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ASYMPTOTIC-PRESERVING AND POSITIVITY-PRESERVING
IMPLICIT-EXPLICIT SCHEMES FOR THE STIFF BGK EQUATION∗

JINGWEI HU† , RUIWEN SHU‡ , AND XIANGXIONG ZHANG†

Abstract. We develop a family of second-order implicit-explicit (IMEX) schemes for the stiff
Bhatnagar–Gross–Krook (BGK) kinetic equation. The method is asymptotic-preserving (can cap-
ture the Euler limit without numerically resolving the small Knudsen number) as well as positivity-
preserving—a feature that is not possessed by any of the existing second- or high-order IMEX
schemes. The method is based on the usual IMEX Runge–Kutta framework plus a key correction
step utilizing the special structure of the BGK operator. Formal analysis is presented to demonstrate
the property of the method and is supported by various numerical results. Moreover, we show that
the method satisfies an entropy-decay property when coupled with suitable spatial discretizations.
Additionally, we discuss the generalization of the method to some hyperbolic relaxation system and
provide a strategy to extend the method to third order.
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1. Introduction. Kinetic equations describe the nonequilibrium dynamics of a
gas or any system comprising a large number of particles. Compared to macroscopic
fluid/continuum equations, they provide information at the mesoscopic scale using
a probability density function (PDF). Kinetic equations often contain complicated
integral operators modeling particle collisions (for example, the Boltzmann equation
[7, 30]). To simplify the analysis and computation, the so-called Bhatnagar–Gross–
Krook (BGK) model [3], or its variants, has been widely used in many disciplines of
science and engineering (cf. [8, 22, 25]). After nondimensionalization, the equation
reads

(1.1) ∂tf + v · ∇xf =
1

ε
Q(f), t ≥ 0, v ∈ Rdv , x ∈ Ω ⊂ Rdx ,

where f = f(t, x, v) is the one-particle PDF (t is time, x is space, and v is velocity).
ε is the Knudsen number, which is the ratio of the mean free path and typical length
scale. The collision operator Q is a relaxation type:

(1.2) Q(f) = τf (M [f ]− f),

where M is the Maxwellian, or local equilibrium, defined as

(1.3) M [f ] =
ρ

(2πT )
dv
2

exp

(
−|v − u|

2

2T

)
,
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AP AND POSITIVE IMEX SCHEMES FOR THE BGK EQUATION 943

where ρ, u, and T are density, bulk velocity, and temperature given by the moments
of f :

(1.4) ρ =

∫
Rdv

f dv, u =
1

ρ

∫
Rdv

fv dv, T =
1

dvρ

∫
Rdv

f |v − u|2 dv.

Finally τf is some positive function that depends only on the macroscopic quantities
such as ρ and T .

It can be easily shown that the BGK operator (1.2) satisfies similar properties as
the full Boltzmann collision operator:

• conservation:

(1.5)

∫
Rdv

Q(f)φ(v) dv = 0, φ(v) = (1, v, |v|2/2)T ;

• H-theorem:

(1.6)

∫
Rdv

Q(f) ln f dv ≤ 0.

Moreover, one can derive the compressible Euler equations as the leading order asymp-
totics of the BGK model [2]. A simple way to see this is to let ε → 0 in (1.1); then
formally f → M [f ]. On the other hand, taking the moments 〈·φ〉 :=

∫
Rdv ·φ(v) dv

on both sides of (1.1), one obtains (using (1.5))

(1.7) ∂t〈fφ〉+∇x · 〈fvφ〉 = 0.

Replacing f by M [f ] in (1.7) thus yields the compressible Euler equations:
∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ pI) = 0,

∂tE +∇x · ((E + p)u) = 0,

(1.8)

where p = ρT is the pressure and E = dv
2 ρT + 1

2ρu
2 is the total energy.

When ε is small (the system is close to the Euler limit), the right-hand side of (1.1)
presents strong stiffness. Hence explicit numerical schemes would impose a very re-
strictive time step, i.e., ∆t has to be O(ε). To remove this constraint, implicit-explicit
(IMEX) Runge–Kutta (RK) schemes are natural and popular high-order methods, in
which the stiff collision part is solved implicitly and the nonstiff convection part is
treated explicitly [27, 11] (for IMEX-RK schemes applied to other problems, see,
e.g., [1, 23, 26, 4]). As a result, the time step can be chosen independently of ε
and is determined by the nonstiff part only. Furthermore, it can be shown that (see
[11] for details) for fixed ∆t and suitable initial conditions, as ε → 0, the numerical
scheme becomes an explicit RK scheme applied to the limiting Euler equations, i.e.,
asymptotic-preserving (AP) [21, 18].

The AP property is a desired property for handling multiscale kinetic equations,
for it guarantees capturing the correct fluid limit without resolving ε. Nevertheless,
the implicit treatment of the collision term would usually cause the numerical solution
to lose positivity, which is unphysical since f is a PDF. Some kinetic equations,
for instance, the full Boltzmann equation or the neutron transport equation, may
not be supersensitive for negative function values since the collision operator only
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944 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

involves f but not the Maxwellian M [f ]. However, for the BGK equation, in order
to define M [f ], one does require the macroscopic quantities (the moments of f) to be
positive. Even small negative values of f may lead to the result that some macroscopic
quantities, especially the temperature, fail to be well-defined.

We point out that the first-order IMEX scheme is an exception whose positivity
can be easily achieved. Indeed, applying a forward-backward Euler scheme to (1.1)
gives

(1.9)
fn+1 − fn

∆t
+ v · ∇xfn =

τfn+1

ε
(M [fn+1]− fn+1),

which is equivalent to

(1.10) fn+1 =
ε

ε+ ∆t τfn+1

(fn −∆t v · ∇xfn) +
∆t τfn+1

ε+ ∆t τfn+1

M [fn+1].

Therefore, if fn is nonnegative, fn+1 is nonnegative provided a positivity-preserving
spatial discretization (for example, [32, 34]) is used for the convection term. The
situation becomes, however, highly nontrivial for the method beyond first order. The
positivity of the IMEX-RK schemes is closely related to the monotonicity property
(also known as strong stability [13]) of the method. In [17, 16], it was found that
for the Broadwell model (a hyperbolic relaxation system; see section 4), in order to
preserve monotonicity or positivity, a sufficient condition requires the time step to
be proportional to ε. This suggests that it may be very difficult to achieve the AP
property, which requires ∆t to be independent of ε, and positivity simultaneously.
Also, even for the spatially homogeneous problem (no convection term in (1.1) and
the IMEX scheme reduces to a fully implicit one), the construction of an implicit
positive RK scheme is still not straightforward. In fact, as proved in [14], there does
not exist unconditionally strong stability preserving (SSP) implicit RK schemes of
order higher than one.

Recently, a class of second-order semi-implicit RK schemes was proposed for the
ODEs with stiff damping term [9]. The method is based on the modification of the
explicit SSP-RK schemes and is shown to be well-balanced as well as sign-preserving.
Later, a second-order AP discontinuous Galerkin scheme was introduced in [20] for
the Kerr–Debye model (a special relaxation system). The method is based on the
modification of an IMEX-RK scheme and can preserve the positivity of one component
of the solution vector. Inspired by this work, we propose to add a correction step to the
standard IMEX-RK scheme. Due to the special structure of the BGK operator, this
step can maintain both positivity and AP property. To ensure second-order accuracy
and overall positivity of the scheme, new conditions including both equalities and
inequalities, are derived for the RK coefficients. We then construct two IMEX-RK
schemes fulfilling these conditions, one of type A and one of type ARS (two commonly
used forms of IMEX-RK schemes; see section 2.2 for definitions).

To summarize, we develop a new IMEX time discretization method for the BGK
equation (1.1) that has the following feature:

• the scheme is second-order accurate for ε = O(1);
• the scheme is AP: for fixed ∆t, as ε→ 0, it reduces to a second-order scheme

for the limiting Euler system (1.8);
• the scheme is positivity-preserving: if fn ≥ 0, then fn+1 ≥ 0.

Note that the AP property implies that the time step is independent of ε. In fact,
the CFL condition for the new method can be made comparable to that of the first-
order scheme (1.9). We also provide a strategy to extend the method to third order.
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AP AND POSITIVE IMEX SCHEMES FOR THE BGK EQUATION 945

Furthermore, we show that the method satisfies an entropy-decay property when
coupled with suitable spatial discretizations and that it is possible to generalize it to
some hyperbolic relaxation system which demands positivity.

The rest of this paper is organized as follows. In section 2, we introduce a general
problem and present the procedure to construct the new IMEX schemes, where the
main focus is to achieve second-order accuracy as well as positivity. In section 3, we
apply the new method to the BGK equation and show that it is AP and entropy-
decaying. To ensure the fully discretized scheme is positivity-preserving and AP,
special attention needs to be paid for spatial and velocity domain discretizations.
These are described in section 3.3. In section 4, we briefly discuss the generalization of
the method to the hyperbolic relaxation system. In section 5, we perform several tests
for the BGK equation and demonstrate numerically the properties of the proposed
method. The paper is concluded in section 6. Extension of the method to third order
is provided in the appendix.

2. New IMEX-RK schemes. We now present the procedure for constructing
the new IMEX schemes that are both AP and positivity-preserving. Although we
mainly consider the BGK equation (1.1), the framework is quite general and can be
applied to other problems that share a similar structure. Therefore, we will start with
a general setting and derive conditions for the RK coefficients to ensure accuracy and
positivity, and we will get back to the BGK model in section 3 when discussing the
AP property as this latter part is problem dependent.

2.1. A general problem and basic assumptions. Consider an ODE of the
form

(2.1)
d

dt
f = T (f) +

1

ε
Q(f),

where f = f(t) lies in some function space, and T and Q are some operators, possibly
nonlinear. Equation (2.1) may arise from semidiscretizations of time-dependent PDEs
by the method of lines.

We assume the terms T (f) and Q(f) are positivity-preserving. To be precise, we
assume

(2.2) f ≥ 0 =⇒ f + a∆t T (f) ≥ 0 ∀ constant a s.t. 0 ≤ a∆t ≤ C,

where C is the Courant–Friedrichs–Lewy (CFL) type constraint for positivity. If T =
T∆x is a discretized transport operator, then C = ∆tFE with ∆tFE being the maximum
time step allowance such that the forward Euler scheme is positivity-preserving. For
operator Q, we assume

(2.3) g ≥ 0, f − bQ(f) = g =⇒ f ≥ 0 ∀ constant b ≥ 0.

We also assume a similar property for Q′(g)Q(f) and Q′(f)Q(f):

(2.4) g, h ≥ 0, f + bQ′(g)Q(f) = h =⇒ f ≥ 0 ∀ constant b ≥ 0,

(2.5) h ≥ 0, f + bQ′(f)Q(f) = h =⇒ f ≥ 0 ∀ constant b ≥ 0,

where Q′(g) is the Fréchet derivative of Q at g, given by

(2.6) Q′(g)f = lim
δ→0

Q(g + δf)−Q(g)

δ
.

Later in sections 3 and 4 we will verify that the BGK equation and the Broadwell
model indeed satisfy the assumptions (2.2)–(2.5).
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946 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

2.2. The standard IMEX-RK scheme. The standard IMEX-RK scheme ap-
plied to (2.1) reads [26]

f (i) = fn + ∆t
i−1∑
j=1

ãijT (f (j)) + ∆t
i∑

j=1

aij
1

ε
Q(f (j)), i = 1, . . . , ν,

fn+1 = fn + ∆t
ν∑
i=1

w̃iT (f (i)) + ∆t
ν∑
i=1

wi
1

ε
Q(f (i)).

(2.7)

Here Ã = (ãij), ãij = 0 for j ≥ i and A = (aij), aij = 0 for j > i are ν × ν
matrices. Along with the vectors w̃ = (w̃1, . . . , w̃ν)T , w = (w1, . . . , wν)T , they can
be represented by a double Butcher tableau:

(2.8)
c̃ Ã

w̃T

c A

wT ,

where the vectors c̃ = (c̃1, . . . , c̃ν)T , c = (c1, . . . , cν)T are defined as

(2.9) c̃i =

i−1∑
j=1

ãij , ci =

i∑
j=1

aij .

The tableau (2.8) must satisfy certain order conditions [15, 26]. According to the
structure of matrix A in the implicit tableau, one usually classifies the IMEX schemes
into the following categories [4, 11]:

• Type A if the matrix A is invertible;
• Type CK if the matrix A can be written as

(2.10)

(
0 0

a Â

)
,

and the submatrix Â ∈ R(ν−1)×(ν−1) is invertible; in particular, if the vector
a = 0, w1 = 0, the scheme is of type ARS;
• if aνi = wi, ãνi = w̃i, i = 1, . . . , ν, i.e., fn+1 = f (ν), the scheme is said to be

globally stiffly accurate (GSA).

2.3. The new IMEX-RK scheme with correction. We now propose to add
a correction step to the standard IMEX scheme (2.7):

f (i) = fn + ∆t
i−1∑
j=1

ãijT (f (j)) + ∆t
i∑

j=1

aij
1

ε
Q(f (j)), i = 1, . . . , ν,(2.11)

f̃n+1 = fn + ∆t
ν∑
i=1

w̃iT (f (i)) + ∆t
ν∑
i=1

wi
1

ε
Q(f (i)),(2.12)

fn+1 = f̃n+1 − α∆t2
1

ε2
Q′(f∗)Q(fn+1),(2.13)

where f∗ can be chosen as fn, f (i), f̃n+1, or fn+1, as long as it is a first-order
approximation to fn: f∗ = fn+O(∆t). The coefficients aij , ãij , wi, w̃i, and α remain
to be determined.

2.4. Second-order accuracy. Due to the extra correction step (2.13), the stan-
dard order conditions for the IMEX-RK schemes need to be modified. In this sub-
section, we analyze the order conditions of (2.11)–(2.13), up to second order, in the
regime ε = O(1). Without loss of generality, we assume ε = 1.
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AP AND POSITIVE IMEX SCHEMES FOR THE BGK EQUATION 947

First, (2.11) gives

(2.14) f (i) = fn + ∆t c̃iT (fn) + ∆t ciQ(fn) +O(∆t2),

where we used f (j) = fn +O(∆t) and (2.9). Substituting it into (2.12) yields

f̃n+1 = fn + ∆t
ν∑
i=1

w̃iT (fn + ∆t c̃iT (fn) + ∆t ciQ(fn))

+ ∆t
ν∑
i=1

wiQ(fn + ∆t c̃iT (fn) + ∆t ciQ(fn)) +O(∆t3)

= fn + ∆t
ν∑
i=1

w̃i[T (fn) + T ′(fn)(∆t c̃iT (fn) + ∆t ciQ(fn))]

+ ∆t
ν∑
i=1

wi[Q(fn) +Q′(fn)(∆t c̃iT (fn) + ∆t ciQ(fn))] +O(∆t3)

= fn + ∆t

[(
ν∑
i=1

w̃i

)
T (fn) +

(
ν∑
i=1

wi

)
Q(fn)

]

+ ∆t2

[(
ν∑
i=1

w̃ic̃i

)
T ′(fn)T (fn) +

(
ν∑
i=1

w̃ici

)
T ′(fn)Q(fn)

+

(
ν∑
i=1

wic̃i

)
Q′(fn)T (fn) +

(
ν∑
i=1

wici

)
Q′(fn)Q(fn)

]
+O(∆t3),(2.15)

where T ′,Q′ are the Fréchet derivatives of T and Q. The last step (2.13) implies

(2.16) fn+1 = f̃n+1 − α∆t2Q′(fn)Q(fn) +O(∆t3).

Combining (2.15) and (2.16), we have

fn+1 = fn + ∆t

[(
ν∑
i=1

w̃i

)
T (fn) +

(
ν∑
i=1

wi

)
Q(fn)

]

+ ∆t2

[(
ν∑
i=1

w̃ic̃i

)
T ′(fn)T (fn) +

(
ν∑
i=1

w̃ici

)
T ′(fn)Q(fn)

+

(
ν∑
i=1

wic̃i

)
Q′(fn)T (fn) +

(
ν∑
i=1

wici − α

)
Q′(fn)Q(fn)

]
+O(∆t3).(2.17)

On the other hand, if we Taylor expand the exact solution of (2.1) around time
tn, we have

fn+1
exact = fn + ∆t[T (fn) +Q(fn)] +

1

2
∆t2[T ′(fn)T (fn) + T ′(fn)Q(fn)

+Q′(fn)T (fn) +Q′(fn)Q(fn)] +O(∆t3).
(2.18)

Comparing (2.17) with (2.18), we obtain the following order conditions:

ν∑
i=1

w̃i =
ν∑
i=1

wi = 1,

ν∑
i=1

w̃ic̃i =
ν∑
i=1

w̃ici =
ν∑
i=1

wic̃i =
ν∑
i=1

wici − α =
1

2
.

(2.19)D
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948 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

Note that compared to the standard IMEX-RK order conditions [26], the only differ-
ence is the term containing α.

2.5. Positivity-preserving property. In this subsection, we analyze the
positivity-preserving property of the IMEX-RK scheme (2.11)–(2.13). To this end,
we assume fn ≥ 0 and derive conditions to ensure f (i), f̃n+1, and fn+1 are all non-
negative.

First of all, we observe that if fn, f (i), f̃n+1 are all nonnegative, then the last
step (2.13) preserves positivity of the solution provided α ≥ 0. Indeed, (2.13) can be
written as

fn+1 + α∆t2
1

ε2
Q′(f∗)Q(fn+1) = f̃n+1;(2.20)

then fn+1 ≥ 0 follows directly from assumption (2.4) if f∗ = fn, f (i), f̃n+1, and
assumption (2.5) if f∗ = fn+1.

Next, we concentrate on the first two steps (2.11)–(2.12). To simplify the deriva-
tion, we assume the IMEX-RK scheme is GSA, that is, f̃n+1 = f (ν), and consider
type A and type ARS schemes, respectively. Since the techniques we use here bear
some similarities to the SSP schemes, we adopt the notation in [13].

2.5.1. Type A and GSA schemes. From (2.11), we know

1

ε
Q(f (i)) =

1

aii

f (i) − fn

∆t
−

i−1∑
j=1

ãijT (f (j))−
i−1∑
j=1

aij
1

ε
Q(f (j))

 , i = 1, . . . , ν.

(2.21)

Using this relation recursively, we obtain

1

ε
Q(f (i)) =

1

∆t

i∑
j=1

bij(f
(j) − fn) +

i−1∑
j=1

b̃ijT (f (j)),(2.22)

where

bii :=
1

aii
, bij := − 1

aii

i−1∑
l=j

ailblj , b̃ij :=
1

aii

−ãij − i−1∑
l=j+1

ailb̃lj

 .(2.23)

Then (2.11) can be rewritten as

(2.24)

f (i) = fn+∆t
i−1∑
j=1

ãijT (f (j))+∆t
i−1∑
j=1

aij

[
1

∆t

j∑
l=1

bjl(f
(l) − fn)+

j−1∑
l=1

b̃jlT (f (l))

]

+ ∆t aii
1

ε
Q(f (i)) =

1−
i−1∑
j=1

i−1∑
l=j

ailblj

 fn +
i−1∑
j=1

i−1∑
l=j

ailblj

 f (j)

+ ∆t

ãij +
i−1∑
l=j+1

ailb̃lj

 T (f (j))

+ ∆t aii
1

ε
Q(f (i))

= ci0f
n +

i−1∑
j=1

[
cijf

(j) + ∆t c̃ijT (f (j))
]

+ ∆t aii
1

ε
Q(f (i)),
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AP AND POSITIVE IMEX SCHEMES FOR THE BGK EQUATION 949

where

ci0 := 1−
i−1∑
j=1

i−1∑
l=j

ailblj , cij :=
i−1∑
l=j

ailblj , c̃ij := ãij +
i−1∑
l=j+1

ailb̃lj .(2.25)

Thus

f (i) −∆t aii
1

ε
Q(f (i)) = ci0f

n +
i−1∑
j=1

[
cijf

(j) + ∆t c̃ijT (f (j))
]
.(2.26)

Therefore, to make f (i) ≥ 0, using assumptions (2.2) and (2.3), it suffices to have

aii > 0, ci0 ≥ 0, i = 1, . . . , ν,

cij ≥ 0, c̃ij ≥ 0, i = 2, . . . , ν, j = 1, . . . , i− 1,
(2.27)

and the CFL condition is given by

(2.28) ∆t ≤ cschC,

where csch is the extra factor from the scheme, defined as

(2.29) csch = min
i=2,...,ν
j=1,...,i−1

{
cij
c̃ij

}
,

and the ratio is understood as infinite if the denominator is zero.

Remark 2.1. Requiring aii > 0 rather than aii ≥ 0 is to make sure the diagonal
matrix A in the implicit tableau (2.8) is invertible so the scheme is of type A.

Remark 2.2. Note that ci0 +
∑i−1
j=1 cij = 1. Therefore, written in (2.24), the

explicit part of the scheme is a convex combination of forward Euler steps, which is
the so-called Shu–Osher form [29]. This enables us to derive some nice properties of
the scheme that rely on convexity such as entropy decay; see section 3.2.

Remark 2.3. If T = T∆x is a discretized transport operator, the constraint c̃ij ≥ 0
in (2.27) can be removed by using downwinding [13]. This allows more freedom in
choosing coefficients and would possibly yield a better CFL condition. For simplicity,
we do not consider this situation in the current work.

We now write explicitly the above positivity conditions for ν = 3 (the minimum
stage required for RK coefficients to exist; see Appendix A for a proof). First, the
double Butcher tableau (2.8) looks like

(2.30)

0 0 0
ã21 0 0
ã31 ã32 0
ã31 ã32 0

a11 0 0
a21 a22 0
a31 a32 a33

a31 a32 a33

,

where the vectors c̃ and c satisfying (2.9) are omitted. Then the positivity conditions
(2.27) reduce to the following:

• for i = 1,

a11 > 0, c10 = 1 ≥ 0;(2.31)
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950 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

• for i = 2,

a22 > 0, c20 = 1− a21

a11
≥ 0,

c21 =
a21

a11
≥ 0, c̃21 = ã21 ≥ 0;

(2.32)

• for i = 3,

a33 > 0, c30 = 1− a31

a11
+
a32a21

a22a11
− a32

a22
≥ 0,

c31 =
a31

a11
− a32a21

a22a11
≥ 0, c32 =

a32

a22
≥ 0, c̃31 = ã31 −

a32ã21

a22
≥ 0,

c̃32 = ã32 ≥ 0.(2.33)

These conditions will be used later to construct the scheme in section 2.6.1.

2.5.2. Type ARS and GSA schemes. The analysis for type ARS schemes is
similar. Note that since a11 = 0, f (1) = fn.

First we recursively derive

(2.34)
1

ε
Q(f (i)) =

1

∆t

i∑
j=2

bij(f
(j) − fn) +

i−1∑
j=1

b̃ijT (f (j)), i = 2, . . . , ν,

where

bii :=
1

aii
, bij := − 1

aii

i−1∑
l=j

ailblj , b̃ij :=
1

aii

−ãij − i−1∑
l=j+1

ailb̃lj

 .(2.35)

Then (2.11) can be rewritten as

f (i) = [ci0f
n + ∆t c̃i0T (fn)] +

i−1∑
j=2

[
cijf

(j) + ∆t c̃ijT (f (j))
]

+ ∆t aii
1

ε
Q(f (i)),

(2.36)

where

ci0 := 1−
i−1∑
j=2

i−1∑
l=j

ailblj , c̃i0 := ãi1 +
i−1∑
j=2

aij b̃j1, cij :=
i−1∑
l=j

ailblj ,

c̃ij = ãij +
i−1∑
l=j+1

ailb̃lj .(2.37)

Therefore, to make f (i) ≥ 0, using assumptions (2.2) and (2.3), it suffices to have

aii > 0, ci0 ≥ 0, c̃i0 ≥ 0, i = 2, . . . , ν,

cij ≥ 0, c̃ij ≥ 0, i = 3, . . . , ν, j = 2, . . . , i− 1,
(2.38)

and the CFL condition is given by

(2.39) ∆t ≤ cschC,
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where

(2.40) csch = min

 min
i=2,...,ν

ci0
c̃i0
, min
i=3,...,ν
j=2,...,i−1

cij
c̃ij

 ,

and the ratio is understood as infinite if the denominator is zero. Note that similar
considerations as pointed out in Remarks 2.1–2.3 apply here as well.

We now write explicitly the above positivity conditions for ν = 4 (the minimum
stage required for RK coefficients to exist; see Appendix A for a proof). First, the
double Butcher tableau (2.8) looks like

(2.41)

0 0 0 0
ã21 0 0 0
ã31 ã32 0 0
ã41 ã42 ã43 0
ã41 ã42 ã43 0

0 0 0 0
0 a22 0 0
0 a32 a33 0
0 a42 a43 a44

0 a42 a43 a44

,

where the vectors c̃ and c satisfying (2.9) are omitted. Then the positivity conditions
(2.38) reduce to the following:

• for i = 2,

a22 > 0, c20 = 1 ≥ 0, c̃20 = ã21 ≥ 0;(2.42)

• for i = 3,

a33 > 0, c30 = 1− a32

a22
≥ 0, c̃30 = ã31 −

a32ã21

a22
≥ 0,

c32 =
a32

a22
≥ 0, c̃32 = ã32 ≥ 0;

(2.43)

• for i = 4,

a44 > 0, c40 = 1− a42

a22
+
a43a32

a33a22
− a43

a33
≥ 0,

c̃40 = ã41 −
a42ã21

a22
− a43ã31

a33
+
a43a32ã21

a33a22
≥ 0,

c42 =
a42

a22
− a43a32

a33a22
≥ 0, c43 =

a43

a33
≥ 0, c̃42 = ã42 −

a43ã32

a33
≥ 0,

c̃43 = ã43 ≥ 0.(2.44)

These conditions will be used later to construct the scheme in section 2.6.2.

Remark 2.4. Although the ARS scheme needs at least four stages to achieve the
second order, it gives more freedom in choosing the parameters. As a result, one
can obtain simpler coefficients and larger CFL number than the type A scheme; see
sections 2.6.1 and 2.6.2.

2.6. Combining order conditions and positivity conditions. Combining
the results from sections 2.4 and 2.5, we conclude that as long as one can find the
RK coefficients such that they satisfy the order conditions (2.19), positivity condi-
tions (2.27) (resp., (2.38)), and α ≥ 0, the resulting scheme (2.11)–(2.13) would be
both second-order accurate and positivity-preserving. It turns out that such sets of
coefficients are very easy to find. Below we give two IMEX schemes, one of type A
and GSA with ν = 3 and one of type ARS and GSA with ν = 4. These coefficients
are searched to yield a relatively large CFL constant csch, but we do not claim their
optimality.
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2.6.1. A second-order positivity-preserving type A and GSA scheme.
A type A and GSA scheme of form (2.30) (numbers are truncated to 14 digits) is

ã21 = 0.73695027152854,

ã31 = 0.32152816910844, ã32 = 0.67847183089156,

a11 = 0.62863517121833,

a21 = 0.24310046553707, a22 = 0.19593925696632,

a31 = 0.48036510509894, a32 = 0.074643281386981, a33 = 0.44499161351408.

α in the correction step (2.13) and the CFL constant (2.29) are given by

α = 0.27973737915215, csch = 0.52474575236975.

2.6.2. A second-order positivity-preserving type ARS and GSA scheme.
A type ARS and GSA scheme of form (2.41) (numbers are exact) is

ã21 = 0,

ã31 = 1.0, ã32 = 0,

ã41 = 0.5, ã42 = 0, ã43 = 0.5,

a22 = 1.6,

a32 = 0.3, a33 = 0.7,

a42 = 0.5, a43 = 0.3, a44 = 0.2.

α in the correction step (2.13) and the CFL constant (2.40) are given by

α = 0.8, csch = 0.8125.

Remark 2.5. For simplicity, we only give examples for the second-order method.
Following a similar procedure in section 2.4, it is not difficult to derive order conditions
for the third-order method (see Appendix B). This, combined with the positivity
conditions in section 2.5, would yield a third-order positivity-preserving scheme.

2.7. Absolute stability. In this subsection, we analyze the absolute stability
of the proposed IMEX scheme. We consider the linear ODE

(2.45)
df

dt
= λ1f + λ2f, λ1 ∈ C, λ2 < 0,

and solve it by scheme (2.11)–(2.13), i.e.,

f (i) = fn + ∆t
i−1∑
j=1

ãijλ1f
(j) + ∆t

i∑
j=1

aijλ2f
(j), i = 1, . . . , ν,

f̃n+1 = fn + ∆t
ν∑
i=1

w̃iλ1f
(i) + ∆t

ν∑
i=1

wiλ2f
(i),

fn+1 = f̃n+1 − α∆t2λ2
2f
n+1.

(2.46)

Define zi = λi∆t, i = 1, 2; then one can write fn+1 = P (z1, z2)fn, where P (z1, z2) is
the amplification factor of the scheme. The absolute stability region of the scheme is
defined as [24]

(2.47) S = {(z1, z2) : |P (z1, z2)| ≤ 1}.
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AP AND POSITIVE IMEX SCHEMES FOR THE BGK EQUATION 953

Fig. 1. Boundary of the stability region S ∩ {z2 = C} for different values of C ≤ 0. Here
different colors or numbers correspond to different values of z2. Left: the type A scheme given in
section 2.6.1; Right: the type ARS scheme given in section 2.6.2.

In Figure 1, we illustrate the stability regions of the two schemes given in section
2.6, by denoting z1 = x + iy and plotting the boundary of the region S ∩ {z2 = C}
in the x-y plane for different values of C ≤ 0. As we can see in Figure 1, for both
schemes, as C becomes smaller, the region S ∩ {z2 = C} is strictly increasing. Notice
that S ∩{z2 = 0} is the stability region of the explicit RK scheme. Thus this suggests
that, if a time step satisfies the absolute stability for the explicit part of the IMEX
scheme, then it also satisfies the absolute stability for the whole IMEX scheme for
any z2 < 0.

3. Application to the BGK equation. We now apply the previously derived
general framework to the BGK equation (1.1). The convection operator −v · ∇x and
the collision operator Q correspond, respectively, to the operators T and Q in the
general setting (2.1). We have the following.

Proposition 3.1. The operators T (f) = −v · ∇xf and Q(f) = τf (M [f ] − f)
satisfy the assumptions (2.2)–(2.5).

Proof. First of all, the operator T (f) can satisfy assumption (2.2) if a positivity-
preserving spatial discretization is used (see section 3.3).

To verify (2.3), for g ≥ 0 and constant b ≥ 0, we first define

(3.1) f =
bτgM [g] + g

1 + bτg
,

then f ≥ 0. Taking the moments 〈·φ〉 on both sides of (3.1) gives 〈fφ〉 = 〈gφ〉 since
〈gφ〉 = 〈M [g]φ〉. Therefore, M [f ] = M [g] and τf = τg, so

(3.2) f =
bτfM [f ] + g

1 + bτf
⇐⇒ f − bτf (M [f ]− f) = g ⇐⇒ f − bQ(f) = g,

i.e., such defined f ≥ 0 satisfies the assumption (2.3).
We now compute Q′(g)Q(f):

(3.3) Q′(g)Q(f) = lim
δ→0

Q(g + δQ(f))−Q(g)

δ
.
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954 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

Since 〈(g + δQ(f))φ〉 = 〈(g + δτf (M [f ]− f))φ〉 = 〈gφ〉, hence M [g + δQ(f)] = M [g],
so

(3.4) Q(g + δQ(f))−Q(g) = τg(M [g]− g − δQ(f))− τg(M [g]− g) = −τgδQ(f).

Hence

(3.5) Q′(g)Q(f) = −τgQ(f).

Then

(3.6) f + bQ′(g)Q(f) = h ⇐⇒ f − bτgQ(f) = h.

If g ≥ 0, then τg > 0. Thus (2.4) follows from (2.3). To verify (2.5), note that

(3.7) f + bQ′(f)Q(f) = h ⇐⇒ f − bτfQ(f) = h,

from which we know 〈fφ〉 = 〈hφ〉. If h ≥ 0, then τf = τh > 0. Thus (2.5) follows
again from (2.3).

Therefore, applying the scheme (2.11)–(2.13) to the BGK equation, we get a
second-order, positivity-preserving method:

f (i) = fn −∆t

i−1∑
j=1

ãijv · ∇xf (j) + ∆t

i∑
j=1

aij
τf(j)

ε
(M [f (j)]− f (j)), i = 1, . . . , ν,

fn+1 = f (ν) + α∆t2
τf∗

ε2
(M [fn+1]− fn+1),

(3.8)

where f∗ can be taken as fn, any f (i) or fn+1, and the coefficients ãij , aij , α and
the CFL constant csch are given in section 2.6. Note that we have restricted to GSA
schemes to get positivity, so there is no middle step f̃n+1. Furthermore, due to the
special structure (3.5) of the BGK operator, the implementation of the correction step
is just as easy as solving the collision operator implicitly.

Remark 3.2. The scheme (3.8) appears implicit since at every stage i one needs
to compute τf(i) , M [f (i)] first in order to evaluate f (i) (also for the last step). This
can be achieved by taking the moments 〈·φ〉 on both sides of the scheme:

〈f (i)φ〉 = 〈fnφ〉 −∆t
i−1∑
j=1

ãij∇x · 〈f (j)vφ〉, i = 1, . . . , ν,

〈fn+1φ〉 = 〈f (ν)φ〉.(3.9)

Hence one can obtain the macroscopic quantities ρ, u, T at stage i first, which will
define τf(i) and M [f (i)] (the last step is treated similarly). This idea has been used
in several papers to solve the BGK equation implicitly [10, 27, 12, 11].

3.1. Asymptotic-preserving property. There remains to prove the scheme
(3.8) is AP. To this end, we discuss type A schemes and type ARS schemes separately.
We will prove the AP property in a similar way as [11].

Proposition 3.3. If the IMEX scheme (3.8) is of type A and GSA, it is AP: for
fixed ∆t, in the limit ε → 0, the scheme becomes a second-order explicit RK scheme
applied to the limiting Euler system (1.8).
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Proof. We rewrite the first ν steps of (3.8) using vector notation:

F = fne−∆t Ã v · ∇xF + ∆t A
τ

ε
(M [F]− F),(3.10)

where F := (f (1), . . . , f (ν))T , e := (1, . . . , 1)T , M [F] := (M [f (1)], . . . ,M [f (ν)])T , and
τ := diag(τf(1) , . . . , τf(ν)). Now fixing ∆t, formally passing the limit ε→ 0 in (3.10),
one has ∆t A τ(M [F] − F) → 0. This implies F → M [F] since both A and τ are
invertible (the scheme is of type A and positivity-preserving). Replacing F by M [F]
in the moment system (3.9), we obtain

U (i) = Un −∆t
i−1∑
j=1

ãij∇x · 〈M [f (j)]vφ〉, i = 1, . . . , ν,

Un+1 = U (ν),(3.11)

where U := (ρ, ρu,E)T . This is a second-order explicit RK scheme applied to the
compressible Euler system (1.8).

Proposition 3.4. If the IMEX scheme (3.8) is of type ARS and GSA, it is AP:
for fixed ∆t and consistent initial data f0 = M [f0], in the limit ε → 0, the scheme
becomes a second-order explicit RK scheme applied to the limiting Euler system (1.8).
If the initial data is inconsistent, the limiting scheme will degenerate to first order.

Proof. For the ARS scheme, f (1) = fn and a = 0. Rewrite F = (f (1), F̂),

e = (1, ê), M [F] = (M [f (1)],M [F̂]), τ̂ := diag(τf(2) , . . . , τf(ν)); then (3.10) becomes

F̂ = fnê−∆t ã v · ∇xfn −∆t ˆ̃Av · ∇xF̂ + ∆t Â
τ̂

ε
(M [F̂]− F̂),(3.12)

where we have used a notation for matrix Ã similar to that in (2.10):

(3.13)

(
0 0

ã ˆ̃A

)
.

Now fix ∆t; letting ε→ 0, one has ∆t Â τ̂(M [F̂]−F̂)→ 0. So F̂→M [F̂] since both Â
and τ̂ are invertible (the scheme is of type CK and positivity-preserving). Replacing

F̂ by M [F̂] in the moment system (3.9), we have

U (i) = Un −∆t ãi1∇x · 〈fnvφ〉 −∆t
i−1∑
j=2

ãij∇x · 〈M [f (j)]vφ〉, i = 2, . . . , ν,

Un+1 = U (ν),(3.14)

which is a second-order explicit RK scheme applied to the compressible Euler system
(1.8) if fn = M [fn]. On the other hand, the last step of (3.8) implies fn+1 →M [fn+1]
as ε→ 0. Therefore, as long as the initial data is consistent f0 = M [f0], the scheme
is second order. Otherwise, the initial data will bring an O(∆t) error and the scheme
is reduced to first order.

3.2. Entropy-decay property. It can be shown that the second-order scheme
(3.8) satisfies an entropy-decay property if the simple first-order upwind scheme is
used for the spatial derivative.
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Consider the following one-dimensional (1D) BGK equation for simplicity:

∂tf + v∂xf =
1

ε
(M [f ]− f),(3.15)

for which we have the entropy inequality

d

dt

∫∫
f log f dv dx ≤ 0.(3.16)

Now assume that the velocity domain is truncated to a large enough symmetric
interval [−|v|max, |v|max] and the convection term v∂xf is discretized by the first-order
upwind scheme

(v∂xf)k = χv≥0v
fk − fk−1

∆x
+ χv<0v

fk+1 − fk
∆x

,(3.17)

together with the periodic or compactly supported boundary condition in x. Then
we claim that the scheme (3.8) satisfies a discrete entropy inequality:

S[fn+1] ≤ S[fn],(3.18)

where the entropy S is defined as

S[f ] = ∆x
∑
k

S[fk], with S[fk] =

∫
s[fk] dv, s[fk] = fk log fk.(3.19)

We prove it for type A and GSA schemes. Type ARS and GSA schemes can be treated
similarly.

First applying (3.17) in (2.24) gives

f
(i)
k = ci0f

n
k +

i−1∑
j=1

[
cijf

(j)
k −

v∆t

∆x
c̃ij

(
χv≥0(f

(j)
k − f

(j)
k−1) + χv<0(f

(j)
k+1 − f

(j)
k )
)]

+ ∆t aii
1

ε
(M [f

(i)
k ]− f (i)

k ),(3.20)

and the CFL condition (2.28) becomes

∆t ≤ min
i,j

{
cij
c̃ij

}
∆x

|v|max
.(3.21)

Note that (3.20) can be written equivalently as

f
(i)∗
k = ci0f

n
k +

i−1∑
j=1

[(
cij − c̃ij

|v|∆t
∆x

)
f

(j)
k + c̃ij

|v|∆t
∆x

(
χv≥0f

(j)
k−1 + χv<0f

(j)
k+1

)]
,

(3.22)

f
(i)
k =

(
1 +

∆t

ε
aii

)−1(
f

(i)∗
k +

∆t

ε
aiiM [f

(i)
k ]

)
.

(3.23)

Recall that

(3.24) aii > 0, ci0 ≥ 0, cij ≥ 0, c̃ij ≥ 0, ci0 +
i−1∑
j=1

cij = 1;
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AP AND POSITIVE IMEX SCHEMES FOR THE BGK EQUATION 957

hence (for each fixed v and k) the right-hand side of (3.22) is a convex combination of

fnk , f
(j)
k , and (χv≥0f

(j)
k−1 + χv<0f

(j)
k+1), provided the CFL condition is satisfied. Since

s[fk] is a convex function for fk > 0, by Jensen’s inequality, (3.22) gives

s[f
(i)∗
k ] ≤ ci0s[fnk ]+

i−1∑
j=1

[(
cij−c̃ij

|v|∆t
∆x

)
s[f

(j)
k ]+c̃ij

|v|∆t
∆x

s[χv≥0f
(j)
k−1+χv<0f

(j)
k+1]

]
,

(3.25)

after integration in v yields

S[f
(i)∗
k ] ≤ ci0S[fnk ] +

i−1∑
j=1

[
cijS[f

(j)
k ]− c̃ij

∆t

∆x

∫
|v| s[f (j)

k ] dv

+ c̃ij
∆t

∆x

∫
|v|
(
χv≥0s[f

(j)
k−1] + χv<0s[f

(j)
k+1]

)
dv

]
= ci0S[fnk ] +

i−1∑
j=1

[
cijS[f

(j)
k ]− c̃ij

∆t

∆x

(
F

(j)
k+1/2 − F

(j)
k−1/2

)]
,(3.26)

where

(3.27) F
(j)
k+1/2 :=

∫
|v|
(
χv≥0s[f

(j)
k ]− χv<0s[f

(j)
k+1]

)
dv

is the discrete entropy flux. Finally summing over k in (3.26), we obtain

(3.28) S[f (i)∗] ≤ ci0S[fn] +

i−1∑
j=1

cijS[f (j)].

On the other hand, using the fact that1

(3.29) S[M [f (i)]] ≤ S[f (i)],

from (3.23), which is also a convex combination, one has

S[f (i)] ≤
(

1 +
∆t

ε
aii

)−1(
S[f (i)∗] +

∆t

ε
aiiS[M [f (i)]]

)
≤
(

1 +
∆t

ε
aii

)−1(
S[f (i)∗] +

∆t

ε
aiiS[f (i)]

)
,(3.30)

which implies

(3.31) S[f (i)] ≤ S[f (i)∗].

Therefore,

(3.32) S[f (i)] ≤ ci0S[fn] +
i−1∑
j=1

cijS[f (j)],

from which it follows easily that S[f (ν)] ≤ S[fn]. Finally, the last step of (3.8) has the
same structure as (3.23); thus it can be shown in the same way that S[fn+1] ≤ S[f (ν)].
Altogether, we have proved S[fn+1] ≤ S[fn].

1An easy way to show this is as follows:
∫
M logM dv −

∫
f log f dv =

∫
f log M

f
dv =∫

f [log M
f
− M

f
+ 1] dv ≤ 0, where we used the fact that f and M have the same moments

〈fφ〉 = 〈Mφ〉, and the inequality log x ≤ x− 1 for x > 0.
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3.3. Spatial and velocity domain discretizations. In this subsection, we
describe in detail how to obtain a fully discretized scheme for the BGK equation. We
emphasize that it is not straightforward to apply the established techniques. Special
care needs to be given for both spatial and velocity domain discretizations in order
to maintain the properties (positivity and AP) of the semidiscretized scheme.

First of all, to preserve the positivity of the solution, a positivity-preserving spatial
discretization must be used for the convection term. One can use a high-order accurate
discontinuous Galerkin or finite volume scheme with a high-order accurate bound-
preserving limiter by Zhang and Shu in [32, 34]. Here we choose to use a finite
volume method for the x-variable and a finite difference method for the v-variable.

Consider solving the 1D BGK equation (3.15) with a possibly x-dependent Knud-
sen number ε(x) (this is usually the case when handling a multiscale problem). We
propose to conduct the temporal discretization first and then the spatial and velocity
discretizations. For simplicity, we use the first-order IMEX scheme as an illustra-
tion (the high-order IMEX can be implemented in a similar fashion), which can be
performed in three steps:

f∗ − fn

∆t
+ v∂xf

n = 0,(3.33a)

Un+1 = 〈f∗φ〉, Mn+1 = M [Un+1],(3.33b)

fn+1 =
1

1 + ∆t/ε(x)
f∗ +

∆t/ε(x)

1 + ∆t/ε(x)
Mn+1,(3.33c)

where the middle step is to take the moments of f∗ to get macroscopic quantities
U = (ρ,m,E) which will define ρ, u, T , hence M [U ] accordingly. Now define the grid
points in x as xj+1/2 = (j + 1/2)∆x. After integration of the above scheme in x over
the interval Ij = [xj−1/2, xj+1/2] at the grid point v = vk, we obtain

f∗j,k − fnj,k
∆t

+
F̂nj+1/2,k − F̂

n
j−1/2,k

∆x
= 0,(3.34a)

Un+1 = 〈f∗φ〉, Mn+1 = M [Un+1],(3.34b)

fn+1
j,k =

1

∆x

∫
Ij

[
1

1 + ∆t/ε(x)
f∗k (x) +

∆t/ε(x)

1 + ∆t/ε(x)
Mn+1
k (x)

]
dx,(3.34c)

where fj,k denotes the cell average of f on the interval Ij at the kth velocity grid point,

F̂j+1/2,k is the numerical flux approximating vkf(t, x, vk) at x = xj+1/2, and f∗k (x)

and Mn+1
k (x) are high-order accurate reconstruction polynomials (reconstructed by

the cell averages {f∗j,k}
Nx
j=1 and {Mn+1

j,k }
Nx
j=1) approximating the functions f∗(·, vk) and

Mn+1(·, vk), respectively.
In the following, we explain the details of the scheme (3.34) step by step.

3.3.1. Handling the convection term. First we discuss how to enforce the
nonnegativity of f∗j,k in (3.34a). We omit the index k for convenience. Given the
cell averages fnj , we use the fifth-order finite volume WENO reconstruction [28] to

construct fifth-order accurate approximations f+
j+1/2 and f−j+1/2 to the point value

f at x = xj+1/2 and t = tn. Notice that f±j+1/2 might be negative. There exists

D
ow

nl
oa

de
d 

04
/2

7/
18

 to
 1

28
.2

10
.1

07
.2

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AP AND POSITIVE IMEX SCHEMES FOR THE BGK EQUATION 959

a degree four polynomial pj(x) on the jth cell, which is a fifth-order approximation
to f on the cell, and satisfies the property that the cell average of pj(x) is exactly
fnj , and pj(xj−1/2) = f+

j−1/2, pj(xj+1/2) = f−j+1/2. For instance, such a polynomial

can be obtained by interpolation, even though the construction of this polynomial is
not needed in the implementation. Then the four-point Gauss–Lobatto quadrature
fnj =

∑4
l=1 pj(xj,l)ωl is exact, where {xj,1 = xj−1/2, xj,2, xj,3, xj,4 = xj+1/2} are the

quadrature points, and {wl} are the corresponding quadrature weights on the interval

[−1/2, 1/2] such that
∑4
l=1 wl = 1. Next by the simplified bound-preserving limiter

for finite volume methods described in [34], we modify pj(x) into

p̃j(x) = θj(pj(x)− fnj ) + fnj , θj = min

{∣∣∣∣∣ fnj
mj − fnj

∣∣∣∣∣ , 1
}
,

mj = min{pj(xj−1/2), pj(xj+1/2), ξj},(3.35a)

with

(3.35b) ξj =
pj(xj,2)ω2 + pj(xj,3)ω3

ω2 + ω3
=
fnj − f

+
j−1/2ω1 − f−j+1/2ω4

ω2 + ω3
.

The limiter (3.35) guarantees that f̃−j+1/2 = p̃j(xj+1/2) ≥ 0, f̃+
j−1/2 = p̃j(xj−1/2) ≥ 0,

and ξ̃j = (fnj − f̃
+
j−1/2ω1 − f̃−j+1/2ω4)/(ω2 + ω3) ≥ 0. Moreover, the quadrature fnj =∑4

l=1 p̃j(xj,l)ωl is still exact and f̃±j+1/2 are still fifth-order accurate approximations

to the point value of f at x = xj+1/2; see [32, 34, 31]. Since we only need f̃−j+1/2 and

f̃+
j−1/2, the limiter (3.35) is equivalent to the following implementation without using

pj(x):

f̃−j+1/2 = θj(f
−
j+1/2 − f

n
j ) + fnj , f̃+

j−1/2 = θj(f
+
j−1/2 − f

n
j ) + fnj ,

θj = min

{∣∣∣∣∣ fnj
mj − fnj

∣∣∣∣∣ , 1
}
,(3.36a)

(3.36b) mj = min{f+
j−1/2, f

−
j+1/2, ξj}, ξj =

fnj − f
+
j−1/2ω1 − f−j+1/2ω4

ω2 + ω3
.

Then we define the upwind flux as

(3.37) F̂nj+1/2 =

{
vkf̃
−
j+1/2 if vk ≥ 0,

vkf̃
+
j+1/2 if vk < 0.

To see the positivity of f∗j in (3.34a) using (3.37), we only discuss the case vk ≥ 0
with the other case being similar. We have

f∗j = [p̃j(xj−1/2)ω1+p̃j(xj+1/2)ω4+ξ̃j(ω2+ω3)]−vk∆t

∆x
(p̃j(xj+1/2)−p̃j−1(xj−1/2))

= p̃j(xj−1/2)ω1 + p̃j(xj+1/2)

(
ω4 −

vk∆t

∆x

)
+ ξ̃j(ω2 + ω3) +

vk∆t

∆x
p̃j−1(xj−1/2),

(3.38)

which implies the positivity of f∗j since it is a convex combination of nonnegative
quantities under the CFL condition vk∆t/∆x ≤ ω4 = 1/12.
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960 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

3.3.2. Handling the collision term. Now we describe how to computeMn+1 =
M [Un+1] under the finite volume discretization in x. For convenience, we regard v as
a continuous variable and omit the superscript n+ 1.

Let Uj be the moments of f∗j (v) ≥ 0 on the jth cell; then Uj belongs to a convex
set of admissible states with positive density and temperature:

G =

{
(ρ,m,E)T : ρ > 0, E − 1

2

m2

ρ
> 0

}
.(3.39)

Let {x̃j,l} (l = 1, 2, 3) denote the three-point Gauss–Legendre quadrature on the jth
cell [xj−1/2, xj+1/2] and let {w̃l} (l = 1, 2, 3) be the corresponding quadrature weights
on the interval [−1/2, 1/2], which is exact for integrating polynomials of degree five.
Given cell averages of macroscopic quantities Uj ∈ G, we would like to reconstruct
fifth-order approximations to U(x) at x = x̃j,l, denoted as Uj,l, l = 1, 2, 3. Moreover,
we need them to be positive so that M [Uj,l] can be well-defined and conservative so
that the final scheme is AP. Namely, we need

Uj,l ∈ G and

3∑
l=1

w̃lUj,l = Uj .(3.40)

Such a reconstruction can be done in the following way. First, we construct a
polynomial Uj(x) of degree four, which is a fifth-order accurate approximation to U(x)
on the interval Ij with Uj as its cell average. There are many ways to construct such
a polynomial, e.g., we can first reconstruct two cell end values by the WENO method,
then construct a Hermite type reconstruction polynomial using these two point values
and three averages Uj−1, Uj , Uj+1; see [32]. Thus 1

∆x

∫ xj+1/2

xj−1/2
Uj(x) dx = Uj . Second,

we apply the simple positivity-preserving limiter in [33, 31] to Uj(x) to obtain a

modified polynomial Ũj(x) such that Ũj(x̃j,l) ∈ G and the cell average of Ũj(x) is still

Uj . Finally, we set Uj,l = Ũj(x̃j,l), and we have

3∑
l=1

w̃lUj,l =

3∑
l=1

w̃lŨj(x̃j,l) =
1

∆x

∫ xj+1/2

xj−1/2

Ũj(x) dx = Uj .(3.41)

Then M [Uj,l], l = 1, 2, 3, are well-defined and we set

Mj =
3∑
l=1

w̃lM [Uj,l].(3.42)

This method is fifth-order in x, since the reconstruction is fifth-order, and the positivity-
preserving limiter does not affect the accuracy for smooth solutions with strictly pos-
itive pressure [33]. Also, this method is conservative:

〈Mjφ〉 =
3∑
l=1

w̃l〈M [Uj,l]φ〉 =
3∑
l=1

w̃lUj,l = Uj = 〈f∗j φ〉,(3.43)

which is the key to obtain the AP property.

3.3.3. Handling the variable ε(x). In the last step (3.34c) we need to com-
pute an integral on Ij , which can be approximated by the Gauss–Legendre quadrature:∫

Ij

[
1

1 + ∆t/ε(x)
f∗k (x) +

∆t/ε(x)

1 + ∆t/ε(x)
Mn+1
k (x)

]
dx

≈
3∑
l=1

w̃l

[
1

1 + ∆t/ε(x̃j,l)
f∗k (x̃j,l) +

∆t/ε(x̃j,l)

1 + ∆t/ε(x̃j,l)
Mn+1
k (x̃j,l)

]
.

(3.44)D
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Thus we only need the approximation of the functions f∗k (x) and Mn+1
k (x) at the

quadrature points {x̃j,l} (l = 1, 2, 3). The values for M can be read directly from the
previous step. The construction of f can be done in the same way as we constructed
Uj,l ∈ G in the previous section, with the convex set G replaced by the set {f : f ≥ 0}.

3.3.4. AP property of the fully discretized scheme. Now we show that the
fully discretized scheme (3.34) is AP. As ε→ 0, step (3.34c) implies

fn+1
j,k =

3∑
l=1

w̃lM
n+1
k (x̃j,l) = Mn+1

j,k .(3.45)

Hence after one time step, the solution is projected to the local Maxwellian. For
n ≥ 1, replacing fnj,k with Mn

j,k in (3.34a) and taking the moments gives

〈f∗j,·φ〉 − 〈Mn
j,·φ〉

∆t
+

〈
M̂n
j+1/2,· − M̂

n
j−1/2,·

∆x
φ

〉
= 0,(3.46)

where M̂j+1/2,k is the numerical flux approximating vkM(x, vk) at x = xj+1/2. Fi-
nally, using (3.43), we have

〈Mn+1
j,· φ〉 − 〈Mn

j,·φ〉
∆t

+

〈
M̂n
j+1/2,· − M̂

n
j−1/2,·

∆x
φ

〉
= 0.(3.47)

This is a fully discretized kinetic scheme for the limiting Euler equations. Thus the
scheme (3.34) is AP.

4. Generalization to the hyperbolic relaxation system. The general frame-
work presented in this paper can also be generalized to other problems that have a
similar structure, for instance, the hyperbolic relaxation system. We give one example
here.

The Broadwell model [5] is a simple discrete velocity kinetic model:

(4.1)


∂tf+ + ∂xf+ =

1

ε
(f2

0 − f+f−),

∂tf0 = −1

ε
(f2

0 − f+f−),

∂tf− − ∂xf− =
1

ε
(f2

0 − f+f−),

where ε is the mean free path, and f+, f0, and f− denote the mass densities of particles
with speed 1, 0, and −1, respectively. The model can be written equivalently in terms
of moment variables:

(4.2)


∂tρ+ ∂xm = 0,

∂tm+ ∂xz = 0,

∂tz + ∂xm =
1

2ε
(ρ2 +m2 − 2ρz),

where ρ := f+ + 2f0 + f−, m := f+ − f−, and z := f+ + f−. From (4.2), it is clear

that when ε→ 0, z → ρ2+m2

2ρ . This, substituted into the first two equations, yields a
closed hyperbolic system, an analogue of the Euler limit:

(4.3)


∂tρ+ ∂xm = 0,

∂tm+ ∂x

(
ρ2 +m2

2ρ

)
= 0.
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962 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

Similarly as the BGK model, it would be desirable to have a high-order scheme for
(4.1) that is AP (can capture the limit (4.3) without resolving ε) as well as maintains
the positivity of the solution (f+, f0, and f− need to be nonnegative by their physical
meaning). We mention that [6] proposed a second-order AP scheme for the Broadwell
model but it is not positivity-preserving.

We now define f = (f+, f0, f−)T , T (f) = (−∂xf+, 0, ∂xf−)T , and Q(f) = (f2
0 −

f+f−,−(f2
0 −f+f−), f2

0 −f+f−)T . Then (4.1) falls into the general form (2.1). Define
the matrix P as

(4.4)

1 2 1
1 0 −1
1 0 1

 ,

then Pf = (ρ,m, z)T , and PQ(f) = (0, 0, (ρ2 +m2 − 2ρz)/2)T .
In order to apply the general framework, we need to verify that the operators

T and Q satisfy the assumptions given in section 2.1. The transport operator T
can definitely satisfy the positivity condition (2.2) provided a positivity-preserving
spatial discretization is used. To analyze the positivity conditions for Q, first notice
that f − bQ(f) = g, upon multiplication of P on both sides from the left, implies

ρf = ρg,

mf = mg,

zf −
b

2
(ρ2
f +m2

f − 2ρfzf ) = zg,

(4.5)

from which one has

zf =

(
b

2
(ρ2
f +m2

f ) + zg

)
/(1 + bρf ).(4.6)

If g ≥ 0, or equivalently, ρg ≥ zg ≥ |mg|, then, to check f ≥ 0 for any b ≥ 0, it suffices
to check ρf ≥ zf and zf ≥ |mf |, which follow from

ρf − zf =
b
2 (ρ2

f −m2
f ) + ρf − zg

1 + bρf
=

b
2 (ρ2

g −m2
g) + ρg − zg

1 + bρg
≥ 0,(4.7)

zf − |mf | =
b
2 (ρf − |mf |)2 + zg − |mf |

1 + bρf
=

b
2 (ρg − |mg|)2 + zg − |mg|

1 + bρg
≥ 0.(4.8)

This proves (2.3). To show (2.4), notice that

Q′(g)Q(f) = −ρgQ(f),(4.9)

and (2.4) follows from (2.3) since ρg ≥ 0. Finally, for (2.5),

f + bQ′(f)Q(f) = h ⇐⇒ f − bρfQ(f) = h,(4.10)

which upon multiplication of P on the left gives ρf = ρh. If h ≥ 0, ρf = ρh ≥ 0.
Then (2.5) follows again from (2.3).

Therefore, the scheme (2.11)–(2.13) can be applied to the Broadwell model, re-
sulting in a second-order, positivity-preserving scheme. A similar AP property as for
the BGK equation can be proved straightforwardly using the (ρ,m, z) formulation
(4.2). We omit the detail.
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Finally, we briefly outline how to prove the entropy-decay property of the scheme
when using the upwind spatial discretization. The entropy for the Broadwell model
is defined by

S[f ] = ∆x
∑
k

[f+,k log f+,k + 2f0,k log f0,k + f−,k log f−,k],(4.11)

where k is the spatial index. We show that S[fn+1] ≤ S[fn].
First, the transport part can be done in the same way as (3.28). For the collision

part,

f (i) = f (i)∗ + ∆t aii
1

ε
Q(f (i)),(4.12)

the entropy inequality for this step, namely, S[f (i)] ≤ S[f (i)∗], was proved in [6]. As
for the last step

fn+1 = f (ν) + α∆t2
1

ε2
ρf∗Q(fn+1),(4.13)

if f∗ = fn or f (i), ρf∗ is a known nonnegative constant, and the proof for (4.12)
implies S[fn+1] ≤ S[f (ν)]; if f∗ = fn+1, one first takes the moment of (4.13) (i.e.,
multiply P on both sides from the left) and gets

ρfn+1 = ρf(ν) ≥ 0(4.14)

and then can obtain the same conclusion.

5. Numerical results. In this section we demonstrate numerically the prop-
erties of the proposed IMEX schemes. We will solve the 1D BGK equation (3.15)
in x ∈ [0, 2] with periodic boundary condition (except the test in section 5.2, where
the Dirichlet boundary condition is assumed) and in a large enough velocity domain
v ∈ [−|v|max, |v|max]. The x-space is discretized into Nx cells with ∆x = 2/Nx. The
v-space is discretized into Nv grid points with ∆v = 2|v|max/Nv. We fix the parame-
ters Nv = 150 and |v|max = 15 such that the discretization error in v is much smaller
than that in space and time. We will test the two IMEX schemes given in section 2.6.
For brevity, in the following we refer to the scheme in section 2.6.1 as scheme A and
the scheme in section 2.6.2 as scheme ARS.

5.1. Accuracy test. We first verify the second-order accuracy of the proposed
schemes. We expect that (1) in the kinetic regime ε = O(1), both scheme A and
scheme ARS are second-order accurate; (2) in the fluid regime ε � 1, for consistent
initial data, both schemes exhibit second-order accuracy; for inconsistent initial data,
scheme A is still second order, while scheme ARS will degrade to first order (see
Propositions 3.3 and 3.4).

We first consider inconsistent initial data

f(0, x, v) = 0.5Mρ,u,T + 0.3Mρ,−0.5u,T(5.1)

with

ρ = 1 + 0.2 sin(πx), u = 1, T =
1

1 + 0.2 sin(πx)
,(5.2)

and compute the solution to time t = 0.1. We choose different values of ε, ranging
from the kinetic regime (ε = 1) to the fluid regime (ε = 10−10). We choose different
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964 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

∆x and set ∆t = 0.5∆x/|v|max, i.e., fix the CFL number as 0.5, which guarantees both
schemes are stable. (This CFL number is not small enough to guarantee positivity.
We will consider the positivity-preserving property in the following test. For the same
reason, the positivity-preserving limiters are turned off here.) Since the exact solution
is not available, the numerical solution on a finer mesh ∆x/2 is used as a reference
solution to compute the error for the solution on the mesh of size ∆x:

error∆t,∆x := ‖f∆t,∆x − f∆t/2,∆x/2‖L2
x,v
.(5.3)

The results are shown in Tables 1 and 2. In all the results, the spatial error dominates
for small Nx, and the time error dominates for large Nx. One can clearly see that
in the kinetic regime (ε = 1, 10−2), both schemes are second order; in the fluid
regime (ε = 10−8, 10−10), scheme A is second order and scheme ARS is first order, as
expected.

Table 1
Accuracy test. Scheme A. Inconsistent initial data.

ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

Nx = 10 5.60×10−4 4.67×10−4 4.67×10−4 4.67×10−4 4.67×10−4 4.67×10−4

Nx = 20 5.91×10−5 4.63×10−5 3.62×10−5 3.65×10−5 3.65×10−5 3.65×10−5

Order 3.25 3.33 3.69 3.68 3.68 3.68

Nx = 40 4.33×10−6 7.11×10−6 3.31×10−6 2.46×10−6 2.46×10−6 2.46×10−6

Order 3.77 2.70 3.45 3.89 3.89 3.89

Nx = 80 2.11×10−7 1.67×10−6 2.92×10−6 1.09×10−7 1.10×10−7 1.10×10−7

Order 4.36 2.09 0.18 4.49 4.49 4.49

Nx = 160 1.29×10−8 4.22×10−7 3.03×10−6 6.58×10−9 6.28×10−9 6.28×10−9

Order 4.03 1.99 -0.05 4.06 4.13 4.13

Nx = 320 2.94×10−9 1.06×10−7 2.79×10−6 4.71×10−9 1.45×10−9 1.45×10−9

Order 2.13 1.99 0.12 0.48 2.11 2.11

Nx = 640 7.42×10−10 2.67×10−8 1.52×10−6 8.30×10−9 3.67×10−10 3.68×10−10

Order 1.99 1.99 0.88 -0.82 1.98 1.98

Nx = 1280 1.86×10−10 6.69×10−9 5.46×10−7 1.44×10−8 9.20×10−11 9.20×10−11

Order 2.00 2.00 1.47 -0.80 2.00 2.00

Table 2
Accuracy test. Scheme ARS. Inconsistent initial data.

ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

Nx = 10 5.60×10−4 5.02×10−4 4.70×10−4 4.70×10−4 4.70×10−4 4.70×10−4

Nx = 20 5.91×10−5 9.82×10−5 3.71×10−5 3.71×10−5 3.71×10−5 3.71×10−5

Order 3.25 2.35 3.66 3.66 3.66 3.66

Nx = 40 4.33×10−6 2.89×10−5 4.82×10−6 4.79×10−6 4.79×10−6 4.79×10−6

Order 3.77 1.76 2.94 2.95 2.95 2.95

Nx = 80 2.12×10−7 8.14×10−6 2.35×10−6 2.21×10−6 2.21×10−6 2.21×10−6

Order 4.36 1.83 1.04 1.12 1.12 1.12

Nx = 160 1.22×10−8 2.17×10−6 2.00×10−6 1.12×10−6 1.12×10−6 1.12×10−6

Order 4.11 1.91 0.23 0.99 0.99 0.99

Nx = 320 2.71×10−9 5.59×10−7 2.94×10−6 5.58×10−7 5.58×10−7 5.58×10−7

Order 2.17 1.95 -0.56 1.00 1.00 1.00

Nx = 640 6.83×10−10 1.42×10−7 2.99×10−6 2.79×10−7 2.79×10−7 2.79×10−7

Order 1.99 1.98 -0.02 1.00 1.00 1.00

Nx = 1280 1.71×10−10 3.58×10−8 1.76×10−6 1.40×10−7 1.40×10−7 1.40×10−7

Order 2.00 1.99 0.76 1.00 1.00 1.00
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Table 3
Accuracy test. Scheme A. Consistent initial data.

ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

Nx = 10 1.04×10−3 1.05×10−3 1.05×10−3 1.05×10−3

Nx = 20 1.01×10−4 1.01×10−4 1.01×10−4 1.01×10−4

Order 3.38 3.37 3.37 3.37

Nx = 40 8.05×10−6 7.64×10−6 7.64×10−6 7.64×10−6

Order 3.64 3.73 3.73 3.73

Nx = 80 4.17×10−6 4.79×10−7 4.79×10−7 4.79×10−7

Order 0.95 4.00 3.99 3.99

Nx = 160 4.76×10−6 1.83×10−8 1.82×10−8 1.82×10−8

Order -0.19 4.71 4.72 4.72

Nx = 320 4.46×10−6 6.16×10−9 1.52×10−9 1.52×10−9

Order 0.10 1.58 3.58 3.58

Nx = 640 2.40×10−6 1.11×10−8 4.03×10−10 4.03×10−10

Order 0.89 -0.85 1.92 1.92

Nx = 1280 8.54×10−7 1.94×10−8 1.03×10−10 1.02×10−10

Order 1.49 -0.80 1.97 1.98

Table 4
Accuracy test. Scheme ARS. Consistent initial data.

ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

Nx = 10 1.04×10−3 1.05×10−3 1.05×10−3 1.05×10−3

Nx = 20 1.01×10−4 1.01×10−4 1.01×10−4 1.01×10−4

Order 3.37 3.37 3.37 3.37

Nx = 40 7.62×10−6 7.64×10−6 7.64×10−6 7.64×10−6

Order 3.73 3.73 3.73 3.73

Nx = 80 1.24×10−6 4.79×10−7 4.79×10−7 4.79×10−7

Order 2.62 3.99 3.99 3.99

Nx = 160 2.65×10−6 1.82×10−8 1.82×10−8 1.82×10−8

Order -1.09 4.72 4.72 4.72

Nx = 320 4.51×10−6 1.60×10−9 1.52×10−9 1.52×10−9

Order -0.77 3.50 3.58 3.58

Nx = 640 4.56×10−6 9.94×10−10 4.03×10−10 4.03×10−10

Order -0.02 0.69 1.92 1.92

Nx = 1280 2.67×10−6 1.67×10−9 1.02×10−10 1.02×10−10

Order 0.78 -0.75 1.97 1.98

We also solve the equation in the intermediate and fluid regimes with consistent
initial data

f(0, x, v) = Mρ,u,T ,(5.4)

where ρ, u, and T are the same as in (5.2). The results are shown in Tables 3 and 4.
It is clear that in the fluid regime both schemes remain second-order accurate.

Note that there is always some extent of order reduction in the intermediate
regime ε = O(∆t). The uniform accuracy of IMEX schemes is an open problem
and we do not attempt to address this issue in the current work (see [19] for more
numerical test and evidence).

5.2. Positivity-preserving property. We now illustrate the positivity-
preserving property of the scheme. Consider the initial data

f(0, x, v) = Mρ,u,T(5.5)
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Fig. 2. Total number of negative cells for the ARS(2, 2, 2) scheme during time evolution. Blue
line: ε = 10−6; red line: ε = 10−8.

with

(5.6) (ρ, u, T ) =

{
(1, 0, 1), 0 ≤ x ≤ 1,

(0.125, 0, 0.25), 1 < x ≤ 2.

With the positivity-preserving limiters, the CFL coefficient of the spatial dis-
cretization is 1/12, that is, the constant C in (2.28) and (2.39) is 1

12
∆x
|v|max

. In view

of both time and spatial discretizations, we choose the time step as ∆t = 1
24

∆x
|v|max

to

satisfy the positivity CFL condition. We take Nx = 80.
The numerical solutions computed by both scheme A and scheme ARS exhibit

no negative cell averages and are omitted here. As a comparison, we solve the same
equation with the same initial data and spatial discretization but using the ARS(2,2,2)
scheme in time [1], which is a standard second-order accurate IMEX scheme with no
positivity-preserving property. The number of negative cells (out of 80× 150 = 12000
cells) is tracked and reported in Figure 2. One can see that a significant number
of cell averages become negative in the fluid regime if the time discretization is not
positivity-preserving.

5.3. AP property. Finally, to illustrate the AP property, we solve the BGK
equation in a mixed regime. We take ε = ε(x) as follows:

ε(x) = ε0 + (tanh(1− 11(x− 1)) + tanh(1 + 11(x− 1))), ε0 = 10−5,(5.7)

as shown in Figure 3. The ε is chosen such that in the middle part of the domain, the
problem is in the kinetic regime (ε(x) = O(1)), while in the left and right parts, the
problem is in the fluid regime (ε ≈ 10−5). To handle this multiscale problem, one can
use the domain decomposition approach, i.e., solve the BGK equation in the kinetic
regime and the Euler equations in the fluid regime. But identifying the interface
and coupling conditions between two regimes is a challenging task. An alternative
approach is to solve the BGK equation exclusively in the entire domain. But to ensure
stability, an explicit scheme would require the time step to resolve the smallest value
of ε which is extremely expensive. This is where the AP scheme shows its power: it
is a consistent scheme to the kinetic equation when ε = O(1) and will automatically
become a consistent scheme for the fluid equation when ε→ 0.
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schemeA.TheresultofschemeARSisomittedsinceitisindistinguishablefromthatofschemeA
inthepicture.

Wetakethesameinitialdataasin(5.1)–(5.2)andsolvetheproblemusingscheme
AandschemeARSwithNx=40. Wecomparethemacroscopicquantitiesattime
t=0.5withareferencesolutioncomputedbytheexplicitsecond-orderSSP-RK
scheme[29]withNx=80. NotethatforAPschemes,∆t=

1
24

∆x
|v|max

≈7×10−5,

whilefortheexplicitSSPscheme,∆t= 1
240

∆x
|v|max

≈7×10−6,whichneedstoresolve

ε.OnecanseethatthesolutionsofAPschemesagreewellwiththereferencesolution
inFigure4.

6. Conclusion.Wehaveintroducedafamilyofsecond-orderIMEXschemes
fortheBGKequation. The methodisAP:itreducestoasecond-orderexplicit
RKschemeforthecompressibleEulerequationsastheKnudsennumberε→
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CFL condition independent of ε. The method also satisfies an entropy-decay property
when coupled with proper spatial discretizations. The key idea is to add a correction
step to the conventional IMEX-RK schemes. Due to the special structure of the BGK
operator, this step maintains both positivity and the AP property and is very easy
to implement. We considered two types of commonly used IMEX-RK schemes (one
of type A and one of type ARS) and constructed two examples, one of each type,
respectively. We investigated, both analytically and numerically, the properties of the
proposed schemes. Furthermore, we showed that it is possible to generalize the method
to some hyperbolic relaxation system such as the Broadwell model which demands
positivity and provided a strategy to extend the method to third order. Some future
work includes the construction of high-order AP and positivity-preserving schemes for
other kinetic models, for example, the Fokker–Planck equation, the full Boltzmann
equation, etc.

Appendix A. Proof of minimum number of stages for second-order
schemes. In this appendix, we prove that the minimum number of stages required
to construct a second-order positivity-preserving IMEX scheme is ν = 3 for type A
and GSA schemes, and ν = 4 for type ARS and GSA schemes.

We start with type A and GSA schemes. One stage is clearly impossible since
the explicit term T is not involved. For two stages, the double Butcher tableau (2.8)
looks like

(6.1)
0 0 0
ã21 ã21 0

ã21 0

a11 a11 0
a21 + a22 a21 a22

a21 a22

.

This gives
∑2
i=1 w̃ic̃i = 0, which contradicts the second-order conditions (2.19).

For type ARS and GSA schemes, for one or two stages it is impossible to achieve
second order for the same reason as above. For three stages, the double Butcher
tableau (2.8) looks like

(6.2)

0 0 0 0
ã21 ã21 0 0

ã31 + ã32 ã31 ã32 0
ã31 ã32 0

0 0 0 0
a22 0 a22 0

a32 + a33 0 a32 a33

0 a32 a33

and the positivity conditions (2.38) reduce to the following:
• for i = 2,

a22 > 0, c20 = 1 ≥ 0, c̃20 = ã21 ≥ 0;(6.3)

• for i = 3,

a33 > 0, c30 = 1− a32

a22
≥ 0, c̃30 = ã31 −

a32ã21

a22
≥ 0,

c32 =
a32

a22
≥ 0, c̃32 = ã32 ≥ 0;

(6.4)

from this it is clear that all the coefficients aij and ãij are nonnegative. On the other
hand, the second-order conditions (2.19) give

(6.5)

ã31 + ã32 = 1, a32 + a33 = 1, ã21ã32 =
1

2
, ã32a22 =

1

2
, ã21a32 + a33 =

1

2
,
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from which one obtains ã21 = a22 = 1 − 1
2a32

. Then the positivity condition c30 =
1− a32

a22
≥ 0 becomes

a32 ≤ 1− 1

2a32
,(6.6)

i.e.,

a2
32 − a32 +

1

2
≤ 0,(6.7)

which is impossible. This proves the nonexistence of the three-stage case.

Appendix B. Extension to third order. In this appendix, we briefly present
the strategy to extend the proposed method to third order.

To this end, we need to derive order conditions of the scheme (2.11)–(2.13) up to
third order. We consider the cases that f∗ = fn, f̃n+1, or fn+1.

Substituting (2.14) into (2.11), one obtains

f (i) = fn + ∆t
i−1∑
j=1

ãijT (fn + ∆t c̃jT (fn) + ∆t cjQ(fn))

+ ∆t
i∑

j=1

aijQ(fn + ∆t c̃jT (fn) + ∆t cjQ(fn)) +O(∆t3)

= fn + ∆t
i−1∑
j=1

ãij [T (fn) + ∆t T ′(fn)(c̃jT (fn) + cjQ(fn))]

+ ∆t

i∑
j=1

aij [Q(fn) + ∆tQ′(fn)(c̃jT (fn) + cjQ(fn))] +O(∆t3)

= fn + ∆t[c̃iT (fn) + ciQ(fn)] + ∆t2

i−1∑
j=1

ãijT ′(fn)(c̃jT (fn) + cjQ(fn))

+
i∑

j=1

aijQ′(fn)(c̃jT (fn) + cjQ(fn))

+O(∆t3).

(6.8)

Substituting it into (2.12) yields

f̃n+1 = fn + ∆t

ν∑
i=1

w̃iT

fn + ∆t[c̃iT (fn) + ciQ(fn)]

(6.9)

+ ∆t2

i−1∑
j=1

ãijT ′(fn)(c̃jT (fn) + cjQ(fn))

+
i∑

j=1

aijQ′(fn)(c̃jT (fn) + cjQ(fn))


+ ∆t

ν∑
i=1

wiQ

fn + ∆t[c̃iT (fn) + ciQ(fn)]

D
ow

nl
oa

de
d 

04
/2

7/
18

 to
 1

28
.2

10
.1

07
.2

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

970 JINGWEI HU, RUIWEN SHU, AND XIANGXIONG ZHANG

+ ∆t2

i−1∑
j=1

ãijT ′(fn)(c̃jT (fn) + cjQ(fn))

+
i∑

j=1

aijQ′(fn)(c̃jT (fn) + cjQ(fn))

+O(∆t4)

= fn + ∆t

[(
ν∑
i=1

w̃i

)
T (fn) +

(
ν∑
i=1

wi

)
Q(fn)

]

+ ∆t2

[(
ν∑
i=1

w̃ic̃i

)
T ′(fn)T (fn) +

(
ν∑
i=1

w̃ici

)
T ′(fn)Q(fn)

+

(
ν∑
i=1

wic̃i

)
Q′(fn)T (fn) +

(
ν∑
i=1

wici

)
Q′(fn)Q(fn)

]

+ ∆t3


ν∑
i=1

i−1∑
j=1

[w̃iãij c̃jT ′(fn)T ′(fn)T (fn) + w̃iãijcjT ′(fn)T ′(fn)Q(fn)]

+
ν∑
i=1

i∑
j=1

[w̃iaij c̃jT ′(fn)Q′(fn)T (fn) + w̃iaijcjT ′(fn)Q′(fn)Q(fn)]

+
1

2

ν∑
i=1

[w̃ic̃ic̃iT ′′(fn)(T (fn), T (fn)) + 2w̃ic̃iciT ′′(fn)(T (fn),Q(fn))

+ w̃iciciT ′′(fn)(Q(fn),Q(fn))]

+

ν∑
i=1

i−1∑
j=1

[wiãij c̃jQ′(fn)T ′(fn)T (fn) + wiãijcjQ′(fn)T ′(fn)Q(fn)]

+

ν∑
i=1

i∑
j=1

[wiaij c̃jQ′(fn)Q′(fn)T (fn) + wiaijcjQ′(fn)Q′(fn)Q(fn)]

+
1

2

ν∑
i=1

[wic̃ic̃iQ′′(fn)(T (fn), T (fn)) + 2wic̃iciQ′′(fn)(T (fn),Q(fn))

+wiciciQ′′(fn)(Q(fn),Q(fn))]


+O(∆t4),

where the second-order Fréchet derivative is given by

Q′′(g)(f1, f2) = lim
δ1,δ2→0

Q(g + δ1f1 + δ2f2)−Q(g + δ1f1)−Q(g + δ2f2) +Q(g)

δ1δ2
,

(6.10)

which is a symmetric bilinear operator.
In the case f∗ = fn, (2.13) gives (using the first-order conditions

∑ν
i=1 w̃i =∑ν

i=1 wi = 1)
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fn+1 = f̃n+1 − α∆t2Q′(fn)Q(fn + ∆t(T (fn) +Q(fn))) +O(∆t4)

= f̃n+1 − α∆t2Q′(fn)Q(fn)− α∆t3[Q′(fn)Q′(fn)T (fn)

+Q′(fn)Q′(fn)Q(fn)] +O(∆t4),(6.11)

while in the case f∗ = f̃n+1 or fn+1,

fn+1 = f̃n+1−α∆t2Q′(fn+∆t(T (fn)+Q(fn)))Q(fn+∆t(T (fn)+Q(fn)))+O(∆t4)

(6.12)

= f̃n+1 − α∆t2Q′(fn)Q(fn)− α∆t3[Q′′(fn)(T (fn),Q(fn))

+Q′′(fn)(Q(fn),Q(fn))+Q′(fn)Q′(fn)T (fn)+Q′(fn)Q′(fn)Q(fn)]+O(∆t4).

On the other hand, if we Taylor expand the exact solution of (2.1) around time
tn, we have

fn+1
exact = fn + ∆t[T (fn) +Q(fn)] +

1

2
∆t2[T ′(fn)T (fn) + T ′(fn)Q(fn)

(6.13)

+Q′(fn)T (fn) +Q′(fn)Q(fn)] +
1

6
∆t3[T ′′(fn)(T (fn), T (fn))

+ 2T ′′(fn)(Q(fn), T (fn)) + T ′′(fn)(Q(fn),Q(fn)) +Q′′(fn)(T (fn), T (fn))

+ 2Q′′(fn)(Q(fn), T (fn)) +Q′′(fn)(Q(fn),Q(fn))

+ (T +Q)′(fn)(T +Q)′(fn)(T +Q)(fn)] +O(∆t4).

Comparing (6.13) with (6.11) or (6.12), we obtain the following order conditions:∑
i,j

w̃iãij c̃j =
∑
i,j

w̃iãijcj =
∑
i,j

w̃iaij c̃j =
∑
i,j

w̃iaijcj

=
∑
i,j

wiãij c̃j =
∑
i,j

wiãijcj =
∑
i,j

wiaij c̃j − α =
∑
i,j

wiaijcj − α =
1

6
,

∑
i

w̃ic̃ic̃i =
∑
i

w̃ic̃ici =
∑
i

w̃icici

=
∑
i

wic̃ic̃i =
∑
i

wic̃ici =
∑
i

wicici =
1

3
,

(6.14)

in the case f∗ = fn, and∑
i,j

w̃iãij c̃j =
∑
i,j

w̃iãijcj =
∑
i,j

w̃iaij c̃j =
∑
i,j

w̃iaijcj

=
∑
i,j

wiãij c̃j =
∑
i,j

wiãijcj =
∑
i,j

wiaij c̃j − α =
∑
i,j

wiaijcj − α =
1

6
,

∑
i

w̃ic̃ic̃i =
∑
i

w̃ic̃ici =
∑
i

w̃icici

=
∑
i

wic̃ic̃i =
∑
i

wic̃ici − α =
∑
i

wicici − 2α =
1

3
,

(6.15)

in the case f∗ = f̃n+1 or fn+1.
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Note that compared to the standard IMEX-RK (third-) order conditions [26], the
only difference is the terms containing α.

Therefore, in order to get a third-order positivity-preserving scheme, one only
needs to find RK coefficients in (2.11)–(2.13) such that they satisfy the order condi-
tions (2.19) and (6.14) (resp., (6.15)) as well as the positivity conditions derived in
section 2.5 (α ≥ 0 and (2.27) for type A and GSA schemes or (2.38) for type ARS
and GSA schemes). This can be done via a computer program.
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