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A b s t r a c t. We s t u d y t h e n o nli n e a r F o k k e r- Pl a n c k e q u a ti o n o n g r a p h s, w hi c h i s t h e
g r a di e nt fl o w i n t h e s p a c e of p r o b a bili t y m e a s u r e s s u p p o r t e d o n t h e n o d e s wi t h r e s p e c t
t o t h e di s c r e t e W a s s e r s t ei n m e t ri c.  T h e e n e r g y f u n c ti o n al d ri vi n g t h e g r a di e nt fl o w
c o n si s t s of a B ol t z m a n n e nt r o p y, a li n e a r p o t e nti al a n d a q u a d r a ti c i nt e r a c ti o n e n e r g y.
We s h o w t h a t t h e s ol u ti o n c o n v e r g e s t o t h e Gi b b s m e a s u r e s e x p o n e nti all y f a s t. T h e
c o nti n u o u s a n al o g of t hi s a s y m p t o ti c r a t e i s r el a t e d t o t h e Y a n o’ s f o r m ul a.

1. I n t r o d u c ti o n

O pti m al t r a n s p o rt t h e o r y r e v e al s m a n y d e e p c o n n e cti o n s b et w e e n p a rti al di ff e r e nti al
e q u ati o n s a n d g e o m et r y. F o r e x a m pl e, i n t h e s e mi n al w o r k [ 1 7], it i s p r o v e d t h at t h e
li n e a r F o k k e r- Pl a n c k e q u ati o n ( F P E) i s t h e g r a di e nt fl o w of a f r e e e n e r g y i n t h e p r o b a bilit y
s p a c e e q ui p p e d wit h W a s s e r st ei n m et ri c [ 1 4, 2 4, 3 0, 3 1]. T hi s g r a di e nt fl o w i nt e r p r et ati o n
h a s b e e n e xt e n d e d t o m e a n fi el d s etti n g s, i n w hi c h t h e f r e e e n e r g y c o nt ai n s a n i nt e r a cti o n
e n e r g y [ 1]. M a n y st u di e s h a v e b e e n c a r ri e d o ut s h o wi n g t h at t h e s ol uti o n of F P E c o n v e r g e s
t o it s e q uili b ri u m i n a n e x p o n e nti al r at e, a n d t hi s i s k n o w n a s t h e e nt r o p y di s si p ati o n i n
t h e lit e r at u r e [ 4, 9, 2 1].

T h e g o al of t hi s p a p e r i s st u d yi n g t h e e nt r o p y di s si p ati o n of F P E i n di s c r et e s etti n g s,
f o r e x a m pl e o n fi nit e g r a p h s. S u c h a c o n si d e r ati o n i s m oti v at e d b y r e c e nt a p pli c ati o n s
i n e v ol uti o n a r y g a m e t h e o r y [ 8] a n d n u m e ri c al s c h e m e s f o r p a rti al di ff e r e nti al e q u ati o n s
( P D E s) [ 6]. T h e o pti m al t r a n s p o rt m et ri c o n g r a p h s h a s b e e n e st a bli s h e d b y s e v e r al g r o u p s
i n d e p e n d e ntl y [ 7, 1 9, 2 2]. T h e g r a di e nt fl o w st r u ct ur e b a s e d o n s u c h a m et ri c h a s att r a ct e d
a l ot of att e nti o n i n r e c e nt y e a r s. F o r e x a m pl e, M a s s a n d E r b a r st u di e d t h e di s c r et e h e at
fl o w, a n d f u rt h e r g a v e t h e Ri c ci c u r v at u r e l o w e r b o u n d i n t h e i r r e d u ci bl e M a r k o v k e r n el
o n a fi nit e s et [ 1 2]. M o r e g e n e r ali z ati o n s a r e f oll o w e d i n [ 1 3, 1 5, 2 0]. Mi el k e p r o p o s e d t h e
di s c r et e r e a cti o n di ff u si o n e q u ati o n [ 2 3]. E r b a r, F at hi, L a s c h o s a n d S c hli c hti n g i nt r o d u c e d
a di s c r et e M c K e a n- Vl a s o v e q u ati o n [ 1 1], w hi c h i s t h e e v ol uti o n e q u ati o n f o r t h e p r o b a bilit y
d e n sit y f u n cti o n of t h e m e a n fi el d M a r k o v p r o c e s s.

V a ri o u s p r o p e rti e s of t h e s e m et ri c s a n d g r a di e nt fl o w s h a v e b e e n b r o u g ht u n d e r a l ot
of att e nti o n a s w ell [ 5, 1 2, 1 5, 1 0, 1 6]. I n a d diti o n, t h e di s c r et e W a s s e r st ei n di st a n c e
o n g r a p h s h a s att r a ct e d c o m m u niti e s i nt e r e st e d i n d at a a n al y si s a n d m o r e s p e ci all y i n
d e s c ri bi n g cl u st e ri n g a n d p oi nt cl o u d s [ 2 7, 2 8, 2 9].

T hi s w o r k i s p a r ti all y s u p p o r t e d b y N S F A w a r d s D M S- 1 4 1 9 0 2 7, D M S- 1 6 2 0 3 4 5, a n d O N R A w a r d
N 0 0 0 1 4 1 3 1 0 4 0 8.
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F oll o wi n g t h e s et u p s i n [ 7], w e f u rt h e r st u d y t h e d y n a mi c al pr o p e rti e s of t h e g r a di e nt
fl o w s i n t h e di s c r et e W a s s e r st ei n g e o m et r y i n t hi s p a p e r. S p e ci al att e nti o n i s gi v e n t o a
f r e e e n e r g y c o nt ai ni n g a q u a d r ati c i nt e r a cti o n e n e r g y, a li n e a r p ot e nti al a n d t h e B olt z m a n n
e nt r o p y. I n t hi s c a s e, t h e g r a di e nt fl o w c a n b e vi e w e d a s t h e n o nli n e a r F P E o n g r a p h s,
w hi c h i s a s et of o r di n a r y di ff e r e nti al e q u ati o n s ( O D E s). We s h o w t h at t h e s ol uti o n of
F P E c o n v e r g e s t o, t h e u ni q u e o r o n e of t h e m ulti pl e w h e n t h e f r e e e n e r g y i s n o n- c o n v e x,
Gi b b s m e a s ur e e x p o n e nti all y f a st, w hi c h mi mi c s t h e e nt r o p y di s si p ati o n p r o p e rt y, b ut
i n a di s c r et e s p a c e. We f u rt h e r p r o vi d e a n e x pli cit f o r m ul a t h at b o u n d s t h e a s y m pt oti c
c o n v e r g e n c e r at e. T h e c o nti n u o u s a n al o g of t h e a s y m pt oti c r at e i s r el at e d t o Y a n o’ s
f o r m ul a i n Ri e m a ni a n g e o m et r y [ 3 2, 3 3].

It i s w o rt h m e nti o ni n g t h at t h e g r a di e nt fl o w c o n si d e r e d i n t hi s p a p e r i s cl o s el y r el at e d
t o t h e n o v el w o r k of [ 1 1]. T h e di ff e r e n c e i s at t h e v a ri o u s g o al s of st u di e s, w hi c h r e s ult i n
di ff e r e nt d e fi niti o n s f o r t h e 2- W a s s e r st ei n m et ri c, s o a s t h e g r a di e nt fl o w s. T h e a ut h o r s of
[ 1 1] ai m at m o d eli n g t h e M c K e a n- Vl a s o v M a r k o v p r o c e s s o n di s c r et e st at e s, i n w hi c h t h e
L o g a rit h m m e a n of pr o b a bilit y w ei g ht ( a c o n c e pt d e fi n e d i n s e cti o n 2) i s u s e d. T h e y s h o w
t h at t h e g r a di e nt fl o w st r u ct u r e a ri s e s a s t h e li mit of t h e N - p a rti cl e d y n a mi c s w h e n N
g o e s t o i n fi nit y. I n t hi s p a p e r, w e st u d y t h e d y n a mi c al p r o p e rti e s of m e a n fi el d g r a di e nt
fl o w s m oti v at e d b y n u m e ri c al c o n si d e r ati o n s a n d p o p ul ati o n g a m e s [ 6, 8], i n w hi c h t h e
p r o b a bilit y w ei g ht i s oft e n a s s u m e d t o b e li n e a r.

T h e st r u ct u r e of t hi s p a p e r i s a r r a n g e d a s f oll o w s. We r e vi e w t h e di s c r et e 2- W a s s e r st ei n
m et ri c a n d F o k k e r- Pl a n c k e q u ati o n s o n g r a p h s i n t h e n e xt s e cti o n, t h e n st u d y it s c o n v e r-
g e n c e i n S e cti o n 3. I n S e cti o n 4, w e di s c u s s s o m e p r o p e rti e s st e m mi n g f r o m t h e c o n v e r g e n c e
r at e, i n cl u di n g t h e c o n n e cti o n wit h Y a n o’ s f o r m ul a.

2. O p ti m a l t r a n s p o r t o n fi ni t e g r a p h s

I n t hi s s e cti o n, w e b ri e fl y r e vi e w t h e c o n st r u cti o n s of t h e 2- W a s s e r st ei n m etri c a n d
c o r r e s p o n di n g F P E o n a g r a p h . We m ai nl y f oll o w t h e a p p r o a c h e s gi v e n i n [ 7, 1 9], wit h
s o m e m o di fi e d n ot ati o n s f o r a si m pl e r p r e s e nt ati o n.

C o n si d e r a w ei g ht e d c o n n e ct e d fi nit e g r a p h G = ( V, E, ω ), w h e r e V = { 1 , 2 , · · · , n} i s
t h e v e rt e x s et, E i s t h e e d g e s et, a n d ω = ( ω i j ) i, j ∈ V c o nt ai n s t h e w ei g ht of e a c h e d g e,

ω i j =
ω j i > 0 if ( i, j ) ∈ E

0 ot h e r wi s e
.

We a s s u m e t h at G i s u n di r e ct e d a n d c o nt ai n s n o s elf l o o p s o r m ulti pl e e d g e s. T h e a dj a c e n c y
s et of v e rt e x i ∈ V i s d e n ot e d b y

N (i) = { j ∈ V | (i, j ) ∈ E } .

T h e p r o b a bilit y s et ( si m pl e x) s u p p o rt e d o n all v e rti c e s of G i s d e fi n e d b y

P (G ) = { (ρ i )
n
i= 1 ∈ R n |

n

i= 1

ρ i = 1 , ρi ≥ 0 , f o r a n y i ∈ V } ,
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w h e r e ρ i i s t h e di s c r et e p r o b a bilit y f u n cti o n at n o d e i. It s i nt e ri o r i s d e n ot e d b y P o (G ).
We i nt r o d u c e t h e f oll o wi n g n ot ati o n s a n d o p e r ati o n s o n G a n d P (G ) a n d u s e t h e m f o r t h e
c o n st r u cti o n of t h e di s c r et e 2- W a s s e r st ei n m et ri c.

A v e ct o r fi el d v = ( v i j ) i, j ∈ V ∈ R n × n o n G i s a s k e w- s y m m et ri c m at ri x o n t h e e d g e s et
E :

v i j =
− v i j if (i, j ) ∈ E

0 ot h e r wi s e
.

Gi v e n a f u n cti o n Φ = ( Φ i )
n
i= 1 ∈ R n d e fi n e d o n t h e n o d e s of G , a p ot e nti al v e ct o r fi el d

∇ G Φ = ( ∇ G Φ i j ) i, j ∈ V ∈ R n × n r ef e r s t o

∇ G Φ i j =

√
ω i j ( Φ i − Φ j ) if ( i, j ) ∈ E

0 ot h e r wi s e
.

F o r a gi v e n p r o b a bilit y f u n cti o n ρ ∈ P (G ) a n d a v e ct o r fi el d v , w e d e fi n e t h e p r o d u ct
ρ v ∈ R n × n , c all e d fl u x f u n cti o n o n G , b y

ρ v : = (v i j θ i j (ρ )) ( i, j ) ∈ E ,

w h e r e θ i j (ρ ) a r e c h o s e n a s

θ i j (ρ ) =
ρ i + ρ j

2
, f o r a n y (i, j ) ∈ E .

R e m a r k 1 . T h e r e a r e m a n y ot h e r c h oi c e s of θ i j f o r m o d eli n g a n d c o m p ut ati o n s, s u c h a s
L o g a rit h m m e a n [ 7, 1 9] a n d u p- wi n d t y p e [ 7]; s e e d et ail s i n a p p e n di x.

We d e fi n e t h e di v e r g e n c e of ρ v o n G b y

di v G (ρ v ) : = −

j ∈ N ( i)

√
ω i j v i j θ i j (ρ )

n

i= 1

∈ R n .

Gi v e n t w o v e ct o r fi el d s v , w o n a g r a p h a n d ρ ∈ P (G ), t h e di s c r et e i n n e r p r o d u ct i s d e fi n e d
b y

(v, w ) ρ : =
1

2
( i, j ) ∈ E

v i j w i j θ i j (ρ ) .

T h e c o e ffi ci e nt 1 / 2 i n f r o nt of t h e s u m m ati o n a c c o u nt s f o r t h e f a ct t h at e v e r y e d g e i n G
i s c o u nt e d t wi c e. I n p a rti c ul a r, w e h a v e

(v, v ) ρ =
1

2
( i, j ) ∈ E

v 2
i j θ i j (ρ ) .

Wit h t h e s e d e fi niti o n s, w e i ntr o d u c e a n i nt e g r ati o n b y p a rt s f o r m ul a o n g r a p h s t h at
will b e u s e d t h r o u g h o ut t hi s p a p e r: F o r a n y v e ct o r fi el d v a n d p ot e nti al f u n cti o n Φ o n a
g r a p h, t h e f oll o wi n g p r o p e rti e s h ol d

−

n

i= 1

di v G (ρ v )|i Φ i = ( v, ∇ G Φ) ρ ,
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a n d
n

i= 1

di v G (ρ v )|i = 0 .

P r o of. Fr o m v i j + v j i = 0, w e w rit e

−
n

i= 1

di v G (ρ v )|i Φ i =
n

i= 1 j ∈ N ( i)

√
ω i j v i j θ i j Φ i

=
1

2
(

( i, j ) ∈ E

√
ω i j v i j Φ i θ i j +

( j,i ) ∈ E

√
ω i j v j i Φ j θ j i )

=
1

2
( i, j ) ∈ E

v i j
√

ω i j ( Φ i − Φ j )θ i j

=( ∇ G Φ , v) ρ .

L et Φ = ( 1 , · · · , 1) T , t h e n n
i= 1 di v G (ρ v )|i = − n

i= 1 (v, ∇ G 1) ρ = 0 .

We p r ef e r n ot t o r e pl a c e θ i j b y it s e x pli cit f o r m ul a, a s d o n e i n [ 7, 1 9], t o e m p h a si z e
t h e f r e e d o m of u si n g di ff e r e nt θ i j , w hi c h c a n r e s ult i n di ff e r e nt d e fi niti o n s f o r t h e fl u x
f u n cti o n, di v e r g e n c e o p e r at o r a n d i n n e r p r o d u ct, a n d h e n c e l e a d t o di ff e r e nt d e fi niti o n s
f o r t h e di s c r et e 2- W a s s e r st ei n m et ri c.

2. 1. 2- W a s s e r s t ei n m e t ri c o n a g r a p h. T h e di s c r et e a n al o g u e of 2- W a s s e r st ei n m et ri c
W 2 o n p r o b a bilit y s et P o (G ) c a n b e gi v e n a s f oll o wi n g. F o r a n y gi v e n ρ 0 , ρ 1 ∈ P o (G ),
d e fi n e

W 2
2 (ρ 0 , ρ1 ) : = i nf

v
{

1

0
(v (t), v(t)) ρ ( t) dt : ρ̇ ( t) + di v G (ρ (t)v (t)) = 0 , ρ( 0) = ρ 0 , ρ( 1) = ρ 1 } ,

( 1)
w h e r e ρ̇ ( t) = d

dt ρ (t) a n d t h e i n fi m u m i s t a k e n o v e r all v e ct o r fi el d s v o n a g r a p h, a n d ρ i s
a c o nti n u o u sl y di ff e r e nti a bl e c u r v e ρ : [ 0, 1] → P o (G ).

T hi s i s t h e c o r r e s p o n di n g B e n a m o u- B r e ni e r f o r m ul a [ 2] i n di s c r et e s p a c e. M o dif yi n g a
si mil a r p r o of a s gi v e n i n [ 1 9], o n e c a n s h o w t h e f oll o wi n g l e m m a; s e e d et ail s i n [ 1 8].

L e m m a 1. Gi v e n a v e ct o r fi el d o n a g r a p h v = ( v i j ) ( i, j ) ∈ E wit h v i j = − v j i , a n d a m e a s u r e
ρ ∈ P o (G ), t h e r e e xi st s a u ni q u e d e c o m p o siti o n, s u c h t h at

v = ∇ G Φ + u , a n d di v G (ρ u ) = 0 ,

w h e r e Φ i s a f u n cti o n d e fi n e d o n V . I n a d diti o n, t h e f oll o wi n g p r o p e rt y h ol d s,

(v, v ) ρ = ( ∇ G Φ , ∇ G Φ) ρ + ( u, u ) ρ .
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O n e m a y vi e w L e m m a 1 a s a di s c r et e a n al o g u e of t h e w ell- k n o w n H o d g e d e c o m p o siti o n.
U si n g it, t h e m et ri c ( 1) c a n b e p r o v e n e q ui v al e nt t o

W 2 (ρ 0 , ρ1 )
2

= i nf
Φ

{
1

0
(∇ G Φ , ∇ G Φ) ρ dt : ρ̇ + di v G (ρ ∇ G Φ) = 0 , ρ( 0) = ρ 0 , ρ( 1) = ρ 1 } ,

( 2)

w h e r e t h e i n fi m u m i s t a k e n o v e r all p ot e nti al s Φ: [ 0 , 1] → R n .

L et u s d e n ot e t h e t a n g e nt s p a c e at ρ ∈ P o (G ) a s

T ρ P o (G ) = { (σ i )
n
i= 1 ∈ R n |

n

i= 1

σ i = 0 } .

We d e fi n e a w ei g ht e d g r a p h L a pl a ci a n m at ri x L (ρ ) ∈ R n × n :

L (ρ ) = − D T Θ( ρ )D ,

w h e r e D ∈ R |E | ×|V | i s t h e di s c r et e g r a di e nt m at ri x

D ( i, j ) ∈ E, k ∈ V =






√
ω i j if i = k ;

−
√

ω i j if j = k ;

0 ot h e r wi s e ;

a n d Θ ∈ R |E | ×|E | i s t h e di a g o n al w ei g ht e d m at ri x

Θ ( i, j ) ∈ E, ( k,l ) ∈ E =
θ i j (ρ ) if ( i, j ) = ( k, l ) ∈ E ;

0 ot h e r wi s e .

We w o ul d li k e t o e m p h a si z e t h at t h e w ei g ht s i n L (ρ ) d e p e n d o n t h e di st ri b uti o n ρ .

L e m m a 2. F o r a n y gi v e n σ ∈ T ρ P o (G ), t h e r e e xi st s a u ni q u e f u n cti o n Φ , u p t o a c o n st a nt
s hift, s ati sf yi n g

σ = L (ρ ) Φ = − di v G (ρ ∇ G Φ) .

P r o of. If ρ ∈ P o (G ), all di a g o n al e nt ri e s of t h e w ei g ht e d m at ri x Θ( ρ ) a r e n o n z e r o. C o n si d e r

Φ T L (ρ ) Φ =
1

2
( i, j ) ∈ E

( Φ i − Φ j )
2 ω i j θ i j (ρ ) = 0 ,

t h e n Φ i = Φ j f o r a n y (i, j ) ∈ E . Si n c e G i s c o n n e ct e d, Φi = c o n st a nt f o r a n y i ∈
V . T h u s 0 i s a si m pl e ei g e n v al u e of L (ρ ) a n d L (ρ )( 1 , · · · , 1) T = 0, i. e. ( 1 , · · · , 1) T ∈
k e r( L (ρ )). H e n c e di m( R n / k e r( L (ρ ))) = di m( R a n( L (ρ ))) = di m( T ρ P o (G )) = n − 1. Si n c e

n
i= 1 di v G (ρ ∇ G Φ) i = 0, w e h a v e R a n( L (ρ )) ⊂ T ρ P o (G ). T h e r ef o r e

(R n / k e r( L (ρ ))) ∼= R a n( L (ρ )) = T ρ P o (G ) ,

w hi c h pr o v e s t h e l e m m a.
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B a s e d o n L e m m a 2, w e w rit e

L (ρ ) = T








0
λ s e c (L (ρ ))

...

λ m a x (L (ρ ))








T − 1 ,

w h e r e 0 < λ s e c (L (ρ )) ≤ · · · ≤ λ m a x (L (ρ )) a r e ei g e n v al u e s of L (ρ ) a r r a n g e d i n a s c e n di n g
o r d e r, a n d T i s it s c o r r e s p o n di n g ei g e n v e ct o r m at ri x. We d e n ot e t h e p s e u d o-i n v e r s e of
L (ρ ) b y

L − 1 (ρ ) = T








0
1

λ s e c L ( ρ )

...
1

λ m a x L ( ρ )








T − 1 .

T h e n m at ri x L − 1 (ρ ) e n d o w s a n i n n e r p r o d u ct o n T ρ P o (G ).

D e fi ni ti o n 3. F o r a n y t w o t a n g e nt v e ct o r s σ 1 , σ2 ∈ T ρ P o (G ), d e fi n e t h e i n n e r p r o d u ct
g : T ρ P o (G ) × T ρ P o (G ) → R b y

g (σ 1 , σ2 ) : = ( Φ 1 ) T L (ρ )( Φ 2 ) = ( σ 1 ) T L − 1 (ρ )σ 2 ,

w h e r e σ 1 = L (ρ ) Φ 1 a n d σ 2 = L (ρ ) Φ 2 .

H e n c e m et ri c ( 1) i s e q ui v al e nt t o

W 2 (ρ 0 , ρ1 )
2

= i nf {
1

0
ρ̇ T L − 1 (ρ ) ρ̇ dt : ρ ( 0) = ρ 0 , ρ( 1) = ρ 1 , ρ ∈ C } , ( 3)

w h e r e C i s t h e s et of all c o nti n u o u sl y di ff e r e nti a bl e c u r v e s ρ (t) : [ 0 , 1] → P o (G ). Fr o m ( 3),
it i s cl e a r t h at (P o (G ), W 2 ) i s a fi nit e di m e n si o n al Ri e m a n ni a n m a nif ol d.

2. 2. G r a di e n t fl o w s o n fi ni t e g r a p h s. We n o w c o n si d e r t h e g r a di e nt fl o w of F : P (G ) →
R o n t h e Ri e m a n ni a n m a nif ol d ( P o (G ), W 2 ).

T h e o r e m 4 ( G r a di e nt fl o w s) . F o r a fi nit e g r a p h G a n d a c o n st a nt β > 0 , t h e g r a di e nt
fl o w of a n y f u n cti o n al F (ρ ) ∈ C 2 (P (G )) o n (P o (G ), W 2 ) i s

ρ̇ = − L (ρ )∇ ρ F (ρ ) ,

i. e.

d ρ i

dt
=

j ∈ N ( i)

ω i j θ i j (ρ )
∂

∂ ρ j
F (ρ ) −

∂

∂ ρ i
F (ρ ) . ( 4)

P r o of. F o r a n y σ ∈ T ρ P o (G ), t h e r e e xi st s Φ ∈ R n , s u c h t h at σ = − di v G (ρ ∇ G Φ) = L (ρ ) Φ.
B y D e fi niti o n 3,

( ρ̇, σ ) ρ = = ˙ρ T L − 1 (ρ )σ =
n

i= 1

d ρ i

dt
Φ i . ( 5)
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O n t h e ri g ht h a n d si d e,

d F (ρ ) · σ =

n

i= 1

∂

∂ ρ i
F (ρ ) · σ i = F (ρ ) T L (ρ ) Φ

= Φ T L (ρ )F (ρ ) = −
n

i= 1

Φ i di v G (ρ ∇ G F (ρ )) i ,

( 6)

w h e r e w e d e n ot e F (ρ ) = ( F i (ρ )) n
i= 1 = ( ∂

∂ ρ i
F (ρ )) n

i= 1 . R e c all t h e d e fi niti o n of g r a di e nt fl o w

o n a m a nif ol d,

( ρ̇, σ ) ρ + d F (ρ ) · σ = 0 ,

f o r a n y σ = di v G (ρ ∇ G Φ) ∈ T ρ P o (G ). S u b stit uti n g ( 5) a n d ( 6) i nt o t h e a b o v e d e fi niti o n,
w e h a v e

n

i= 1

{
d ρ i

dt
− di v G (ρ ∇ G F (ρ ))} Φ i = 0 .

Si n c e ( Φ i )
n
i= 1 ∈ R n i s a r bit r a r y, w e m u st h a v e

d ρ i

dt
+

j ∈ N ( i)

ω i j θ i j (ρ ) F i (ρ ) − F j (p ) = 0

f o r all i ∈ V , w hi c h i s ( 4).

Cl e a rl y, ( 4) i s t h e di s c r et e a n al o g of W a s s e r st ei n g r a di e nt fl o w i n c o nti n u o u s s p a c e

∂ ρ

∂ t
= ∇ · (ρ ∇

δ

δ ρ
F (ρ )) ,

w h e r e δ
δ ρ F i s t h e fi r st v a ri ati o n of F . I n w h at f oll o w s, w e c o n si d e r a p a rti c ul a r f r e e

e n e r g y, w hi c h c o nt ai n s a q u a d r ati c i nt e r a cti o n e n e r g y, a li n e a r p ot e nti al a n d t h e B olt z m a n n
e nt r o p y:

F (ρ ) =
1

2
ρ T W ρ + V T ρ + β

n

i= 1

ρ i l o g ρ i ,

w h e r e V ∈ R n , a n d W ∈ R n × n i s a s y m m et ri c m at ri x. It s g r a di e nt fl o w b e c o m e s

d ρ i

dt
=

j ∈ N ( i)

ω i j θ i j (V j − V i + ( W ρ ) j − (W ρ ) i ) +

j ∈ N ( i)

ω i j θ i j (l o g ρ j − l o g ρ i ) , ( 7)

w hi c h i s t h e di s c r et e a n al o g of n o nli n e a r F P E

∂ ρ

∂ t
= ∇ · [ρ ∇ (V (x ) +

R d

W (x, y )ρ (t, y )d y )] + ∆ ρ .

S o w e c all ( 7) n o nli n e a r F P E o n g r a p h s. A p a rti c ul a r att e nti o n i s gi v e n t o

j ∈ N ( i)

ω i j θ i j (ρ )(l o g ρ j − l o g ρ i ) ,

w hi c h c a n b e vi e w e d a s a n o nli n e a r r e p r e s e nt ati o n of L a pl a ci a n o p e r at o r f o r ρ .
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3. E n t r o p y di s si p a ti o n

I n t hi s s e cti o n, w e f o c u s o n t h e c o n v e r g e n c e p r o p e rti e s of F P E ( 7). D e n ot e t h e n o nli n e a r
Gi b b s m e a s u r e

ρ ∞
i =

1

K
e

−
( W ρ ∞ ) i + V i

β , w h e r e K =
n

j = 1

e
−

( W ρ ∞ ) j + V j
β .

It i s e a s y t o v e rif y t h at t h e Gi b b s m e a s u r e i s t h e e q uili b ri u m of ( 7). O u r m ai n t h e o r e m
h e r e i s t o s h o w h o w f a st ρ (t), t h e s ol uti o n of F P E ( 7), c o n v e r g e s t o ρ ∞ .

We st a rt wit h t h e r e s ult t h at F (ρ ) i s st ri ctl y c o n v e x i n P o (G ). It e n s u r e s t h at t h e
e q uili b ri u m of g r a di e nt fl o w i s u ni q u e. I n t hi s c a s e, w e fi n d a c o n v e r g e n c e r at e f o r t hi s
u ni q u e e q uili b ri u m. If it i s s e mi- p o siti v e d e fi nit e, a s i n cl a s si c al O D E s y st e m, it m a y e xi st
m ulti pl e, o r a s et of e q uili b ri u m. A n a s y m pt oti c st at e m e nt i s p r o vi d e d i n t h e n e xt s e cti o n.

T h e o r e m 5. A s s u m e ρ 0 ∈ P o (G ) a n d F (ρ ) i s st ri ctl y p o siti v e d e fi nit e i n P (G ), t h e n t h e r e
e xi st s a c o n st a nt C > 0 , s u c h t h at

F (ρ (t)) − F (ρ ∞ ) ≤ e − C t (F (ρ 0 ) − F (ρ ∞ )) . ( 8)

F u rt h e r m o r e,

C = 2 m (ρ 0 )λ s e c ( L̂ ) λ mi n (H e s s F )
1

(r + 1) 2
,

w h e r e

r =
√

2 D e g (G ) m a x
( i, j ) ∈ E

ω i j
H e s s F 1

λ mi n (H e s s F )
3
2

1 − m (ρ 0 )

m (ρ 0 ) 2

λ m a x ( L̂ )

λ s e c ( L̂ ) 2
F (ρ 0 ) − F (ρ ∞ ) ,

D e g (G ) i s t h e m a xi m al d e g r e e of t h e g r a p h, L̂ = D T D i s t h e g r a p h L a pl a ci a n m at ri x,

λ s e c ( L̂ ) a n d λ m a x ( L̂ ) a r e t h e s e c o n d s m all e st a n d t h e l a r g e st ei g e n v al u e s of L̂ r e s p e cti v el y,

H e s s F 1 = s u p
ρ ∈ P ( G )

H e s s F (ρ ) 1 ,  λmi n (H e s s F ) = mi n
ρ ∈ P ( G )

λ mi n (H e s s F (ρ )) ,

a n d

m (ρ 0 ) =
1

2
(

1

1 + ( 2 M )
1
β

) n − 2 mi n {
1

1 + ( 2 M )
1
β

, mi n
i∈ V

ρ 0
i } > 0 ,

wit h
M = e 2 s u p i ∈ V , j ∈ V |V i |+ |W i j | . ( 9)

B ef o r e gi vi n g t h e c o m pl et e p r o of, w e w a nt t o p oi nt o ut t h e m ai n di ffi c ulti e s t h at w e
m u st o v e r c o m e. Si n c e F (ρ ) i s st ri ctl y c o n v e x a n d ρ ∞ i s it s u ni q u e mi ni mi z e r, it i s n ot
h a r d t o s h o w ρ (t) c o n v e r gi n g t o ρ ∞ . I n g e n e r al, t h e r at e of c o n v e r g e n c e i s d et e r mi n e d b y
c o m p a ri n g t h e r ati o b et w e e n t h e fi r st a n d s e c o n d d e ri v ati v e of F (ρ (t)) al o n g t h e g r a di e nt
fl o w. If o n e c a n fi n d a c o n st a nt C > 0, s u c h t h at

d 2

dt 2
F (ρ (t)) ≥ − C

d

dt
F (ρ (t)) ( 1 0)

h ol d s f o r all t ≥ 0, o n e c a n o bt ai n, b y i nt e g r ati o n,

d

dt
[F (ρ ∞ ) − F (ρ (t))] ≥ − C [F (ρ ∞ ) − F (ρ (t))] .
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T h e n ( 8) i s p r o v e d f oll o wi n g G r o n w all’ s i n e q u alit y.

F o r F P E ( 7), t h e fi r st d e ri v ati v e of F al o n g ( 7) gi v e s

d

dt
F (ρ (t)) = F (ρ ) T ρ̇ = − F ( ρ ) T L (ρ )F (ρ ) = − ρ̇ T L − 1 (ρ ) ρ̇ ,

w hil e t h e s e c o n d d e ri v ati v e i s

d 2

dt 2
F (ρ (t)) = 2 ρ̇ T H e s s F (ρ )L (ρ )F (ρ ) − F (ρ ) T L ( ρ̇ ) F ( ρ )

= 2 ˙ρ T H e s s F (ρ ) ρ̇ − ρ̇ T L − 1 (ρ )L ( ρ̇ ) L − 1 (ρ ) ρ̇ ,

w h e r e L ( ρ̇ ) = D T di a g( θ i j ( ρ̇ ) ) D .

C o m p a ri n g d
dt F (ρ (t)) wit h d 2

dt 2 F (ρ (t)), w e fi n d

C : = i nf
ρ ∈ B ( ρ 0 )

2 ρ̇ T H e s s F (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇
−

ρ̇ T L − 1 (ρ )L ( ρ̇ ) L − 1 (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇
.

Q u a d r ati c  C u bi c

( 1 1)

H o w e v e r, it i s n ot si m pl e t o g et a n e sti m ati o n of C . I n t h e c o nti n u o u s c a s e, t h e r e
a r e o nl y a f e w e x a m pl e s [ 4], d e p e n di n g o n s p e ci al i nt e r a cti o n p ot e nti al s W , t h at all o w
u s t o fi n d C e x pli citl y. I n t h e di s c r et e s p a c e, w e o v e r c o m e t hi s di ffi c ult y b y b o r r o wi n g
t e c h ni q u e s f r o m d y n a mi c al s y st e m s. If ρ i s cl o s e e n o u g h t o t h e e q uili b ri u m (ρ̇ i s n e a r
z e r o), e sti m ati n g C i n ( 1 1) b e c o m e s p o s si bl e. T hi s i s b e c a u s e t h e c u bi c t e r m of ρ̇ i n ( 1 1)
b e c o m e s o n e o r d e r s m all e r t h a n ρ̇ T L − 1 (ρ ) ρ̇ , a n d t h e d o mi n ati n g q u a d r ati c t e r m c a n b e
e sti m at e d b y a s ol v a bl e ei g e n v al u e p r o bl e m.

F oll o wi n g t hi s i d e a, t h e s k et c h of t h e p r o of i s a s f oll o w s: I n l e m m a 6, w e fi r st s h o w t h at
t h e s ol uti o n of F P E ( 7) i s w ell d e fi n e d, a n d it c o n v e r g e s t o ρ ∞ . I n f a ct, it c a n b e s h o w n
ρ ∈ B (ρ 0 ), a c o m p a ct s u b s et i n P o (G ). T h e n w e e sti m at e t h e c o n v e r g e n c e r at e i n B (ρ 0 )
b y t w o p a rt s, d e p e n di n g o n a p a r a m et e r x > 0 c o nt r olli n g t h e cl o s e n e s s b et w e e n ρ a n d
ρ ∞ . If ρ (t) i s f a r a w a y f r o m ρ ∞ , t h e di s si p ati o n f o r m ul a d

dt F (ρ ) = − F (ρ ) T L (ρ )F (ρ ) < 0
gi v e s o n e c o n v e r g e n c e r at e r 1 (x ); If ρ (t) i s cl o s e t o ρ ∞ , e sti m ati n g ( 1 1) i s p o s si bl e. T h u s
( 1 0) i m pli e s a n ot h e r r at e r 2 (x ). C o m bi n g t h e t w o t o g et h e r, w e fi n d a l o w e r b o u n d of
di s si p ati o n r at e C b y c al c ul ati n g

m a x
x > 0

mi n { r 1 (x ), r2 (x )} .

L e m m a 6. F o r a n y i niti al c o n diti o n ρ 0 ∈ P o (G ), e q u ati o n ( 7) h a s a u ni q u e s ol uti o n
ρ (t) : [ 0 , ∞ ) → P o (G ). M o r e o v e r,

(i) T h e r e e xi st s a c o n st a nt m (ρ 0 ) > 0 , s u c h t h at

ρ i (t) ≥ m (ρ 0 ) > 0 ,

f o r all i ∈ V a n d t ≥ 0 .
(ii)

li m
t→ + ∞

ρ (t) = ρ ∞ .
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R e m a r k 2 . It i s w o rt h m e nti o ni n g i n t h e p r o of of L e m m a, w e u s e s t h e r e q ui r e m e nt of g r a p h
b ei n g c o n n e ct e d. T h e r e q uir e m e nt i s n e e d e d t o m at c h m a n y p r o p e rti e s i n c o nti n u o u s
st at e s. It i s u s e d t o s h o w t h at ρ (t) st a y s i n t h e i nt e ri o r of p r o b a bilit y si m pl e x a n d t h e
e q uili b ri a of g r a di e nt fl o w a r e t h e c riti c al p oi nt s of e n e r g y i n t h e p r o b a bilit y s et. T hi s
i s c o n si st e nt wit h t h e c o nti n u o u s s etti n g s. I n a d diti o n, it i s u s e d t o g u a r a nt e e c o n si st e nt
s e mi- di s c r et e s c h e m e s f o r g r a di e nt fl o w s [ 6] a n d W a s s e r st ei n m et ri c [ 1 6].

P r o of. Fi r st, w e p r o v e (i) b y c o n st r u cti n g a c o m p a ct s et B (ρ 0 ) ⊂ P o (G ). D e n ot e a s e-
q u e n c e of c o n st a nt s l, l = 0 , 1 , · · · , n,

1 =
1

2
mi n {

1

1 + ( 2 M )
1
β

, mi n
i∈ V

ρ 0
i } a n d l =

l− 1

1 + ( 2 M )
1
β

, f o r l = 2 , · · · , n ,

w h e r e M i s d e fi n e d i n ( 9). T h e n w e d e fi n e

B (ρ 0 ) = { (ρ i )
n
i= 1 ∈ P (G ) |

l

r = 1

ρ ir ≤ 1 − l, f o r a n y l ∈ { 1 , · · · , n − 1 } ,

a n d 1 ≤ i1 < · · · < i l ≤ n } .

We s h all s h o w t h at if ρ 0 ∈ B (ρ 0 ), t h e n ρ (t) ∈ B (ρ 0 ) f o r all t ≥ 0. I n ot h e r w o r d s, t h e
b o u n d a r y of B (ρ 0 ) i s a r e p ell e r f o r t h e O D E ( 7). A s s u m e ρ (t1 ) ∈ ∂ B (ρ 0 ) at ti m e t1 , t hi s
m e a n s t h at t h e r e e xi st i n di c e s i1 , · · · , il wit h l ≤ n − 1, s u c h t h at

l

r = 1

ρ ir (t1 ) = 1 − l . ( 1 2)

We will s h o w

d

dt

l

r = 1

ρ ir (t)|t= t 1 < 0 .

L et A = { i1 , · · · , il} a n d A c = V \ A . O n t h e o n e h a n d, f o r a n y j ∈ A c ,

ρ j (t1 ) ≤ 1 −
l

r = 1

ρ ir (t1 ) = l . ( 1 3)

O n t h e ot h e r h a n d, si n c e ρ (t1 ) ∈ B (ρ 0 ), f o r a n y i ∈ A , t h e n k ∈ A \ { i} ρ k (t1 ) ≤ 1 − l− 1 ,

a n d f r o m t h e a s s u m pti o n ( 1 2), ρ i (t1 ) + k ∈ A \ { i} ρ k (t1 ) = 1 − l, w e o bt ai n

ρ i (t1 ) ≥ 1 − l − ( 1 − l− 1 ) = l− 1 − l . ( 1 4)

C o m bi ni n g e q u ati o n s ( 1 3) a n d ( 1 4), w e k n o w t h at f o r a n y i ∈ A a n d j ∈ A c ,

F j (ρ ) − F i (ρ ) = ( V j + ( W ρ ) j ) − (V i + ( W ρ ) i ) + β (l o g ρ j − l o g ρ i )

≤ 2 s u p
i, j ∈ V

|V i + W i j | + β (l o g l − l o g ( l− 1 − l))

≤ − l o g 2 ,

( 1 5)

w h e r e t h e l a st i n e q u alit y i s f r o m l = l − 1

1 + ( 2 M )
1
β

a n d M = s u p i, j ∈ V e 2 ( |V i |+ |W i j |) .
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Si n c e t h e g r a p h i s c o n n e ct e d, t h e r e e xi st s i∗ ∈ A , j ∗ ∈ A c ∩ N (i∗ ) s u c h t h at

i∈ A j ∈ A c ∩ N ( i∗ )

θ i j (ρ (t1 )) ≥ θ i∗ j ∗ (ρ (t1 )) > 0 . ( 1 6)

B y c o m bi ni n g ( 1 5) a n d ( 1 6), w e h a v e

d

dt

l

r = 1

ρ ir (t)|t= t 1 =
i∈ A j ∈ N ( i)

θ i j (ρ )[F j (ρ ) − F i (ρ )]|ρ = ρ ( t 1 )

=
i∈ A

{

j ∈ A ∩ N ( i)

θ i j (ρ )[F j (ρ ) − F i (ρ )]

+

j ∈ A c ∩ N ( i)

θ i j (ρ )[F j (ρ ) − F i (ρ )]}| ρ = ρ ( t 1 )

=
i∈ A j ∈ A c ∩ N ( i)

θ i j (ρ )[F j (ρ ) − F i (ρ )]|ρ = ρ ( t 1 )

≤ − l o g 2
i∈ A j ∈ A c ∩ N ( i)

θ i j (ρ (t1 ))

≤ − l o g 2 θ i∗ j ∗ (ρ (t1 )) < 0 ,

w h e r e t h e t hi r d e q u alit y i s f r o m ( i, j ) ∈ A θ i j (F j − F i ) = 0. T h e r ef o r e, w e h a v e ρ (t) ∈ B (ρ 0 ),

t h u s mi n i∈ V,t > 0 ρ (t) ≥ m (ρ 0 ). (ii) c a n b e p r o v e d si mil a rl y a s i n [ 7], s o w e o mit it h e r e.

L e m m a 7. F o r ρ ∈ P o (G ), t h e n

λ s e c ( L̂ ) · mi n
i∈ V

ρ i ≤ λ s e c (L (ρ )) ≤ λ m a x (L (ρ )) ≤ m a x
i∈ V

ρ i · λ m a x ( L̂ ) ,

a n d

1

m a x i∈ V ρ i · λ m a x ( L̂ )
≤ λ s e c (L

− 1 (ρ )) ≤ λ m a x (L − 1 (ρ )) ≤
1

mi n i∈ V ρ i · λ s e c ( L̂ )
.

P r o of. Si n c e

mi n
i∈ V

ρ i ·
1

2
( i, j ) ∈ E

ω i j ( Φ i − Φ j )
2 ≤

1

2
( i, j ) ∈ E

ω i j ( Φ i − Φ j )
2 θ i j (ρ ) ≤ m a x

i∈ V
ρ i ·

1

2
( i, j ) ∈ E

ω i j ( Φ i − Φ j )
2 ,

a n d t h e L a pl a ci a n m at ri x L̂ h a s t h e si m pl e ei g e n v al u e 0 wit h ei g e n v e ct o r ( 1 , · · · , 1), t h e n
f o r a n y v e ct o r Φ ∈ R n wit h n

i= 1 ( Φ i − 1
n

n
j = 1 Φ j )

2 = 1, w e h a v e

mi n
i∈ V

ρ i · λ s e c ( L̂ ) ≤ Φ T L (ρ ) Φ ≤ m a x
i∈ V

ρ i · λ m a x ( L̂ ) .

T hi s i m pli e s t h at

mi n
i∈ V

ρ i · λ s e c ( L̂ ) ≤ λ s e c (L (ρ )) ≤ λ m a x (L (ρ )) ≤ m a x
i∈ V

ρ i · λ m a x ( L̂ ) .

B y t h e d e fi niti o n of L − 1 (ρ ), w e c a n p r o v e t h e ot h e r i n e q u alit y.
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R e m a r k 3 . T h e r e s ult i s al s o t r u e f o r g e n e r al θ i j b y a s s u mi n g mi n( ρ i , ρj ) ≤ θ i j ≤ m a x( ρ i , ρj ).
Writ e t h e w ei g ht e d L a pl a ci a n m at ri x L (ρ ) i nt o q u a d r ati c f o r m, i. e.

1

2
( i, j ) ∈ E

( Φ i − Φ j )
2 ·mi n

i∈ V
ρ i ≤ Φ T L (ρ ) Φ =

1

2
( i, j ) ∈ E

( Φ i − Φ j )
2 θ i j ≤

1

2
( i, j ) ∈ E

( Φ i − Φ j )
2 ·m a x

i∈ V
ρ i .

It i s cl e a r t h at t h e ei g e n v al u e of L (ρ ) d e p e n d s o n t h e u p p e r a n d l o w e r b o u n d of p r o b a bilit y
w ei g ht θ i j .

We a r e n o w r e a d y t o p r o v e t h e m ai n r e s ult.

P r o of of T h e o r e m 5. Gi v e n a p a r a m et e r x > 0, w e di vi d e B (ρ 0 ) i nt o t w o p a rt s:

B (ρ 0 ) ={ ρ ∈ B (ρ 0 ) : F (ρ ) − F (ρ ∞ ) ≥ x } ∪ { ρ ∈ B (ρ 0 ) : F (ρ ) − F (ρ ∞ ) ≤ x }

B 1 B 2

We c o n si d e r t h e c o n v e r g e n c e r at e i n B 1 fi r st.

L e m m a 8. D e n ot e r 1 (x ) = C 1 x , w h e r e

C 1 = 2 m (ρ 0 )λ s e c ( L̂ ) λ mi n (H e s s F )
1

F (ρ 0 ) − F (ρ ∞ )
.

T h e n

F (ρ (t)) − F (ρ 0 ) ≤ e − r 1 ( x ) t (F (ρ 0 ) − F (ρ ∞ )) , ( 1 7)

f o r a n y t ≤ T = i nf { τ > 0: F (ρ (τ )) − F (ρ ∞ ) = x } .

P r o of. We s h all s h o w

mi n ρ ∈ B 1 { F (ρ ) T L (ρ )F (ρ )}

F (ρ 0 ) − F (ρ ∞ )
≥ C 1 x .

If t hi s i s t r u e, t h e n f o r t ≤ T ,

d

dt
F (ρ (t)) = − F (ρ ) T L (ρ )F (ρ )

≤ − mi n
ρ ∈ B 1

F (ρ ) T L (ρ )F (ρ )
F (ρ (t)) − F (ρ ∞ )

F (ρ (t)) − F (ρ ∞ )

≤ −
mi n ρ ∈ B 1 F (ρ ) T L (ρ )F (ρ )

F (ρ 0 ) − F (ρ ∞ )
[F (ρ (t)) − F (ρ ∞ )]

≤ − C 1 x [F (ρ (t)) − F (ρ ∞ )] .

Fr o m G r o n w all’ s i n e q u alit y, ( 1 7) i s p r o v e n.

B y T a yl o r e x p a n si o n o n ρ , w e h a v e

F (ρ ∞ ) = F (ρ ) + F (ρ ) · (ρ ∞ − ρ ) +
1

2
(ρ ∞ − ρ ) T H e s s F ( ρ̄ ) ( ρ ∞ − ρ ) ,

w h e r e ρ̄ = ρ + s (ρ ∞ − ρ ), f o r s o m e c o n st a nt s ∈ ( 0, 1). D e n ot e t h e E u cli d e a n p r oj e cti o n
m at ri x o nt o T ρ P o (G ) b y

P = I −
1

n
1 1 T ,
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w h e r e 1 = [ 1 , · · · , 1] T a n d I ∈ R n × n i s t h e i d e ntit y m at ri x. Si n c e P F (ρ ) · (ρ − ρ ∞ ) =
F (ρ ) · (ρ − ρ ∞ ), t h e n

x ≤ F (ρ ) − F (ρ ∞ ) =P F (ρ ) · (ρ − ρ ∞ ) −
1

2
(ρ − ρ ∞ ) T H e s s F ( ρ̄ ) ( ρ − ρ ∞ )

≤ P F (ρ ) 2 ρ − ρ ∞
2 −

1

2
λ mi n ( H e s s F ) ρ − ρ ∞ 2

2 .

T h e a b o v e i m pli e s

P F (ρ ) 2 ≥
x

ρ − ρ ∞
2

+
1

2
λ mi n ( H e s s F ) ρ − ρ ∞

2

≥ 2 x λ mi n ( H e s s F ) .

T h u s b y t h e P oi n c a r é i n e q u alit y o n g r a p h, i. e.

F (ρ ) T L (ρ )F (ρ ) =
1

2
( i, j ) ∈ E

ω i j (F i (ρ ) − F j (ρ )) 2 θ i j (ρ )

≥
1

2
( i, j ) ∈ E

ω i j (F i (ρ ) − F j (ρ )) 2 m (ρ 0 )

=
1

2
( i, j ) ∈ E

ω i j [ F i (ρ ) −
1

n

n

k = 1

F k (ρ ) − F j (ρ ) −
1

n

n

k = 1

F k (ρ ) ]2 m (ρ 0 )

= m (ρ 0 )(P F (ρ )) T L̂ ( P F ( ρ ))

≥ m (ρ 0 )λ s e c ( L̂ ) P F (ρ ) 2
2

≥ 2 m (ρ 0 )λ mi n ( H e s s F )λ s e c ( L̂ ) x ,
( 1 8)

w hi c h fi ni s h e s t h e p r o of.

N e xt w e gi v e t h e c o n v e r g e n c e r at e i n B 2 .

L e m m a 9. D e n ot e r 2 (x ) = C 2 − C 3
√

x , w h e r e

C 2 = 2 m (ρ 0 )λ s e c ( L̂ ) λ mi n (H e s s F ) ,

a n d

C 3 = 2
√

2 D e g (G ) m a x
( i, j ) ∈ E

ω i j
H e s s F 1

λ mi n (H e s s F )

1 − m (ρ 0 )

m (ρ 0 )

λ m a x ( L̂ )

λ s e c ( L̂ )
.

T h e n

F (ρ (t)) − F (ρ ∞ ) ≤ e − r 2 ( x ) ( t− T ) (F (ρ (T )) − F (ρ ∞ )) , ( 1 9)

f o r a n y t ≥ T = i nf { τ > 0: F (ρ (τ )) − F (ρ ∞ ) = x } .

P r o of. We s h all s h o w

mi n
ρ ∈ B 2

{
2 ρ̇ T H e s s F (ρ ) ρ̇ − ρ̇ T L − 1 (ρ )L ( ρ̇ ) L − 1 (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇
} ≥ r 2 (x ) .
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S u p p o s e it i s t r u e, t h e n
d 2

dt 2
F (ρ (t)) ≥ − r 2 (x )

d

dt
F (ρ (t))

h ol d s f o r all t ≥ T . I nt e g r ati n g t hi s f o r m ul a i n [t, + ∞ ), w e o bt ai n

d

dt
[F (ρ ∞ ) − F (ρ (t))] ≥ − r 2 (x )[F (ρ ∞ ) − F (ρ (t))] .

B y G r o n w all’ s i n e q u alit y, ( 1 9) i s p r o v e n.

We c o m e b a c k t o e sti m at e r 2 (x ). Si n c e F (ρ ∞ ) = c [ 1, · · · , 1] T i s a c o n st a nt v e ct o r, b y
T a yl o r e x p a n si o n, w e h a v e

x ≥ F (ρ ) − F (ρ ∞ )

= F (ρ ∞ ) · (ρ − ρ ∞ ) +
1

2
(ρ − ρ ∞ ) T H e s s F ( ρ̄ ) ( ρ − ρ ∞ )

=
1

2
(ρ − ρ ∞ ) T H e s s F ( ρ̄ ) ( ρ − ρ ∞ )

≥
1

2
λ mi n ( H e s s F ) ρ − ρ ∞ 2

2 .

T h u s

ρ − ρ ∞
2 ≤

2

λ mi n ( H e s s F )

√
x.

Si n c e

ρ̇ i = ( L (ρ )F (ρ )) i

≤

j ∈ N ( i)

ω i j |F i (ρ ) − F j (ρ )|θ i j (ρ )

≤ D e g( G ) m a x
( i, j ) ∈ E

ω i j m a x
( i, j ) ∈ E

|F i (ρ ) − F j (ρ )| m a x
i

ρ i

≤ D e g( G ) m a x
( i, j ) ∈ E

ω i j m a x
( i, j ) ∈ E

|F i (ρ ) − F j (ρ )|( 1 − m (ρ 0 ))

a n d

F i (ρ ) − F j (ρ ) =F i (ρ
∞ ) + ∇ ρ F i ( ρ̄ ) · ( ρ − ρ ∞ ) − F j (ρ

∞ ) − ∇ ρ F j ( ρ̃ ) · ( ρ − ρ ∞ )

=( ∇ ρ F i ( ρ̄ ) − ∇ ρ F j ( ρ̃ ) ) · (ρ − ρ ∞ )

≤ ∇ ρ F i ( ρ̄ ) − ∇ ρ F j ( ρ̃ ) 2 ρ − ρ ∞
2

≤ 2 s u p
i∈ V, ρ ∈ P ( G )

∇ ρ F i (ρ ) 2 ρ − ρ ∞
2

≤ 2 s u p
i∈ V, ρ ∈ P ( G )

∇ ρ F i (ρ ) 1 ρ − ρ ∞
2

= 2 H e s s F 1 ρ − ρ ∞
2 ,

w h e r e ρ̃ , ¯ρ a r e t w o di s c r et e d e n siti e s b et w e e n t h e li n e s e g m e nt of ρ a n d ρ ∞ .

C o m bi ni n g t h e s e t w o e sti m at e s, w e g et

ρ̇ ∞ ≤ 2 · D e g( G ) m a x
( i, j ) ∈ E

ω i j ( 1 − m (ρ 0 )) H e s s F 1
2 x

λ mi n ( H e s s F )
.
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D e n ot e

L − 1
2 (ρ ) = T









0

( 1
λ s e c L ( ρ ) )

1
2

...

( 1
λ m a x L ( ρ ) )

1
2









T − 1 ,

a n d σ = 1

L − 1
2 ( ρ ) ρ̇ 2

L − 1
2 (ρ ) ρ̇ , t h u s

2 ρ̇ T H e s s F (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇
−

ρ̇ T L − 1 (ρ )L ( ρ̇ ) L − 1 (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇

≥ 2
ρ̇ T H e s s F (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇
− ρ̇ ∞

ρ̇ T L − 1 (ρ ) · L̂ · L − 1 (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇

= 2 σ T L
1
2 (ρ ) H e s s F (ρ )L

1
2 (ρ )σ − a (x )σ T L − 1

2 (ρ ) L̂ L − 1
2 (ρ )σ

≥ 2 λ mi n ( H e s s F )σ T L (ρ )σ − a (x )λ m a x ( L̂ ) σ T L − 1 (ρ )σ

≥ 2 λ mi n ( H e s s F )λ s e c (L (ρ )) − a (x )λ m a x ( L̂ ) λ m a x (L − 1 (ρ ))

≥ 2 λ mi n ( H e s s F )m (ρ 0 )λ s e c ( L̂ ) −
a (x )λ m a x ( L̂ )

m ( ρ 0 )λ s e c ( L̂ )

= C 2 − C 3

√
x ,

w h e r e t h e l a st i n e q u alit y c o m e s f r o m λ s e c (L (ρ )) ≥ m (ρ 0 )λ s e c ( L̂ ) a n d λ m a x (L − 1 (ρ )) ≤
1

m ( ρ 0 ) λ s e c ( L̂ )
i n L e m m a 7.

We a r e r e a d y t o fi n d t h e o v e r all c o n v e r g e n c e r at e. B y L e m m a 8 a n d L e m m a 9, o n e c a n
s h o w t h at f o r a n y t ≥ 0,

F (ρ (t)) − F (ρ ∞ ) ≤ e − mi n { r 1 ( x ) , r2 ( x ) } t (F (ρ 0 ) − F (ρ ∞ )) ,

f o r a n y x > 0. We e sti m at e a c o n st a nt r at e C b y s h o wi n g

m a x
x > 0

mi n { C 1 x, C 2 − C 3

√
x } ≥ C .

It i s cl e a r t h at t h e m a xi mi z e r x ∗ > 0 i s a c hi e v e d at C 1 x ∗ = C 2 − C 3

√
x ∗ , i. e.

√
x ∗ =

− C 3 +
√

C 2
3 + 4 C 1 C 2

2 C 1
. T h u s

C 1 x ∗ =
(− C 3 + C 2

3 + 4 C 1 C 2 ) 2

4 C 1
=

(C 2
3 + 4 C 1 C 2 − C 2

3 ) 2

4 C 1 (C 3 + C 2
3 + 4 C 1 C 2 ) 2

≥
1 6 C 2

1 C 2
2

4 C 1 · 4( C 3 +
√

C 1 C 2 ) 2
= C 2

1

( C 3√
C 1 C 2

+ 1) 2
,

w hi c h fi ni s h e s t h e p r o of.

R e m a r k 4 . F o r g e n e r al c h oi c e θ i j (ρ ) ∈ C 1 , e s p e ci all y t h e L o g a rit h m m e a n u s e d i n [ 1 1],
t h e r at e c a n al s o b e e st a bli s h e d. F oll o wi n g t h e p r o of i n L e m m a 9, o n e o nl y n e e d s t o

r e pl a c e r b y r̄ = r m a x ρ ∈ B ( ρ 0 ) ,( i, j ) ∈ E
∂ θ i j

∂ ρ i
. Si n c e B (ρ 0 ) st a y s i n a c o m p a ct s et a w a y f r o m
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t h e b o u n d a r y of p r o b a bilit y s et, t h e n r̄ < ∞ i s a fi nit e n u m b e r. T h u s t h e c o n v e r g e n c e
r at e f o r g e n e r ali z e d θ i j i s gi v e n b y

C = 2 m (ρ 0 )λ s e c ( L̂ ) λ mi n ( H e s s F )
1

( r̄ + 1 ) 2
.

I n a d diti o n, w h e n W = 0, T h e o r e m 5 gi v e s t h e e x p o n e nti al c o n v e r g e n c e of li n e a r F P E o n
g r a p h s, f o r a n y p ot e nti al V ∈ R n .

It i s al s o i m p o rt a nt t o u n d e r st a n d h o w t h e c o n st a nt s s c al e wit h t h e g r a p h si z e, i. e.
t h e n u m b e r of n o d e s a n d e d g e s. T h e g e n e r al r at e d e p e n d s o n t h e s m all e st v al u e of ρ 0 ,
w hi c h c a n b e v e r y s m all if it i s gi v e n n e a r t h e b o u n d a r y of p r o b a bilit y si m pl e x. D u e
t o t h e d e fi niti o n of t h e di s c r et e L a pl a ci a n, t hi s ei g e n v al u e p r o bl e m d e p e n d s o n t h e si z e
of t h e g r a p h. O u r n u m e ri c al c al c ul ati o n s, i n [ 6], i n di c at e t h at t h e c o n st a nt s a r e s m all e r
f o r g r a p h s wit h m o r e n o d e s, b ut t h e y b e c o m e l a r g e r if m o r e e d g e s a r e p r e s e nt e d ( d e n s e r
g r a p h).

I n s o m e c a s e s, w e c a n e sti m at e t h e a s y m pt oti c r at e a n al yti c all y, a n e x a m pl e i s gi v e n
R e m a r k 5.

3. 1. I n e q u ali ti e s. I n t h e lit e r at u r e, it i s w ell k n o w n t h at t h e c o n v e r g e n c e of F P E c a n
b e u s e d t o p r o v e t h e s o c all e d L o g- S o b ol e v i n e q u alit y a n d a f e w ot h e r s. We mi mi c t hi s
r e s ult o n g r a p h s a n d f u rt h e r e xt e n d t h e i n e q u alit y t o t h e c a s e t h at i n cl u d e s t h e n o nli n-
e a r i nt e r a cti o n e n e r g y. F o r si m pli cit y, w e t a k e β = 1 a n d c o n si d e r F (ρ ) = 1

2 ρ T W ρ +

V T ρ + n
i= 1 ρ i l o g ρ i , w hi c h i s st ri ctl y c o n v e x i n P (G ). A g ai n, w e d e n ot e ρ ∞ a s t h e Gi b b s

m e a s u r e.

T h e L o g- S o b ol e v i n e q u alit y d e s c ri b e s a r el ati o n s hi p b et w e e n t w o f u n cti o n al s n a m e d r el-
ati v e e nt r o p y a n d r el ati v e Fi s h e r i nf o r m ati o n, w hi c h c a n b e e x p r e s s e d u si n g o u r n ot ati o n s
i n t h e f oll o wi n g f o r m ul a s,

H (ρ |ρ ∞ ) : = F (ρ ) − F (ρ ∞ )  R el ati v e e nt r o p y ; ( 2 0)

a n d

I (ρ |ρ ∞ ) : = F (ρ ) T L (ρ )F (ρ )  R el ati v e Fi s h e r i nf o r m ati o n

=
1

2
( i, j ) ∈ E

ω i j (l o g
ρ i

e − ( W ρ ) i − V i
− l o g

ρ j

e − ( W ρ ) j − V j
) 2 θ i j (ρ ) . ( 2 1)

C o r oll a r y 1 0. If F (ρ ) i s st ri ctl y c o n v e x i n P (G ), t h e n t h e r e e xi st s a c o n st a nt λ > 0 , s u c h
t h at

H (ρ |ρ ∞ ) ≤
1

2 λ
I (ρ |ρ ∞ ) .

We w a nt t o p oi nt o ut t h at w h e n W = 0, c o r oll a r y ( 1 0) i s r e d u c e d t o t h e st a n d a r d
L o g- S o b ol e v i n e q u alit y. I n t hi s c a s e, f u n cti o n al s ( 2 0) a n d ( 2 1) c a n b e w ritt e n a s

H (ρ ) =
n

i= 1

ρ i l o g
ρ i

ρ ∞
i

, I (ρ ) =
1

2
( i, j ) ∈ E

ω i j (l o g
ρ i

ρ ∞
i

− l o g
ρ j

ρ ∞
j

) 2 θ i j (ρ ) .
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T h ei r c o nti n u o u s c o u nt e r p a rt s a r e

H (ρ ) =
R d

ρ (x ) l o g
ρ (x )

ρ ∞ (x )
d x , I (ρ ) =

R d

(∇ l o g
ρ (x )

ρ ∞ (x )
) 2 ρ (x )d x .

P r o of. We u s e t h e f a ct t h at t h e di s si p ati o n of r el ati v e e nt r o p y i s t h e r el ati v e Fi s h e r i nf o r-
m ati o n al o n g F P E ( 7),

I (ρ (t)) = F (ρ ) T L (ρ )F (ρ ) = −
d

dt
H (ρ (t)|ρ ∞ ) .

Si mil a r a s i n T h e o r e m 5, w e di vi d e P (G ) i nt o t w o r e gi o n s b a s e d o n a gi v e n p a r a m et e r
x > 0:

P (G ) ={ ρ ∈ P (G ) : H (ρ |ρ ∞ ) ≤ x } ∪ { ρ ∈ P (G ) : H (ρ |ρ ∞ ) ≥ x }

D 1 D 2

We s h all s h o w t w o u p p e r b o u n d s of H ( ρ )
I ( ρ ) i n D 1 a n d D 2 r e s p e cti v el y.

O n o n e h a n d, c o n si d e r F P E ( 7), wit h ρ (t) st a rti n g f r o m a n i niti al m e a s u r e ρ ∈ D 1 .
Si n c e H (ρ (t)|ρ ∞ ) i s a L y a p u n o v f u n cti o n, t h e n ρ (t) ∈ D 1 f o r all t > 0. F oll o wi n g L e m m a
9, t h e r e e xi st s r 2 (x ) > 0, s u c h t h at

d 2

dt 2
H (ρ (t)|ρ ∞ ) ≥ − r 2 (x )

d

dt
H (ρ |ρ ∞ ) ,

w hi c h i m pli e s

∞

0

d 2

d τ 2
H (ρ (τ )|ρ ∞ )d τ ≥

∞

0
− r 2 (x )

d

d τ
H (ρ (τ )|ρ ∞ )d τ ,

i. e.

I (ρ |ρ ∞ ) =
d

d τ
H (ρ (τ )|ρ ∞ )|τ = ∞

τ = 0 ≥ r 2 (x ) H (ρ (τ )|ρ ∞ )|τ = 0
τ = ∞ = r 2 (x )H (ρ |ρ ∞ ) ,

w h e r e li m t→ ∞
d
dt H (ρ (t)|ρ ∞ ) = li m t→ ∞ H (ρ (t)|ρ ∞ ) = 0. T h u s

λ 1 = s u p
ρ ∈ D 1

H (ρ |ρ ∞ )

I (ρ |ρ ∞ )
≤

1

r 2 (x )
< ∞ .

O n t h e ot h e r h a n d, if ρ ∈ D 2 , w e s h all s h o w

λ 2 = s u p
ρ ∈ D 2

H (ρ |ρ ∞ )

I (ρ |ρ ∞ )
≤

s u p ρ ∈ D 2
H (ρ |ρ ∞ )

i nfρ ∈ D 2 I (ρ |ρ ∞ )
< ∞ .

It i s t ri vi al t h at H (ρ |ρ ∞ ) i s b o u n d e d a b o v e. We o nl y n e e d t o s h o w i nf ρ ∈ D 2 I (ρ |ρ ∞ ) > 0.
A s s u m e t hi s i s n ot t r u e, i. e. i nf ρ ∈ D 2 I (ρ |ρ ∞ ) = 0. Si n c e I (·|ρ ∞ ) i s a l o w e r s e mi c o nti n u o u s
f u n cti o n i n P (G ), I (·|ρ ∞ ) i s i n fi nit y o n P (G ) \ P o (G ), a n d D 2 i s a c o m p a ct s et, t h e r e e xi st s
ρ ∗ ∈ D 2 ∩ P o (G ), s u c h t h at

I (ρ ∗ |ρ ∞ ) = F (ρ ∗ ) T L (ρ ∗ )F (ρ ∗ ) .

T hi s i m pli e s F i (ρ
∗ ) = F j (ρ

∗ ) f o r a n y ( i, j ) ∈ E . Si n c e G i s c o n n e ct e d, t h e n ρ ∗ = ρ ∞ =
a r g mi n ρ ∈ P ( G ) F (ρ ), w hi c h c o nt r a di ct s ρ ∗ ∈ D 2 . B y c h o o si n g 1

2 λ = m a x { λ 1 , λ2 } , w e p r o v e
t h e r e s ult.
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3. 2. A s y m p t o ti c p r o p e r ti e s. If W i s n ot a p o siti v e d e fi nit e m at ri x, t h e r e m a y e xi st
m ulti pl e Gi b b s m e a s u r e s. T h e a s y m pt oti c c o n v e r g e n c e r at e c a n b e e st a bli s h e d w h e n e v e r
t h e s ol uti o n i s n e a r a e q uili bri u m. I n w h at f oll o w s, w e st u d y s u c h a n a s y m pt oti c r at e.

A s s u m e t h at t h e i niti al m e a s u r e ρ 0 i s i n a b a si n of att r a cti o n of a n e q uili b ri u m ρ ∞ ,
m e a ni n g

(A ) li m
t→ ∞

ρ (t) = ρ ∞ a n d ρ ∞ i s a n i s ol at e d e q uili b ri u m .

T h e o r e m 1 1. L et ( A ) h ol d a n d

λ = λ s e c (L (ρ ∞ ) · H e s s F (ρ ∞ )) > 0 .

T h e n f o r a n y s u ffi ci e ntl y s m all > 0 s ati sf yi n g (λ − ) > 0 , t h e r e e xi st s a ti m e T > 0 ,
s u c h t h at w h e n t > T ,

F (ρ (t)) − F (ρ ∞ ) ≤ e − 2 ( λ − ) ( t− T ) (F (ρ 0 ) − F (ρ ∞ )) .

R e m a r k 5 . T h e a s y m pt oti c al r at e cl e a rl y d e p e n d s o n t h e g r a p h si z e, i. e. t h e n u m b e r of
n o d e s a n d e d g e s. We u s e a n e x a m pl e t o ill u st r at e t hi s. C o n si d e r t h e e n e r g y o nl y c o nt ai ni n g
t h e e nt r o p y. I n t hi s c a s e, ρ ∞ = ( 1

n , · · · , 1
n ), a n d t h e a s y m pt oti c r at e i s gi v e n b y

λ s e c (L (ρ ∞ ) H e s s F (ρ ∞ )) = λ s e c ( L̂ ) .

A s i n t h e st a n d a r d s p e ct r al g r a p h t h e o r y, t h e s e c o n d s m all e st ei g e n v al u e of a st a n d a r d
L a pl a ci a n m et ri c L̂ c o n v e r g e s t o t h e o n e i n c o nti n u o u s st at e w h e n t h e g r a p h b e c o m e s
d e n s e r.

P r o of. Si n c e li m t→ ∞ ρ (t) = ρ ∞ , f o r s u ffi ci e nt s m all > 0, t h e r e e xi st s t > T , s u c h t h at

λ s e c (L (ρ ) · H e s s F (ρ )) ≥ λ −
1

2
,

a n d

ρ̇ ∞ = L (ρ )F (ρ ) ∞ ≤
m (ρ 0 ) · λ s e c ( L̂ )

λ m a x ( L̂ )
.

Si mil a r t o t h e p r o of of L e m m a 9, w e h a v e

d 2

dt 2 F (ρ )
d
dt F (ρ )

=
2 ρ̇ T H e s s F (ρ ) ρ̇ − ρ̇ T L − 1 (ρ )L ( ρ̇ ) L − 1 (ρ ) ρ̇

ρ̇ T L − 1 (ρ ) ρ̇

≥ 2 λ s e c (L (ρ ) · H e s s F (ρ )) − ρ̇ ∞ ·
λ m a x ( L̂ )

m ( ρ 0 ) · λ s e c ( L̂ )

≥ 2( λ − ) .

F oll o wi n g st r at e gi e s i n ( 1 0), w e p r o v e t h e r e s ult.

T h e t e c h ni q u e s u s e d i n t hi s p r o of c a n al s o b e a p pli e d t o s o m e n o n- g r a di e nt fl o w s, f o r
e x a m pl e, t h e F P E s wit h a n o n- s y m m et ri c i nt e r a cti o n p ot e nti al W . I n t hi s a p p r o a c h, t h e
f r e e e n e r g y F (ρ ) n o l o n g e r e xi st s. H o w e v e r, t h e r el ati v e Fi s h e r i nf o r m ati o n al w a y s e xi st s,
w hi c h i s u s e d t o m e a s u r e t h e cl o s e n e s s b et w e e n ρ (t) a n d ρ ∞ .
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C o r oll a r y 1 2. L et ( A ) h ol d a n d

λ = λ s e c (L (ρ ∞ ) · (J F T + J F )(ρ ∞ )) > 0 ,

w h e r e J F i s t h e J a c o bi o p e r at o r o n t h e v e ct o r f u n cti o n F (ρ ). T h e n f o r a n y s u ffi ci e ntl y
s m all > 0 s ati sf yi n g (λ − ) > 0 , t h e r e e xi st s a ti m e T > 0 , s u c h t h at w h e n t > T ,

I (ρ (t)|ρ ∞ ) ≤ e − 2 ( λ − ) ( t− T ) I (ρ (T )|ρ ∞ ) .

P r o of. Si n c e

−
d

dt
I (ρ (t)|ρ ∞ ) = ρ̇ T (J F (ρ ) T + J F (ρ )) ρ̇ − ρ̇ T L − 1 (ρ )L ( ρ̇ ) L − 1 (ρ ) ρ̇ .

F oll o wi n g t h e p r o of i n T h e o r e m 1 1, it i s st r ai g htf o r w a r d t o s h o w t h at if t > T , t h e r e e xi st s
> 0, s u c h t h at

d

dt
I (ρ (t)|ρ ∞ ) ≤ − 2( λ − )I (ρ (t)|ρ ∞ ) .

B y t h e G r o n w all’ s e q u alit y, w e p r o v e t h e r e s ult.

I n t h e e n d, w e s h all gi v e a n e x pli cit f o r m ul a f o r t h e q u a d r ati c f o r m i n ( 1 1), i. e.

λ =  mi n
σ ∈ T ρ P o ( G )

σ T H e s s F σ

σ T L − 1 (ρ )σ
.

Fr o m L e m m a 2, t h e r e e xi st s a u ni q u e Φ ∈ R n , u p t o c o n st a nt s hift, s u c h t h at σ = L (ρ ) Φ.
T h u s

λ = mi n
Φ ∈ R n

Φ T · L (ρ ) · H e s s F · L (ρ ) · Φ

Φ T L (ρ ) Φ

= mi n
Φ ∈ R n

{ Φ T · L (ρ ) · H e s s F · L (ρ ) · Φ : Φ T L (ρ ) Φ = 1 } .
( 2 2)

We c a n r e w rit e t h e f o r m ul a ( 2 2) e x pli citl y. I nt r o d u ci n g

h i j, kl = (
∂ 2

∂ ρ i ∂ ρ k
+

∂ 2

∂ ρ j ∂ ρ l
−

∂ 2

∂ ρ i ∂ ρ l
−

∂ 2

∂ ρ j ∂ ρ k
)F (ρ ) , f o r a n y i, j , k , l ∈ V ,

w e h a v e

λ = mi n
Φ ∈ R n

1

4
( i, j ) ∈ E ( k,l ) ∈ E

1

d 2
i j d

2
kl

h i j, kl ( Φ i − Φ j )θ i j ( Φ k − Φ l)θ kl , ( 2 3)

s.t.
1

2
( i, j ) ∈ E

ω i j ( Φ i − Φ j )
2 θ i j = 1 .

I n f a ct, it i s n ot h a r d t o s h o w t h at λ i s t h e ei g e n v al u e p r o bl e m of H e s si a n o p e r at o r at t h e
e q uili b ri u m i n ( P o (G ), W 2 ). I n t h e n e xt s e cti o n, w e s h all p r e s e nt w h at ( 2 3) s u g g e st s i n it s
c o nti n u o u s a n al o g.
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4. C o n n e c ti o n wi t h W a s s e r s t ei n g e o m e t r y

We e x pl oit t h e m e a ni n g of h i j, kl b y e x a mi ni n g it s c o nti n u o u s a n al o g i n t hi s s e cti o n. O u r
c al c ul ati o n i n di c at e s a ni c e r el ati o n t o a f a m o u s i d e ntit y i n Ri e m a n ni a n g e o m etr y, k n o w n
a s Y a n o’ s f o r m ul a [ 3 2, 3 3].

C o n si d e r a s m o ot h fi nit e di m e n si o n al Ri e m a n ni a n m a nif ol d M . We a s s u m e t h at M i s
o ri e nt e d, c o m p a ct a n d h a s n o b o u n d a r y. We d e n ot e P (M ) t h e s p a c e of d e n sit y f u n c-
ti o n s s u p p o rt e d o n M , T ρ P (M ) t h e t a n g e nt s p a c e at ρ ∈ P (M ), i. e. T ρ P (M ) =
{ σ (x ) : M σ (x )d x = 0 } . F oll o wi n g Ott o c al c ul u s i n [ 2 5, 3 1], f o r a n y σ (x ) ∈ T ρ P (M ),
t h e r e e xi st s a f u n cti o n Φ( x ) s ati sf yi n g σ (x ) = − ∇ · (ρ ∇ Φ( x )). T hi s c o r r e s p o n d e n c e a n d
t h e 2- W a s s e r st ei n m et ri c e n d o w a n s c al a r i n n e r p r o d u ct o n T ρ P (M )

(σ (x ), σ̃ ( x )) = ( ∇ Φ , ∇ Φ̃ ) ρ : =
M

∇ Φ · ∇Φ̃ ρ d x .

N o w c o n si d e r a s m o ot h f r e e e n e r g y F : P (M ) → R . We a s s u m e t h at ρ ∗ ∈ P (M ) i s a n
e q uili b ri u m s ati sf yi n g

ρ ∗ (x ) > 0 , ∇
δ

δ ρ (x )
F (ρ )|ρ ∗ = 0 , ( 2 4)

w h e r e δ
δ ρ ( x ) i s t h e fi r st v a ri ati o n o p e r at o r i n L 2 m et ri c.

T o u n d e r st a n d h i j, kl , w e c al c ul at e t h e H e s si a n of F at ρ ∗ wit h r e s p e ct t o t h e 2-
W a s s e r st ei n m et ri c, a n d s h o w

( H e s s W 2 F · ∇ Φ , ∇ Φ) ρ ∗ =
M M

( D x D y
δ 2

δ ρ (x )δ ρ (y )
F (ρ )|ρ ∗ ∇ Φ( x ), ∇ Φ( y ))ρ ∗ (x )ρ ∗ (y )d x d y ,

( 2 5)

w h e r e δ 2

δ ρ ( x ) δ ρ ( y ) F (ρ ) i s t h e s e c o n d v a ri ati o n of f u n cti o n al F (ρ ) i n L 2 m et ri c, D x a n d D y

a r e t h e c o v a ri a nt d e ri v ati v e s i n x a n d y r e s p e cti v el y, a n d Φ a n a r bit r a r y s m o ot h f u n cti o n.

It i s k n o w n t h at t h e H e s si a n c a n b e c o m p ut e d b y di ff e r e nti ati n g t h e f u n cti o n t wi c e al o n g
t h e g e o d e si c. T h e n t h e H e s si a n at t h e e q uili b ri u m ρ ∗ s ati s fi e s

( H e s s W 2 F · ∇ Φ , ∇ Φ) ρ =
d 2

dt 2
F (ρ t )|t= 0 .

w h e r e ρ t a n d ∇ Φ t a r e ti m e d e p e n d e nt f u n cti o n s s ati sf yi n g t h e g e o d e si c e q u ati o n [ 2 5, 3 1],

∂ ρ t

∂ t + ∇ · (ρ t ∇ Φ t ) = 0
∂ Φ t
∂ t + 1

2 (∇ Φ t )
2 = 0

,

wit h a n i niti al m e a s u r e ρ |t= 0 = ρ ∗ a n d v el o cit y ∇ Φ t |t= 0 = ∇ Φ. F oll o wi n g t h e g e o d e si c,
w e h a v e

d

dt
F (ρ t ) =

M

δ

δ ρ (x )
F (ρ t )

∂ ρ t

∂ t
d x = −

M

δ

δ ρ (x )
F (ρ t )∇ · (ρ t ∇ Φ t )d x

=
M

∇
δ

δ ρ (x )
F (ρ t ) · ∇Φ t (x )ρ t (x )d x ,

( 2 6)

w h e r e t h e t hi r d e q u alit y h ol d s b y t h e i nt e g r ati o n b y p a rt s f o r m ul a a n d t h e f a ct t h at M
h a s n o b o u n d a r y.
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Si mil a rl y, w e o bt ai n t h e s e c o n d o r d e r d e ri v ati v e al o n g t h e g e o d e si c,

d 2

dt 2
F (ρ t ) =

M

d

dt
[∇

δ

δ ρ (x )
F (ρ t )] · ∇Φ t (x )ρ t (x )d x (A 1 )

+
M

∇
δ

δ ρ (x )
F (ρ t ) ·

∂

∂ t
(∇ Φ t (x )ρ t (x ))d x . (A 2 )

B e c a u s e ρ |t= 0 = ρ ∗ a n d ( 2 4) h ol d s, ( A 2 )|t= 0 = 0. T h u s

d 2

dt 2
F (ρ t )|t= 0 =( A 1 )|t= 0 =

M

d

dt
[∇

δ

δ ρ (x )
F (ρ t )]|t= 0 · ∇Φ( x )ρ (x )d x

=
M

∇
d

dt

δ

δ ρ (x )
F (ρ t )|t= 0 · ∇Φ( x )ρ (x )d x

= −
M

d

dt

δ

δ ρ (x )
F (ρ t )|t= 0 ∇ · (∇ Φ( x )ρ (x ))d x .

( 2 7)

I n a d diti o n, w e c o m p ut e t h e fi r st o r d e r d e ri v ati v e of δ
δ ρ ( x ) F (ρ ) al o n g t h e g e o d e si c a n d

o bt ai n

d

dt

δ

δ ρ (x )
F (ρ t )|t= 0 =

M

δ 2

δ ρ (x )δ ρ (y )
F (ρ )

∂ ρ (t, y )

∂ t
|t= 0 d y

= −
M

δ 2

δ ρ (x )δ ρ (y )
F (ρ )∇ · (∇ Φ( y )ρ (y ))d y .

( 2 8)

S u b stit uti n g ( 2 8) i nt o ( 2 7), w e g et

d 2

dt 2
F (ρ t )|t= 0 =

M M

δ 2

δ ρ (x )δ ρ (y )
F (ρ )|ρ ∗ ∇ · (ρ ∗ (x )∇ Φ( x ))∇ · (ρ ∗ (y )∇ Φ( y ))d x d y

=
M M

(D x D y
δ 2

δ ρ (x )δ ρ (y )
F (ρ )|ρ ∗ ∇ Φ( x ), ∇ Φ( y ))ρ ∗ (x )ρ ∗ (y )d x d y ,

( 2 9)

w h e r e t h e s e c o n d e q u alit y i s a c hi e v e d b y t h e i nt e g r ati o n b y p a rt s wit h r e s p e ct t o x a n d y .
H e n c e, w e o bt ai n ( 2 5).

T h r o u g h ( 2 5), w e fi n d t h e c o nti n u o u s a n al o g of h i j, kl a s

D x D y
δ 2

δ ρ (x )δ ρ (y )
F (ρ )

We n e xt ill u st r at e t hi s a n al o g i n a p a rti c ul a r sit u ati o n, n a m el y t h e li n e a r e nt r o p y

H (ρ ) =
M

ρ (x ) l o g ρ (x )d x .

I n t hi s c a s e, t h e u ni q u e e q uili b ri u m ( mi ni mi z e r) ρ ∗ (x ) = 1 i s a u nif o r m m e a s u r e o n M ,
w h e r e t h e t ot al v ol u m e of M i s a s s u m e d t o b e 1. H e n c e ( 2 9) b e c o m e s,

( H e s s W 2 H · ∇ Φ , ∇ Φ) ρ ∗ =
M

[∇ · (ρ ∗ ∇ Φ( x ))] 2 1

ρ ∗ (x )
d x =

M
[∇ · (∇ Φ( x ))] 2 d x . ( 3 0)

T h e o pti m al t r a n s p o rt t h e o r y [ 2 5, 3 1] gi v e s a n ot h e r f o r m ul ati o n of H e s si a n:

( H e s s W 2 H · ∇ Φ , ∇ Φ) ρ =
M

[ Ri c(∇ Φ( x ), ∇ Φ( x )) + t r( D 2 Φ( x ) D 2 Φ( x ) T )]ρ (x )d x , ( 3 1)
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w h e r e ρ i s a n a r bit r a r y d e n sit y f u n cti o n, D2 i s t h e s e c o n d c o v a ri a nt d e ri v ati v e a n d Ri c i s
t h e Ri c ci c u r v at u r e t e n s o r o n M . E v al u ati n g ( 3 1) at t h e e q uili b ri u m ρ ∗ = 1 a n d c o m p a ri n g
it wit h ( 3 0), w e o b s e r v e

M
[∇ · (∇ Φ)] 2 d x =

M
[ Ri c(∇ Φ , ∇ Φ) + t r( D 2 Φ D 2 Φ T )]d x ,

w hi c h i s t h e w ell- k n o w n Y a n o’ s f o r m ul a wit h v e ct o r fi el d ∇ Φ.

A p p e n di x

A s w e m e nti o n e d i n S e cti o n 2, o n e h a s t h e f r e e d o m t o s el e ct di ff e r e nt θ i j : = θ (ρ i , ρj )
i n t h e d e fi niti o n of fl u x f u n cti o n o n a g r a p h, a s l o n g a s t h e s el e cti o n s ati s fi e s c e rt ai n
p r o p e rti e s. I n o u r st u d y of t h e g r a di e nt fl o w o n g r a p h s, w e g e n e r all y r e q ui r e θ i j t o s ati sf y
t h e f oll o wi n g t w o c o n diti o n s:

(i)

mi n { ρ i , ρj } ≤ θ i j (ρ ) ≤ m a x { ρ i , ρj } ;

(ii)

θ i j (ρ ) = θ j i (ρ ) .

I n p r a cti c e, t h e r e a r e m a n y c h oi c e s of θ i j ot h e r t h a n t h e si m pl e a v e r a g e u s e d i n t hi s p a p e r.
T w o e x a m pl e s a r e u p- wi n d t y p e

θ i j (ρ ) : =






ρ i if ∂
∂ ρ i

F (p ) > ∂
∂ ρ j

F (p ) , j ∈ N (i)

ρ j if ∂
∂ ρ i

F (p ) < ∂
∂ ρ j

F (p ) , j ∈ N (i)
ρ i + ρ j

2 if ∂
∂ ρ i

F (p ) = ∂
∂ ρ j

F (p ) , j ∈ N (i)

,

o r L o g a rit h m m e a n t y p e

θ i j (ρ ) : =
ρ i − ρ j

l o g ρ i − l o g ρ j
.

A c k n o wl e d g e m e n t: T hi s p a p e r i s b a s e d o n C h a pt e r 3 of W u c h e n Li’ s t h e si s, w hi c h w a s
w ritt e n u n d e r t h e s u p e r vi si o n of P r of e s s o r S h ui- N e e C h o w a n d P r of e s s o r H a o mi n Z h o u.
We w o ul d li k e t o t h a n k P r of e s s o r Wilf ri d G a n g b o f o r m a n y f r uitf ul a n d i n s pi r ati o n al
di s c u s si o n s o n t h e r el at e d t o pi c s.
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