality describes a relationship between two functionals named rel-
ative entropy and relative Fisher information, which can be expressed using our notations
in the following formulas,

H(p|p™) := F(p) — F(p™) Relative entropy ; (20)
and
Z(p|p™) ::F(p)TL(p}F(p} Relative Fisher information
Pj

_1 Pi 9
T2 (Z):Ew” (log e—(Wp)i—Vi log e_(wp)j_vj) 0ii (p) -
1.7)E

(21)

Corollary 10. If F(p) is strictly convex in P(G), then there exists a constant A\ > 0, such
that

H(plp™) I(Plp

_2)\

We want to point out that when W = 0, corollary (10) is reduced to the standard
Log-Sobolev inequality. In this case, functionals (20) and (21) can be written as

mn
pi 1 pi

Hip) =) pilog~5, I(p)=5 > wiy(log-5 —log w}29a:(p)
i—1 Pi 2 5 Pi
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Their continuous counterparts are

Hp) = [ plo)tox Bde 1) = [ (Viog ‘;E(}) 2p(2)da .

Proof. We use the fact that the dissipation of relative entropy is the relative Fisher infor-
mation along FPE (7),

T(p(t)) = F(p)"L(D)E(p) = 5 H(p(0)| ™)

Similar as in Theorem 5, we divide P(G) into two regions based on a given parameter
z >0

P(G) ={p e P(G) : H(p|p™) <a}U{peP(G) : H(plp™) =z}
D] D2

We shall show two upper bounds of % in Dy and D, respectively.

On one hand, consider FPE (7), with p(t) starting from an initial measure p € Dj.
Since H(p(t)|p>) is a Lyapunov function, then p(t) € D; for all ¢ > 0. Following Lemma
9, there exists ra(z) > 0, such that

d2
’H(p t)[p™) —'-'"z(fﬂ) ’H(plpc’o} :

which implies

o0 dQ [e.u]
/0 = ——5H(p(T)|p>)dr >/ﬂ —ry(z) dd (p(7)|p™)dr ,
T(plp™) = - H(pOp™)FZE > ra(e) (H ()oY F=%) = ra(a)H(plo™)
where lim;_; oo %’H(p(tﬂp"o) = limy—00 H(p(t)|[p>) = 0. Thus

(s o]
A = sup Hiplp™)

< < 00 .
peDy L(p|p™) ~ ra2(z)

On the other hand, if p € Dy, we shall show
A H(plp™) _ suppen, H(plp™)
2 = sup =
peDa Z(plp>) mprDz Z(plp>)

It is trivial that H(p|p>) is bounded above. We only need to show inf,cp, Z(p|p™) > 0.
Assume this is not true, i.e. inf,ep, Z(p|p™) = 0. Since Z(-|p™) is a lower semi continuous
function in P(G), Z(-|p™) is infinity on P(G)\Po(G), and D> is a compact set, there exists
p* € DaNPy(G), such that

I(p*|p™) = F(p*)TL(p*)F(p") -
This implies Fj(p*) = Fj(p*) for any (i,j) € E. Since G is connected, then p* = p> =

arg min,ep () F(p), which contradicts p* € Ds. By choosing % = max{A1, A2}, we prove
the result. O
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3.2. Asymptotic properties. If W is not a positive definite matrix, there may exist
multiple Gibbs measures. The asymptotic convergence rate can be established whenever
the solution is near a equilibrium. In what follows, we study such an asymptotic rate.

Assume that the initial measure p? is in a basin of attraction of an equilibrium p*,
meaning

(A) lim p(t) = p™ and p™ is an isolated equilibrium .

t—o0

Theorem 11. Let (A) hold and
A= AeelL(p) - HessF(5)) > 0.

Then for any sufficiently small € > 0 satisfying (A — €) > 0, there erists a time T > 0,
such that when t > T,

F(p(t)) — F(p™) < e 20T (F(00) — F(p™)) .

Remark 5. The asymptotical rate clearly depends on the graph size, i.e. the number of
nodes and edges. We use an example to illustrate this. Consider the energy only containing
the entropy. In this case, p™ = (%, ‘e ,%), and the asymptotic rate is given by

Asec(L(p>)HessF(p™)) = ASEC(E') :

As in the standard spectral graph theory, the second smallest eigenvalue of a standard
Laplacian metric L converges to the one in continuous state when the graph becomes
denser.

Proof. Since lim¢_so0 p(t) = p™, for sufficient small € > 0, there exists ¢ > T', such that

Asee(L(p) - HessF(p) > A~ e

and A
€ m(pﬂ} ) /\BEC(L}

[llec = IL(P)F'(p)]lo0 < N

Similar to the proof of Lemma 9, we have

$:F(p) _ 2§ HessF(p)p — 7L~ (0) L)L (0)p

LF(p) PTL=(p)p
Amax (L)
>2Xgec(L(p) - Hess F —|Ipllc + ———————
>2Asec(L(p) (P)) — l1Alloo m(p°) - Asee(L)
>2(A—¢) .
Following strategies in (10), we prove the result. O

The techniques used in this proof can also be applied to some non-gradient flows, for
example, the FPEs with a non-symmetric interaction potential W. In this approach, the
free energy JF(p) no longer exists. However, the relative Fisher information always exists,
which is used to measure the closeness between p(t) and p*.
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Corollary 12. Let (A) hold and

A= Xeee(L(p®) - (TFT + TF)(p™)) >0,

where JF' is the Jacobi operator on the vector function F(p). Then for any sufficiently
small € > 0 satisfying (A — €) > 0, there exists a time T > 0, such that whent > T,

Z(p(t)]p™) < e A= IEDL(p(T)[p™)
Proof. Since

S T(p(0)|6) = 5 (TF () + TF(@)p— L)L (o)

Following the proof in Theorem 11, it is straightforward to show that if t > T, there exists
€ > 0, such that

%I(p(tﬂpoo} < =2(A = €e)Z(p(t)[p™) -

By the Gronwall’s equality, we prove the result. [l

In the end, we shall give an explicit formula for the quadratic form in (11), i.e.
\— min oTHessFo
0T, Po(G) oL L 1(p)o

From Lemma 2, there exists a unique ® € R™, up to constant shift, such that o = L(p)®.
Thus

\— mi ®T . L(p) - HessF - L(p) - ®
~ serr OTL(p)® (22)
= min {®T - L(p) -HessF - L(p) - ® : DT L(p)® =1} .
E n

We can rewrite the formula (22) explicitly. Introducing

52 92 92 52 o
hij i = (6piapk + B39 B 30 )F(p), foranyi, j, k,leV,
we have
A= min i (i%ég (k:%éE @hﬁ,kl(@é — ©;)0:;(2x — 1)k (23)
s.t.

1
B Z wij(@i — 'I’j)Qﬂg'j =1.
(1.7)eE
In fact, it is not hard to show that A is the eigenvalue problem of Hessian operator at the
equilibrium in (P,(G), Wa). In the next section, we shall present what (23) suggests in its
continuous analog.
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4. CONNECTION WITH WASSERSTEIN GEOMETRY

We exploit the meaning of h;;j; by examining its continuous analog in this section. Our
calculation indicates a nice relation to a famous identity in Riemannian geometry, known
as Yano’s formula [32, 33].

Consider a smooth finite dimensional Riemannian manifold M. We assume that M is
oriented, compact and has no boundary. We denote P(M) the space of density func-
tions supported on M, T,P(M) the tangent space at p € P(M), ie. T,P(M) =
{o(z) : [y o(z)dz = 0}. Following Otto calculus in [25, 31], for any o(x) € T,P(M),
there exists a function ®(z) satisfying o(z) = —V - (pV®(z)). This correspondence and
the 2-Wasserstein metric endow an scalar inner product on T,P(M)

(o(z),6(x)) = (VO, VD), = /.M Vo - Vopds .

Now consider a smooth free energy F : P(M) — R. We assume that p* € P(M) is an
equilibrium satisfying

é
*(z) >0, V——F «-=0, 24
where %(m) is the first variation operator in Lo metric.

To understand hyjz;, we calculate the Hessian of F at p* with respect to the 2-
Wasserstein metric, and show

52
Hessy, F -V, Vo .:/ / D.Dy—r———-F V®(z), VO(y) P (y)dzdy ,
( 2 )o ™ M( =Y 5 p(2)3p(y) (P)lp* V@(2), VO(y))p* (= )
(25)
where m (p) is the second variation of functional F(p) in Lo metric, D; and Dy

are the covariant derivatives in x and y respectively, and & an arbitrary smooth function.

It is known that the Hessian can be computed by differentiating the function twice along
the geodesic. Then the Hessian at the equilibrium p* satisfies
d2
=—F 0.
a2 (pt)lt=0

where p; and V®; are time dependent functions satisfying the geodesic equation [25, 31],

9 LV - (p V) =0
3@: 4 Q(VQt)Q -0 s

(Hessy, F - VO, V),

with an initial measure p|t—p = p* and velocity V®;|;—o = V®. Following the geodesic,
we have

d
&}'(Ps) / oo ).7'_( z) = / 5p(@) .F(Pt )V - (pV®,)dz %)

5 oz )}_(Pt) V& (z)ps(x)dx ,

where the third equa,hty holds by the integration by parts formula and the fact that M
has no boundary.
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Similarly, we obtain the second order derivative along the geodesic,

2
aFeo= [ 593 ( 52T P V@) () (4)
+ 5 oz )}_(Pt) t(V‘I)t(m)pt(m)}dm. (A2)
Because p|i—o = p* and (24} holds, (A2)|¢t=0 = 0. Thus
2
T @0 =A0lo = [ GV F@llico - VB(@)p(o)is
—/ V:ﬁiﬁ(z )}_(pt)h —o- VO(z)p(z)dz (27)

—— | G T Pleo¥ - (VE(@)p(a))d

In addition, we compute the first order derivative of e )}_ (p) along the geodesic and

2
C 0 o) = f " _F(0)%PEY)), oy

obtain

dt 5p(x) 59(93)522?;} ot (28)
== /.M m F(p)V - (Ve(y)p(y))dy .
Substituting (28) into (27), we get
Feoleo= [ [ mﬂp)w VRN iy

/] 5p(y} F(p)|prVe(z), VO (y))p*(z)p* (v)dzdy ,

where the second equality is a,chleved by the integration by parts with respect to z and y.
Hence, we obtain (25).

Through (25), we find the continuous analog of h;;x; as
52

DDy 5;9(1:)59(?;};('0)

We next illustrate this analog in a particular situation, namely the linear entropy

H(p) = /_M p(z)log p(z)dz .

In this case, the unique equilibrium (minimizer) p*(z) = 1 is a uniform measure on M,
where the total volume of M is assumed to be 1. Hence (29) becomes,

1 2
- /M[V-(V'I)(m))] dw . (30)

The optimal transport theory [25, 31] gives another formulation of Hessian:

(Hessy, H - VO, V®),» = /M[V (p*V®(z))]?

(Hessyy, 1 - VO, VD), = /M[Ric(V‘I’(m),V‘I’(:B})—I—tr(DQQJ(a:)DQ(ﬁ(m)T)]p(x}dm, (31)
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where p is an arbitrary density function, D? is the second covariant derivative and Ric is
the Ricci curvature tensor on M. Evaluating (31) at the equilibrium p* = 1 and comparing
it with (30), we observe

/ [V - (V®)]*dx = f [Ric(V®, V®) + tr(D*®D%®T)|dx |
M M

which is the well-known Yano’s formula with vector field V®.

APPENDIX

As we mentioned in Section 2, one has the freedom to select different ;5 := 6(pi, p;)
in the definition of flux function on a graph, as long as the selection satisfies certain
properties. In our study of the gradient flow on graphs, we generally require 6;; to satisfy
the following two conditions:

(i)
min{p;, p;} < 0;;(p) < max{p;,p;} ;
(ii)
0ii(p) = Bi(p) -

In practice, there are many choices of f;; other than the simple average used in this paper.
Two examples are up-wind type

pi i g5 F(p) > g F(p) , € N(i)
0i(p) = pi  if g5 F(p) < 55 F(0) , 1€ N(i) ,
PP i - F(p) = 55 F(0) , J € N(i)

or Logarithm mean type
Pi— Py
Oij(p) = ———— .

i (p) log p; — log p;
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