
HSIM-DNN: Hardware Simulator for Computation-,
Storage- and Power-Efficient Deep Neural Networks
Mengshu Sun

Northeastern University
Boston, Massachusetts

sun.meng@husky.neu.edu

Pu Zhao
Northeastern University
Boston, Massachusetts
zhao.pu@husky.neu.edu

Yanzhi Wang
Northeastern University
Boston, Massachusetts

yanz.wang@northeastern.edu

Naehyuck Chang
Korea Advanced Institute of Science

and Technology
Daejeon, South Korea

naehyuck@cad4x.kaist.ac.kr

Xue Lin
Northeastern University
Boston, Massachusetts

xue.lin@northeastern.edu

ABSTRACT
Deep learning that utilizes large-scale deep neural networks (DNNs)
is effective in automatic high-level feature extraction but also com-
putation and memory intensive. Constructing DNNs using block-
circulant matrices can simultaneously achieve hardware accelera-
tion and model compression while maintaining high accuracy. This
paper proposes HSIM-DNN, an accurate hardware simulator on
the C++ platform, to simulate the exact behavior of DNN hard-
ware implementations and thereby facilitate the block-circulant
matrix-based design of DNN training and inference procedures in
hardware. Real FPGA implementations validate the simulator with
various circulant block sizes and data bit lengths taking into ac-
count accuracy, compression ratio and power consumption, which
provides excellent insights for hardware design.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Hardware
→ Emerging simulation; • Software and its engineering →
Simulator / interpreter;
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1 INTRODUCTION
Deep learning based on deep neural networks (DNNs) has experi-
enced breakthroughs in recent years in broad areas, such as com-
puter vision [11, 18] and speech recognition [14]. Deep learning
applications have been migrating to smart objects like mobile and
Internet-of-Things (IoT) devices [1, 20], which can compose the
smart world and ubiquitous intelligence. Modern DNNs tend to con-
sist of multiple cascaded layers with at least millions of parameters
[18] that contribute to high computation accuracy through high-
level feature extraction. Nonetheless, the growing model size also
increases the computation and memory complexity, which becomes
the key challenge of DNN applications especially in smart world.
Aiming for higher scalability, performance and energy efficiency in
deep learning systems, two contradictory trends in research and de-
velopment for DNNs have emerged, namely hardware acceleration
and model compression.

Hardware acceleration based on FPGAs or ASICs yields higher
performance and better energy efficiency than that based on general-
purpose computing systems like CPUs and GPUs. Representative
works include Google’s Tensor Processing Units (TPUs) [16], IBM’s
TrueNorth chips [9, 22], and optimization related to memory trans-
fers [3, 4], dynamic-precision data quantization [23], processing
dataflow [5], weight sharing [10], bit-serial computation [17], etc.
Most designs of this type suffer from frequent accesses to off-
chip DRAM, which may consume over 100× energy than capacity-
limited on-chip SRAM[10, 12, 13], and easily dominate power con-
sumption of the entire system.

Model compression has been realized by several algorithm level
techniques, includingweight quantization [7, 21, 26, 27], connection
pruning [12, 13], and low rank approximation [15, 25]. A special
case of quantization is the low precision fixed-point representation
[21], which is prevalent in hardware like FPGAs and ASICs, only
using one or two bits for representation in extreme cases [7, 27].
Connection pruning removes all connections with weights below
a threshold [12, 13], and low rank approximation represents CNN
filter banks using a low rank basis of filters that are separable in
the spatial domain [15, 25]. Although these approaches offer rea-
sonable parameter reductions with less data storage and transfer
and minor accuracy loss, they have respective limitations. Quan-
tization achieves the compression ratio in a fixed-point form but
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requires the gradients to be denoted in floating-point numbers in
the training process. Pruning typically causes the network structure
to be irregular, thereby limiting the compression ratio and perfor-
mance, and both pruning and low rank approximation are likely
to increase the training complexity. Moreover, the compression
ratios achieved by all these approaches are heuristic and cannot be
precisely controlled.

A distinct method in [6] explores parameter redundancy of DNNs
by imposing a circulant structure for weight representation of fully-
connected layers. This work proposes corresponding accelerated
inference and training algorithms for fully-connected layers. Such
a method is generalized for both fully-connected layers and con-
volution layers in [8], based on block-circulant weight matrices
considering the trade-off between the accuracy degradation and
compression ratio or computation acceleration. It provides a cross-
platform hardware design and optimization solution for deep learn-
ing systems.

DNN hardware implementations are constrained by limited hard-
ware resources, i.e., the computing and storage units in FPGAs or
the tapeout area in ASICs, and it is time- and labor-consuming work
to fit the DNN architectures into available resources while meeting
the accuracy and power requirements. On the other hand, software
simulators for deep learning, such as Caffe and Tensorflow, could
not produce exact hardware results that are restricted by precision
and computing resources in hardware implementations. Therefore,
this paper proposes HSIM-DNN, an accurate hardware simulator
that simulates the behavior of DNN hardware implementations for
both training and inference procedures on the C++ platform. This
simulator accelerates the design and optimization cycles of DNN
hardware implementations by testing and checking the feasibility
of the hyperparameters (variables) in the hardware design. It thus
serves as a transition from pure software descriptions to hardware
description languages like VHDL and Verilog.

The main features of HSIM-DNN are as follows:
1) HSIM-DNN produces fast and exact results with high accu-

racy for DNN hardware implementations, and detects the existence
of data overflow of computations in hardware, allowing to avoid
overflow and improve the design at an early stage.

2) HSIM-DNN provides the energy/power performance under
different parameter configurations, and serves as the starting point
for future hardware platform-specific functional modules, such as
power and timing estimators.

3) HSIM-DNN supports online training of DNNs in hardware by
analyzing and verifying the feasibility and performance, which is
currently a technical difficulty for DNN hardware implementations.

2 BACKGROUND
2.1 Basics of Deep Neural Networks
DNNs may take various architectures, whereas they are all con-
structed by cascading multiple functional layers for feature extrac-
tion at multiple abstraction levels. The most fundamental types of
functional layers in DNNs are fully-connected layers, convolution
layers and pooling layers.

Fully-connected (FC) layers are the most computation- and
storage-intensive layers inDNNs [10, 23], due to the fully-connectedness
between adjacent layers. The computation for an FC layer consists

of matrix-vector arithmetic (including multiplication and addition)
and activation transformation, described as

y = ψ (Wx + θ ), (1)

where x is the input of the FC layer, y is the output, andW ∈ Rm×n

is the weight matrix of the synapses (i.e., connections) between
them neurons in the FC layer and the n neurons in the previous
layer, θ ∈ Rm is the bias vector, andψ (·) is the activation function.
The multiplication calculationWx determines the total computa-
tional complexity, and the remaining calculation in this equation
contributes to a lower complexity of O(n). The most widely utilized
activation function in DNN applications is the Rectified Linear Unit
(ReLU), given byψ (x) = max(0,x).

Convolution (CONV) layers extract features from the input
datawith a set of kernels (i.e., filters) [19]mainly bymulti-dimensional
convolutions, and the output feature maps are fed into the subse-
quent layers for higher-level feature extraction. The input data of
a CONV layer can be images or feature maps from the previous
layer. Specifically, the convolution of an input map and a kernel
is generated by moving the kernel through the input map. With
multiple kernels, a CONV layer is often associated with multiple
input and multiple output feature maps. The CONV computation
can be expressed in the form of tensor computation, as

Y(a,b,d) =
r∑
i=1

r∑
j=1

C∑
c=1

F (i, j, c,d)X(a + i − 1,b + j − 1, c), (2)

where X ∈ RW ×H×C , Y ∈ R(W −r+1)×(H−r+1)×D , F ∈ Rr×r×C×D

represent the input, output, and weight tensors of the CONV layer,
respectively. There are C input maps and D output maps, and each
kernel of size r × r is applied to each input map with the spatial
dimensionsW and H to generate an output map.

Pooling (POOL) layers subsample the extracted features to re-
duce data dimensions and mitigate overfitting problems. The domi-
nant pooling strategy in state-of-the-art DNN applications is max
pooling because of the high overall accuracy and high convergence
speed [4, 5].

Among these three types of layers, CONV and FC layers are
responsible for the majority of computation, and a POOL layer has
a lower computational complexity of O(n). The storage requirement
of DNNs originates from the weight matricesW’s for FC layers and
the convolution kernels represented by the tensors F ’s for CONV
layers. Therefore, FC and CONV layers become the major research
focus for efficient DNN implementations.

2.2 Block-Circulant Matrix-Based Weight
Representation

A block-circulant matrix is constructed by arraying equal-sized
square circulant sub-matrices in two dimensions, each circulant
matrix being considered as a block. A circulant matrix with k × k
elements has only k free elements, so the size of the block is defined
as k , which indicates the compression degree. Particularly, there
is no compression for blocks with k = 1. Fig. 1 gives an example
of a block-circulant matrix W with the calculation process with
regard to a certain circulant sub-matrix Wi j . The calculation of
Wx can then be reduced to the calculation of Wi jxj , which can
be performed through the “FFT → element-wise multiplication →
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IFFT" procedure according to the circulant convolution theorem [2],
which is elaborated in Section 3.
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Figure 1: Illustration of a block-circulant matrix.

3 SIMULATOR IMPLEMENTATION
In the proposed simulator HSIM-DNN, the block size (size of the
circulant matrix) and data precision (bit length) are considered as
two fundamental hardware optimization variables that are cho-
sen to balance the accuracy, the model compression ratio and the
hardware utility rate. A higher block size results in a greater com-
pression ratio with more computation acceleration but degrades
the accuracy. Increase in the bit length improves the accuracy but
requires more storage and computation resources.

The computation and validation process of HSIM-DNN is illus-
trated in Fig. 2. The image data and weights are first preprocessed,
i.e., they are quantized according to the bit length and segmented
based on the block size. After that, the FFT-based circulant mul-
tiplication is done for all circulant blocks. The outputs from the
blocks are then reformulated to generate the overall result, which
is checked on the correctness and overflow to give a feedback to
adjust the block size and bit length. The software validation pro-
vides insights into the hardware design with much less effort and
time compared with hardware validation.

Figure 2: Computation and validation of HSIM-DNN.
The data in hardware is represented in the form of fixed-point

binary numbers, i.e., in 2’s complement, in order to fit the limited
hardware resources. Therefore, the simulator contains a data con-
version module to convert decimals to fixed-point binary numbers,
and then it manages all operations based on fixed-point binary
numbers to simulate the actual calculations in DNN hardware im-
plementations. A fixed-point binary number consists of an integral
part and a fractional part. More integral bits can represent data
in a wider range and avoid overflow, and more fractional bits can
provide higher precision and better accuracy. An overflow detec-
tion mechanism is added to report if the data value exceeds the
acceptable data range and leads to computation errors.

The simulation procedure of HSIM-DNN has two main phases,
simulating DNN training and DNN inference in hardware, respec-
tively. The FFT-based computing module serves as the core calcula-
tion kernel for both phases.

3.1 FFT-Based Computing Module
As mentioned in Section 2.2, the calculation ofWi jxj can be per-
formed through the “FFT → element-wise multiplication → IFFT"
procedure, which is the basic computation in FC and CONV layers
in both training and inference. This procedure can be expressed as

Wi jxj = IFFT(FFT(wi j ) ◦ FFT(xj )), (3)

where wi j denotes the first row vector of Wi j , and ◦ denotes
element-wise multiplication. An FFT-based computing module is
designed for HSIM-DNN to execute this calculation as shown in
Fig. 3. This module can be split into an FFT submodule and an IFFT
submodule, the latter based on the former, as an IFFT can be realized
by an FFT with conjugate operations on the input and output.

  FFT-based computing

  

  module( x, w, b, N ) {

      r = FFT ( x, N ); 

      s = dotProduct ( r, w ); 

      t = IFFT ( s, N );

      return y;

  }

  FFT( x, N ) {

      if N = 1 then

          return x;

      else 

          compute or load twiddle factors u;

          for i = 1 until N/2 do

              [ x1(i), x2(i) ] = butterfly( x(i), x(i+N/2),  u(i) );

      end

      y1 = FFT( x1, N/2 );

      y2 = FFT( x2, N/2 );

      y = reorder( y1, y2 );

      return y;

  }

  IFFT( x, N ) {

      x1 = conjugate( x );

      y1 = FFT( x1, N );

      y = conjugate( y1 );

      y = y/N;

      return y;

  }

  [ o1, o2 ] = butterfly( a1, a2, v ) {

      o1 = a1 + a2;

      o2 =� a1 $ a2 �* v;

      return o1, o2

  }

Figure 3: Algorithm of FFT-based computing module.

A recursive FFT is implemented by the radix-2 decimation in
frequency (DIF) algorithm as illustrated in Fig. 4. More specifically,
an n-size FFT with n inputs and n outputs can be separated into
two FFTs each with size n/2 and one additional level of butterfly
calculation, and an n/2-size FFT can be further divided into two
n/4-size FFTs with one butterfly calculation level. A large-scale
FFT can be calculated by recursively performing FFTs on the same
computing module, and multiple small-scale FFTs can be calculated
on several computing modules in parallel. This recursive property
of FFT calculation is the key for hardware to accommodate DNN
models of different types and sizes on relatively small hardware
footprints with appropriate control logic and memory storage orga-
nization. Compared with the FFT computation, the rest of compu-
tations including component-wise multiplication, ReLU activation
and pooling have little time complexity and memory overhead,
which can be ignored.

Figure 4: Recursive FFT computation.

Tech Session 3: VLSI for Machine Learning and Artificial Intelligence GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA.

83



3.2 Inference of HSIM-DNN
HSIM-DNN applies block-circulant matrix-based calculation in FC
and CONV layers in the training and inference phases to mitigate
the computation and storage burdens owing to the large amount of
matrix-vector multiplication. The simulator first trains the DNN
model through forward-propagation and backward-propagation to
optimize parameters, and then it performs inference to make pre-
dictions for new input data. The inference phase is first introduced
since it is similar to the forward-propagation step in training.

3.2.1 Inference of FC layers. The original weight matrix W ∈

Rm×n of an FC layer can have an arbitrary size. To obtain a block-
circulant weight matrix,W is partitioned into equal-sized square
sub-matrices, i.e., blocks. Each blockWi j is a circulant matrix with
k × k elements (the block size is k), and W contains p × q blocks
where p = ⌈m/k⌉ and q = ⌈n/k⌉. If the division of m or n has a
remainder, zero padding should be applied for W to make every
block square. The weight matrix with partition is represented as

W = [Wi j ], i ∈ {1, . . . ,p}, j ∈ {1, . . . ,q}. (4)

The input vector x is also partitioned into q vectors each with size
k , represented as x = [xT1 ,x

T
2 , . . . ,xq ]

T, correspondingly. Thus the
original matrix-vector multiplicationWx can be replaced with mul-
tiple sub-matrix-vector multiplication calculations. The inference
process in an FC layer, omitting the bias and ReLU components in
(1), is described as

a =Wx =


∑q
j=1W1jxj∑q
j=1W2jxj

· · ·∑q
j=1Wpjxj


=


a1
a2
· · ·

ap ,

 , (5)

where ai ∈ Rk is a column vector. Furthermore, each block Wi j
can be denoted only by its first row wi j , and the calculation of
Wi jxj can be implemented by (3).

3.2.2 Inference of CONV layers. For a CONV layer that is associ-
ated with multiple input and output feature maps, the convolution
computation might be executed in multi-dimensions, namely in
tensor form, as mentioned in (2). The concept of block-circulant
structure is here generalized to a rank-4 tensor F , with all slices of
the form F (i, j, ·, ·) being circulant matrices. The tensor needs to
be reshaped into a 2D matrix to fit the block-circulant matrix-based
method. Specifically, the tensor computation in (2) is reformulated
as thematrixmultiplicationY = XF, whereX ∈ R(W −r+1)(H−r+1)×Cr 2 ,
Y ∈ R(W −r+1)(H−r+1)×D and F ∈ RCr

2×D . The element F (i, j, c,d)
is reformulated as fC(i−1)+Cr (j−1)+c,d in F, making F a block-circulant
matrix. Hence the fast multiplication approach for block-circulant
matrices can be applied to implement Y = XF, leading to computa-
tion acceleration.

3.2.3 Complexity Analysis. An FFT of size k has computational
complexity ofO(k logk). For a blockWi j of block sizek , the replace-
ment of the original matrix-vector multiplication by the FFT-based
computation can reduce the computational complexity from O(k2)
to O(k logk). In addition, only the first row vector wi j or FFT(wi j )
requires to be stored for each circulant matrix Wi j , reducing the
memory complexity from O(k2) to O(k).

Provided an m × n block-circulant matrix with the block size
of k , the computational complexity of an FC layer is O(pqk logk),
which is equivalent toO(n logn) (assuming n > m) when the values
of p and q are small. Similarly, the memory complexity is O(pqk),
equivalent to O(n) for small p and q values. The computational
complexity of a CONV layer is also reduced by the block-circulant
matrix-based method, from O(WHr2CD) to O(WHQ logQ), where
Q = max(Cr2, P). It can be seen that both computation acceleration
and model parameter compression are obtained.

3.3 Training of HSIM-DNN
The purpose of training is to optimize the DNN parameters in-
cluding weights and biases to minimize the loss, namely the gap
between the prediction results from the DNN and the original cor-
rect results given by the training dataset. In image classification
problems, the original results are labels indicating the category to
which each image belongs. The training process consists of two
steps, i.e., forward propagation and backward propagation. Forward
propagation is similar to the inference process, where the DNN
receives input image data and makes a prediction, and the only
difference from inference is that a loss function is evaluated by com-
paring the results from forward propagation and the original labels.
Backward propagation, also called backpropagation, calculates the
derivatives of the loss with respect to weights and biases, which
are then updated sequentially from the last layer to the first layer.
Forward propagation and backward propagation are performed
alternately until the loss decreases to an enough small value. The
forward and backward processes are shown in Fig. 5.

Figure 5: Forward and backward propagation in a multi-
layer DNN.

Letting the loss function be denoted by L, the weight matrix W
is updated in the backward propagation as

W =W − ϵ
∂L

∂W
, (6)

where ϵ denotes the learning rate. Subtracting the derivative of L
with respect to W moves W to decrease the loss and thus improve
the accuracy. Usually the derivative ∂L

∂W cannot be computed di-
rectly, so the chain rule would be applied to obtain the derivatives
sequentially from the last layer to the first layer, expressed as

∂L

∂wi j
=
∂L

∂ai
∂ai
∂wi j

=
∑k

l=1
∂L

∂ail

∂ail
∂wi j

, (7)

∂L

∂xj
=
∑p

i=1
∂L

∂ai
∂ai
∂xj
=
∑p

i=1

∑k

l=1
∂L

∂ail

∂ail
∂xj
, (8)

where ail represents the l-th output element in ai . SinceWi j is a
circulant matrix, ∂ai

∂wi j
and ∂ai

∂xj are also circulant matrices, defined
respectively by the base vector x′j = [x j,1,x j,k ,x j,k−1, . . . ,x j,2]

′,
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and the base vector of Wi j . And then ∂L
∂wi j

and ∂L
∂xj can be cal-

culated using the "FFT → element-wise multiplication → IFFT"
procedure to reduce the computational complexity of each layer.
The vectors wi j ’s, composing the circulant blocks Wi j ’s of each
layer, are trained directly so that the trained network naturally
follows the block-circulant structure. The key advantage is that no
additional steps are required in training and inference.

3.3.1 Training Acceleration. The FFT-based computing module
is improved to enhance the simulator performance in the follow-
ing three steps: (a) Encapsulating the FFTW++ library [24], which
provides a simple interface for FFTs of 1D, 2D, and 3D complex-to-
complex, real-to-complex, and complex-to-real Fast Fourier Trans-
forms with automation of memory allocation, alignment, wisdom,
and communication on both serial and parallel architectures and
with support in in-place and out-of-place multithreaded transforms
of arbitrary size. (b) Changing the structure of FFT implementation to
perform FFTs iteratively instead of recursively to save overhead of
implicit calls on the stack and to enable fine-grained memory man-
agement. (c) Implementing multi-threads or multi-cores to compute
the inference and training individually in each batch.

3.4 Energy/Power Performance
The energy/power performance of DNN hardware implementations
is another important concern in addition to the computation speed
and accuracy, and it is affected by two optimization variables, the
block size and bit length, as well as the hardware device type. Over-
all, large-scale devices dissipate more power, and they are needed
to accommodate large block sizes and long bit lengths, which add
more to the power dissipation. The power dissipation of FPGA de-
vices is composed of dynamic power dissipation, static power and
I/O power, with the first two terms as the main components. To
assist the DNN implementations, the power dissipation is measured
with several typical combinations of block sizes and bit lengths.

4 EXPERIMENTAL RESULTS
The HSIM-DNN design is tested for each module in DNN imple-
mentations in the Altera Cyclone V GT FPGA development kit, to
validate the accuracy, compression ratio and power performance
of the simulator. The training and inference of HSIM-DNN adopt
the representative benchmarks MNIST and CIFAR-10. The effects
of varying the block size and bit length are compared between the
proposed simulator and the original uncompressed DNN models
based on the software framework Caffe.

4.1 Results of MNIST and CIFAR-10 Datasets
Table 1 displays the accuracy and compression ratio of designed
with different block sizes, with the integral bit length fixed at 8
and the fractional bit length fixed at 12. The compression ratios
are obtained by comparing with the uncompressed DNN models
in software with 64-bit floating-point data. The degradation in
accuracy and increase of compression ratio can be observed as the
block size increases. Specifically, compression for the block size of
32 is around 100× with accuracy degradation of 1.6%.

Table 2 describes the accuracy and compression ratio when op-
timizing the bit length and fixing the block size at 64. Generally,

Table 1: Comparison on various block sizes for MNIST
Block Size Accuracy Compression Ratio

1 97.9% 3.2
32 96.3% 98.9
64 95.2% 191.0
128 93.3% 357.5
256 92.1% 633.8

increasing the bit length will improve the accuracy. Overflow can
occur when the integral bits are not enough, e.g., when the bit
length is (6, 8), accompanied by a low accuracy. The low accuracy
with bit length (7, 4) originates from the low fractional precision
with 4 bits.

Table 2: Comparison on various bit lengths for MNIST

Integral Bits + Fractional Bits Accuracy Compression Ratio
(6, 8) (overflow) 91.5% 272.8

(7, 4) 77.8% 347.3
(7, 5) 94.4% 318.4
(7, 8) 95.0% 254.7
(7, 10) 95.1% 224.7
(8, 10) 95.1% 212.2
(8, 12) 95.2% 191.0

Furthermore, the storage space for weights can be reduced by
using less bits to represent weights in storage. Table 3 shows that 15
bits in computation can be reduced to 8 bits in storage with slight
accuracy degradation.

Table 3: Accuracy for storage with less bits

Bit Length Bit Length Accuracy Compression Ratiofor Computation for Storage
(6, 6) (overflow) (5,3) 92.0% 381.0
(6, 8) (overflow) (5,3) 91.2% 444.5

(7, 8) (5,3) 94.4% 476.3

The results from CIFAR-10 dataset with different bit lengths and
fixed block size of 128 are given in Table 4. Longer bit length also
results in better accuracy.

Table 4: Comparison on various bit lengths for CIFAR-10

Integral Bits + Fractional Bits Accuracy Compression Ratio
(4, 8) 77.8% 453.3
(5, 8) 78.0% 378.5
(5, 10) 80.2% 317.7
(5, 11) 80.5% 287.5

4.2 Results of Power Measuring
The power data of DNN hardware implementations are obtained
from tests on the same Cyclone V FPGA device, with the dataset
CIFAR-10 as the benchmark. This process can be generalized to
different datasets on various platforms. The Cyclone V devices
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dissipate much less static power than other Altera devices like
Stratix V, which helps to implement DNN applications with low
power consumption. The power measuring results with varying
block sizes and bit lengths are described in Table 5. Without loss of
generality, the integral bit length is fixed at 4, and the fractional bit
length changes from 6 to 9, as the accuracy and power performance
are more sensitive to the fractional part.

Table 5: Power Comparison on various block sizes and bit
lengths for CIFAR-10 (Unit: mW)

Bit Length
Block Size 32 64 128

(4, 6) 1103.07 1322.59 1899.50
(4, 7) 1180.63 1494.39 2158.22
(4, 8) 1244.73 1640.22 2347.46
(4, 9) 1289.36 1739.61 n/a
(4, 10) 1328.70 1845.50 n/a

The total power dissipation of the Cyclone V device can be
approximated as

Ptot =0.1647 + 0.06064 · t + 9.294 × 10−4 · s · t (9)

where s is the block size and t the total bit length of integral bits plus
fractional bits. The last term of this equation implies the correlation
of the block size and the bit length. If one of the two variables is
fixed at some value, the total power will grow almost linearly with
the other variable.

5 CONCLUSION
This work implements a hardware simulator HSIM-DNN that visu-
alizes the exact behavior of DNN hardware implementations on a
software platform to facilitate the corresponding block-circulant
matrix-based approach in terms of acceleration and compression
for both training and inference phases. Simultaneously, the pro-
posed simulator provides the hardware power data to help predict
the power consumption under different parameter settings, thus
creating excellent insights for more energy-efficient DNN imple-
mentations on embedded platforms. Real FPGA hardware imple-
mentations validate the whole design.
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