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Abstract. We develop a family of second-order implicit-explicit (IMEX) schemes for the stiff
Bhatnagar-Gross—Krook (BGK) kinetic equation. The method is asymptotic-preserving (can cap-
ture the Euler limit without numerically resolving the small Knudsen number) as well as positivity-
preserving—a feature that is not possessed by any of the existing second- or high-order IMEX
schemes. The method is based on the usual IMEX Runge-Kutta framework plus a key correction
step utilizing the special structure of the BGK operator. Formal analysis is presented to demonstrate
the property of the method and is supported by various numerical results. Moreover, we show that
the method satisfies an entropy-decay property when coupled with suitable spatial discretizations.
Additionally, we discuss the generalization of the method to some hyperbolic relaxation system and
provide a strategy to extend the method to third order.
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1. Introduction. Kinetic equations describe the nonequilibrium dynamics of a
gas or any system comprising a large number of particles. Compared to macroscopic
fluid/continuum equations, they provide information at the mesoscopic scale using
a probability density function (PDF). Kinetic equations often contain complicated
integral operators modeling particle collisions (for example, the Boltzmann equation
[7, 30]). To simplify the analysis and computation, the so-called Bhatnagar—Gross—
Krook (BGK) model [3], or its variants, has been widely used in many disciplines of
science and engineering (cf. [8, 22, 25]). After nondimensionalization, the equation
reads

1
(1.1) atf+v-sz:gQ(f), t>0, veR¥, zeQcR%,

where f = f(¢,x,v) is the one-particle PDF (¢ is time, x is space, and v is velocity).
€ is the Knudsen number, which is the ratio of the mean free path and typical length
scale. The collision operator () is a relaxation type:

(1.2) Q(f) = T (M[f] = f),

where M is the Maxwellian, or local equilibrium, defined as

_r (e
(1.3 Vi = e o (-5,
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where p, u, and T are density, bulk velocity, and temperature given by the moments
of f:

flv—ul? dv.

1 1
(1.4) p= fdv, u=- fodv, T =
Rdv P JRdv dvp Rdv

Finally 77 is some positive function that depends only on the macroscopic quantities
such as p and T
It can be easily shown that the BGK operator (1.2) satisfies similar properties as
the full Boltzmann collision operator:
e conservation:

(1.5 [ Qe do=0. o) = (ool /27
e H-theorem:
(1.6) - Q(f)Inf dv <O0.

Moreover, one can derive the compressible Euler equations as the leading order asymp-
totics of the BGK model [2]. A simple way to see this is to let € — 0 in (1.1); then
formally f — M([f]. On the other hand, taking the moments (- ¢) := [p,, - #(v) dv
on both sides of (1.1), one obtains (using (1.5))

(1.7) 0i(f) + Va - (fvg) = 0.

Replacing f by M[f] in (1.7) thus yields the compressible Euler equations:
Op+Va-(pu) =0,

(1.8) Oc(pu) + Vg - (pu®@u+pl) =0,
OE + V- ((E+p)u) =0,

where p = pT is the pressure and E = % pT + 1 pu? is the total energy.

When ¢ is small (the system is close to the Euler limit), the right-hand side of (1.1)
presents strong stiffness. Hence explicit numerical schemes would impose a very re-
strictive time step, i.e., At has to be O(g). To remove this constraint, implicit-explicit
(IMEX) Runge-Kutta (RK) schemes are natural and popular high-order methods, in
which the stiff collision part is solved implicitly and the nonstiff convection part is
treated explicitly [27, 11] (for IMEX-RK schemes applied to other problems, see,
e.g., [1, 23, 26, 4]). As a result, the time step can be chosen independently of &
and is determined by the nonstiff part only. Furthermore, it can be shown that (see
[11] for details) for fixed A¢ and suitable initial conditions, as ¢ — 0, the numerical
scheme becomes an explicit RK scheme applied to the limiting Euler equations, i.e.,
asymptotic-preserving (AP) [21, 18].

The AP property is a desired property for handling multiscale kinetic equations,
for it guarantees capturing the correct fluid limit without resolving €. Nevertheless,
the implicit treatment of the collision term would usually cause the numerical solution
to lose positivity, which is unphysical since f is a PDF. Some kinetic equations,
for instance, the full Boltzmann equation or the neutron transport equation, may
not be supersensitive for negative function values since the collision operator only
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involves f but not the Maxwellian M[f]. However, for the BGK equation, in order
to define M[f], one does require the macroscopic quantities (the moments of f) to be
positive. Even small negative values of f may lead to the result that some macroscopic
quantities, especially the temperature, fail to be well-defined.

We point out that the first-order IMEX scheme is an exception whose positivity
can be easily achieved. Indeed, applying a forward-backward Euler scheme to (1.1)
gives

fn+1 - fn n Tfn+1 n n
(1.9) P Vel = ]t - i,
which is equivalent to
AtT n+1
1.10 ntl_  C (L AV ) — I ey,
( ) ! €+At7'fn+1 (f v ! )+€+At7'fn+1 ]

Therefore, if f™ is nonnegative, "' is nonnegative provided a positivity-preserving
spatial discretization (for example, [32, 34]) is used for the convection term. The
situation becomes, however, highly nontrivial for the method beyond first order. The
positivity of the IMEX-RK schemes is closely related to the monotonicity property
(also known as strong stability [13]) of the method. In [17, 16], it was found that
for the Broadwell model (a hyperbolic relaxation system; see section 4), in order to
preserve monotonicity or positivity, a sufficient condition requires the time step to
be proportional to €. This suggests that it may be very difficult to achieve the AP
property, which requires At to be independent of e, and positivity simultaneously.
Also, even for the spatially homogeneous problem (no convection term in (1.1) and
the IMEX scheme reduces to a fully implicit one), the construction of an implicit
positive RK scheme is still not straightforward. In fact, as proved in [14], there does
not exist unconditionally strong stability preserving (SSP) implicit RK schemes of
order higher than one.

Recently, a class of second-order semi-implicit RK schemes was proposed for the
ODEs with stiff damping term [9]. The method is based on the modification of the
explicit SSP-RK schemes and is shown to be well-balanced as well as sign-preserving.
Later, a second-order AP discontinuous Galerkin scheme was introduced in [20] for
the Kerr—Debye model (a special relaxation system). The method is based on the
modification of an IMEX-RK scheme and can preserve the positivity of one component
of the solution vector. Inspired by this work, we propose to add a correction step to the
standard IMEX-RK scheme. Due to the special structure of the BGK operator, this
step can maintain both positivity and AP property. To ensure second-order accuracy
and overall positivity of the scheme, new conditions including both equalities and
inequalities, are derived for the RK coefficients. We then construct two IMEX-RK
schemes fulfilling these conditions, one of type A and one of type ARS (two commonly
used forms of IMEX-RK schemes; see section 2.2 for definitions).

To summarize, we develop a new IMEX time discretization method for the BGK
equation (1.1) that has the following feature:

e the scheme is second-order accurate for ¢ = O(1);
e the scheme is AP: for fixed At, as e — 0, it reduces to a second-order scheme
for the limiting Euler system (1.8);
e the scheme is positivity-preserving: if f™ > 0, then f**1 > 0.
Note that the AP property implies that the time step is independent of . In fact,
the CFL condition for the new method can be made comparable to that of the first-
order scheme (1.9). We also provide a strategy to extend the method to third order.
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Furthermore, we show that the method satisfies an entropy-decay property when
coupled with suitable spatial discretizations and that it is possible to generalize it to
some hyperbolic relaxation system which demands positivity.

The rest of this paper is organized as follows. In section 2, we introduce a general
problem and present the procedure to construct the new IMEX schemes, where the
main focus is to achieve second-order accuracy as well as positivity. In section 3, we
apply the new method to the BGK equation and show that it is AP and entropy-
decaying. To ensure the fully discretized scheme is positivity-preserving and AP,
special attention needs to be paid for spatial and velocity domain discretizations.
These are described in section 3.3. In section 4, we briefly discuss the generalization of
the method to the hyperbolic relaxation system. In section 5, we perform several tests
for the BGK equation and demonstrate numerically the properties of the proposed
method. The paper is concluded in section 6. Extension of the method to third order
is provided in the appendix.

2. New IMEX-RK schemes. We now present the procedure for constructing
the new IMEX schemes that are both AP and positivity-preserving. Although we
mainly consider the BGK equation (1.1), the framework is quite general and can be
applied to other problems that share a similar structure. Therefore, we will start with
a general setting and derive conditions for the RK coefficients to ensure accuracy and
positivity, and we will get back to the BGK model in section 3 when discussing the
AP property as this latter part is problem dependent.

2.1. A general problem and basic assumptions. Consider an ODE of the
form

(2.) SI=T()+ 290,

where f = f(t) lies in some function space, and T and Q are some operators, possibly
nonlinear. Equation (2.1) may arise from semidiscretizations of time-dependent PDEs
by the method of lines.

We assume the terms 7 (f) and Q(f) are positivity-preserving. To be precise, we
assume

(2.2) f>0= f+aAtT(f) >0 V constant a s.t. 0 <aAt <C,

where C is the Courant—Friedrichs-—Lewy (CFL) type constraint for positivity. If 7 =
Taz is a discretized transport operator, then C = Atpg with Atpg being the maximum
time step allowance such that the forward Euler scheme is positivity-preserving. For
operator Q, we assume

(2.3) 9g>0, f—-bQ(f)=9g = f>0 Vconstant b > 0.

We also assume a similar property for Q'(¢)Q(f) and Q'(f)Q(f):

(2.4) g, h>0, f+bQ(9)Q(f)=h = f>0 V constant b >0,
(2.5) h>0, f+bQ(f)Q(f)=h = f>0 VY constant b> 0,

where Q'(g) is the Fréchet derivative of Q at g, given by
(9+6f) —Q9)
5 .

Later in sections 3 and 4 we will verify that the BGK equation and the Broadwell
model indeed satisfy the assumptions (2.2)—(2.5).

(2.6) Q(g)f = lim 2
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2.2. The standard IMEX-RK scheme. The standard IMEX-RK scheme ap-
plied to (2.1) reads [26]

FO = f”+AtZa T(F9) +AtZa —QUY), i=1....1,
(2.7) =

it = f”+AtZw7’fU +At2w Qf”)

i=1

Here A = (Gij), @;;j = 0 for j > ¢ and A = (a” , a5 = 0 for j > 4 are v x v

matrices. Along with the vectors w = (1, ...,w,)", w = (wy,...,w,)T, they can
be represented by a double Butcher tableau:
¢l A c| A
(2.8) ‘ ~ T T »
W w
where the vectors ¢ = (¢1,...,6,)7, c = (c1,...,c,)T are defined as

i—1 i
(2.9) G = E Qij, ¢ = E Qij-
j=1 j=1

The tableau (2.8) must satisfy certain order conditions [15, 26]. According to the
structure of matrix A in the implicit tableau, one usually classifies the IMEX schemes
into the following categories [4, 11]:

e Type A if the matrix A is invertible;

e Type CK if the matrix A can be written as

(2.10) <2 2) 7

and the submatrix A € R=1Dx(=1) jg invertible; in particular, if the vector
a =0, w; =0, the scheme is of type ARS;
o ifa,, =w;, ay; =w;,i=1,...,v, ie. f”+1 f®) | the scheme is said to be
globally stiffly accurate (GSA).
2.3. The new IMEX-RK scheme with correction. We now propose to add
a correction step to the standard IMEX scheme (2 7):

(2.11) O = f”+AtZa,J 3)+At2am o(f9y, i=1,...,u,

j=1

(2.12) frtt = f”+AtZwl T(f9) +At2wl Q(fMy,

=1
(2.13) fn+1 _ J?n—i-l _ OzAt2§Q/(f*>Q(fn+1),

where f* can be chosen as f*, f®,  fr+1 or f»+1 as long as it is a first-order
approximation to f": f* = f™+ O(At). The coefficients a;;, @;;, w;, W;, and o remain
to be determined.

2.4. Second-order accuracy. Due to the extra correction step (2.13), the stan-
dard order conditions for the IMEX-RK schemes need to be modified. In this sub-
section, we analyze the order conditions of (2.11)—(2.13), up to second order, in the
regime ¢ = O(1). Without loss of generality, we assume ¢ = 1.
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First, (2.11) gives
(2.14) FO ="+ ALET (") + At e, Q(f™) + O(AF),
where we used f) = f* 4 O(At) and (2.9). Substituting it into (2.12) yields

frt = f"+Atsz (f" + AtET(f") + Ate; Q(f))

=1

+ ALY wi Q(f" + AtET () + Ate; Q(f™)) + O(AL®)

i=1

= f"+Atsz (™) + T (f")AELET () + At Q(f™))]

=1

+AtZwl (f") + Q" NALET(f") + At e; Q(f"))] + O(AL)

o) (zw) ar)

( 12)151> T (T + <Z ﬁlicz‘) T'(f")efm)

i=1

(2.15) + (Z wz-@) Q'(fm (Z Wl) )Q(f™)
i=1

where 77, Q" are the Fréchet derivatives of T and Q. The last step (2.13) implies

(2.16) Fr = F aARQ(FQ(™) + O(A).
Combining (2.15) and (2.16), we have

<Z ﬂ%‘) T+ <Z wz) Q(f”)]
<Z wlcl> T (fMYT(f) (Z wzQ) Q(f")
(217) + <Z wi5i> Ql( <Z w;Cy — OL) l ) (fn)

On the other hand, if we Taylor expand the exact solution of (2.1) around time
t", we have

Fihh = £ AT + QU™ + GARIT (T + T (F)Q(™)
QT + QMM+ O(AE).

Comparing (2.17) with (2.18), we obtain the following order conditions:

v v
Zﬂ}i = Zwl = 1,

i=1 i=1

v o v ~ v _ v 1
Zwici = Zwici = Zwici = Zwici — = —.
i=1 i=1 i=1 i=1 2

N N
<.
Il N

+ O(A#),

fn—i-l — fn +At

+ At?

+ O(A).

(2.18)

(2.19)
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Note that compared to the standard IMEX-RK order conditions [26], the only differ-
ence is the term containing «.

2.5. Positivity-preserving property. In this subsection, we analyze the
positivity-preserving property of the IMEX-RK scheme (2.11)—(2.13). To this end,
we assume f™ > 0 and derive conditions to ensure f(), f”“, and f7T! are all non-
negative.

First of all, we observe that if f™, f(0), fn*1 are all nonnegative, then the last
step (2.13) preserves positivity of the solution provided « > 0. Indeed, (2.13) can be
written as

(220) F1 A Q1)U =

then fm"t! > 0 follows directly from assumption (2.4) if f* = fr @t and
assumption (2.5) if f* = fnti

Next, we concentrate on the first two steps (2.11)—(2.12). To simplify the deriva-
tion, we assume the IMEX-RK scheme is GSA, that is, f"“ = f®, and consider
type A and type ARS schemes, respectively. Since the techniques we use here bear
some similarities to the SSP schemes, we adopt the notation in [13].

2.5.1. Type A and GSA schemes. From (2.11), we know

(2.21)
£ _ pn i—1 -1
(f(z J=— | —x — wTU) =Y ay- Q) |, i=1
I =1 =

1 1 < : . .
2.99 - Dy = — i (FO) — i ()
(2.22) —Q(fY) At;bg(f f )+;bJT(f )
where
1 1 i—1 B 1 i—1 B
(2.23) bi; = 2 bij == — Zailblj7 bij == o —Qij — Z airby;
7 17 l:j 7 l:]+1

Then (2.11) can be rewritten as
(2.24) ) .
< 1
() — ( ) 0 _ (l)
i f"+AtZaU (fV —i—AtZaw Atl_zlbjl f ™ +Zb T(f

1—1 1—1 1—1
1 .
JrAtau; (f@) = 1*§ ayby | f" JrE E aibij | f9
Jj=11=j l=j

1 .
a’L] Z a’lelj f(j)) + At a”gQ(f(l))

l=j+1

1—1
= cof "+ 3 [ess O + ALegTUD)] + Atait QD)
=1
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where
i—1i-1 i—1 i—1
(2.25) Cip:=1— ZZaubm Cij = Zailblj, Cij = Qg5 + Z aili)lj.
j=11=j I=j I=j+1
Thus
1 i—1
(2.26) £ — At au‘gQ(f(i)) =ciof™ + Z [Cijf(j) + At 5ij7'(f(j))} .
j=1

Therefore, to make f(*) > 0, using assumptions (2.2) and (2.3), it suffices to have

ai; >0, ¢co=>0, 1=1,...,v,

(2.27) ~ ) . .
cijzoa cij207 ZZ27"'aV7 ]:17"'32_17

and the CFL condition is given by
(2.28) At < csenC,

where cgq, is the extra factor from the scheme, defined as
. Cij
(229) Csch = . INin {~} )
i S
j=

and the ratio is understood as infinite if the denominator is zero.

Remark 2.1. Requiring a;; > 0 rather than a;; > 0 is to make sure the diagonal
matrix A in the implicit tableau (2.8) is invertible so the scheme is of type A.

Remark 2.2. Note that ¢;o + Z;;ll ¢;;j = 1. Therefore, written in (2.24), the
explicit part of the scheme is a convex combination of forward Euler steps, which is
the so-called Shu-Osher form [29]. This enables us to derive some nice properties of
the scheme that rely on convexity such as entropy decay; see section 3.2.

Remark 2.3. If T = Ta, is a discretized transport operator, the constraint ¢;; > 0
in (2.27) can be removed by using downwinding [13]. This allows more freedom in
choosing coefficients and would possibly yield a better CFL condition. For simplicity,
we do not consider this situation in the current work.

We now write explicitly the above positivity conditions for v = 3 (the minimum
stage required for RK coefficients to exist; see Appendix A for a proof). First, the
double Butcher tableau (2.8) looks like

0 0 0 ail 0 0
(2.30) a0 0 i
azg1 azz 0 asy a3z 433
| a1 as2 O | asi az  ass

where the vectors € and c satisfying (2.9) are omitted. Then the positivity conditions
(2.27) reduce to the following:
e fori=1,

(2.31) alp > 0, clo=1> O;
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e for i =2,
azi
aso > 0, 620—1—T>0
11
(2.32) ag1 ) ;
co1 = — 20, ¢o1 =ag =0
aiil
e for i =3,
asi a320a21 as2
a33>0, 030—1—7+7—7>0
ai1 a220a11 a22
az1 (32021 az2 - - a32G21
cgr=———""—"-20, c2=—20, c3=a331—— >0,
a11 22011 a22 a22

(2.33) &3 = ago > 0.

These conditions will be used later to construct the scheme in section 2.6.1.

2.5.2. Type ARS and GSA schemes. The analysis for type ARS schemes is
similar. Note that since ajq = 0, f(I) = 7.
First we recursively derive

i1
(2.34) Q(fW) = Athw D~ Y+ b T(FD), i=2,.,
=1
where
1 = ) 1 i1
(2.35) bii = e bij = T Z%‘l%y bij = - —a;j — 12;1 a;ibi;
=j

Then (2.11) can be rewritten as

(2.36)
i—1
O = leiof™ + BtanT(f) + Y (e O + AtayT(F9)] + Aty (f“ )
j=2
where
i—1i—1 i—1
cio :=1— Z Zallblj7 Cio = Q41 + Zaw i1, Cij ‘= Zailblja
Jj=2 l_] I=j

(237) Eij = di]‘ + Z a'ill;lj-
1=j11

Therefore, to make f(*) > 0, using assumptions (2.2) and (2.3), it suffices to have

aii>0a Ci0207 51',0207 7;:25""1/5

(2.38) ~ , . .
CijZO, CijZO, ’L:3,...,V, j:2,...,z—1,

and the CFL condition is given by

(2.39) At < csenC,
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where

Cs Cis
(2.40) Csch = Min { min %O, min - 3,
1=2,...,v Ci0 1=3,...,V Cij
G=2,..,i—1

and the ratio is understood as infinite if the denominator is zero. Note that similar
considerations as pointed out in Remarks 2.1-2.3 apply here as well.

We now write explicitly the above positivity conditions for v = 4 (the minimum
stage required for RK coefficients to exist; see Appendix A for a proof). First, the

double Butcher tableau (2.8) looks like

0 0 0 0 0 0 0 0
&21 0 0 0 a9 0 0
(241) C~L31 dgg 0 0 as ass 0 s
(41 Qa2 Q43 0 a2 a43 au

| Q41 Gu4p a3 |0 as2 auz am

N OO O O

where the vectors ¢ and c satisfying (2.9) are omitted. Then the positivity conditions

(2.38) reduce to the following:

e for i =2,
(242) Ao > O, Co0 = 1> 0, 520 = 5421 > O;
o for i = 3,
as2 . . a32021
azz3 >0, cz3o0=1——2>0, c30=az — >0,
(2.43) a2 a2
a32 - - .
czo=—2>0, ¢é32=az >0;
a22
e for i =4,
Q42 Q43032 Q43
ag4 >0, cp=1-—"F+—""-—-—20,
a22 33022 a33
_ _ (42021 43031 = 43032021
C40 = Q41 — - + >0,
a2 ass a33a22
(42 43032 a43 - - (43032
Cop=———"-20, cu3=—20, C40=0a42— >0,
@22 433422 ass az3

(2.44) ¢43 = ausz > 0.
These conditions will be used later to construct the scheme in section 2.6.2.

Remark 2.4. Although the ARS scheme needs at least four stages to achieve the
second order, it gives more freedom in choosing the parameters. As a result, one
can obtain simpler coefficients and larger CFL number than the type A scheme; see
sections 2.6.1 and 2.6.2.

2.6. Combining order conditions and positivity conditions. Combining
the results from sections 2.4 and 2.5, we conclude that as long as one can find the
RK coefficients such that they satisfy the order conditions (2.19), positivity condi-
tions (2.27) (resp., (2.38)), and a > 0, the resulting scheme (2.11)—(2.13) would be
both second-order accurate and positivity-preserving. It turns out that such sets of
coefficients are very easy to find. Below we give two IMEX schemes, one of type A
and GSA with v = 3 and one of type ARS and GSA with v = 4. These coefficients
are searched to yield a relatively large CFL constant ¢y, but we do not claim their
optimality.
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2.6.1. A second-order positivity-preserving type A and GSA scheme.
A type A and GSA scheme of form (2.30) (numbers are truncated to 14 digits) is
Go1 = 0.73695027152854,
a3y = 0.32152816910844, ase = 0.67847183089156,
a11 = 0.62863517121833,
a1 = 0.24310046553707, age = 0.19593925696632,
az1 = 0.48036510509894, agze = 0.074643281386981, a3z = 0.44499161351408.

« in the correction step (2.13) and the CFL constant (2.29) are given by

a = 0.27973737915215,  csen = 0.52474575236975.

2.6.2. A second-order positivity-preserving type ARS and GSA scheme.
A type ARS and GSA scheme of form (2.41) (numbers are exact) is
as1 =0,
as1 = 1.0, ase =0,
a41 = 0.5, G42 =0, a3 =0.5,
agy = 1.6,
ags = 0.3, a3z =0.7,

A42 = 05, a43 — 03, 44 = 0.2.

« in the correction step (2.13) and the CFL constant (2.40) are given by

a =038, csn =0.8125.

Remark 2.5. For simplicity, we only give examples for the second-order method.
Following a similar procedure in section 2.4, it is not difficult to derive order conditions
for the third-order method (see Appendix B). This, combined with the positivity
conditions in section 2.5, would yield a third-order positivity-preserving scheme.

2.7. Absolute stability. In this subsection, we analyze the absolute stability
of the proposed IMEX scheme. We consider the linear ODE

d
(245) ?{ =Mf+Xf, A eC, <O,

and solve it by scheme (2.11)—(2.13), i.e.,

i—1 %
f(l) = fn —+ Atzaij}\lf(j) + Atzailj)\gf(j), 1=1,...,v,
j=1 j=1

2.46 . - : - ‘
( ) fn+1 _ fn-l-AtZwi)\lf(l) +At2wi)\2f(2)a
i=1 =1

fn+1 — f~n+1 _ aAtQ)\%fn-i-l.

Define z; = \;At, i = 1,2; then one can write "1 = P(zy1, 22) f", where P(z1, 23) is
the amplification factor of the scheme. The absolute stability region of the scheme is
defined as [24]

(247) S = {(21,22) : |P(Zl722)‘ S 1}
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— 0

Fic. 1. Boundary of the stability region S N {z2 = C} for different values of C < 0. Here
different colors or numbers correspond to different values of z2. Left: the type A scheme given in
section 2.6.1; Right: the type ARS scheme given in section 2.6.2.

In Figure 1, we illustrate the stability regions of the two schemes given in section
2.6, by denoting z; = z + iy and plotting the boundary of the region SN {2z, = C}
in the z-y plane for different values of C' < 0. As we can see in Figure 1, for both
schemes, as C' becomes smaller, the region S N {2z = C} is strictly increasing. Notice
that SN {z2 = 0} is the stability region of the explicit RK scheme. Thus this suggests
that, if a time step satisfies the absolute stability for the explicit part of the IMEX
scheme, then it also satisfies the absolute stability for the whole IMEX scheme for
any zz < 0.

3. Application to the BGK equation. We now apply the previously derived
general framework to the BGK equation (1.1). The convection operator —v - V, and
the collision operator ) correspond, respectively, to the operators 7 and Q in the
general setting (2.1). We have the following.

PROPOSITION 3.1. The operators T(f) = —v - V,f and Q(f) = 7,(M[f] — f)
satisfy the assumptions (2.2)-(2.5).

Proof. First of all, the operator T (f) can satisfy assumption (2.2) if a positivity-
preserving spatial discretization is used (see section 3.3).
To verify (2.3), for g > 0 and constant b > 0, we first define

_ brgMlgl +g

then f > 0. Taking the moments (- ¢) on both sides of (3.1) gives (f¢) = (g¢) since
(9¢) = (M|[g]¢). Therefore, M[f] = M|g] and 75 = 74, so

bry M
G2)  f="MURS i) =g = b =0
Tf
i.e., such defined f > 0 satisfies the assumption (2.3).
We now compute Q’'(g)Q(f):

(3.3) Q(9)Q(f) = lim 29 F99) = 9)

5—0 1)
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Since (9 +6Q(f))¢) = ((g + o7 (M[f] = f))¢) = (9¢), hence M[g+6Q(f)] = M]g],

SO

(3.4) Qg+0Q(f)) — Qlg) = 74(M[g] — g — 6Q(f)) — 79(M[g] — g) = —740Q(f).

Hence

(3.5) Q' (9)Q(f) = —142(f)-

Then

(3.6) f+0Q(9)Q(f) =h <> f—bryQ(f) = h.

If g > 0, then 7, > 0. Thus (2.4) follows from (2.3). To verify (2.5), note that

(3.7) FH0Q(N)Qf) =h = f—brpQ(f) =1,

from which we know (f¢) = (h¢). If h > 0, then 74 = 7, > 0. Thus (2.5) follows
again from (2.3). |

Therefore, applying the scheme (2.11)—(2.13) to the BGK equation, we get a
second-order, positivity-preserving method:

(3.8)

i—1 A
O = gn fAtZdijv'fo(j) +Atzaij7-f(]) (M[fD] = f9@)y, i=1,...,u,
j=1 j=1

19
n v Tf* n n
Frrt = O 4 aAR L (MY - ),
€

where f* can be taken as f7, any f) or f**1, and the coefficients a;;, a;;, o and
the CFL constant cge, are given in section 2.6. Note that we have restricted to GSA
schemes to get positivity, so there is no middle step f”“. Furthermore, due to the
special structure (3.5) of the BGK operator, the implementation of the correction step
is just as easy as solving the collision operator implicitly.

Remark 3.2. The scheme (3.8) appears implicit since at every stage ¢ one needs
to compute ), M[f("] first in order to evaluate f(") (also for the last step). This
can be achieved by taking the moments (- ¢) on both sides of the scheme:

i—1
<f(i)¢> = <fn¢> _Atzdijvz'<f(j)v¢>v =10
j=1

(3.9) (/") = (fMe).

Hence one can obtain the macroscopic quantities p, u, T at stage i first, which will
define 7, and M[f ()] (the last step is treated similarly). This idea has been used
in several papers to solve the BGK equation implicitly [10, 27, 12, 11].

3.1. Asymptotic-preserving property. There remains to prove the scheme
(3.8) is AP. To this end, we discuss type A schemes and type ARS schemes separately.
We will prove the AP property in a similar way as [11].

PROPOSITION 3.3. If the IMEX scheme (3.8) is of type A and GSA, it is AP: for
fized At, in the limit ¢ — 0, the scheme becomes a second-order explicit RK scheme
applied to the limiting Fuler system (1.8).
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Proof. We rewrite the first v steps of (3.8) using vector notation:
(3.10) F:f"e—AtflegCF—i—AtAg(M[F]—F),

where F := (fM, ..., f)T e:=(1,...,1)T, M[F] := (M[fD],..., M[f®]DT, and
7 := diag(7sq), ..., Tyon ). Now fixing At, formally passing the limit € — 0 in (3.10),
one has At A7(M[F] — F) — 0. This implies F — M|[F] since both A and 7 are
invertible (the scheme is of type A and positivity-preserving). Replacing F by M[F]
in the moment system (3.9), we obtain

U =pyn — AtZa” M[fDe), i=1,...,u,

(3.11) Uttt =g,

where U := (p, pu, E)T. This is a second-order explicit RK scheme applied to the
compressible Euler system (1.8). o

PROPOSITION 3.4. If the IMEX scheme (3.8) is of type ARS and GSA, it is AP:
for fized At and consistent initial data f© = M[f°], in the limit € — 0, the scheme
becomes a second-order explicit RK scheme applied to the limiting Euler system (1.8).
If the initial data is inconsistent, the limiting scheme will degenerate to first order.

Proof. For the ARS scheme, f()) = f* and a = 0. Rewrite F = (f(), F),
e=(1,&), M[F| = (M[fM], M[F]), 7 := diag(7s@, ..., Tron); then (3.10) becomes

(3.12) F= 16— Atav-V,f" — At Av-V,F+ At AL (M[F] - F),

m\\b

where we have used a notation for matrix A similar to that in (2.10):

0 0
(3.13) (é ;1)

Now fix At; letting € — 0, one has At A7(M[F]—F) — 0. So F — M[F] since both A
and 7 are invertible (the scheme is of type CK and positivity-preserving). Replacing
F by M[F] in the moment system (3.9), we have

U = U — AtanV, - (f"v) — AtZaw MfOlg), i=2,....»,

(3.14) Ul =UW),

which is a second-order explicit RK scheme applied to the compressible Euler system
(1.8) if f* = M[f™]. On the other hand, the last step of (3.8) implies "1 — M[f"*1]
as € — 0. Therefore, as long as the initial data is consistent f© = M[fY], the scheme
is second order. Otherwise, the initial data will bring an O(At) error and the scheme
is reduced to first order. O

3.2. Entropy-decay property. It can be shown that the second-order scheme
(3.8) satisfies an entropy-decay property if the simple first-order upwind scheme is
used for the spatial derivative.
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Consider the following one-dimensional (1D) BGK equation for simplicity:

(3.15) Ouf +v0.] = S(MIf] - ),

for which we have the entropy inequality

(3.16) %/ flog fdvdzx <0.

Now assume that the velocity domain is truncated to a large enough symmetric
interval [—|v|max, |V|max] and the convection term vd, f is discretized by the first-order
upwind scheme

(3.17) (VO fr = szov% + Xo<o fk+1Ax Ir

together with the periodic or compactly supported boundary condition in . Then
we claim that the scheme (3.8) satisfies a discrete entropy inequality:

(3.18) S < Sif,

where the entropy S is defined as
(3.19) S[fl =2z S[fe], with S[fi] = /S[fk} dv,  s[fi] = filog fk.
k

We prove it for type A and GSA schemes. Type ARS and GSA schemes can be treated
similarly.
First applying (3.17) in (2.24) gives

f = CzOflg + Z |:c”f(ﬂ) UAt

Jj=1

(320)  + Mta (M) - 50,

5 (vuzo (A = 1) + xuco i - é”>)}

and the CFL condition (2.28) becomes

(3.21) At < m71Jn { ZZ } ’UA:;X.
Note that (3.20) can be written equivalently as
(3.22)
(0% _ o *Z [( Ivit) O 4 g |?1At (X,J>of(”1+xv<of;§j+)1)] ,
(3.23)

—1
G) _ At (), At (i)
kl = (1 + Eaii) ( kz + ?a”M[ kz} .

Recall that

(324) ai; >0, ci>0, Cij >0, Eij >0, cio+ Zcij =1;
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hence (for each fixed v and k) the right-hand side of (3.22) is a convex combination of
i ]5]), and (XvZOf/i]—)1 + Xu<0f;£]+)1), provided the CFL condition is satisfied. Since
s[fx] is a convex function for fi > 0, by Jensen’s inequality, (3.22) gives

(3.25)

i1
i)* " - |v|At N [IVAN 3 : .

s < cios[fi1+ Y |:(Cij_cij|A|x> s[f,i”HcijA'gjs[xvzofé”ﬁxv@f,iﬁl]] ;

j=1

after integration in v yields

1)% ‘ . B A )
S[f,i) | < cioS[fE] + [cijS[ ]EJ)] 7;/‘”‘5[ ;ij)]dv

1

<

At i j
rauge [l (voslf] + xocosli2) o]

1

(3.26) = cSlE+ 3 [enSU) — i ar (= F2 )
j=1
where
(3.27) F = [ 1ol (wo20slf?) - xocosl2h]) do
is the discrete entropy flux. Finally summing over k in (3.26), we obtain
(3.28) Sw@ﬂgwﬁwﬂ+§f%Svml
j=1

On the other hand, using the fact that!
(3.29) SIMIFON < S[FY),

from (3.23), which is also a convex combination, one has

s (1 2a) (5179 + e

~1
(3.30) < <1 + Agtau) <S[f(i)*] + Agtaz‘is[f(i)]) ;
which implies
(3.31) S < S[FO.
Therefore,

i1
(3.32) S[FD] < eioS[f"] + Z ci; S[f9),

j=1

from which it follows easily that S[f*)] < S[f"]. Finally, the last step of (3.8) has the
same structure as (3.23); thus it can be shown in the same way that S[f"*1] < S[f®*)].
Altogether, we have proved S[f"+1] < S[f"].

LAn easy way to show this is as follows: [MlogM dv — [ flogf dv = fflog% dv =
ff[log% — % + 1] dv < 0, where we used the fact that f and M have the same moments
(fp) = (M), and the inequality logz < x — 1 for z > 0.
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3.3. Spatial and velocity domain discretizations. In this subsection, we
describe in detail how to obtain a fully discretized scheme for the BGK equation. We
emphasize that it is not straightforward to apply the established techniques. Special
care needs to be given for both spatial and velocity domain discretizations in order
to maintain the properties (positivity and AP) of the semidiscretized scheme.

First of all, to preserve the positivity of the solution, a positivity-preserving spatial
discretization must be used for the convection term. One can use a high-order accurate
discontinuous Galerkin or finite volume scheme with a high-order accurate bound-
preserving limiter by Zhang and Shu in [32, 34]. Here we choose to use a finite
volume method for the z-variable and a finite difference method for the v-variable.

Consider solving the 1D BGK equation (3.15) with a possibly z-dependent Knud-
sen number e(x) (this is usually the case when handling a multiscale problem). We
propose to conduct the temporal discretization first and then the spatial and velocity
discretizations. For simplicity, we use the first-order IMEX scheme as an illustra-
tion (the high-order IMEX can be implemented in a similar fashion), which can be
performed in three steps:

f*_ n

(333&) T + v@xf” — O7
(3.330) U = (f79), MM = MU,

el _ 1 L Atfe(x) o
(3.33¢) frt = e T are™ 1

where the middle step is to take the moments of f* to get macroscopic quantities
U = (p, m, F) which will define p, u, T, hence M[U] accordingly. Now define the grid
points in x as x;41/2 = (j + 1/2)Ax. After integration of the above scheme in x over
the interval I = [x;_1/2,%;41/2] at the grid point v = vy, we obtain

* n n _ fmn
fiw = i +Fj+1/2,k Fi 1ok

(3.34a) = - _o
(3.34b) Ut = (f*g), M= MUY,

nt1_ 1 1 . At/e(z) .
(334C) f_j ]—:1 — Fx ; |:H_At/€(x)‘fk (SC) + ka—i-l(x) dSE,

where f; . denotes the cell average of f on the interval I; at the kth velocity grid point,
F;j 112,k is the numerical flux approximating vy f(t, z,vr) at @ = ;41 /2, and f;(z)
and M ,:H_l(l') are high-order accurate reconstruction polynomials (reconstructed by
the cell averages {f;k}y:“l and {MJ”,:r1 jvzfl) approximating the functions f*(-, vx) and
M™L(., 1), respectively.

In the following, we explain the details of the scheme (3.34) step by step.

3.3.1. Handling the convection term. First we discuss how to enforce the
nonnegativity of f7, in (3.34a). We omit the index k for convenience. Given the
cell averages fI', we use the fifth-order finite volume WENO reconstruction [28] to

construct fifth-order accurate approximations fjf:_l /2 and j"j_+1 /2 to the point value

fatxz =mxj 10 and t = t". Notice that fﬁq/g might be negative. There exists
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a degree four polynomial p;(z) on the jth cell, which is a fifth-order approximation
to f on the cell, and satisfies the property that the cell average of p;(z) is exactly
I7, and pj(xj_1/2) = fjt1/27 Pi(T41/2) = i1/ For instance, such a polynomial
can be obtained by interpolation, even though the construction of this polynomial is
not needed in the implementation. Then the four-point Gauss-Lobatto quadrature
4 .
[ =21 pj(zj)wr is exact, where {x;1 = x;_1/2,%j2,%)3,%j4 = Tjp1/2} are the
quadrature points, and {w;} are the corresponding quadrature weights on the interval
[—1/2,1/2] such that Z?Zl w; = 1. Next by the simplified bound-preserving limiter
for finite volume methods described in [34], we modify p;(x) into
2

£
m; — fjn
+ —
pj(xj2)ws +pj(ja)ws 7~ Fila @ = Fipq o
wo + w3 wo + w3 ’

pj(x) = 0;(ps(x) — f7) + f§',  6; = min {

(3.35a) mj = min{p;(v;_1/2),p;j(Tj41/2), &5}
with

(3.35D) ¢ =

The limiter (3.35) guarantees that fj+1/2 = pj(Tj41/2) >0, fjt1/2 =pj(xj_1/2) >0,
and éj = (f}' - fj+_1/2w1 — ﬂ11/2w4)/(w2 +ws) > 0. Moreover, the quadrature fI' =
Z?Zl Dj(x;)w is still exact and f;ﬁl /o are still fifth-order accurate approximations
to the point value of f at x = x;41/2; see [32, 34, 31]. Since we only need f];rl/Q and
fj .tl /20 the limiter (3.35) is equivalent to the following implementation without using
pj(@):

Frnje=0iFrays = E+ 170 o n = 0i(Fy = £+ 17
o }
71 b)

3.36a f; =min{ |————
( ) J { mj — f]n
(336b) m; = min{ff_l/Q, Ji‘_l/gagj}a Ej =

f]n - f]tl/gwl - f];]_/QWAL

Wy + w3

Then we define the upwind flux as

’ka:ljt‘rl/Q if v > 0,
’ka;:i-l/Q if v, < 0.

(3.37) Ly = {

To see the positivity of f} in (3.34a) using (3.37), we only discuss the case vy > 0
with the other case being similar. We have

(3.38)
~ A
5 = [y 120483 12 )eoaH b)) =50 5y (41 2) -1 (25 172))

- - ’UkAt ~ UkAt -
=pj(zj_1/2)w1 + Dj(Tj11/2) <W4 - A:p) + (w2 +ws3) + Epj—l(xj—1/2)7

which implies the positivity of f/ since it is a convex combination of nonnegative
quantities under the CFL condition vpAt/Ax < wy = 1/12.
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3.3.2. Handling the collision term. Now we describe how to compute M"*! =
M[U™ 1] under the finite volume discretization in z. For convenience, we regard v as
a continuous variable and omit the superscript n + 1.

Let U; be the moments of f7 (v) > 0 on the jth cell; then U; belongs to a convex
set of admissible states with positive density and temperature:

T 1m?
(3.39) G:{(p,m,E) :p >0, E—2p>0}.
Let {Z;,;} (I =1,2,3) denote the three-point Gauss-Legendre quadrature on the jth
cell [x;_1/2,2;41/2] and let {0} (I = 1,2,3) be the corresponding quadrature weights
on the interval [—1/2,1/2], which is exact for integrating polynomials of degree five.
Given cell averages of macroscopic quantities U; € G, we would like to reconstruct
fifth-order approximations to U(x) at * = &;,, denoted as Uj,;,l = 1,2, 3. Moreover,
we need them to be positive so that M[U;;] can be well-defined and conservative so
that the final scheme is AP. Namely, we need
3
(3.40) Ujs€G and Y iU, =Uj.
1=1
Such a reconstruction can be done in the following way. First, we construct a
polynomial Uj (z) of degree four, which is a fifth-order accurate approximation to U(z)
on the interval I; with U; as its cell average. There are many ways to construct such
a polynomial, e.g., we can first reconstruct two cell end values by the WENO method,
then construct a Hermite type reconstruction polynomial using these two point values
and three averages U;_1,U;, Uj;1; see [32]. Thus == ffj’:l//; U;(z)dz = Uj. Second,
we apply the simple positivity-preserving limiter in [33, 31] to U;(z) to obtain a
modified polynomial U, () such that U;(i;;) € G and the cell average of U, () is still
U;. Finally, we set U;; = Uj(fcj,l), and we have

3 412

(3.41) S iU =Y ol;(3,) = Aix/ " U;(x)dz = Uj.
1=1 1=1 Tj-1/2
Then M[U;,],l =1,2,3, are well-defined and we set
3
(3.42) M =" MU,
1=1

This method is fifth-order in x, since the reconstruction is fifth-order, and the positivity-
preserving limiter does not affect the accuracy for smooth solutions with strictly pos-
itive pressure [33]. Also, this method is conservative:

3 3
(3.43) (Mjg) = > a(M[U;)¢) =Y U =U; = (f56),
=1 =1

which is the key to obtain the AP property.

3.3.3. Handling the variable (). In the last step (3.34c) we need to com-
pute an integral on [;, which can be approximated by the Gauss—Legendre quadrature:

1 . At/e(x) | i1
/, [1+At/a(w) F) T A e M (”3)] dz

J

(3.44) 5

N 1 o/~ At 13 (E], n4+1/~
%Zwl |:~,l (CCj,l) + I—FA/t/(a‘:(‘ilj',l)Mk+ (‘Tj,l)] .
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Thus we only need the approximation of the functions f;(z) and M;"'(z) at the
quadrature points {Z;;} (I =1,2,3). The values for M can be read directly from the
previous step. The construction of f can be done in the same way as we constructed
U, € G in the previous section, with the convex set G replaced by the set {f : f > 0}.

3.3.4. AP property of the fully discretized scheme. Now we show that the
fully discretized scheme (3.34) is AP. As ¢ — 0, step (3.34c) implies

3
(3.45) Ft =Y My (&) = My

1=1
Hence after one time step, the solution is projected to the local Maxwellian. For
n > 1, replacing f", with M}, in (3.34a) and taking the moments gives

<ﬁ¢»—wq¢>+<Mﬁu%—M@ﬂ%¢>a

(3.46) Al s

where Mj+1/27;€ is the numerical flux approximating vy, M (z,vx) at © = xj41/9. Fi-
nally, using (3.43), we have

n+1 n n _ N
mg.@wg@+<Mﬂm,f%1M¢>:0

4
(3.47) At Az

This is a fully discretized kinetic scheme for the limiting Euler equations. Thus the
scheme (3.34) is AP.

4. Generalization to the hyperbolic relaxation system. The general frame-
work presented in this paper can also be generalized to other problems that have a
similar structure, for instance, the hyperbolic relaxation system. We give one example
here.

The Broadwell model [5] is a simple discrete velocity kinetic model:

Oufs +0ufs = 23— [11)
(1) Oufo=—=(f3 — f11°),
O —0uf = 2R = fof )

where ¢ is the mean free path, and f, fo, and f_ denote the mass densities of particles
with speed 1, 0, and —1, respectively. The model can be written equivalently in terms
of moment variables:

3tp + 3xm = 0,
1
Oz + Opm = g(p2 +m? — 2pz),
where p:= fy +2fo+ f—, m:= fy — f_, and z := fy + f_. From (4.2), it is clear
2 2
that when € — 0, z — £-5™° This, substituted into the first two equations, yields a
closed hyperbolic system, an analogue of the Euler limit:

8tp + 8xm = O7

4.3 2 2
(4:3) oym + Oy (,O—Hn> =0.
2p
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Similarly as the BGK model, it would be desirable to have a high-order scheme for
(4.1) that is AP (can capture the limit (4.3) without resolving €) as well as maintains
the positivity of the solution (f4, fo, and f_ need to be nonnegative by their physical
meaning). We mention that [6] proposed a second-order AP scheme for the Broadwell
model but it is not positivity-preserving.

We now define f = (f4, fo, f-)", T(f) = (=0:f+,0,0:f-)", and Q(f) = (f§ -
fofo,—(f8—fifo), fé—f+f-)T. Then (4.1) falls into the general form (2.1). Define
the matrix P as

1
-1
1

(4.4)

3

— =
S O N

then Pf = (p,m,2)T, and PQ(f) = (0,0, (p*> + m? — 2p2)/2)7.

In order to apply the general framework, we need to verify that the operators
T and Q satisfy the assumptions given in section 2.1. The transport operator 7T
can definitely satisfy the positivity condition (2.2) provided a positivity-preserving
spatial discretization is used. To analyze the positivity conditions for Q, first notice
that f — bQ(f) = g, upon multiplication of P on both sides from the left, implies

Pf = Pg>
(4.5) My = Mg
b
2 = 5o} +mj = 2p52f) = 2,

from which one has

(46) = (56 + ) +2) /1400y,

If g > 0, or equivalently, p, > z, > |my|, then, to check f > 0 for any b > 0, it suffices
to check py > zy and zy > |my|, which follow from

b
Q(pi—mi)—i—pf—zg B g(ﬂg_mé)"'pg_zg

4.7 — 25 = = >0,

o P 1+ bpy 1+ bpy =

(4.8)  zp—|my| = %(pf—|mf\)2+zg—|mf\ _ %(Pg_‘mg|)2+zg—|mg\ -0
! ! L+bps 1+ bp, =

This proves (2.3). To show (2.4), notice that

(4.9) Q' (9)Q(f) = —pg 1),
and (2.4) follows from (2.3) since py > 0. Finally, for (2.5),
(4.10) fHQ()Qf) =h <= f—bpsQ(f) = h,

which upon multiplication of P on the left gives py = py. If A > 0, py = pp, > 0.
Then (2.5) follows again from (2.3).

Therefore, the scheme (2.11)—(2.13) can be applied to the Broadwell model, re-
sulting in a second-order, positivity-preserving scheme. A similar AP property as for
the BGK equation can be proved straightforwardly using the (p,m, z) formulation
(4.2). We omit the detail.
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Finally, we briefly outline how to prove the entropy-decay property of the scheme
when using the upwind spatial discretization. The entropy for the Broadwell model
is defined by

(4.11) S[f] = Az Z[f+,k log fik + 2foklog for + -k log f— k],
p

where k is the spatial index. We show that S[f"*1] < S[f"].
First, the transport part can be done in the same way as (3.28). For the collision
part,

(4.12) FO =0 A aiéQ(f(”),

the entropy inequality for this step, namely, S[f(*] < S[f("*], was proved in [6]. As
for the last step

1
(4.13) = f) 4 aAtQE—pr*Q(f"“),

if f* = f"or f®, ps. is a known nonnegative constant, and the proof for (4.12)
implies S[f"*'] < S[f®)]; if f* = f**1, one first takes the moment of (4.13) (i.e.,
multiply P on both sides from the left) and gets

(4.14) pfn+1 = pf(u) Z 0

and then can obtain the same conclusion.

5. Numerical results. In this section we demonstrate numerically the prop-
erties of the proposed IMEX schemes. We will solve the 1D BGK equation (3.15)
in z € [0,2] with periodic boundary condition (except the test in section 5.2, where
the Dirichlet boundary condition is assumed) and in a large enough velocity domain
v € [—|V|max; [V|max]- The a-space is discretized into N, cells with Az = 2/N,. The
v-space is discretized into N, grid points with Av = 2|v|max/N,. We fix the parame-
ters N, = 150 and |v|max = 15 such that the discretization error in v is much smaller
than that in space and time. We will test the two IMEX schemes given in section 2.6.
For brevity, in the following we refer to the scheme in section 2.6.1 as scheme A and
the scheme in section 2.6.2 as scheme ARS.

5.1. Accuracy test. We first verify the second-order accuracy of the proposed
schemes. We expect that (1) in the kinetic regime ¢ = O(1), both scheme A and
scheme ARS are second-order accurate; (2) in the fluid regime ¢ < 1, for consistent
initial data, both schemes exhibit second-order accuracy; for inconsistent initial data,
scheme A is still second order, while scheme ARS will degrade to first order (see
Propositions 3.3 and 3.4).

We first consider inconsistent initial data

(51) f(07 z, U) = O-5Mp,u,T + 0.3Mp7—0.5u,T
with

1
(5.2) p=14+02sin(rz), u=1,

' ——,
1+ 0.2sin(mx)

and compute the solution to time t = 0.1. We choose different values of ¢, ranging
from the kinetic regime (¢ = 1) to the fluid regime (¢ = 1071%). We choose different
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Az and set At = 0.5Az/|v|max, i-€., fix the CFL number as 0.5, which guarantees both
schemes are stable. (This CFL number is not small enough to guarantee positivity.
We will consider the positivity-preserving property in the following test. For the same
reason, the positivity-preserving limiters are turned off here.) Since the exact solution
is not available, the numerical solution on a finer mesh Az /2 is used as a reference
solution to compute the error for the solution on the mesh of size Ax:

(5.3) errorat, Az = || fat,ae — farje,ans2llze -

The results are shown in Tables 1 and 2. In all the results, the spatial error dominates
for small N, and the time error dominates for large N,. One can clearly see that
in the kinetic regime (¢ = 1,1072), both schemes are second order; in the fluid
regime (¢ = 107%,10719), scheme A is second order and scheme ARS is first order, as

expected.

TABLE 1

Accuracy test. Scheme A. Inconsistent initial data.

e=1 e=10"2 e=10"* e=10"°6 e=10"8 e=10"10
N, =10 5.60x10~% | 4.67x10% | 4.67x10~% | 4.67x10~* | 4.67x10~* 4.67x10~4
Nz =20 5.91x1075 | 4.63x107° | 3.62x1075 | 3.65x10~° | 3.65x10~° 3.65x10~°
Order 3.25 3.33 3.69 3.68 3.68 3.68
N, =40 4.33x107% | 7.11x107% | 3.31x10°% | 2.46x10°6 | 2.46x10°° 2.46x106
Order 3.77 2.70 3.45 3.89 3.89 3.89
N, =80 2.11x10~7 | 1.67x107% | 2.92x10=6 | 1.09x10~7 | 1.10x107 1.10x10~7
Order 4.36 2.09 0.18 4.49 4.49 4.49
N, = 160 1.29%1078 | 4.22x1077 | 3.03x107% | 6.58x1079 | 6.28x107? 6.28x107Y
Order 4.03 1.99 -0.05 4.06 4.13 4.13
N, = 320 2.94x1079 | 1.06x10~7 | 2.79x1076 | 4.71x10~° | 1.45x10~Y 1.45%10~9
Order 2.13 1.99 0.12 0.48 2.11 2.11
N, = 640 7.42x10710 | 2.67x1078 | 1.52x107% | 8.30x107° | 3.67x10~10 | 3.68x10~10
Order 1.99 1.99 0.88 -0.82 1.98 1.98
N, =1280 | 1.86x10710 | 6.69x10~° | 5.46x10~7 | 1.44x10~% | 9.20x10~1! | 9.20x10~1!
Order 2.00 2.00 1.47 -0.80 2.00 2.00

TABLE 2
Accuracy test. Scheme ARS. Inconsistent initial data.

e=1 e=10"2 e=10"1% e=10"96 e=10"8 e=10"10
N, =10 5.60x10~% | 5.02x10~% | 4.70x10~% | 4.70x10~% | 4.70x10~% | 4.70x10~*%
N, =20 5.91x1075 | 9.82x1075 | 3.71x1075 | 3.71x10~°% | 3.71x10~% | 3.71x10~2
Order 3.25 2.35 3.66 3.66 3.66 3.66
N, =40 4.33x107% | 2.89x107° | 4.82x107% | 4.79x107% | 4.79x10~6 | 4.79x10~6
Order 3.77 1.76 2.94 2.95 2.95 2.95
N, =80 2.12x1077 | 8.14x1076 | 2.35x1076 | 2.21x1076 | 2.21x106 | 2.21x10~¢
Order 4.36 1.83 1.04 1.12 1.12 1.12
N, =160 1.22x1078 | 2.17x1076 | 2.00x10~% | 1.12x1076 | 1.12x10~% | 1.12x10~6
Order 4.11 1.91 0.23 0.99 0.99 0.99
N, = 320 2.71x1079 | 5.59%x10~7 | 2.94x1076 | 5.58x10~7 | 5.58x10~7 | 5.58x10~7
Order 2.17 1.95 -0.56 1.00 1.00 1.00
N, = 640 6.83x10710 | 1.42%x10~7 | 2.99x1076 | 2.79x10~7 | 2.79x10~7 | 2.79x10~7
Order 1.99 1.98 -0.02 1.00 1.00 1.00
Ny, =1280 | 1.71x10710 | 3.58x1078 | 1.76x10~6 | 1.40x10~7 | 1.40x10~7 | 1.40x10~7
Order 2.00 1.99 0.76 1.00 1.00 1.00
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TABLE 3

Accuracy test. Scheme A. Consistent initial data.

e=10"% e=10"96 e=10"8 e=10"10
Nz =10 1.04x10~3 | 1.05x1073 | 1.05x10~3 1.05x10~3
» =20 1.01x10~% | 1.01x10~% | 1.01x10~* 1.01x10~%
Order 3.38 3.37 3.37 3.37
N, =40 8.05x1076 | 7.64x10°6 | 7.64x10°6 7.64x106
Order 3.64 3.73 3.73 3.73
N, =80 4.17x1076 | 4.79%x10~7 | 4.79x10~7 | 4.79x10~7
Order 0.95 4.00 3.99 3.99
N, =160 4.76x1076 | 1.83x10~8 | 1.82x108 1.82x10~8
Order -0.19 4.71 4.72 4.72
N, = 320 4.46x1076 | 6.16x1079 | 1.52x107? 1.52x1079
Order 0.10 1.58 3.58 3.58
N, = 640 2.40x1076 | 1.11x107% | 4.03x10710 | 4.03x10~10
Order 0.89 -0.85 1.92 1.92
Ny, =1280 | 854x10~7 | 1.94x10~% | 1.03x10710 | 1.02x10~10
Order 1.49 -0.80 1.97 1.98
TABLE 4

Accuracy test. Scheme ARS. Consistent initial data.

e=10"*% e=10"6 e=10"8 e=10"10
N, =10 1.04x10~3 | 1.05x10~3 1.05x10~3 1.05x10~3
Nz =20 1.01x10~% | 1.01x10~% 1.01x10~4 1.01x10~%
Order 3.37 3.37 3.37 3.37
Nz =40 7.62x1076 | 7.64x10~6 7.64x106 7.64x10~6
Order 3.73 3.73 3.73 3.73
N, =80 1.24x1076 | 4.79x10=7 | 4.79x10~7 | 4.79x10~7
Order 2.62 3.99 3.99 3.99
N, = 160 2.65%x1076 | 1.82x10~8 1.82x10~8 1.82x10~8
Order -1.09 4.72 4.72 4.72
N, = 320 4.51%x107% | 1.60x10~° 1.52x10~9 1.52x10~9
Order -0.77 3.50 3.58 3.58
N, = 640 4.56%x107% | 9.94%x10710 | 4.03x10~10 | 4.03x10~10
Order -0.02 0.69 1.92 1.92
N, =1280 | 2.67x10~¢ | 1.67x10~°2 | 1.02x10710 | 1.02x10~10
Order 0.78 -0.75 1.97 1.98

965

We also solve the equation in the intermediate and fluid regimes with consistent
initial data

(54) f(Oa z, ”U) = Mp.,u,T,

where p, u, and T are the same as in (5.2). The results are shown in Tables 3 and 4.
It is clear that in the fluid regime both schemes remain second-order accurate.

Note that there is always some extent of order reduction in the intermediate
regime ¢ = O(At). The uniform accuracy of IMEX schemes is an open problem
and we do not attempt to address this issue in the current work (see [19] for more
numerical test and evidence).

5.2. Positivity-preserving property. We now illustrate the positivity-
preserving property of the scheme. Consider the initial data

(55) f(07 xz, U) = Mp,u,T
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Fia. 2. Total number of negative cells for the ARS(2,2,2) scheme during time evolution. Blue
line: € = 1075, red line: e = 1078.

with
(1,0,1), 0<z<1,

5.6 u,T) =
(5:6) (P, T) {(0.125,0,0.25), 1<z<2.

With the positivity-preserving limiters, the CFL coefficient of the spatial dis-
cretization is 1/12, that is, the constant C in (2.28) and (2.39) is 1—12‘1)?% In view
1 Az
24 ‘Ulmax

of both time and spatial discretizations, we choose the time step as At =
satisfy the positivity CFL condition. We take NV, = 80.

The numerical solutions computed by both scheme A and scheme ARS exhibit
no negative cell averages and are omitted here. As a comparison, we solve the same
equation with the same initial data and spatial discretization but using the ARS(2,2,2)
scheme in time [1], which is a standard second-order accurate IMEX scheme with no
positivity-preserving property. The number of negative cells (out of 80 x 150 = 12000
cells) is tracked and reported in Figure 2. One can see that a significant number
of cell averages become negative in the fluid regime if the time discretization is not
positivity-preserving.

5.3. AP property. Finally, to illustrate the AP property, we solve the BGK
equation in a mixed regime. We take ¢ = ¢(z) as follows:

(5.7) e(z) = o + (tanh(1 — 11(z — 1)) + tanh(1 + 11(z — 1)), eo =107,

as shown in Figure 3. The ¢ is chosen such that in the middle part of the domain, the
problem is in the kinetic regime (¢(z) = O(1)), while in the left and right parts, the
problem is in the fluid regime (¢ &~ 107°). To handle this multiscale problem, one can
use the domain decomposition approach, i.e., solve the BGK equation in the kinetic
regime and the Euler equations in the fluid regime. But identifying the interface
and coupling conditions between two regimes is a challenging task. An alternative
approach is to solve the BGK equation exclusively in the entire domain. But to ensure
stability, an explicit scheme would require the time step to resolve the smallest value
of € which is extremely expensive. This is where the AP scheme shows its power: it
is a consistent scheme to the kinetic equation when ¢ = O(1) and will automatically
become a consistent scheme for the fluid equation when £ — 0.
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0.2+ —

Fic. 3. Profile of e(x) in a mized regime problem.

(R =] 0.55 21
reference

o.asl °  type A

0.86

o.843

0.8z

0.8

o.78

0.76

0.73

o]
a
8]

Fic. 4. Mized regime problem. Left to right: density p, velocity u, and temperature T. Solid
line: reference solution computed by the second-order SSP-RK scheme. Dots: solution computed by
scheme A. The result of scheme ARS is omitted since it is indistinguishable from that of scheme A
in the picture.

We take the same initial data as in (5.1)—(5.2) and solve the problem using scheme
A and scheme ARS with N, = 40. We compare the macroscopic quantities at time
t = 0.5 with a reference solution computed by the explicit second-order SSP-RK
scheme [29] with N, = 80. Note that for AP schemes, At = 122 ~ 7 x 1075,

24 |U|max
while for the explicit SSP scheme, At = ﬁﬁ ~ 7 x 107, which needs to resolve

|'U|max:

£. One can see that the solutions of AP schemes agree well with the reference solution
in Figure 4.

6. Conclusion. We have introduced a family of second-order IMEX schemes
for the BGK equation. The method is AP: it reduces to a second-order explicit
RK scheme for the compressible Euler equations as the Knudsen number ¢ — 0.
Meanwhile, the method is positivity-preserving, provided the time step satisfies a
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CFL condition independent of €. The method also satisfies an entropy-decay property
when coupled with proper spatial discretizations. The key idea is to add a correction
step to the conventional IMEX-RK schemes. Due to the special structure of the BGK
operator, this step maintains both positivity and the AP property and is very easy
to implement. We considered two types of commonly used IMEX-RK schemes (one
of type A and one of type ARS) and constructed two examples, one of each type,
respectively. We investigated, both analytically and numerically, the properties of the
proposed schemes. Furthermore, we showed that it is possible to generalize the method
to some hyperbolic relaxation system such as the Broadwell model which demands
positivity and provided a strategy to extend the method to third order. Some future
work includes the construction of high-order AP and positivity-preserving schemes for
other kinetic models, for example, the Fokker—Planck equation, the full Boltzmann
equation, etc.

Appendix A. Proof of minimum number of stages for second-order
schemes. In this appendix, we prove that the minimum number of stages required
to construct a second-order positivity-preserving IMEX scheme is v = 3 for type A
and GSA schemes, and v = 4 for type ARS and GSA schemes.

We start with type A and GSA schemes. One stage is clearly impossible since
the explicit term 7 is not involved. For two stages, the double Butcher tableau (2.8)
looks like

0 0 0 a1 a1 0
(6.1) a1 a21 0 as1 + a2 any asy .
| G210 | az1  az

This gives E?Zl w;¢; = 0, which contradicts the second-order conditions (2.19).

For type ARS and GSA schemes, for one or two stages it is impossible to achieve
second order for the same reason as above. For three stages, the double Butcher
tableau (2.8) looks like

0 0 0 0 0 0 0 0
(6.2) as1 a1 0 O a2 0 ax O
' asy +asz | a1 asx 0 aza+azz | 0 aszx ass
‘ az1 ass O ‘ 0 a3z ass
and the positivity conditions (2.38) reduce to the following:
e for i =2,
(6.3) azx >0, c20=12>20, a0 =a921 >0
e for i =3,
a3z >0, cz3p=1— 452 >0, cC30=as — ds2t1 >0,
(6 4) az2 az2
’ as2 . _
c3o=—2>0, (32 =a3 >0;
a2

from this it is clear that all the coefficients a;; and G;; are nonnegative. On the other
hand, the second-order conditions (2.19) give

(6.5) 1 1
a1 +aze =1, azx+azz =1, agaz = > az2a22 = > ag1a32 + azz = >
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1

from which one obtains as; = age = 1 — . Then the positivity condition c3g =

2a32
1-— Z—zi > 0 becomes
(6.6) <o 1
. a - —
32 Yy
ie.,
9 1
(6.7) a3z — az2 + 5 <0,

which is impossible. This proves the nonexistence of the three-stage case.

Appendix B. Extension to third order. In this appendix, we briefly present
the strategy to extend the proposed method to third order.

To this end, we need to derive order conditions of the scheme (2.11)~(2.13) up to
third order. We consider the cases that f* = f*, f*+! or fotl.

Substituting (2.14) into (2.11), one obtains

(6.8)
i—1

FO =+ Ay ayT(f" + AteT(f") + At e; Q(f))
j=1
+ ALY ai; QU™ + AtET (™) + Atc; Q(f)) + O(AF)

j=1
1—1

= [T ALY [T + AT (f)ET ™) + ¢ Q™))

Jj=1

+ At Z ai;[Q(f") + At Q' (f")(&T (") + ¢;Q(f")] + O(AE?)
= [+ ALET (") + aQ(f™)] + At Z_: a T (f") (&G T(f") +¢; Q(f™)

+ Z ai; Q' (J")EGT (") +¢; QM) | + O(AL).

Substituting it into (2.12) yields
(6.9)

frit = f"+AtZwlT fr A AET (") + e Q(f™M)]

i=1

AR | T T + e Q)

j=1

+3 " ai; QUMEGT ™) + (™)

Jj=1

+ ALY Wi Q4 1+ ALET (™) + Q™)
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+ A Za” (F™YETF™) + ¢ Q(F™))

+Zaw QU™NEGTU™) + CjQ(f"))] } +0(Ath)

(50 (5o

(Z ) TT() + (z w) O

="+ At

+ A#?
i=1 i=1

(Eee)osrmi (Ere)arar]

var {ZZ @iy &T ()T (fOT ") + Didiges T'(F)T () Q™))

=1 j=1

+ Z Z Biaige; T (fM)Q (ST ™) + diage; T'(fM)Q (f)Q(™)]

+ %Z[@@@T"(f")(’f(f")’ T(") + 2@ T (f*)(T ("), Q™))
+ dicie T () (Q(), Q™))

v 1—1
+ Zl Zl w; ;G (YT (f™M)T(f") + wiaije; Q' (f™)T (f™)Q(f™)]
+2;Z; w;a;;¢;Q Q(fMT(f™) + wiaijc; Q' (f")Q (fM)Q(f™)]
+ = Z Wi Q (T TU™) + 2wieic; Q" (f")(T(f), Q(f™))

+wicic; Q" (f")(QU™), Q(f™))] }
+ O(AtY),
where the second-order Fréchet derivative is given by

(6.10)
Q"(9)(f1, f2) = _lim Qg +01/1 +02f2) — Qg + 01./1) — Qlg +02/2) + Qg)

61,69—0 0102 7

which is a symmetric bilinear operator.
In the case f* = f™, (2.13) gives (using the first-order conditions > 7, w; =

25:1 w; = 1)
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frt= i = aAPQ (O + AHT (") + Q(f™)) + O(At?)
— P aARQ()QU") - aAR(Q (M MT()
(6.11) +Q'(fMQ(fMQ(fM)] + o(Ath),
while in the case f* = f**1 or frt1

(6.12)
fr = P AP Q (frHAHT (f")+QU ™)) QU +AHT (f*)+Q(f™)+O(At*)

= [T = aABQ(fM)Q(") — aAP[Q ()T (), Q™))
+Q"(f")QU™), QUMN+Q (FM)Q (f)T(FM)+Q (F)Q (FM) QM) +O(ALY).

On the other hand, if we Taylor expand the exact solution of (2.1) around time
t", we have

(6.13)

Lk = 7 AT + QU S AT (T + T (U™
FQUMTUM + QUMM+ AP ()T, T(™)
AT T + TH QU™ Q™) + @ UT U TU™)
+ 20" (FIQUM) T(™) + Q"M (QU™), Q™)

T+ QY ()T + QY ()T + Q)(f™)] + O(AF).

Comparing (6.13) with (6.11) or (6.12), we obtain the following order conditions:
E ’lI}idijEj = E If]idijCj = E ’lI)iCLijéj = E u?z-aijcj
- 1
= E W;A;5Cj = E W;;jC; = E W;a;;C; — = E W;A;jC; — = 6,
1,3
E WiCiC; = E WiCic; = E W;iC;ic;
i i
s N 1
=Y widiti =Yy widic; = Y wicic; = 3’
in the case f* = f™, and
E u”)l&”é] = E widijCj = E ﬁ)iaijéj = E @iaijcj
= g W;A;5Cj = E w;a;jCj = g W;A;Cj — ¢ = g W;AiC; — ¢ = 6’
,J
E WiCiC; = E Wi CiCy = E W;iC;iC;
i i
. - 1
= E W;CiCy = E W;CiC; — ¢ = E W;C;iC; — 200 = 3
i i i

in the case f* = fn+1l or frtt,

(6.14)

(6.15)
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Note that compared to the standard IMEX-RK (third-) order conditions [26], the

only difference is the terms containing a.

Therefore, in order to get a third-order positivity-preserving scheme, one only

needs to find RK coefficients in (2.11)—(2.13) such that they satisfy the order condi-
tions (2.19) and (6.14) (resp., (6.15)) as well as the positivity conditions derived in
section 2.5 (« > 0 and (2.27) for type A and GSA schemes or (2.38) for type ARS
and GSA schemes). This can be done via a computer program.
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