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ABSTRACT	

In	 this	 paper,	 we	 explore	 how	 we	 can	 model	 students’	

response	 times	 to	predict	 student	performance	 in	 Intelligent	

Tutoring	 Systems.	 Related	 research	 suggests	 that	 response	

time	 can	 provide	 information	 with	 respect	 to	 correctness.	

However,	 time	 is	 not	 consistently	 used	 when	 modeling	

students’	performance.	Here,	we	build	on	previous	work	that	

indicated	 that	 the	 relationship	 between	 response	 time	 and	

student	performance	is	non-linear.	Based	on	this	concept,	we	

compare	 three	models:	 a	 standard	Additive	 Factors	 Analysis	

Model	 (AFM),	 an	 AFM	 model	 enhanced	 with	 a	 linear	 step	

duration	 parameter	 and	 an	 AFM	 model	 enhanced	 with	 a	

quadratic,	 step	 duration	 parameter.	 The	 results	 of	 this	

comparison	show	 that	 the	AFM	model	 that	 is	 enhanced	with	

the	quadratic	step	duration	parameter	outperforms	the	other	

models	 over	 four	 different	 datasets	 and	 for	 most	 of	 the	

metrics	we	used	to	evaluate	the	models	in	cross	validation	and	

prediction.	
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1	 INTRODUCTION	

The	 use	 of	 students’	 response	 time	 for	 modeling	 and	

predicting	 their	 performance	 in	 Intelligent	Tutoring	 Systems	

(ITSs)	 has	 been,	 so	 far,	 a	 challenging	 task	 and	 an	 open	

question.	 For	 instance,	 even	 though	 response	 time	 can	

potentially	be	a	good	predictor	of	post-test	scores,	it	does	not	

always	predict	performance	in	individual	learning	steps	[13].		

Given	 these	 challenges,	 it	 is	 still	 not	 clear	 how	 to	 identify	

and	 model	 a	 “good”	 response	 time	 –	 a	 response	 time	 that	

indicates	 the	 student	 is	knowledgeable	about	 the	 task	–	or	a	

“bad”	response	time	–	a	response	time	that	indicates	that	the	

student	either	is	not	interested	in	the	activity	or	does	not	have	

the	required	background	knowledge	to	address	it.	Being	able	

to	identify	a	“good”	versus	a	“bad”	response	time	is	important	

because	it	allows	us	to	provide	help	and	feedback	in	a	timely	

manner	 –	 when	 it	 is	 really	 necessary	 and	 needed	 –	 and	

consequently	we	can	create	better	systems	and	gain	a	better	

understanding	of	how	learning	takes	place.		

In	 this	 paper,	 we	 propose	 a	 new	 modeling	 approach	 for	

predicting	student	performance	using	 the	student’s	 response	

time.	In	particular,	we	build	on	the	hypothesis	that	there	is	no	

linear	 relationship	 between	 student	 response	 time	 and	

correctness:	a	student	who	 takes	either	 too	 little	 time	or	 too	

long	to	respond	to	a	step	(where	a	step	can	be	either	a	tutor’s	

question	 or	 task),	 will	 most	 likely	 be	 unsuccessful	 for	 this	

particular	step.		Therefore,	we	argue	that	modeling	a	student’s	

response	time	as	a	quadratic	factor	-	rather	that	a	linear	one	–	

will	 result	 in	 more	 accurate	 and	 better	 performing	 student	

models	[7].		

Prior	 studies	 suggest	 that	 indeed	 the	 relationship	between	

response	 time	 and	 student	 performance	 is	 non-linear	 [3,11].	

On	the	one	hand,	a	student	needs	a	minimum	amount	of	time	

in	 order	 to	 process	 the	 problem,	 retrieve	 appropriate	

information,	 and	 to	 construct	 a	 correct	 response.	 If	 the	

student	attempts	to	respond	too	fast,	this	can	mean	that	either	

they	 did	 not	 really	 process	 the	 task	 as	 required	 or	 that	 the	

student	attempts	to	game	the	system.	On	the	other	hand,	if	the	

student	 takes	 too	 long	 to	 respond,	 this	may	 indicate	 lack	 of	

background	knowledge,	failure	to	retrieve	critical	information,	

and	inability	to	address	the	step.		

Here,	 we	 compare	 three	 student	 models:	 a	 traditional	

cognitive	 student	 model,	 the	 Additive	 Factors	 Model	 (AFM)	

that	 predicts	 student	 performance	 with	 respect	 to	 prior	

student	 practice,	 an	 AFM-LT	 model	 that	 predicts	 student	

performance	with	 respect	 to	 prior	 student	 practice	and	 step	

duration	–	that	is,	the	time	a	student	takes	to	carry	out	a	step	

of	 a	 learning	 activity	 –	 as	 a	 linear	 function,	 and	 an	 AFM-QT	

model	that	predicts	student	performance	with	respect	to	prior	

student	practice	and	step	duration	as	a	quadratic	function.	We	

argue	 that	 the	AFM-QT	model	will	outperform	both	 the	AFM	

and	the	AFM-LT	model	with	respect	 to	the	goodness	of	 fit	as	

well	 as	 with	 respect	 to	 prediction	 accuracy	 of	 student	

performance	on	unseen	steps	from	seen	students.		

In	the	next	sections,	we	provide	an	overview	of	 the	related	

work	and	describe	the	three	student	models	used	in	this	work.	

Then,	we	present	the	dataset	used	to	train	and	test	the	student	
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models	 and	 the	 method	 of	 study.	 Finally,	 we	 present	 the	

results	 and	 conclude	 with	 a	 discussion	 on	 the	 findings	 and	

future	work.	

2	 STUDENT	MODELING	

2.1	 Background	about	student	models	

Most	 student	 models	 developed	 for	 intelligent	 Tutoring	

Systems	 (ITSs)	 are	 based	 on	 the	 notion	 of	mastery	 learning;	

that	 is,	 the	 student	 is	 asked	 to	 continue	 solving	problems	or	

answering	 questions	 on	 a	 concept	 until	 she	 has	mastered	 it.	

Only	then	will	the	student	be	guided	to	move	forward	to	other	

concepts	[9,10].	Mastery	learning	is	in	line	with	the	notion	of	

learning	 curves	 that	 is,	 how	 many	 opportunities	 a	 student	

needs	 in	order	to	master	a	skill	or	knowledge	component.	 In	

order	to	assess	mastery,	ITSs	use	student	models	that	predict	

the	 performance	 of	 students	 on	 various	 steps	 of	 a	 learning	

activity.	 Based	 on	 these	 predictions,	 the	 tutor	 chooses	 what	

kind	of	content	or	scaffolding	to	provide	to	students.	

Typically,	cognitive	student	models	predict	step	outcomes	–	

that	 is	whether	a	 student	will	 carry	out	a	 step-task	correctly	

or	not	–	based	on	the	skills	involved	in	this	step	and	student’s	

prior	 practice.	 For	 example,	 the	 Additive	 Factors	 Analysis	

Model	(AFM)	-	introduced	into	ITS	research	by	Cen	et.	al.	[4,5]	

-	 predicts	 the	 likelihood	 of	 a	 student	 correctly	 completing	 a	

step	as	a	linear	function	of	student	parameters	(the	student’s	

proficiency),	knowledge	components	or	skill	parameters	(the	

difficulty	 of	 the	 knowledge	 components	 or	 skill	 involved	 in	

certain	 questions	 or	 tasks)	 and	 the	 learning	 rates	 of	 skills.	

AFM	considers	the	frequency	of	prior	practice	and	exposure	to	

skills.	 In	 addition	 to	 AFM,	 the	 Performance	 Factors	 Analysis	

Model	 (PFM)	 [16]	 considers	 whether	 prior	 practice	 was	

successful	 (that	 is,	 how	 many	 times	 a	 student	 answered	

correctly	or	incorrectly)	and	the	Instructional	Factors	Analysis	

Model	 (IFM)	 [6]	 also	 considers	 the	 tells	 (that	 is,	 how	many	

times	the	tutor	gave	away	the	answer	of	the	next	step	directly	

instead	of	eliciting).	

Even	though	there	have	been	attempts	to	introduce	time	as	

a	 predictor	 for	 student’s	 performance	 (see	 e.g.,	 [14]),	 to	 the	

best	 of	 our	 knowledge,	 as	 of	 now	 there	 is	 no	 student	model	

that	 uses	 step	 duration	 to	 predict	 student	 success	 with	

consistent	results	used	in	ITSs.	

2.2	 Time	and	student	performance	

Previous	 work	 has	 focused	 on	 studying	 the	 relationship	

between	 time	 and	 outcome	 in	 terms	 of	 correctness,	 either	

directly	or	as	a	proxy	of	engagement,	but	also	as	a	predictor	

for	student	performance.	Xiong	and	Pardos	[18]	explored	the	

use	 of	 response	 times	 for	 predicting	 future	performance	but	

they	 noted	 that	 they	 did	 not	 identify	 a	 clear	 trend	 between	

response	 time	 and	 correctness.	 Lin	 et.	 al.	 [13]	 incorporated	

response	 times	 in	 BKT	 models	 and	 explored	 whether	 this	

addition	 would	 lead	 to	 better	 performance	 in	 terms	 of	

prediction	 accuracy	 in	 next-step’s	 performance.	 This	 work	

indicated	 that	 response	 time	 can	 potentially	 be	 a	 good	

predictor	 for	 posttest	 scores	 but	 does	 not	 always	 support	

predicting	 performance	 on	 individual	 steps.	 Beck	 [2]	

proposed	 the	 use	 of	 response	 time	 as	 a	 proxy	 for	 students’	

engagement	 and	 argued	 that	 setting	 time	 thresholds	 to	

students	 is	 counterproductive	because	 this	practice	does	not	

take	into	account	students’	characteristics.		

Other	 work	 suggested	 that	 there	 is	 a	 differentiation	 in	

response	 times	with	respect	 to	 the	outcome’s	correctness.	 In	

particular,	 Miller	 et	 al.	 [15]	 found	 that	 on	 average,	 the	

response	 time	 for	 correct	 answers	 was	 faster	 than	 for	

incorrect	answers	and	 that	good	background	knowledge	and	

high	self-efficacy	relates	to	fast	response	time.		

Chounta	 and	 Carvalho	 [7]	 suggested	 that	 the	 relationship	

between	step	duration	and	student	performance	is	non-linear	

and	 therefore	 it	 would	 not	 be	 accurate	 to	 model	 time	 as	 a	

linear	 factor.	To	 conceptualize	 this,	 they	defined	 the	 concept	

of	the	Zone	of	Interest,	as	“a	time	frame	defined	by	a	minimum	

and	a	maximum	step	duration	(dtmin	and	dtmax	respectively)	

in	which	a	 student	will	 likely	provide	 the	 correct	 answer	 (and	

thus	 the	 error	 rate	 will	 be	 low	 in	 the	 same	 interval).	

Consequently,	 every	 step	 that	 lies	 outside	 this	 time	 frame	will	

most	 likely	 be	 solved	 incorrectly	 or	 not	 solved,	 and	 the	 error	

rate	will	be	high”.	Their	results	suggested	that	within	the	ZOI	

students	 tended	 to	 give	 more	 correct	 answers	 than	 outside	

the	 ZOI	 which	 indicated	 a	 non-linear	 relationship	 between	

time	 and	 performance.	 This	 concept	 is	 supported	 by	 related	

research	 that	 indicates	 that	 too	 little	 and	 too	much	 time	 on	

task	 are	 indicators	 of	 unsuccessful	 practice	 and	 students’	

attempts	to	game	the	system	[3,11].	

3	 METHODOLOGY	

3.1	 Three	student	models:	AFM,	AFM-LT,	

AFM-QT	

In	this	paper,	we	compared	three	nested	student	models.	In	

particular,	 we	 used	 a	 standard	 AFM	 model	 as	 a	 basis.	 As	

aforementioned,	 the	 AFM	 model	 predicts	 student’s	

performance	 on	 a	 step	 that	 involves	 a	 skill	 KC	 based	 on	 the	

student’s	 prior	 practice	 regarding	 this	 skill.	 For	 the	

implementation	 of	 the	 AFM	 model,	 we	 followed	 Datashop’s	

proposed	approach1	shown	in	the	regression	formula	(1):	

(1) AFM	=	Outcome	~	Student	+	KC	+	KC:Opportunity	

where:	

Outcome	is	the	result	per	step	–	correct	or	incorrect;	

Student	stands	for	the	student	id	of	the	student	who	carries		

out	this	step;	

KC	is	the	skill	involved	in	this	step;	

KC:Opportunity	stands	for	the	number	of	previous	attempts		

a	student	had	on	this	particular	skill.	

                                                
1 https://pslcdatashop.web.cmu.edu/help?page=rSoftware 
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	In	 order	 to	 include	 students’	 response	 time,	we	 enhanced	

the	 standard	 AFM	 by	 adding	 step	 duration	 as	 a	 linear	

component	to	the	original	AFM	model.	This	is	depicted	in	the	

regression	formula	(2).	We	refer	to	this	time-enhanced	model	

as	the	AFM-LT	(AFM-Linear	Time)	model.		

(2)	AFM-LT	=	Outcome	~	Student	+	KC	+	KC:Opportunity	+

	 +	step_duration	

where:	

Outcome	is	the	result	per	step	–	correct	or	incorrect;	

Student	stands	for	the	student	id	of	the	student	who	carries					

out	this	step;	

KC	is	the	skill	involved	in	this	step;	

KC:Opportunity	is	the	number	of	previous	attempts	a	student		

had	on	this	particular	skill.	

step_duration	is	the	time	the	student	took	to	carry	out	this		

step	(in	seconds).	

	

Next,	we	use	another	 time-enhanced	model	 -	we	refer	 to	 it	

as	AFM-QT	(AFM-Quadratic	Time)	model.	Here,	we	enhanced	

the	 standard	 AFM	 by	 adding	 step	 duration	 as	 a	 quadratic	

component	 to	 the	 original	 AFM	model	 step	 duration.	 This	 is	

depicted	in	regression	formula	(3).		

	(3)	AFM-QT	=	Outcome	~	Student	+	KC	+	KC:Opportunity	+

	 +	step_duration		+	(step_duration)2	

	

We	argue	that	since	the	relationship	between	step	duration	

and	 student	 performance	 is	 not	 linear,	 the	 quadratic	 model	

AFM-QT	 will	 be	 a	 better	 fit	 and	 provide	 more	 accurate	

predictions	than	both	the	AFM	and	the	AFM-LT	models.	

3.2	 Datasets	

To	further	study	our	hypothesis,	we	used	four	datasets	from	

four	 different	 STEM-related	 courses.	 All	 of	 the	 courses	were	

supported	 by	 Intelligent	 Tutoring	 Systems.	 All	 datasets	 are	

shared	 via	 the	 online	 repository	Datashop	 [12].	 From	 these	

datasets	we	excluded	steps	that	were	not	related	to	any	skill	

(KC)	 and	 we	 also	 excluded	 steps	 that	 did	 not	 have	 any	

information	 about	 their	 duration.	 We	 used	 the	 following	

datasets:	

• Fractions	(domain:	Math)[1]:	the	tasks	of	this	dataset	

are	focusing	on	identifying	and	constructing	fractions	

using	 graphical	 representations.	 The	 data	 were	

collected	 in	 2013.	 After	 preprocessing,	 dataset	

consisted	of	77	students,	8003	steps	and	20	KCs.	

• Genetics	 [8]:	 the	 tasks	 of	 this	 dataset	 were	 complex	

problem-solving	 activities	 across	 a	 wide	 range	 of	

genetics	topics.	The	data	were	collected	in	2016.	After	

initial	 preprocessing,	 it	 consisted	 of	 124	 students,	

14458	steps	and	53	KCs.	

• Stoichiometry	 (domain:	 Chemistry)	 [14]:	 the	 tasks	 in	

this	dataset	are	problem-solving	activities	and	worked	

examples	 on	 Stoichiometry	 and	 the	 data	 were	

collected	 in	 academic	 year	 2009-2010.	 After	

preprocessing,	 the	 dataset	 consisted	 of	 55	 students,	

9564	steps	and	36	KCs.	

• Physics	 [17]:	 problem-solving	 tasks	 for	 Physics.	Data	

were	 collected	 in	 academic	 year	 2011-2012.	 After	

preprocessing,	 the	dataset	 consisted	of	 314	 students,	

38499	steps	and	102	KCs.	

3.3	 Study	setup	

In	order	to	explore	how	different	ways	to	model	time	would	

impact	 prediction	 of	 student	 performance,	we	 compared	 the	

performance	of	the	three	student	models	–	AFM,	AFM-LT	and	

AFM-QT	 –	 on	 the	 four	 datasets	 acquired	 from	 the	

aforementioned	ITS-supported	science	courses.		

For	 the	 comparison	 of	 the	 student	 models,	 we	 followed	 a	

two-step	process:	

As	 a	 first	 step,	 we	 fitted	 the	 three	 models	 on	 the	 whole	

dataset	 and	 we	 conducted	 a	 10-fold	 cross	 validation.	 As	

measures	of	 the	models’	quality	and	performance,	we	used	3	

metrics	 that	 are	 commonly	 used	 for	 model	 selection:	 the	

Akaike	Information	Criterion	(AIC),	the	Bayesian	Information	

Criterion	(BIC)	and	the	Cross-Validation	estimate	of	Accuracy	

(CV.ACC).	For	AIC	and	BIC,	the	lower	the	value	the	better	the	

model.	 For	 CV	 accuracy,	 a	 higher	 value	 signifies	 a	 more	

accurate	model.	These	metrics	have	been	used	in	related	work	

for	 choosing	 between	 parametric	 models	 with	 different	

numbers	of	parameters	[4,14].	

As	 a	 second	 step,	we	 randomly	 split	 the	 dataset	 using	 the	

Pareto	 principle:	 80%	 of	 the	 dataset	 was	 used	 to	 train	 our	

models	and	20%	of	the	dataset	was	used	for	testing	–	that	is,	

for	prediction.	The	 training-testing	process	was	 repeated	 for	

all	the	four	courses.	The	aim	was	to	study	how	well	the	models	

would	 predict	 unseen	 steps.	 To	 evaluate	 the	 results	 of	 the	

second	step,	we	used	as	predictive	accuracy	metrics	the	Root	

Mean	Square	Error	 (RMSE)	 -	depicted	 in	equation	 (4).	RMSE	

has	been	used	in	related	work	to	evaluate	predictive	accuracy	

[6].	

(4)					%&'( =	*∑ (,- −/0 1-)23 	

4	 RESULTS	

To	explore	our	research	hypothesis,	we	studied	whether	the	

use	 of	 step	 duration	 as	 a	 predicting	 feature	 improves	 the	

performance	 of	 a	 well-established	 student	 model.	 Then,	 we	

studied	 whether	 modeling	 step	 duration	 as	 a	 quadratic	

function	 would	 provide	 us	 with	 a	 better	 fitting	 model	 than	

modeling	step	duration	as	a	linear	function.	We	compared	the	

three	student	models	that	we	described	in	section	3.1:	an	AFM	

student	model,	 an	 AFM	with	 a	 Linear	 Step	 Duration	 feature	

and	an	AFM	with	a	Quadratic	Step	Duration	feature.	As	a	first	

step,	we	 trained	 the	 three	models	 on	 each	 and	 every-one	 of	
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the	 four	 courses’	 datasets	 and	we	 carried	 out	 10-fold	 cross-

validation.	 Then,	 we	 compared	 the	 three	 models	 using	 the	

following	 metrics:	 AIC,	 BIC	 and	 cross	 validation	 estimate	 of	

accuracy	(for	10-fold	cross	validation).	For	both	AIC	and	BIC,	

lower	values	 indicate	models	that	are	closer	to	the	truth	and	

consequently,	 more	 accurate	 fits.	 On	 the	 contrary,	 higher	

cross-validation	estimates	of	accuracy	indicate	better	fits.	

4.1	 Model	comparison	-	AFM,	AFM-LT	&	AFM-

QT	

The	results	of	the	first-step	of	the	analysis	are	presented	in	

Table	1.	The	results	show	that	the	AMF-QT	models	-	that	is	the	

AFM	 enhanced	with	 the	 step	 duration	 quadratic	 factor	 -	 are	

better	fits	over	all	 the	four	datasets.	 In	all	cases,	 the	AFM-QT	

models	exhibit	lower	AIC	and	BIC	than	both	the	AFM	and	the	

AFM-LT	models.	In	turn,	the	AFM-LT	models	-	that	is	the	AFM	

models	 enhanced	with	 the	 linear	 step	duration	 factor	 -	 have	

lower	AIC	and	BICs	from	the	traditional	AFM	models.		

	

Table	 1.	 Comparison	 between	 the	 three	 models	 AFM,	

AFM-LT	 and	AFM-QT	using	AIC,	 BIC	 and	 cross-validation	

accuracy	CV	ACC	

Course: Fractions 

 AIC BIC CV ACC 

AFM 8483.4 8839.8 0.732 

AFM-LT 7416.7 7780 0.784 

AFM-QT 7270.8 7641.1 0.778 

Course: Genetics 

 AIC BIC CV ACC 

AFM 15385.55 17121.14 0.737 

AFM-LT 14762.96 16506.13 0.756 

AFM-QT 14486.7 16237.45 0.762 

Course: Chemistry 

 AIC BIC CV ACC 

AFM 11124.45 12027.34 0.770 

AFM-LT 10579.93 11489.99 0.769 

AFM-QT 10531.49 11448.7 0.769 

Course: Physics 

 AIC BIC CV ACC 

AFM 24985.21 29409.89 0.876 

AFM-LT 24385.14 28818.39 0.877 

AFM-QT 23863.51 28305.31 0.878 

	

The	 results	 were	 similar	 regarding	 the	 cross-validation	

estimate	 of	 accuracy	 (for	 a	 10-fold	 cross	 validation).	 The	

accuracy	 of	 the	 AFM-QT	models	 in	 the	 cross	 validation	 was	

higher	in	comparison	to	the	AFM	models	for	three	out	of	four	

datasets.	 For	 the	 chemistry	 dataset,	 the	 cross-validation	

accuracy	 was	 almost	 the	 same	 for	 all	 three	 models.	 In	

comparison	 to	 the	 AFM-LT	models,	 the	 AFM-QT	 have	 either	

similar	or	higher	accuracy.	

We	confirmed	the	results	regarding	the	goodness	of	fit	using	

the	ANOVA	Chi-square	(likelihood	ratio)	test.	For	all	datasets,	

the	AFM-QT	models	significantly	outperformed	both	the	AFMs	

and	the	AFM-LT	models	(p	<	.0001).	This	finding	suggests	that,	

on	 the	 one	 hand,	 adding	 time	 -	 in	 this	 context	 as	 the	 step	

duration-	 as	 a	 predictive	 feature	 can	 improve	 the	 predictive	

power	 of	 a	 student	 model.	 On	 the	 other	 hand,	 the	 relation	

between	 step	 duration	 and	 performance	 seems	 to	 be	 non-

linear.	 In	 our	 case,	 it	 was	 suggested	 that	 using	 a	 quadratic	

function	for	modeling	students’	response	times	can	be	a	more	

appropriate	way	than	using	a	linear	function.	

4.2	 	Models’	comparison	for	unseen	step	

prediction	-	AFM,	AFM-LT	&	AFM-QT	

Next,	we	compared	the	three	models	with	respect	to	unseen	

step	prediction.	As	described	in	section	3.3,	we	used	the	each	

of	 the	 three	models	 to	 predict	 the	 outcome	 of	 unseen	 steps	

with	 respect	 to	 correctness.	 To	 evaluate	 the	 accuracy	 of	

prediction,	we	used	the	Root	Mean	Square	Error	(RMSE).	The	

results	are	presented	in	Table	2.	

The	 RMSE	 was	 lower	 for	 the	 AFM-QT	 models	 than	 the	

traditional	 AFM	 models	 for	 all	 four	 cases.	 Furthermore,	 the	

AFM-LT	model	was	also	more	accurate	than	the	AFM	models.	

When	 comparing	 the	 AFM-QT	 to	 the	 AFM-LT	 models,	 the	

results	suggest	that	the	AFM-QT	model	is	better	than	the	AFM-

LT	model	for	all	the	datasets	as	well.		

In	 one	 case,	 for	 the	 Physics	 course,	 the	 RMSE	 difference	

between	the	three	models	–	and	especially	between	the	AFM-

LT	 and	 the	 AFM-QT	 –	 is	 very	 small	 suggesting	 that	 the	

predictive	accuracy	 is	almost	similar.	This	 is	also	depicted	 in	

the	 cross-validation	 results.	 One	 possible	 explanation	 might	

be	that	the	accuracy	of	the	model	is	negatively	affected	by	the	

big	 number	 of	 KCs.	 The	 dataset	 coming	 from	 the	 Physics	

course	has	twice	as	many	(and	even	more)	KCs	than	the	other	

courses.	

	

Table	 2.	 Comparison	 between	 the	 three	 models	 AFM,	

AFM-LT	 and	 AFM-QT	 using	 RMSE	 for	 predicting	

performance	on	unseen	steps	

 RMSE (prediction) 

Dataset AFM AFM-LT AFM-QT 

Fractions 0.404 0.385 0.378 

Genetics 0.435 0.428 0.421 

Stoichiometry 0.446 0.437 0.433 

Physics 0.303 0.299 0.298 
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5	 CONCLUSIONS	

In	this	paper,	we	 investigated	the	use	of	step	duration	as	a	

predictor	of	student	performance	in	two	ways:	modeling	step	

duration	 as	 a	 linear	 parameter	 (AFM-LT)	 and	modeling	 step	

duration	as	a	quadratic	parameter	 (AFM-QT).	To	explore	 the	

effect	of	these	two	approaches,	we	compared	the	two	models	

with	 a	 standard	 cognitive	 model	 (AFM)	 over	 four	 different	

STEM,	ITS-supported	courses.		

We	determined	 that	 including	step	duration	as	a	quadratic	

parameter	 improves	 the	 model’s	 performance	 both	 with	

respect	 to	 goodness	 of	 fit	 and	 with	 respect	 to	 predictive	

accuracy	on	unseen	 steps.	The	AFM-QT	model	outperformed	

the	standard	AFM	and	the	AFM-LT	models	in	all	cases	over	all	

the	 performance	 metrics,	 except	 one.	 In	 this	 one	 case,	 the	

AFM-LT	 model	 performed	 slightly	 better	 with	 respect	 to	

cross-validation	accuracy	(AFM-LT	=	0.784,	AFM-QT	=	0.778)	

but	 the	 AFM-QT	 performed	 better	 with	 respect	 to	 all	 other	

metrics.	The	results	also	showed	that	the	student	models	tend	

to	perform	similarly	when	the	number	of	KCs	increases.	This	

may	 indicate	 that	 increasing	 the	 number	 of	 KCs	 affects	

negatively	the	accuracy	of	the	model	in	general.	

The	 contribution	 of	 this	 approach	 is	 two-fold:	 first,	 the	

results	 suggest	 that	 in	 this	 way	 we	 can	 use	 step	 duration	

towards	 improving	 the	 performance	 of	 student	 models;	

second,	 it	 offers	 insight	 with	 respect	 to	 the	 relationship	

between	response	time	and	student	performance.	The	results	

of	 this	 work	 have	 implications	 for	 designing	 intelligent	

tutoring	 systems,	 for	 providing	 timely	 feedback,	 and	

potentially	 for	 designing	 personalized	 learning	 and	

assessment	 activities.	 On	 the	 one	 hand,	 designing	 student	

models	 that	 take	 into	 account	 students’	 response	 times	 can	

support	 us	 in	 providing	 accurate	 predictions	 of	 student	

performance.	On	the	other	hand,	being	able	to	relate	student	

performance	 to	 response	 times	 will	 allow	 us	 to	 provide	

focused	and	timely	feedback.	For	example,	using	the	outcome	

of	the	student	model	we	can	advise	a	student	to	use	more	time	

in	order	to	think	carefully	a	hasty	answer	or	to	provide	a	hint	

to	a	student	who	takes	too	long	to	carry	out	a	step.		

For	 future	 work,	 we	 plan	 to	 use	 this	 approach	 in	

combination	 with	 the	 Performance	 Factors	 Analysis	 Model	

(PFM).	 We	 envision	 this	 is	 an	 important	 step	 because	 PFM	

differentiates	 between	 correct	 and	 incorrect	 steps	 and	 thus	

we	 can	 model	 step	 duration	 separately	 for	 correct	 and	

incorrect	outcomes.	Furthermore,	we	plan	to	explore	how	this	

approach	may	impact	student	learning	outcomes.	
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