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A B S T R A C T

Population forecasting, in which past dynamics are used to make predictions of future state, has many real-world

applications. While time series of animal abundance are often modeled in ways that aim to capture the un-

derlying biological processes involved, doing so is neither necessary nor sufficient for making good predictions.

Here we report on a data science competition focused on modelling time series of Antarctic penguin abundance.

We describe the best performing submitted models and compare them to a Bayesian model previously developed

by domain experts and build an ensemble model that outperforms the individual component models in pre-

diction accuracy. The top performing models varied tremendously in model complexity, ranging from very

simple forward extrapolations of average growth rate to ensembles of models integrating recently developed

machine learning techniques. Despite the short time frame for the competition, four of the submitted models

outperformed the model previously created by the team of domain experts. We discuss the structure of the best

performing models and components therein that might be useful for other ecological applications, the benefit of

creating ensembles of models for ecological prediction, and the costs and benefits of including detailed domain

expertise in ecological modelling. Additionally, we discuss the benefits of data science competitions, among

which are increased visibility for challenging science questions, the generation of new techniques not yet

adopted within the ecological community, and the ability to generate ensemble model forecasts that directly

address model uncertainty.

1. Introduction

Time series lie at the heart of population biology and are increas-

ingly used in conservation applications such as adaptive management of

marine stocks and population viability analysis. Using traditional linear

modelling approaches, abundance can be modeled as a function of

covariates such as time (capturing trends in abundance) or environ-

mental conditions thought to control survivorship or reproduction

(Geissler and Noon, 1981). While population models are often driven by

the causal mechanisms underlying population change, this is neither

necessary nor always sufficient for precise forecasts of future

abundance (Shmueli, 2010). In fact, forecast uncertainty for covariates

can contribute to forecast uncertainty for abundance, an important

consideration when building population models from which future

abundance or population viability assessments will be derived (Dietze,

2017).

Phenomenological approaches have many advantages, not the least

of which is a reliance on the data in hand rather than a priori knowl-

edge of the underlying ecological or biological system, the need for

which narrows the scope of inquiry only to domain experts intimately

familiar with the system. Autoregressive-(integrated)-moving-average

(AR[I]MA) models have been used for ecological time series for some
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time (Goldman et al., 1989; Ives et al., 2010), whereas machine

learning algorithms like random forests (Breiman, 2001; Cutler et al.,

2007; Prasad et al., 2006) or generalized boosted regression models

(Elith et al., 2008; Friedman, 2002) are more recent additions to the

population ecologists' toolbox. So-called ‘deep-learning’ methods (e.g.,

long short-term memory neural nets) have shown great promise in

various ‘big data’ applications (Hochreiter and Schmidhuber, 1997) but

are rarely applicable to animal population time series. Understanding

which of these tools are useful and practical for population time series

is a growing challenge.

While several excellent public databases exist (e.g., Global

Population Dynamics Database) with population time series that ecol-

ogists might use to explore different time series methods (Ward et al.,

2014), there are relatively few opportunities to test and compare the

forecasting accuracy of time series models. This is partly because model

development often comes after data collection has ceased. It is also, in

part, a reflection on the discipline of population ecology, which lags

other disciplines such as terrestrial ecosystem, biogeochemical, or cli-

mate modelling in terms of formalized procedures for model compar-

ison and validation. To address this shortfall in the context of Antarctic

ecology, we developed the Mapping Application for Penguin Popula-

tions and Projected Dynamics (MAPPPD; Humphries et al., 2017), an

open-access database of all known data on the breeding abundance and

distribution of Antarctic penguins (Adélie [Pygoscelis adeliae Hombron

& Jacquinot], gentoo [P. papua Forster], chinstrap [P. Antarctica For-

ster] and emperor [Aptenodytes forsterii]). While far smaller in taxo-

nomic scope than the Global Population Dynamics Database, MAPPPD

was assembled specifically to assist in conservation planning and

management of Antarctic resources and, being geographically complete

for all known penguin breeding locations south of 60 °S, is one of the

most spatially and temporally comprehensive sets of population census

data for any taxonomic group.

One of the species included in MAPPPD is the Adélie penguin which,

having a circumpolar distribution and widely considered one of

Antarctica's ‘canaries-in-the-coal mine’, is by far the most well studied

of the Antarctic penguins (Ainley, 2002; Ainley et al., 2010; Boersma,

2008). For at least the last 40 years, researchers have debated why

Adélie penguin populations have been changing and, to a lesser degree,

what drives interannual fluctuations in abundance at the breeding

colony (Che-Castaldo et al., 2017 and references therein). Accordingly,

several major efforts to model the population dynamics of Adélie pen-

guins have been developed (Ainley et al., 2010; Che-Castaldo et al.,

2017; Fraser et al., 1992; Jenouvrier et al., 2009; Lynch et al., 2012;

Lynch and Larue, 2014; Trivelpiece et al., 2011; Wilson et al., 2001).

Reflecting the logistical challenges of collecting census data in the

Antarctic, population models are often parameterized using data from a

small number of neighboring populations with a focus on under-

standing past events rather than predicting future abundance. Un-

fortunately, Adélie penguin dynamics are spatially heterogeneous be-

cause the Antarctic is comprised of many disparate biogeographic zones

and penguins breeding in each region face different bottlenecks on their

survival and reproduction. Adélie penguin populations are increasing in

the Ross Sea region and in Eastern Antarctica (Che-Castaldo et al.,

2017; Larue et al., 2013; Lyver et al., 2014) even as they decline in parts

of the Antarctic Peninsula (Cimino et al., 2016; Lynch et al., 2012).

These disparate trends are further complicated by significant inter-an-

nual fluctuations in abundance not easily tied to environmental drivers

(Che-Castaldo et al., 2017).

While much attention has been paid to the Adélie penguin, even less

is known about the detailed population dynamics of gentoo or chinstrap

penguins, despite the relative ease of access afforded by their con-

centration on the Antarctic Peninsula. Gentoo penguin abundance has

surged in recent decades, while chinstrap penguin abundance has no-

tably declined at most sites (Lynch et al., 2012; Trivelpiece et al., 2011).

As with the Adélie penguin, these long-term trends have emerged over

decades amidst significant year-to-year variability in abundance at each

site, which challenges short-term forecasts even where trends are un-

ambiguous. Until MAPPPD, there was no dynamic central database for

the abundance of Antarctic penguins, which has precluded the devel-

opment of models to understand how the individual results emerging

from different research groups fit together into an integrated under-

standing of penguin population biology.

Despite years spent modelling penguin population dynamics, we

(GH, CC, HL) were frustrated by the relatively poor performance of

models built using our own biological knowledge of the system.

Decades of analysis by the community had produced a suite of models

with reasonable explanatory power, but there has been no way to

compare different population models in a quantitative setting or ex-

plore the extent to which inferred causal drivers in one region could be

transferred to another. Moreover, significant unexplained process error

made it difficult to forecast abundance for any given breeding popu-

lation (Che-Castaldo et al., 2017) and, as such, there was no way to link

a dynamical model for abundance with long-term predictions of suit-

ability under climate change (Cimino et al., 2016). This led us to

question our own methods and whether there were other, perhaps

newer, approaches available that we should be using. To address these

concerns and generate a larger suite of models that could be used to

understand the impact of model uncertainty, we leveraged the oppor-

tunities afforded by a data science competition.

Data science competitions are an up-and-coming trend among data

scientists. These competitions offer prizes to teams who can solve a

problem, the results of which are typically assessed by predictions on

held-out subsets of the data. While their popularity has vastly increased

alongside the growth of data science as a discipline, competitions for

time series modelling are not a new idea. In this regard, Weigand and

Gershenfeld's (1994) classic description of a modelling competition

from 1991 remains surprisingly relevant; while computing has changed

radically over the last 25 years (datasets no longer have to be dis-

tributed by floppy disk, for one), we are still facing many of the very

same difficulties building good predictive time series models as we al-

ways have (e.g., non-stationarity and non-linearity, missing data) de-

spite a surging interest in ‘data science’ and prediction algorithms based

on machine learning. Online platforms such as Driven Data (http://

www.drivendata.org), Kaggle (http://www.kaggle.com), and Top

Coder (http://www.topcoder.com) engage data scientists and other

quantitative experts from around the world in building models for a

combination of prize money, recognition, practice, and real-world im-

pact. The challenges enable participants to try out thousands of models

for a given problem using whatever backgrounds, skills, and approaches

they see fit, with the solutions that perform best (by predicting held-out

data) rising to the top of the leaderboard. This approach represents a

parallelization of effort and vastly improves the efficiency of the

modelling process, as many models are developed and tested simulta-

neously (analogous to multiple cores of a computer working on the

same problem). Examples of such competitions can be found

throughout scientific literature (e.g., Ben Taieb and Hyndman, 2014;

Glaeser et al., 2016; Narayanan et al., 2011). Such competitions offer

the ability to explore new, and potentially better, ways to approach

modelling problems (Bull et al., 2016; Carpenter, 2011).

Antarctic penguin population ecology is a good test case for har-

nessing the power of data science competitions and community mod-

elling in ecology; while the data are spatially comprehensive (including

all 660 known penguin colonies in the Antarctic), their shortcomings

(e.g., only 30–40 years in length, lots of missing data) are stereotypical

for time series of animal populations. Given the ongoing debate re-

garding key drivers of penguin population dynamics in Antarctica and

the urgent need to understand how management of fisheries may im-

pact penguin populations, the need for better time series models is

clear.

The goal of this paper is to describe a data science competition fo-

cused on population time series modelling of Antarctic penguin abun-

dance, identify and describe which techniques performed well and
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should be considered for other ecological applications, and demonstrate

the application of ensemble-based approaches for ecological prediction.

We will discuss how relatively “domain agnostic” (i.e. general) statis-

tical approaches might be used for rapid assessment even as informa-

tion required for more biologically-motivated mechanistic models is

being collected, and how data science competitions can vastly expand

our understanding of model uncertainty in ecological and conservation

contexts.

2. Materials and methods

2.1. Data science competition

Our competition was hosted by DrivenData (www.drivendata.org),

a platform that specializes in data science challenges with positive so-

cial impact. DrivenData was started in early 2014 as a graduate school

project, then incubated out of the Harvard Innovation Lab. From a

couple hundred users mostly in the university network, the challenge

community has since grown to>15,000 data enthusiasts from>140

countries. The overall number of prize-based competitions and the

number of people participating in them has seen similar growth. With

demand for advanced data skills outpacing the supply, these challenges

have become a powerful mechanism for engaging the cognitive surplus

of the global data science community.

2.2. MAPPPD

The raw count data used by competitors (Table 1), as provided by

MAPPPD, come from several sources including published literature

(peer-reviewed articles and reports), and contributed data (i.e. un-

published databases).

The front end of MAPPPD (www.penguinmap.com) allows custo-

mized map- or text-based spatial queries to all publicly-available

abundance data, their associated citations, and population estimates

derived from our initial population model (Che-Castaldo et al., 2017;

Humphries et al., 2017). MAPPPD data are housed in a Postgres data-

base written using structured query language (SQL). While the database

is under continual development, the initial database is described in

depth in Humphries et al. (2017). MAPPPD currently hosts 1405 re-

cords for Adélie penguins, 907 records for chinstrap penguins and 933

records for gentoo penguins and cover the entire continental range for

all three species (Fig. 1). Emperor penguins were not included due to

data scarcity. The largest contributor to the MAPPPD database is the

Antarctic Site Inventory and related papers (e.g., Casanovas et al.,

2015; Lynch et al., 2013), which comprise 41.1% of the data, with

12.3% coming from the Landcare Research dataset (http://www.

landcareresearch.co.nz/resources/data/adelie-census-data). All other

contributions make up the remaining 46.6% of the data. We restricted

the data science competition to the period 1982–2013, which covers the

majority of data available, and withheld data from the 2014–2016

seasons for model validation. Data from the 2014–2016 seasons were

also redacted from the online database. At the time of the competition,

there were no data for gentoo penguins available for the 2016 season,

and so models were assessed using nest counts from 2014 to 2016 for

chinstrap and Adélie penguins, and 2014–2015 for gentoo penguins.

Quality flags for each abundance count (i.e. ‘accuracy’ field) were

codified according to the scale used by Croxall and Kirkwood (1979)

and subsequently by most other reports of penguin abundance. Quality

flags of ‘1’ are associated with the highest accuracy ground counts

(± 5%), while quality flags of ‘5’ are considered good only to an order

of magnitude. For the purposes of this competition, the quality flags

were assigned the following confidence intervals: 1 (± 5%), 2

(± 10%), 3 (± 25%), 4 (± 50%) and 5 (± 90%). This mapping

matches what is generally accepted in the Antarctic penguin literature.

An important characteristic of this dataset, typical of many ecolo-

gical time series, is the large fraction of years for which no counts are

available. The patchiness of these data made the problem both chal-

lenging and technically interesting as the success of the predictive

model hinged on both methods for data imputation and time series

modelling. Of the 660 sites in MAPPPD, only 14 contained full count

data spanning the length of the database (1982–2016).

2.3. Model assessment

Mean absolute percentage error (MAPE) is one of the most popular

measures of forecast accuracy (Bowerman et al., 2004; Hanke and

Reitsch, 1995), but it does not account for differences in observation

error across the dataset (Tofallis, 2015). We therefore used an adjusted

MAPE (AMAPE; Eq. (1))
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which scaled absolute percent error (ŷn is the predicted count, yn is the

actual count) to the observation error (en)). For example, a prediction

that was 50% off an observed count with 50% observation error would

be weighted the same as a count that was 25% off an observed count

with 25% observation error and ten times as much as one with an ob-

servation error of only 5%. If the count yn is 0, a value of 1 is used in the

denominator of the fractional error to avoid dividing by 0.

For the competition, the AMAPE values were calculated using public

and private hold out subsets, which represented a 50/50 split of the

2014–2016 data. The public subset was used to give competitors an

idea of how well they were doing with each submission, and the private

subset was used to determine the winners of the competition. For this

paper, we have re-calculated AMAPE values using the entire 2014–2016

data to get a more realistic representation of model success.

2.4. Models

The competition yielded models from 97 competitors over the

62 days. Assuming each competitor spent 2 h per day working on model

development, this amounts to approximately 500 person-days working

on the problem. In our model comparison, we consider six models: the

four top models (out of a total of 567) submitted to the data science

competition (models AG, TB, AR and BC), one model developed pre-

viously for the MAPPPD project (and published in Che-Castaldo et al.,

2017; model CC), and an ensemble model of these five models (model

Table 1

Field names in database table containing data for counts used in data science

competition.

Field name Description

preprocessed_id integer ID of each count for table referencing

site four letter ID of the site

common_name common name of species counted

citekey citation ID for the specific count

day day the count was performed (‘none’) if unknown

month month the count was performed (‘none’) if unknown

season_day integer value of the day of the season starting from June 1

season season the count was performed. Counts performed in January,

February or March are assigned to season value of the year – 1.

For example, January 2015 counts were part of the 2014

season.

year the calendar year that a count was performed

presence presence (1) or absence (0) of species counted

count the total count for the specific record

accuracy accuracy flag for the count with 1 being the highest accuracy

and 5 being the lowest accuracy.

count_type the type of count (chicks, adults or nests)

vantage the platform / vantage from which the count was taken (e.g.,

ground, aerial, satellite)

note Comments associated with each count

G.R.W. Humphries et al. Ecological Informatics 48 (2018) 1–11
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EN). Model CC was developed by scientists over several years with

extensive expert biological knowledge of the ecosystem, while models

AG, TB, AR and BC were developed by individuals in the data science

community during the 62 days between the launch of the competition

and the deadline for submissions.

2.5. Model AG

Model AG was split into two parts: (1) data imputation, where

missing data in the time series were imputed, and (2) model building

and forecasting, where the imputed time series were modeled and then

forecasted to years 2014, 2015, and 2016. Model AG used a combina-

tion of five imputation methods: Linear extrapolation, last observation

carried forward, next observation carried backwards, replace by zero,

and Stineman extrapolation (Stineman, 1980). The Stineman imputa-

tion algorithm (Stineman, 1980) works by altering the shape of the

imputation curve depending on whether trends are monotonic or not,

making it a commonly used imputation technique. The five imputation

techniques were applied to all data to create five sets of data to be used

for prediction.

Five modelling algorithms were also implemented: in R, the ARIMA

model (McKenzie, 1984), the error, trend, seasonality (ETS) model

(Hyndman and Khandakar, 2007), and the Prophet (Taylor and Letham,

2017; Box 1) models were used. In Python, XGBoost (Chen and

Guestrin, 2016) and random forest (Breiman, 2001) algorithms were

used. In all cases, covariates used for prediction were previous counts.

For each time series (i.e. each colony), Model AG would run each al-

gorithm using a variable window of time prior to each year used for

prediction (i.e. variable amounts of training data). The window length

was chosen to optimize the quality of the 2010 to 2013 predictions for

each algorithm and the combination of algorithm and window length

that yielded the most accurate 2010–2013 prediction was used to pre-

dict 2014–2016. This provided the flexibility for the model to select

whatever combination of imputation technique, modelling algorithm,

or window length optimized the predictions.

2.6. Model TB

Model TB used an ‘analyst-in-the-loop’ approach, whereby pre-

dictive models were tailored to each site-specific time series. TB ex-

plored the datasets and, finding that gentoo penguin populations were

generally increasing, assumed a 1% per annum growth rate for all site

with only a single data point. For other sites (those with Adélies and

chinstraps) that had only one data point, the competitor used the most

recent count as the prediction for upcoming years, as would be ideal for

a time series undergoing a random walk (Ward et al., 2014). Time series

with 10–13 counts were fit by an auto-regressive model (Akaike, 1969).

Because the auto-regressive model was unable to improve predictive

performance for time series with> 13 counts, sites with>13 counts

were fit using either linear regression or exponential linear regression

as determined by visual assessment of the existing data (linear vs. ex-

ponential change over time).

2.7. Model AR

Model AR was similar to Model TB in that it integrated several

techniques depending on the time series, adapted from the Facebook

Prophet approach (Taylor and Letham, 2017). For time series with two

or fewer counts, the most recent count and subsequent predicted values

were multiplied by a constant value of 1.083 (determined by trial and

error around a value of 1, which would indicate no growth). For time

series with more than two counts, a multi-tiered approach was taken

Fig. 1. Distribution of all sites in MAPPPD for Adélie, chinstrap and gentoo penguins (black squares). The regions where chinstrap and gentoo penguins can be found

nesting sympatrically with each other, on their own, or with Adélies are identified on the map by a solid (gentoo penguins) or dashed (chinstrap penguins) oval.
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where the predictions were derived by a weighted average of the fol-

lowing three factors: the most recent prediction, weighted by 0.6, a

short-term linear trend and a long-term linear trend. The short-term

linear trend was computed using the last six observations and was

weighted by 0.35. The long-term linear trend, computed using all ob-

servations, had a weight of 0.05. These weights were determined by

trial and error and reflect the hypothesis that the near-term prediction

should be influenced most heavily by the recent past; comparing pre-

dicted values against a randomly held back test set, with those values

selected being those that led to the best predictions.

2.8. Model BC

Model BC, the most basic of all the implementations, used basic

exploratory analysis to estimate growth rate over time. First, BC as-

sumed a standard growth rate for all species at 1.0, multiplying the

latest count by this value and tested this against a held-out subset from

2010 to 2013. Values around 1.0 were tested using trial and error until

the best AMAPE score was found. The approximate growth rates as

determined by the BC implementation were 1.075 for chinstrap and

gentoo penguins, and 0.9 for Adélie penguins. The latest counts and

subsequent predicted counts were multiplied by these constant growth

rates.

2.9. Model CC

Model CC was developed within a Bayesian framework and uses the

data on abundance of the three species of penguin from the 1982 season

to the present. In Che-Castaldo et al. (2017), the model is described for

Adélie penguins, but has been refit (without changes to model struc-

ture) to the gentoo and chinstrap data for the purposes of this paper.

Model CC is parameterized by sea-ice data extracted from satellite,

which is used as a proxy for a number of different biological processes

thought to be important for penguins, such as krill recruitment (a

dominant component of penguin diet) and colony access for new re-

cruits. In addition, Model CC estimates a random effect for each year,

which incorporates additional (spatially global but temporally varying)

random variation not otherwise captured by the sea ice covariates in-

cluded in the model. It is important to note that Bayesian models pro-

vide information on prediction uncertainty but to accommodate a direct

comparison to the other models we used the median of the posterior

predictive distributions for all site, year, and visit combinations with-

held for validation.

2.10. EN models

Ensemble models are becoming widely accepted and used across a

number of fields because they balance out uncertainty across multiple

models (Wichard and Ogorzalek, 2004). We constructed an ensemble

prediction from the point estimates provided by the five models de-

scribed above. There are several methods by which to create an en-

semble model estimate ranging from basic model averaging to complex

methods in which models are combined during the ‘tuning’ phase of a

machine learning algorithm (Casanova and Ahrens, 2009; Dietterich,

2000). In this case, following the lead of other studies integrating

models of different origins (Weigel et al., 2008) we tested four different

methods of model averaging (Table 2).

The first method is a simple model average, where we take the mean

of the five model predictions (model EN-UW). The second method

(model EN-WE) is a weighted model average where the weights are

defined by the inverse of AMAPE, analogous to how mean squared error

is used for weighting in other work (Casanova and Ahrens, 2009).

∝w
AMAPE

1
i

i (2)

The third method (model EN-WN) is an extension of EN-WE with

normalized weights

∝
−

−

( )
( ) ( )

w
min

max min
i

AMAPEi AMAPE

AMAPE AMAPE

1 1

1 1

i

i i (3)

Normalizing the weights in this fashion puts more weight on the

best model and less on the worst model, which may be desirable when

the inverse of the AMAPE scores are very similar and the unnormalized

model weights would be nearly uniform across models in the set. The

fourth method (model EN-LM), inspired by Krishnamurti et al. (1999),

uses a weighting derived from linear regression, wherein each model is

weighted according to the deviation of the slope of predicted values to

observed values from 1.0 (larger weights for models with a slope closer

to 1.0). Note that, unlike the other weighting schemes, models with a

fixed bias for all abundances would not be penalized under this

weighting scheme. It is also important to note that this method mini-

mizes the root mean squared error and is not, therefore, optimized for

AMAPE. Once the best of the four ensemble model schemes was

Box 1

In the sphere of social media, it is important to predict the behaviour of users at particular times of a year. For this application Facebook

developed an algorithm (Prophet) that can be tuned in terms of its complexity, whose uses extend beyond social media into other time

series applications. The Prophet algorithm is open access and can be accessed from both the Python and R programming languages (https://

facebook.github.io/prophet) and is described in detail by Taylor and Letham (2017). In brief, the algorithm works by way of an “analyst in

the loop” approach, where the user can adjust parameters such as timing of regular events (e.g., holidays in business models), growth rate

(e.g. linear or logistic), or the number of regressors (e.g., covariates) for an additive regressive model with four components: a piecewise

linear or logistic growth curve that detects changepoints, a yearly component modeled using a Fourier series, a weekly component using

dummy variables, and a user supplied list of important dates. The algorithm itself is written using ‘STAN’, a language commonly used by

Bayesian modelers, and also includes the ability to run predictions through a Markov Chain Monte Carlo simulation. The use of the

Prophet algorithm by two of the winners of our competition suggests further exploration of Prophet for ecological time series modeling and

prediction is warranted, particularly in cases where rapid predictions might be useful while more mechanistically-motivated predictions are

being developed.

Table 2

Model weightings under each model weighting scheme. Note that due to

rounding, not all rows will add to 1.0 exactly.

Model AG TB AR BC CC

EN-UW 0.20 0.20 0.20 0.20 0.20

EN-WE 0.21 0.20 0.20a 0.19 0.19a

EN-WN 0.35 0.33 0.29 0.03 0.00

EN-LM 0.00 0.02 0.08 0.35 0.54

a Denotes values that were lower than other values by a marginal amount in

the same row that seem like a tie.
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selected, we reweighted (i.e., re-tuned) this scheme (model EN-WNrt)

by first subsetting the submissions by species and calculating species-

specific AMAPE scores. These AMAPE scores were used to calculate new

weights for the ensemble model. We next created the new species-

specific ensemble model and then re-calculated the AMAPE score. We

then re-tuned using the same process except by year instead of species.

This allowed us to test if ensemble models always outperformed other

models.

The four schemes for weighting point estimates each provide a

measure of the average prediction across the different models devel-

oped. However, it is not a priori clear how to calculate a confidence

interval on the ensemble prediction, particularly because four of the

models yielded only point estimates. The total uncertainty in the en-

semble model prediction should reflect both the uncertainty between

models as well as the uncertainty within models, however the latter is

known only for the Bayesian model (Model CC) whose posterior pre-

diction inherently captured prediction uncertainty. Here we calculate

the standard error of the five-point estimates and use± 1.96SE (which

measures inter-model uncertainty) as a lower bound on total ensemble

estimate uncertainty.

3. Results

From the original submitted models, model AG (AMAPE=4.57)

was ranked as the best model (lowest AMAPE score), followed by

models TB (AMAPE=4.59), AR (AMAPE=4.61) and BC

(AMAPE=4.80), respectively. The previously developed Bayesian

model (Model CC) was ranked 5th overall (AMAPE=4.82). These re-

sults differ slightly from the official results at the end of the competition

(https://www.drivendata.org/competitions/47/penguins/leaderboard)

because we re-calculated AMAPE using the entire hold-out data subset

from 2014 to 2016 versus only the private subset used by DrivenData. It

is notable that two of the winning models (AG and AR) exploited the

recently-developed Prophet model, which accommodates cyclic dy-

namics that arise naturally in many ecological time series. Prophet (Box

1) employs an ‘analyst in the loop’ approach in which users can choose

automated functionality or, if they wish, alter aspects of the algorithm

to better suit their goals. Model AG used the Prophet algorithm with

automated functionality, while model AR used the Prophet algorithm

for inspiration in designing their approach.

Breaking down model performance by species, we see that model

CC, which had been developed initially for Adélie penguins, saw its

highest ranking for gentoo penguins (2nd place from the original sub-

mitted models) (Table 3), though an extreme imbalance in the size of

the three validation datasets (8 counts for Adélie penguins, 57 for

chinstrap penguins, and 62 for gentoo penguins) suggests caution in our

interpretation of differences in fit by species. Caution in interpretation

of the AMAPE values is also warranted here due to its sensitivity to a

small number of very large colonies with large leverage that arise from

the log-normal distribution of colony sizes and the higher error term

associated with them which heavily penalizes differences. For these

largest colonies, the CC model tended to better predict abundance

compared to the other submitted models (AG, AR, TB, BC), which

tended to overpredict (Fig. 2).

As expected, all the ensemble models (i.e., EN-WN and EN-WNrt for

the whole dataset and the three penguin species) provided better pre-

dictions than any of the individual models considered (Table 3). The

best implementation of the ensemble model for the whole dataset was

the normalized weighted mean (AMAPE=4.05; model EN-WN; Eq.

(2)), followed by the weighted mean (AMAPE=4.12; model EN-WE),

the unweighted mean (AMAPE=4.13; model EN-UW), and the

weighted linear model implementation (AMAPE=4.16; model EN-

LM). Model EN-WN scored an AMAPE of 4.05 for the whole dataset —

nearly 13% better than the best submitted competition model (model

AG). While model EN-WN's performance did not decline over the period

of forecasting, the AMAPE scores for all individual component models

steadily increase from 2014 (mean= 4.00) to 2016 (mean=5.77),

demonstrating the divergence of model predictions from actual values

over time (Fig. 3). Surprisingly, the best overall submitted model

(model AG) was not uniformly the best model; while it underperformed

in 2014 or 2015, it was significantly better than the next best submitted

model in 2016. In other words, it was the overall best model because

the rate of decline in predictive performance was slower than for the

other submitted models (Table 3). Among the ensemble models we

created from the individual component models, the EN-WNrt ensemble

model, which used species-specific model weights, had the best fit

(lowest AMAPE score) for both Adélie and gentoo penguins, whereas

the best model for chinstrap penguins was model EN-WN.

Finally, we note that mean AMAPE values of submitted models from

the top competitors decreased steadily over time up to the end of the

competition, as models were continually improved through tuning of

model parameters (Fig. 4). This suggests that a longer competition may

have resulted in models with even better forecasting ability.

4. Discussion

While our focal application was specific to Antarctic ecology, time

series forecasting is a common application across most disciplines and,

as such, is ripe for further development. However, while looking for a

host for our competition, it was surprising to see how few data science

competitions involved time series datasets, especially since other bio-

logical applications, particularly those involving imagery data or visual

computing, have seen tremendous benefits from this kind of inter-

disciplinary crowd sourcing. For example, image recognition tools for

monitoring right whale Eubalaena glacialis populations have been de-

veloped through the Kaggle platform (http://www.kaggle.com; Kabani

and El-Sakka, 2016). DrivenData also hosted two similar competitions:

one to identify fish from images on board fishing vessels (https://www.

drivendata.org/competitions/48/identify-fish-challenge), and another

to identify animals on camera traps by species (https://www.

drivendata.org/competitions/49/deep-learning-camera-trap-animals).

The code and algorithms that come from competitions like these can be

made open access and can therefore be tailored to new problems,

providing benefits for domain scientists far beyond those directly in-

volved in the competition itself and society in general (Bull et al.,

2016). Our competition was only open for 62 days and yet produced

nearly 600 individual models from 97 competitors, and the top models

provided better AMAPE scores over the withheld data than a detailed

and biologically-motivated hierarchical Bayesian model constructed

over years by domain experts.

4.1. Lessons learned about ecological modelling

As ecologists, we tend to approach time series modelling from the

perspective of those environmental covariates we think may be driving

the dynamics of a system. As such, one of the surprising lessons of this

Table 3

Ranked AMAPE values for each of the models calculated on seasons 2014–2016

that were held back from the modelling process broken down for the whole

dataset and by species, and a model retuned using the EN-WN method (Eq. (3))

with weights for the retuned models in parentheses.

Model Whole dataset Adélie chinstrap gentoo

EN-WN 4.05a 3.06 4.51a 4.02

EN-WNrt – 2.90a 4.56 3.73a

AG 4.57 3.38 (0.29) 5.18 (0.28) 4.17 (0.25)

TB 4.59 2.85 (0.44) 5.35 (0.11) 4.11 (0.32)

AR 4.61 4.85 (0.05) 4.97 (0.48) 4.25 (0.15)

BC 4.80 3.73 (0.22) 5.38 (0.13) 4.40 (0.00)

CC 4.82 5.36 (0.00) 5.50 (0.00) 4.14 (0.28)

a Best model as per AMAPE.
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competition was that the environmental covariates we have and fre-

quently use for the Antarctic (i.e. those things that can be measured by

satellites and are therefore available over a large spatial extent) do not

improve forecast accuracy. Only two of the top competitors (BC and TB)

attempted to include environmental covariates (sea ice extent and sea

surface temperature), and neither was able to improve predictive per-

formance by including them. This is surprising because sea ice extent

has been linked to the distribution and abundance of krill (Loeb et al.,

1997), a primary food source for the Pygoscelis spp. penguins, as well as

access to foraging areas (Wilson et al., 2001) and the role of both sea ice

extent and sea surface temperature have been demonstrated in other

studies focused on narrower portions of their range (Fraser et al., 1992;

Hinke et al., 2007; Loeb et al., 1997; Lynch et al., 2012; Ribic et al.,

1998). However, the fact that including these covariates did not im-

prove predictive performance suggests that the modelling techniques

were inadequate for examining the relationships properly, the lags as-

sociated with sea ice are so long as to obfuscate the relationship, or

perhaps that any influence of sea ice or sea surface temperature is either

swamped by other (unmeasured) drivers or buffered by compensatory

dynamics (Youngflesh et al., 2017). As such, while it is tempting to

assume that dynamics over short time scales are reasonable proxies for

the dynamics we might expect to play out over long time scales

(Forcada et al., 2006) or vice versa, this may not be the case. That

environmental covariates did not add to predictive performance may

also simply reflect the difficulty of measuring them. We therefore

cannot eliminate the possibility that strongly predictive covariates do

exist and that better tools for measuring these environmental char-

acteristics would yield a better understanding of penguin population

dynamics and better short-term forecasts (Che-Castaldo et al., 2017).

On a more positive note, the results of our competition demonstrate

that ‘domain agnostic’ time series forecasting approaches using rela-

tively tractable and well-studied algorithms can yield short term pre-

dictions that are as good or better than those derived using more

biologically-driven models. While the winning model was in fact quite

complex, forecasts of similar quality were produced by exceptionally

simple models. In noisy systems, simple and complex models alike yield

forecasts of similar accuracy; as such, the investment in more complex

forecasts may not be worth the effort. At the very least, a simple model

with reasonable predictive accuracy should be considered the appro-

priate null model against which to compare more complex or biologi-

cally-motivated models.

Despite the inclusion of information on measurement uncertainty

(i.e. observation error), and the fact that data varied wildly in the ac-

curacy associated with each count (from<5% to ~90%), none of the

top competitors integrated measurement uncertainty into their models

and yet all of those models outperformed the CC model, which included

an explicit model for observation error. This could mean that the CC

model does not handle uncertainty in a way that improves overall

performance, or that uncertainty is not important when it comes to

making predictions in this system because stochasticity in the dynamics

(i.e. process error) is larger than observation error (Che-Castaldo et al.,

2017). Revisiting the models in the future with a focus on uncertainty

would help determine its importance on prediction. Although some

machine learning methods can provide or incorporate uncertainty es-

timates (Durga and Solomatine, 2006), they are not commonly applied.

This could be viewed as an advantage of the Bayesian approach, where

a level of certainty can be given to predicted values. However, we note

as well that our choice of AMAPE as the selection criteria for models

may not fairly reflect the predictive power of model CC because it was

created and optimized prior to the competition using different criteria

for estimating error. For example, using an R2 to quantify predicted

versus observed (Fig. 2), we might expect model CC, with its slope so

close to 1, to have performed the best. Our experience highlights that

model selection criteria, often selected out of tradition or convenience,

are of utmost importance in any ecological modelling exercise and

should be carefully selected to suit the goals of the modelling process.

Fig. 2. Predicted versus observed regression lines compared for the six models against the 1:1 slope (‘perfect’ predictions) for all data (inset shows the 95th percentile

of data). Note that the regression lines used for illustration purposes here are based on the root mean squared error rather than AMAPE.
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Arguably, creating thousands of models could leave us vulnerable to

‘over-fitting’, in some algorithms may predict well by luck alone, and

inferences drawn from such an exercise could lack generalizability.

While this is undoubtedly a concern an ensemble model average buffers

us from the possibly arbitrary selection of one single “best” model

among several that may be nearly equivalent. Here, we have focused on

a relatively small set of “top”models, but a more robust approach might

include many more models, performing sensitivity tests to determine

the combination of models that produce the best overall prediction and

using shifts in model weights as an indication of changing system dy-

namics (Runge et al., 2016).

4.2. Short-term versus long-term predictions

Despite our effort to generate many candidate models by way of the

data science competition, and develop ensemble model forecasts that

might (and, in fact, do) outperform any of the individual models de-

veloped, all the models considered (including the ensemble models)

Fig. 3. Entire time series of nest counts available for Orne Islands (A), Pinguino Island (B) and Fort Point (C) from MAPPPD for chinstrap penguins compared to

predictions from all models for 2014–2016. Inserts are enlarged regions highlighted in light blue. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Fig. 4. Mean AMAPE of submitted models AR, AG, TB and BC starting from the

first day that either of these models were submitted to the competition.

Standard error bars are plotted on the figure for days when multiple models

were submitted.
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yielded predictions that diverged from the actual values by the 2016

season. Although we did not quantify a forecast proficiency threshold

(see Petchey et al., 2015), our findings suggest that the practical fore-

cast horizon for penguin population dynamics remains stubbornly short

(e.g., less than a generation of approximately 5–8 years). Consequently,

we still have no way to link time series models for abundance (para-

meterized using data on past abundance) to long-term projections of

extinction risk or range shift. We have no way to predict abundance

accurately even a few years in advance (see Che-Castaldo et al., 2017),

which compromises our ability to use forecasted values to inform

management decisions on sustainable krill catches or tourism activities

at penguin colonies. While the current state of the art still falls short of

the ideal in terms of data-management feedback, this framework for

generating a suite of models of differing structure and using them in an

ensemble model forecast paves the way forward.

Finally, it is worth noting that while the data being modeled in this

competition included time series of abundance only, age- or stage-

structured models provide an additional mechanism to link specific

demographic parameters (e.g., breeding success, age- or stage-specific

survival) to environmental drivers, which may yield more accurate

forecasts of total abundance than the models considered here. While

mark-recapture data are available for only a very small number of po-

pulations (e.g., Ballerini et al., 2009; Clarke et al., 2003; Dugger et al.,

2010; Hinke et al., 2017; Jenouvrier et al., 2006; Lescroël et al., 2009),

it remains an open research question whether the parametrization of

age-structured models, either in isolation or when combined with

(unstructured) dynamical models for total abundance, may yield better

population forecasts.

4.3. Future of competitions in ecology

Although data science competitions are not new, their increasing

popularity in industry and science deserves attention from the ecolo-

gical community. Over the last several decades, ecologists have made

major strides in collecting, curating, and organizing ‘big data’ datasets

(NEON, LTER, etc.) to address long-standing questions in population

and community ecology. While our dataset was approximately an order

of magnitude smaller in size than those typically facing data scientists,

continued monitoring will improve the length of many ecological da-

tasets. At the same time, ecologists need to look carefully through the

“modern data scientist's toolbox” to find those approaches that will be

applicable to the kinds of smaller datasets we have now. The Prophet

model is one such approach, previously unknown to several of us, that

we think is worth consideration and may be adapted for use in other

ecological applications.

Beyond the scientific benefits, data science competitions yield other

benefits as well. Academic scientists are always looking for ways to

raise public awareness, and data science competitions yield a concrete

way to generate excitement over a scientific challenge and to engage

non-academics in a modelling challenge (including both researchers

working in other disciplines, working in industry, as well as non-sci-

entists interested in the application). Additionally, the return on in-

vestment for a funder is enormous; for a nominal sum of money (on the

scale of a major research project), you can garner many orders of

magnitude more person-hours than would otherwise be possible and get

independent models that are free from a priori assumptions. Because all

models involved use the same training set and are judged on the basis of

the same test set, model competitions provide an opportunity to directly

compare models on the basis of their prediction accuracy.

To help other ecologists interested in future data science competi-

tions, we have several suggestions based on our own experience with

the process.

• We had difficulty finding a host for our competition because the

data set was considered too small to be of interest for the “data

science community”, which raised concerns among some of us (HL,

CC, GH) that the data science community had become so enamored

of “big data” challenges that equally important and arguably more

difficult “mesoscale data” challenges were left underserved. In

DrivenData, we were able to find an organization willing to host a

competition for a dataset of modest size. Ecologists looking to host

future competitions should not underestimate the time required to

find a willing host for their competition.

• The amount of data used to train and validate models can have

profound effect on the outcome of the competition. In our case, an

(unavoidable) imbalance between the different species in the test set

meant that the overall winning model was disproportionately in-

fluenced by its fit to the species that happened to be best represented

in the test set. A more even balance among the species would have

been preferred.

• The data used to test the outcomes should be representative of the

question being asked. For example, if a geographic prediction is to

be made, then the prediction should be to an independent geo-

graphic subset, and if making predictions to the future, the test set

should be an independent subset of the latest values (like in our

competition). If possible once the competition is completed, the

models could be continuously evaluated as long as new data are

being collected.

• A metric for determining the winners should be based on sound

theory and its sensitivity should be tested. The choice of metric will

have an impact on the choice of best model and must be considered

carefully, particularly in lieu of assumptions regarding the dis-

tribution of the data itself (e.g., Gaussian, Bernoulli, etc.). While our

metric was deliberately simple, more nuanced metrics could be

designed to account for additional criteria, such as declining pre-

dictive accuracy over time.

• If the end goal is to create an ensemble model, then uncertainty

estimates should be part of the output given by competitors, and

code should be standardized to a single language as a best practice

(e.g., Python).

• If possible, data to be used for model testing should not be placed

online before the competition, although if data are already public

there are strategies to obfuscate data that can be discussed with data

competition hosts. Models fit with knowledge of the withheld data

could be made arbitrarily good (with respect to predicting withheld

data) and even data that is retracted from the web prior to com-

petition may be available to competitors through an old “image” of

the internet. Our preference would have been to withhold more

data, but this risked the integrity of the competition given that much

of the older data had already been published. Determining the

proportion of data to withhold is one of the most challenging and

important elements of designing a fair competition that yields

models that are likely to also perform well in future years.

• The length of time to run the competition should be considered with

respect to the possibility of achieving better results as time pro-

gresses, while balancing the needs of the project (i.e. timing of

funding and deadlines). We ran our competition for 2months, but

depending on the size of the dataset and complexity of the problem,

longer might be recommended.

5. Conclusions

Our motivation for this competition was driven in part by our own

frustration that “good” models for penguin population dynamics were

elusive, and that few efforts have been made to benchmark models

against each other. The data science competition framework offers the

opportunity to compare one domain-knowledge inspired population

model to domain-agnostic methods commonly used in data science. For

our dataset at least, simple models performed comparably to complex

models for prediction over the short term, and covariates strongly

supported by prior knowledge of the system did not improve prediction

accuracy. The domain-knowledge inspired model was competitive with
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the very best models submitted by the competition, which suggests that

at least some of the commonly used tools in statistical ecology (in this

case, hierarchical Bayesian time series modelling) are reasonable. Not

surprisingly, techniques developed specifically for prediction (e.g.,

machine learning methods) scored highest. Although limited inference

on mechanisms can be made by machine learning based methods, more

traditional ecological modelling techniques are more appropriate for

understanding cause and effect from hypothesis testing. Data science

competitions provide one avenue for jumpstarting development of

better predictive models, encourage community-level aggregation of

‘clean’ datasets, and directly facilitate public engagement. For all these

reasons, we look forward to seeing future data science competitions for

ecological research.
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