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Anisotropic polarization-induced conductance at
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Coupling between different degrees of freedom, that is,
charge, spin, orbital and lattice, is responsible for emer-
gent phenomena in complex oxide heterostrutures'?. One
example is the formation of a two-dimensional electron gas
(2DEG) at the polar/non-polar LaAlO,/SrTiO; (LAO/STO)*”
interface. This is caused by the polar discontinuity and coun-
teracts the electrostatic potential build-up across the LAO
film3, The ferroelectric polarization at a ferroelectric/insu-
lator interface can also give rise to a polar discontinuity®'°.
Depending on the polarization orientation, either electrons or
holes are transferred to the interface, to form either a 2DEG
or two-dimensional hole gas (2DHG)". While recent first-
principles modelling predicts the formation of 2DEGs at the
ferroelectric/insulator interfaces®®''*, experimental evi-
dence of a ferroelectrically induced interfacial 2DEG remains
elusive. Here, we report the emergence of strongly anisotropic
polarization-induced conductivity at a ferroelectric/insulator
interface, which shows a strong dependence on the polariza-
tion orientation. By probing the local conductance and ferro-
electric polarization over a cross-section of a BiFeO,-TbScO,
(BFO/TSO) (001) heterostructure, we demonstrate that this
interface is conducting along the 109° domain stripes in BFO,
whereas it is insulating in the direction perpendicular to these
domain stripes. Electron energy-loss spectroscopy and theo-
retical modelling suggest that the anisotropy of the interfacial
conduction is caused by an alternating polarization associated
with the ferroelectric domains, producing either electron or
hole doping of the BFO/TSO interface.

We explored 400-nm-thick (001),-oriented BFO thin films
grown on insulating (110), TSO single-crystalline substrates by
molecular beam epitaxy with [100], BFO//[110], TSO and [010],
BFO//[001], TSO (where the subscripts p and o represent pseu-
docubic and orthorhombic indices, respectively, and // means
parallel). Details of the film growth are given in the Methods. As
schematically shown in Fig. 1a, the BFO thin films exhibit typical
striped domain patterns with the 109° domain walls aligned in the
[110], direction of the TSO substrate. The out-of-plane polariza-
tion component points either downward (towards the substrate)
or upward (away from the substrate) across the domain array,
leading to a periodic distribution of positive and negative bound
charges at the interface. The 109° striped domain structure is
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observed by piezoresponse force microscopy (PFM) (Fig. 1b) and
by transmission electron microscopy (TEM) (Fig. 1c,d). Figure 1c
displays a TEM bright-field image of the cross-section of the BFO/
TSO heterostructure, showing the single-crystalline film with few
defects and ordered 109° domain arrays. Figure 1d shows an atomic-
resolution scanning transmission electron microscopy (STEM)
high-angle annular dark-field (HAADF) image of the interface,
and the corresponding polarization mapping is presented in the
Supplementary Fig. 1. The atomic-scale X-ray energy-dispersive
spectroscopy (EDS) mapping and HAADF image intensity profiles
across the BFO/TSO interface reveal that the BFO/TSO interface is
atomically sharp (Supplementary Figs. 2 and 3).

To investigate the electrical properties of the BFO/TSO interface,
we developed a multimodal approach based on probing the cross-
sectional specimens of the same sample by a combination of TEM,
PFM and conductive atomic force microscopy (CAFM). Details of
the sample preparation and geometry of the PFM measurements
are given in the Methods and illustrated in Supplementary Fig. 4.
To observe the domain structures, the specimens were prepared
by cutting along the (110), and (001), planes of the TSO substrate
(perpendicular and parallel to the domain stripes in the BFO film,
respectively). A PFM image of the 109° domain structure on a cross-
sectional specimen is shown in Fig. 2a, which is consistent with the
TEM results in Fig. 1c,d. The lower-magnification PFM images of
the cross-sectional specimens show a uniform domain structure in
the BFO sample (Supplementary Fig. 5).

Figure 2b shows a CAFM map of the same region as in Fig. 2a.
The CAFM contrast here represents conductivity along the [110],
direction of the TSO substrate (which is parallel to the 109° domain
stripes in the BFO film). A current signal can be clearly seen at the
BFO/TSO interface. Closer inspection of the CAFM map in Fig. 2b
shows that the spatial distribution of the current varies with the
change in the polarization direction. By correlating the PFM and
CAFM maps, we find that the conducting channel is broader when
the polarization is pointing towards the interface (downward polar-
ization state), while it becomes narrower when the polarization
is pointing away from the interface (upward polarization state).
The averaged current profile in Fig. 2c shows that the interface
current is stronger for the downward polarized domains, which is
further corroborated by the current-voltage (I-V) spectroscopic
measurements at the interface regions with upward and downward
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Fig. 1| Domain structure in BFO films with 109° domain arrays. a, Schematic of the BFO/TSO heterostructure with 109° domain arrays. The black
arrows indicate the polarization direction. '+’ and ‘" indicate positive and negative bound charges, which are produced by the alternating out-of-plane
polarization vectors. b, PFM phase image of the BFO sample with 109° domain structure. ¢, Low-magnification TEM image of a cross-section of the
BFO/TSO heterostructure. d, High-resolution HAADF-STEM image of the 109° domain wall corresponding to the area marked by the yellow box in c.
Orange arrows indicate polarization direction, and dashed lines indicate the position of the 109° domain wall and the BFO/TSO interface.

polarizations (Fig. 2f). To gain better statistics, we performed histo-
gram analysis of the interface conductivity for upward and down-
ward polarization states (Fig. 2g). The current signal distribution
shows that the interface with downward polarization on average
exhibits a current signal that is approximately 50% higher than an
interface with upward polarization.

Surprisingly, the interface conductivity along the [001], direction
of the TSO substrate (which is perpendicular to the 109° domain
stripes in the BFO film) reveals a drastically different behaviour.
Figure 2d shows a uniform contrast in the PFM image of this sur-
face of the cross-sectional sample, which indicates its monodomain
state due to the fact that the 109° domain walls are underneath the
surface of the cross-sectional sample and run parallel to it. Figure 2e
displays the CAFM image for the same region. No interfacial con-
ductance is observed, indicating the insulating behaviour of the
BFO/TSO interface in the direction perpendicular to the 109° stripe
domains. Comparison of the current profiles and the I-V curves
measured along the two orthogonal [001], and [110], directions
further confirms strong anisotropy of the interface conductivity
(Fig. 2h and the inset).

To understand the origin of the observed conductivity and its
anisotropy at the ferroelectric/insulator interface, first-principles
calculations were performed. Figure 3 shows the atomic structure
of the BFO/TSO (001) superlattice that was used in our calcula-
tions (see details in the Methods). Two polarization states, pointing
either towards the interface (interface 1) or away from the interface
(interface 2, as a result of the periodic boundary conditions used
in the calculations), were modelled (Fig. 3a). The resulting layer-
resolved density of states (DOS) in Fig. 3a reveals that the ferro-
electric polarization produces a rigid shift of the DOS, resulting in
the accumulation of electrons at interface 1 and holes at interface 2.
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These accumulated free carriers form either an n-type or p-type
conducting interface, depending on polarization orientation.
Note that in this calculation a critical thickness of BFO, which is
10 unit cells (u.c.) according to the modelling results, is required
for the Fermi level to touch the valence band or conduction band.
Supplementary Fig. 6 shows the calculated layer-resolved DOS for
BFO layer thickness of 8 u.c. This thickness is less than the critical
thickness of BFO and hence there is no charge accumulation at the
interface, as is evident from the Fermi energy (vertical solid line in
Supplementary Fig. 6) lying in the energy gap of the heterostruc-
ture. Experimentally we tested a 2nm (5u.c.) BFO film on the same
cross-sectional surface as in Fig. 2. We did not observe any interfa-
cial conductivity at the BFO/TSO interface (Supplementary Fig. 7).

Comparing these theoretical results to our experimental data,
we argue that the conductivity at the BFO/TSO interface is induced
by the formation of the alternating n- and p-doped regions associ-
ated with the polarization of ferroelectric domains pointing to the
interface or away from it, respectively. The measured conductivity
depends on the cut of the sample: high conductivity is measured
along the stripe domain walls (Fig. 2a,b) and low conductivity in
the direction perpendicular to them (Fig. 2d,e). In comparison
with the p-type regions, the n-type regions are expected to have
higher conductivity due to the higher mobility of electrons. For this
reason, we observe the interfacial conductivity modulated by the
periodical 109° stripe domain structure (Fig. 2b,g). The conduct-
ing path along this direction encounters the periodically repeating
p-n and n-p junctions formed at the 109° domain walls so that the
electric current in the [001], direction is blocked by these junc-
tions. This also explains the observed insulating behaviour of the
interface in the [001], direction, that is, perpendicular to the 109°
domain stripes.
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Fig. 2 | Anisotropic interfacial conduction at the BFO/TSO interface with 109° domain arrays. a, PFM image of the cross-section of a BFO film, cut
perpendicular to the stripe domain. The white arrows indicate the three-dimensional polarization vector. b, CAFM image of the same region as in a.

¢, An averaged current signal profile along the BFO/TSO interface, corresponding to the segment marked by the white dashed lines in b. d, PFM image of
the cross-section of a BFO film, cut parallel to the domain stripe. The white arrows indicate the 3-dimensional polarization vector. e, CAFM image of the
same region as in d. f, -V curves measured at the BFO/TSO interface regions with different polarization directions (P, polarization pointing towards the

BFO/TSO interface; P,

upr

polarization pointing away from the BFO/TSO interface). g, Histogram of the current for different polarization directions inb. h, I-V

curves measured at the BFO/TSO interfaces in the samples cut perpendicular and parallel to the stripe domain walls. The inset shows the current profiles

across the BFO/TSO interface, which were extracted from b and e.

These results are corroborated by the phase-field simulations.
Figure 3b and c shows a schematic of the 109° domain structure and
an alternating bound charge at the interface driven by the periodic
change in polarization direction, and Fig. 3d shows the correspond-
ing calculated potential profile at the BFO/TSO interface perpen-
dicular to the 109° domain walls. The alternating positive and
negative bound charges at the interface builds a recurring potential
barrier for free carriers, making the interface insulating in the direc-
tion perpendicular to the domain stripes, at the same time activat-
ing electron- or hole-type conduction in the direction parallel to the
domain stripes.

The proposed model is further confirmed by atomic-resolution
electron energy-loss spectroscopy (EELS) (see Methods for details).
Spatial-dependent EELS of O K and Fe L, edges is acquired from
regions with two different polarization states as a function of a dis-
tance from the BFO/TSO interface (Fig. 4a). Owing to a linear rela-
tionship between the onset energy in EELS and the oxidation state
of Fe (refs '>'°), the energy onset difference between O K and Fe L,
edges reflects the local chemical shift of the Fe oxidation state. We
find that this energy onset difference at interface2 is higher over the
first four unit cells of BFO than that in the bulk phase, indicating

anna

a higher valence state of Fe (Fig. 4b). In comparison, the energy
onset difference in BFO near interfacel is lower than that in the
bulk phase, showing a reduced valence state of Fe (Fig. 4b). These
results indicate that interface2 with a higher oxidation state of Fe
shows a hole-doped p-type conductivity, whereas interface 1 with a
reduced valence state of Fe exhibits electron-doped n-type conduc-
tivity. These conducting channels are confined within an ~1.5-nm-
wide region of BFO near the BFO/TSO interface. Estimation of the
carrier concentration at the two interfaces based on the EELS data'®
(Fig. 4b) yields (0.14+0.06) electrons per unit cell for interfacel
and (0.15+0.08) holes per unit cell for interface 2. Hence, the n- and
p-carrier concentration at the two types of the BFO/TSO interface
are on the order of 10"*cm™. Therefore, we assume that the conduc-
tivity difference between interfacel and interface?2 is determined
by the carrier mobility. Moreover, the energy onset difference of
the Fe-O edges across the 109° domain wall shows a step-like
transition (Supplementary Fig. 8), which corroborates different Fe
valence states and a transition from electron- to hole-doping at the
domain wall. Therefore, this step-like distribution of onset energy
provides strong evidence of the p-n junction scenario across the
109° domain wall.
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Fig. 3 | Mechanism for the anisotropic interfacial conduction. a, Layer-resolved DOS for BFO/TSO (001) interfaces obtained from first-principles
calculations. Ferroelectric polarization produces a rigid shift of the DOS of BFO, resulting in accumulation of electrons at interface 1 (polarization

pointing towards the interface) and holes at interface 2 (polarization pointing away from the interface). The periodic boundary conditions are used in the
calculations so that the TSO layers continue to be on top of interface 2. The green arrows indicate the polarization directions. b-d, Results of the phase-
field simulations. b, Domain structure of BFO with 109° domain walls. The white arrows indicate the polarization directions. ¢, Bound charge distribution at
the BFO/TSO interface along the domain stripes. d, Potential profile at the BFO/TSO interface perpendicular to the domain stripes.

The width of the conducting channel is determined by the screen-
ing length of the polarization charge in BFO. Within the Thomas-
Fermi approximation, the screening length & can be estimated as'

s=L F
e\ Pr
where ¢ is the background dielectric permittivity of BFO, e is the
elementary charge and py is the DOS at the Fermi energy. Assuming
that the dielectric permittivity of BFO is ~100¢, (refs '**°) and p;
~1eV™ per u.c. (Fig. 3a), we obtain § ~ 1 nm, which is in agreement
with the measured 1.5-nm thickness of the conducting channel.
Moreover, we find that the 109° domain arrays are switchable
by applying a voltage to the film surface (Supplementary Fig. 9).
Hence, the conducting BFO/TSO interface can facilitate ferro-
electric switching and could enable the interface conductivity to be
controlled via polarization reversal.

In principle, oxygen vacancy redistribution may also contribute
to the BFO/TSO interface conductivity”'. However, although oxygen
vacancies in BFO may lead to electron doping and n-type conduc-
tion, this mechanism does not explain the anisotropic conductance.
Detailed analysis of EELS linescans of the O K edge across the BFO/
TSO interfaces (Supplementary Fig. 10 and Supplementary Note 1)
shows that the polarization direction in BFO does not affect the
oxygen stoichiometry near the interface. Consequently, the oxygen-
vacancy-related mechanism of interface conductivity can be ruled
out. The Schottky barrier variations at the BFO/Au interface at the
back of the cross-sectional sample may also be a potential mecha-
nism behind the observed polarization-related changes in the BFO/
TSO interface conductivity. We argue that the change in conductiv-
ity due to the different values of the Schottky barrier at the BFO/Au
interface for different in-plane components of polarization (point-
ing towards or away from the BFO/Au interface) associated with
the stripe domains is not expected to be as large as that observed

0
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experimentally (see detailed analysis in Supplementary Note 2). This
conclusion was proved experimentally by testing a 200-nm-thick
BFO film with periodical 71° domain walls (see Supplementary
Fig. 11 and Supplementary Note 3 for details).

In conclusion, using a combination of different local probe
techniques, we have directly observed polarization-dependent
interfacial anisotropic conductivity at the ferroelectric/insulator
BFO/TSO interfaces. We found that the orientation of ferroelec-
tric domain walls dramatically changes the interface conductivity:
the interface is conducting in the direction parallel to the domain
stripes but is insulating in the direction perpendicular to them.
Theoretical modelling suggests that the ferroelectric 109° striped
domain structure gives rise to alternating n- and p-type conducting
channels resulting in polarization-induced interfacial conductivity
in the direction parallel to the stripe domains. The formation of
p-n junctions at the domain walls blocks the conducting path and
makes the interface insulating perpendicular to the stripe domains.
Atomic-resolution EELS analysis of the BFO/TSO interface reveals
the higher oxidation state of Fe at the p-type conducting interface,
while a reduced valence state of Fe is observed at the n-type con-
ducting interface. Our results open exciting possibilities to engineer
novel nanoelectronics systems, where control of the ferroelectric
polarization allows modulation of the two-dimensional anisotro-
pic electronic transport, providing a new route for advanced device
applications.
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Fig. 4 | STEM and EELS measurements at the BFO/TSO interface.

a, HAADF-STEM images obtained at the BFO/TSO interface with down
and up polarizations. Separate high-resolution linescans were taken at each
interface. An EELS linescan averaged within a larger area was carried out at
the BFO/TSO interface. Horizontal lines indicate the direction of averaging
parallel to the interface. Position O is the interfacial unit cell in BFO. The
orange arrows indicate the BFO/TSO interface. The blue arrows indicate
the polarization direction. b, The energy onset difference between the O K
and Fe L, edges obtained from the BFO/TSO interface to interior BFO via
EELS linescans: interface 1 with the polarization pointing towards the BFO/
TSO interface (Py,,,), red dots; interface 2 with polarization pointing away
from the BFO/TSO interface (P,,), blue dots. The error bars represent the
standard error in the peak fitting process for determining the onset energy
of the O K and Fe L; edges. The red and blue dashed lines are the averaged
values of the energy onset difference between the O K and Fe L, edges in
interface 1and interface 2, respectively.

References

1. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11,
103-113 (2012).

2. Sulpizio, J. A, Ilani, S., Irvin, P. & Levy, ]. Nanoscale phenomena in oxide
heterostructures. Annu. Rev. Mater. Res. 44, 117-149 (2014).

3. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO,/
SrTiO; heterointerface. Nature 427, 423-426 (2004).

4. Reyren, N. et al. Superconducting interfaces between insulating oxides.
Science 317, 1196-1199 (2007).

5. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic
oxides. Nat. Mater. 6, 493-496 (2007).

6. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism
and superconductivity at the LaAlO,/SrTiO; interface. Nat. Phys. 7,
767-771 (2011).

7. Salluzzo, M. et al. Origin of interface magnetism in BiMnO,/SrTiO; and
LaAlO,/SrTiO, heterostructures. Phys. Rev. Lett. 111, 087204 (2013).

8. Chen, Y. Z. et al. Creation of high mobility two-dimensional electron gases

via strain induced polarization at an otherwise nonpolar complex oxide
interface. Nano Lett. 15, 1849-1854 (2015).

9. Niranjan, M. K., Wang, Y., Jaswal, S. S. & Tsymbal, E. Y. Prediction of a

switchable two-dimensional electron gas at ferroelectric oxide interfaces.
Phys. Rev. Lett. 103, 016804 (2009).
10. Yin, B,, Puente, P. A, Qu, S. & Artacho, E. Two-dimensional electron gas at
the PbTiO,/SrTiO; interface: an ab initio study. Phys. Rev. B 92, 115406 (2015).
. Marshall, S. J. et al. Conduction at a ferroelectric interface. Phys. Rev. Appl. 2,
051001 (2014).

12. Fredrickson, K. D. & Dembkov, A. A. Switchable conductivity at the
ferroelectric interface: nonpolar oxides. Phys. Rev. B 91, 115126 (2015).

13. Puente, P. A. et al. Model of two-dimensional electron gas formation at
ferroelectric interfaces. Phys. Rev. B 92, 035438 (2015).

14. Zhang, Z., Wu, P, Chen, L. & Wang, J. L. First-principles prediction of a two
dimensional electron gas at the BiFeO,/SrTiO; interface. Appl. Phys. Lett. 99,
062902 (2011).

15. Tan, H. Y., Verbeeck, J., Abakumov, A. & Tendeloo, G. V. Oxidation state and
chemical shift investigation in transition metal oxides by EELS.
Ultramicroscopy 116, 24-33 (2012).

16. Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO, controlled by
accumulation of charged defects. Nat. Mater. 16, 322-327 (2017).

17. Yong, W. et al. Ferroelectric instability under screened Coulomb interactions.
Phys. Rev. Lett. 109, 247601 (2012).

18. Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science

334, 968-971 (2011).

Ihlefeld, J. F. et al. Effect of domain structure on dielectric nonlinearity in

epitaxial films. Appl. Phys. Lett. 97, 262904 (2010).

20. Lim, S. H. et al. Enhanced dielectric properties in single crystal-like thin

films grown by flux-mediated epitaxy. Appl. Phys. Lett. 92, 012918 (2008).
. Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at
room temperature. Nat. Mater. 7, 298-302 (2008).

1

—

1

°

2

—_

Acknowledgements

The work was supported by the Department of Energy (DOE), Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under award DE-SC0014430 and
partially by the National Science Foundation (NSF) under grants DMR-1506535 and DMR-
1629270. L.X. was supported by the National Basic Research Program of China (grant no.
2015CB654901) and National Natural Science Foundation of China (grant no. 51302132).
The research at the University of Nebraska-Lincoln was supported by the NSF through the
Nebraska Materials Science and Engineering Center (MRSEC) under grant DMR-1420645.
J.K., HW. and R.Q.W. acknowledge support of DOE-BES (grant no. DE-272 FG02-
05ER46237) and computing allocation by NERSC. The work at Penn State is supported by
the US Department of Energy under award DE-FG02-07ER46417. The work at Cornell
University was supported by the NSF (Nanosystems Engineering Research Center for
Translational Applications of Nanoscale Multiferroic Systems) under grant EEC-1160504
(C.H. and D.G.S.). Substrate preparation was performed in part at the Cornell Nanoscale
Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI),
which is supported by the NSF (grant ECCS-1542081). The authors would also like to
acknowledge the University of California, Irvine’s Materials Research Institute (IMRI) for
the use of TEM facilities. Y.Z. would like to thank J. R.Jokisaari for his initial work and help
on the PFM measurements carried out at the University of Michigan. The authors also
thank T. Aoki (University of California, Irvine) for his help on EELS measurements.

Author contributions

X.QP. and Y.Z. conceived this project and designed experiments. Y.Z. and H.D.L. carried
out the scanning probe microscopy experiments and data analysis supervised by A.G.
and X.QP. X.X.Y,, Y.Z. and L.X. carried out the TEM and EELS studies supervised by
X.Q.P. T.R.P, J.WK. and H.-W. performed the first-principles modelling supervised by
E.Y.T. and R.QW. X.X.C carried out the phase-field simulations supervised by L.-Q.C.
Thin films were grown by C.H. supervised by D.G.S. L.Z.L. and M.].X. participated in the
analysis of experimental data. Y.Z., HD.L., X.Q.P, A.G. and E.Y.T wrote the manuscript.
All authors discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
541565-018-0259-z.

Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to A.G. or X.P.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

anms NATIHIRF NANOTFCHNOIOGY | V/OI 1R | DFCFAMRFR 2018 1 1122-113A | wannw natiire cam /natiirenanntechnalnov


https://doi.org/10.1038/s41565-018-0259-z
https://doi.org/10.1038/s41565-018-0259-z
http://www.nature.com/reprints
http://www.nature.com/naturenanotechnology

Methods

Sample preparation. The BFO film was grown using a novel kinetically limited
absorption-controlled method of reactive molecular beam epitaxy (MBE). Further
details of the development and characterization of this method will be given
elsewhere (J. Mundy et al., manuscript in preparation). In short, a single-crystal
(110), TSO substrate is heated to 650 °C in distilled ozone (~80% ozone) at partial
pressure 4 X 10~ torr. We use situ reflection high-energy electron diffraction
(RHEED) to determine the growth conditions for a smooth and surface-
reconstruction-free film. In this case, an Fe flux of 1.7 X 10"* atoms cm™ 5" is
supplied concurrently with an excess Bi:Fe ratio of ~8 as determined by a quartz
crystal microbalance. The growing film surface is monitored periodically with

in situ RHEED, and the sources are shuttered to allow for Fe diffusion if the film
appears to roughen. Cross-sectional TEM specimens were prepared by mechanical
polishing followed by argon ion milling in a Gatan Precision Ion Polishing System
I (PIPS II).

Structural and electrical characterization. STEM imaging was performed either
in a JEOLJEM-3100R05 or in a JEOL Grand ARM300CF electron microscope,
both of which are equipped with a cold field emission gun and double spherical
aberration correctors with a spatial resolution of ~0.6 A when operated at 300kV.
HAADF-STEM images were taken with the convergence angle of the incident
electrons at 22 mrad and the collection angle at 83-165 mrad. EDS mapping of the
BFO/TSO interface was carried out on an FEI Titan with Chemi-STEM operated
at 200kV.

The atomic-resolution EELS was carried out using an aberration-corrected
monochromated NION ultra-STEM 200, which has an energy resolution of
4.2meV at 30kV, 6.7meV at 60kV, and 9 meV at 100kV. For EELS analysis in
this work, the microscope was operated at 100kV with convergence semi-angle
of 30 mrad and a beam current of ~100 pA. EELS data were acquired with a
dispersion of 0.164 eV per channel and with the dwell time of 1s per pixel. The
background in each spectrum was removed by power-law function using Gatan’s
DigitalMicrograph software. The energy loss where the edge reaches 10% of its
maximum intensity is taken as the energy onset value for each O K and Fe L, edge
in each pixel.

PFM measurements were performed using a commercial Asylum Research
MEP-3D system. The PPP-EFM probe from Nanosensors was used in this study.
3D vector PFM imaging was performed by collecting a vertical piezoresponse
component and two lateral piezoresponse components. The sample was rotated
by 90° to discriminate between orthogonally oriented in-plane polar vector
components. CAFM measurements were carried out using the same MFP-3D
system with ORCA mode. To perform current mapping on the cross-sectional
sample, a thin Au layer was deposited on the backside of the specimen. The
conducting AFM tip is able to scan the sample from the electron transparent
region to much thicker regions (a few micrometres) along the interface of a cross-
sectional sample.

First-principles calculations. First-principles calculations were performed using
density functional theory (DFT) within the projected augmented wave (PAW)
method for the electron-ion potential and the generalized gradient approximation
(GGA) for exchange and correlation, as implemented in the Vienna ab initio
simulation package (VASP)***. The exchange and correlation beyond GGA were
taken into account by introducing an onsite Coulomb repulsion with Hubbard
U=2.5 eV (ref. *) for Fe- 3d orbitals in rotationally invariant formalism®, as
implemented in VASP. The electronic structure of the interface was calculated

by constructing a BFO/TSO (001) superlattice containing 8.5 u.c. of the BFO

and 3.5u.c. of the TSO. The ScO,/BiO interfaces were assumed to be symmetric
with respect to the central BiO layer, ensuring no electric field other than that
originating from the ferroelectricity of BiFeO, was present. The calculations were
carried out using a kinetic energy cutoff of 340eV and an 8 X8 X 1 k-point mesh for
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Brillouin zone integration. We fully relaxed c-lattice constant and ionic coordinates
with the force convergence limit of 0.02 eV atom™. The in-plane lattice constant
was fixed to that of the calculated GGA+U lattice constant of the 2 X2 pseudo-
cubic unit cell TSO.

Phase-field simulation. Phase-field simulation provides information on
polarization evolution by solving the time-dependent Ginzburg-Landau equation:
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where P, is the order parameter in the Landau theory, and its physical meaning is
the component of polarization in the ith direction. L is the kinetic coefficient, r
represents the spatial position vector, ¢t denotes the evolution time step, and F is the
total free energy of the BFO with volume V that can be expressed by the following
formula®*-2

F= /%andau +felastic +felectric +fgradient)dv

Where fi oduw fetastio futectric 14 fyragient are the densities of the bulk free energy,
elastic energy, electrostatic energy and gradient energy of the BFO, respectively.
Owing to the large domain size in the experiment, being beyond the computation
capabilities, we scaled down the system size. The size of the simulation system
was 200 % 100 x 45 grids, with each grid point representing 1 nm in real space.
The thickness of the substrate, film and vacuum layers was 10 nm, 30 nm and
5nm, respectively. For the x and y directions, a periodic boundary condition was
adopted. The initial set-up for the simulation was a series of the 109° domain
stripes, each 30 nm in width, along the ydirection. The elastic boundary condition
fixes the displacement of 10 grids into the substrate and is traction-free on top of
the film surface. No mismatch strain is assumed between the film and substrate.
The electric boundary condition is short circuit both for the top surface of the
film and for the bottom interface. In the phase-field simulation, the bound charge
distribution was obtained by calculating derivatives of polarizations, and the
electric potential distribution was then computed by solving the Poisson equation.

Data availability
The data that support the plots within this paper and other findings of this study
are available from the corresponding authors upon reasonable request.
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