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ABSTRACT

In this paper, we explore how we can model students’
response times to predict student performance in Intelligent
Tutoring Systems. Related research suggests that response
time can provide information with respect to correctness.
However, time is not consistently used when modeling
students’ performance. Here, we build on previous work that
indicated that the relationship between response time and
student performance is non-linear. Based on this concept, we
compare three models: a standard Additive Factors Analysis
Model (AFM), an AFM model enhanced with a linear step
duration parameter and an AFM model enhanced with a
quadratic, step duration parameter. The results of this
comparison show that the AFM model that is enhanced with
the quadratic step duration parameter outperforms the other
models over four different datasets and for most of the
metrics we used to evaluate the models in cross validation and
prediction.
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1 INTRODUCTION

The use of students’ response time for modeling and
predicting their performance in Intelligent Tutoring Systems
(ITSs) has been, so far, a challenging task and an open
question. For instance, even though response time can
potentially be a good predictor of post-test scores, it does not
always predict performance in individual learning steps [13].

Given these challenges, it is still not clear how to identify
and model a “good” response time - a response time that
indicates the student is knowledgeable about the task - or a
“bad” response time - a response time that indicates that the
student either is not interested in the activity or does not have
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the required background knowledge to address it. Being able
to identify a “good” versus a “bad” response time is important
because it allows us to provide help and feedback in a timely
manner - when it is really necessary and needed - and
consequently we can create better systems and gain a better
understanding of how learning takes place.

In this paper, we propose a new modeling approach for
predicting student performance using the student’s response
time. In particular, we build on the hypothesis that there is no
linear relationship between student response time and
correctness: a student who takes either too little time or too
long to respond to a step (where a step can be either a tutor’s
question or task), will most likely be unsuccessful for this
particular step. Therefore, we argue that modeling a student’s
response time as a quadratic factor - rather that a linear one -
will result in more accurate and better performing student
models [7].

Prior studies suggest that indeed the relationship between
response time and student performance is non-linear [3,11].
On the one hand, a student needs a minimum amount of time
in order to process the problem, retrieve appropriate
information, and to construct a correct response. If the
student attempts to respond too fast, this can mean that either
they did not really process the task as required or that the
student attempts to game the system. On the other hand, if the
student takes too long to respond, this may indicate lack of
background knowledge, failure to retrieve critical information,
and inability to address the step.

Here, we compare three student models: a traditional
cognitive student model, the Additive Factors Model (AFM)
that predicts student performance with respect to prior
student practice, an AFM-LT model that predicts student
performance with respect to prior student practice and step
duration - that is, the time a student takes to carry out a step
of a learning activity - as a linear function, and an AFM-QT
model that predicts student performance with respect to prior
student practice and step duration as a quadratic function. We
argue that the AFM-QT model will outperform both the AFM
and the AFM-LT model with respect to the goodness of fit as
well as with respect to prediction accuracy of student
performance on unseen steps from seen students.

In the next sections, we provide an overview of the related
work and describe the three student models used in this work.
Then, we present the dataset used to train and test the student
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models and the method of study. Finally, we present the
results and conclude with a discussion on the findings and
future work.

2 STUDENT MODELING

2.1 Background about student models

Most student models developed for intelligent Tutoring
Systems (ITSs) are based on the notion of mastery learning;
that is, the student is asked to continue solving problems or
answering questions on a concept until she has mastered it.
Only then will the student be guided to move forward to other
concepts [9,10]. Mastery learning is in line with the notion of
learning curves that is, how many opportunities a student
needs in order to master a skill or knowledge component. In
order to assess mastery, ITSs use student models that predict
the performance of students on various steps of a learning
activity. Based on these predictions, the tutor chooses what
kind of content or scaffolding to provide to students.

Typically, cognitive student models predict step outcomes -
that is whether a student will carry out a step-task correctly
or not - based on the skills involved in this step and student’s
prior practice. For example, the Additive Factors Analysis
Model (AFM) - introduced into ITS research by Cen et. al. [4,5]
- predicts the likelihood of a student correctly completing a
step as a linear function of student parameters (the student’s
proficiency), knowledge components or skill parameters (the
difficulty of the knowledge components or skill involved in
certain questions or tasks) and the learning rates of skills.
AFM considers the frequency of prior practice and exposure to
skills. In addition to AFM, the Performance Factors Analysis
Model (PFM) [16] considers whether prior practice was
successful (that is, how many times a student answered
correctly or incorrectly) and the Instructional Factors Analysis
Model (IFM) [6] also considers the tells (that is, how many
times the tutor gave away the answer of the next step directly
instead of eliciting).

Even though there have been attempts to introduce time as
a predictor for student’s performance (see e.g, [14]), to the
best of our knowledge, as of now there is no student model
that uses step duration to predict student success with
consistent results used in ITSs.

2.2 Time and student performance

Previous work has focused on studying the relationship
between time and outcome in terms of correctness, either
directly or as a proxy of engagement, but also as a predictor
for student performance. Xiong and Pardos [18] explored the
use of response times for predicting future performance but
they noted that they did not identify a clear trend between
response time and correctness. Lin et. al. [13] incorporated
response times in BKT models and explored whether this
addition would lead to better performance in terms of
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prediction accuracy in next-step’s performance. This work
indicated that response time can potentially be a good
predictor for posttest scores but does not always support
predicting performance on individual steps. Beck [2]
proposed the use of response time as a proxy for students’
engagement and argued that setting time thresholds to
students is counterproductive because this practice does not
take into account students’ characteristics.

Other work suggested that there is a differentiation in
response times with respect to the outcome’s correctness. In
particular, Miller et al. [15] found that on average, the
response time for correct answers was faster than for
incorrect answers and that good background knowledge and
high self-efficacy relates to fast response time.

Chounta and Carvalho [7] suggested that the relationship
between step duration and student performance is non-linear
and therefore it would not be accurate to model time as a
linear factor. To conceptualize this, they defined the concept
of the Zone of Interest, as “a time frame defined by a minimum
and a maximum step duration (dtmin and dtmax respectively)
in which a student will likely provide the correct answer (and
thus the error rate will be low in the same interval).
Consequently, every step that lies outside this time frame will
most likely be solved incorrectly or not solved, and the error
rate will be high”. Their results suggested that within the ZOI
students tended to give more correct answers than outside
the ZOI which indicated a non-linear relationship between
time and performance. This concept is supported by related
research that indicates that too little and too much time on
task are indicators of unsuccessful practice and students’
attempts to game the system [3,11].

3 METHODOLOGY

3.1 Three student models: AFM, AFM-LT,
AFM-QT

In this paper, we compared three nested student models. In
particular, we used a standard AFM model as a basis. As
aforementioned, the AFM model predicts student’s
performance on a step that involves a skill KC based on the
student’s prior practice regarding this skill. For the
implementation of the AFM model, we followed Datashop’s
proposed approach! shown in the regression formula (1):

(1) AFM = Outcome ~ Student + KC + KC:Opportunity
where:

Outcome is the result per step - correct or incorrect;

Student stands for the student id of the student who carries

out this step;

KC is the skill involved in this step;

KC:Opportunity stands for the number of previous attempts

a student had on this particular skill.

! https://pslcdatashop.web.cmu.edu/help?page=rSoftware
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In order to include students’ response time, we enhanced
the standard AFM by adding step duration as a linear
component to the original AFM model. This is depicted in the
regression formula (2). We refer to this time-enhanced model
as the AFM-LT (AFM-Linear Time) model.

(2) AFM-LT = Outcome ~ Student + KC + KC:Opportunity +

+ step_duration

where:

Outcome is the result per step - correct or incorrect;

Student stands for the student id of the student who carries

out this step;

KC is the skill involved in this step;

KC:Opportunity is the number of previous attempts a student

had on this particular skill.

step_duration is the time the student took to carry out this

step (in seconds).

Next, we use another time-enhanced model - we refer to it
as AFM-QT (AFM-Quadratic Time) model. Here, we enhanced
the standard AFM by adding step duration as a quadratic
component to the original AFM model step duration. This is
depicted in regression formula (3).

(3) AFM-QT = Outcome ~ Student + KC + KC:Opportunity +

+ step_duration + (step_duration)?

We argue that since the relationship between step duration
and student performance is not linear, the quadratic model
AFM-QT will be a better fit and provide more accurate
predictions than both the AFM and the AFM-LT models.

3.2 Datasets

To further study our hypothesis, we used four datasets from
four different STEM-related courses. All of the courses were
supported by Intelligent Tutoring Systems. All datasets are
shared via the online repository Datashop [12]. From these
datasets we excluded steps that were not related to any skill
(KC) and we also excluded steps that did not have any
information about their duration. We used the following
datasets:

e  Fractions (domain: Math)[1]: the tasks of this dataset
are focusing on identifying and constructing fractions
using graphical representations. The data were
collected in 2013. After preprocessing, dataset
consisted of 77 students, 8003 steps and 20 KCs.

e Genetics [8]: the tasks of this dataset were complex
problem-solving activities across a wide range of
genetics topics. The data were collected in 2016. After
initial preprocessing, it consisted of 124 students,
14458 steps and 53 KCs.

e  Stoichiometry (domain: Chemistry) [14]: the tasks in
this dataset are problem-solving activities and worked
examples on Stoichiometry and the data were
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collected in academic year 2009-2010. After
preprocessing, the dataset consisted of 55 students,
9564 steps and 36 KCs.

e  Physics [17]: problem-solving tasks for Physics. Data
were collected in academic year 2011-2012. After
preprocessing, the dataset consisted of 314 students,
38499 steps and 102 KCs.

3.3 Study setup

In order to explore how different ways to model time would
impact prediction of student performance, we compared the
performance of the three student models - AFM, AFM-LT and
AFM-QT - on the four datasets acquired from the
aforementioned ITS-supported science courses.

For the comparison of the student models, we followed a
two-step process:

As a first step, we fitted the three models on the whole
dataset and we conducted a 10-fold cross validation. As
measures of the models’ quality and performance, we used 3
metrics that are commonly used for model selection: the
Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC) and the Cross-Validation estimate of Accuracy
(CV.ACC). For AIC and BIC, the lower the value the better the
model. For CV accuracy, a higher value signifies a more
accurate model. These metrics have been used in related work
for choosing between parametric models with different
numbers of parameters [4,14].

As a second step, we randomly split the dataset using the
Pareto principle: 80% of the dataset was used to train our
models and 20% of the dataset was used for testing - that is,
for prediction. The training-testing process was repeated for
all the four courses. The aim was to study how well the models
would predict unseen steps. To evaluate the results of the
second step, we used as predictive accuracy metrics the Root
Mean Square Error (RMSE) - depicted in equation (4). RMSE
has been used in related work to evaluate predictive accuracy

[6].

> (pi —0;)?

(4) RMSE = T

4 RESULTS

To explore our research hypothesis, we studied whether the
use of step duration as a predicting feature improves the
performance of a well-established student model. Then, we
studied whether modeling step duration as a quadratic
function would provide us with a better fitting model than
modeling step duration as a linear function. We compared the
three student models that we described in section 3.1: an AFM
student model, an AFM with a Linear Step Duration feature
and an AFM with a Quadratic Step Duration feature. As a first
step, we trained the three models on each and every-one of
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the four courses’ datasets and we carried out 10-fold cross-
validation. Then, we compared the three models using the
following metrics: AIC, BIC and cross validation estimate of
accuracy (for 10-fold cross validation). For both AIC and BIC,
lower values indicate models that are closer to the truth and
consequently, more accurate fits. On the contrary, higher
cross-validation estimates of accuracy indicate better fits.

4.1 Model comparison - AFM, AFM-LT & AFM-
QT

The results of the first-step of the analysis are presented in
Table 1. The results show that the AMF-QT models - that is the
AFM enhanced with the step duration quadratic factor - are
better fits over all the four datasets. In all cases, the AFM-QT
models exhibit lower AIC and BIC than both the AFM and the
AFM-LT models. In turn, the AFM-LT models - that is the AFM
models enhanced with the linear step duration factor - have
lower AIC and BICs from the traditional AFM models.

Table 1. Comparison between the three models AFM,
AFM-LT and AFM-QT using AIC, BIC and cross-validation
accuracy CV ACC

Course: Fractions

AIC BIC CV ACC
AFM 8483.4 8839.8 0.732
AFM-LT 7416.7 7780 0.784
AFM-QT 7270.8 7641.1 0.778
Course: Genetics
AIC BIC CV ACC
AFM 15385.55 17121.14 0.737
AFM-LT 14762.96 16506.13 0.756
AFM-QT 14486.7 16237.45 0.762
Course: Chemistry
AIC BIC CV ACC
AFM 11124.45 12027.34 0.770
AFM-LT 10579.93 11489.99 0.769
AFM-QT 10531.49 11448.7 0.769
Course: Physics
AIC BIC CV ACC
AFM 24985.21 29409.89 0.876
AFM-LT 24385.14 28818.39 0.877
AFM-QT 23863.51 28305.31 0.878

The results were similar regarding the cross-validation
estimate of accuracy (for a 10-fold cross validation). The
accuracy of the AFM-QT models in the cross validation was
4
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higher in comparison to the AFM models for three out of four
datasets. For the chemistry dataset, the cross-validation
accuracy was almost the same for all three models. In
comparison to the AFM-LT models, the AFM-QT have either
similar or higher accuracy.

We confirmed the results regarding the goodness of fit using
the ANOVA Chi-square (likelihood ratio) test. For all datasets,
the AFM-QT models significantly outperformed both the AFMs
and the AFM-LT models (p <.0001). This finding suggests that,
on the one hand, adding time - in this context as the step
duration- as a predictive feature can improve the predictive
power of a student model. On the other hand, the relation
between step duration and performance seems to be non-
linear. In our case, it was suggested that using a quadratic
function for modeling students’ response times can be a more
appropriate way than using a linear function.

4.2 Models’ comparison for unseen step
prediction - AFM, AFM-LT & AFM-QT

Next, we compared the three models with respect to unseen
step prediction. As described in section 3.3, we used the each
of the three models to predict the outcome of unseen steps
with respect to correctness. To evaluate the accuracy of
prediction, we used the Root Mean Square Error (RMSE). The
results are presented in Table 2.

The RMSE was lower for the AFM-QT models than the
traditional AFM models for all four cases. Furthermore, the
AFM-LT model was also more accurate than the AFM models.
When comparing the AFM-QT to the AFM-LT models, the
results suggest that the AFM-QT model is better than the AFM-
LT model for all the datasets as well.

In one case, for the Physics course, the RMSE difference
between the three models - and especially between the AFM-
LT and the AFM-QT - is very small suggesting that the
predictive accuracy is almost similar. This is also depicted in
the cross-validation results. One possible explanation might
be that the accuracy of the model is negatively affected by the
big number of KCs. The dataset coming from the Physics
course has twice as many (and even more) KCs than the other
courses.

Table 2. Comparison between the three models AFM,
AFM-LT and AFM-QT using RMSE for predicting
performance on unseen steps

RMSE (prediction)

Dataset AFM AFM-LT AFM-QT
Fractions 0.404 0.385 0.378
Genetics 0.435 0.428 0.421

Stoichiometry 0.446 0.437 0.433

Physics 0.303 0.299 0.298
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5 CONCLUSIONS

In this paper, we investigated the use of step duration as a
predictor of student performance in two ways: modeling step
duration as a linear parameter (AFM-LT) and modeling step
duration as a quadratic parameter (AFM-QT). To explore the
effect of these two approaches, we compared the two models
with a standard cognitive model (AFM) over four different
STEM, ITS-supported courses.

We determined that including step duration as a quadratic
parameter improves the model’s performance both with
respect to goodness of fit and with respect to predictive
accuracy on unseen steps. The AFM-QT model outperformed
the standard AFM and the AFM-LT models in all cases over all
the performance metrics, except one. In this one case, the
AFM-LT model performed slightly better with respect to
cross-validation accuracy (AFM-LT = 0.784, AFM-QT = 0.778)
but the AFM-QT performed better with respect to all other
metrics. The results also showed that the student models tend
to perform similarly when the number of KCs increases. This
may indicate that increasing the number of KCs affects
negatively the accuracy of the model in general.

The contribution of this approach is two-fold: first, the
results suggest that in this way we can use step duration
towards improving the performance of student models;
second, it offers insight with respect to the relationship
between response time and student performance. The results
of this work have implications for designing intelligent
tutoring systems, for providing timely feedback, and
potentially for designing personalized learning and
assessment activities. On the one hand, designing student
models that take into account students’ response times can
support us in providing accurate predictions of student
performance. On the other hand, being able to relate student
performance to response times will allow us to provide
focused and timely feedback. For example, using the outcome
of the student model we can advise a student to use more time
in order to think carefully a hasty answer or to provide a hint
to a student who takes too long to carry out a step.

For future work, we plan to use this approach in
combination with the Performance Factors Analysis Model
(PFM). We envision this is an important step because PFM
differentiates between correct and incorrect steps and thus
we can model step duration separately for correct and
incorrect outcomes. Furthermore, we plan to explore how this
approach may impact student learning outcomes.
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