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Abstract  
The ever-increasing complexity of numerical models and associated computational demands have 

challenged classical reliability analysis methods. Surrogate model-based reliability analysis techniques, 

and in particular those using Kriging meta-model, have gained considerable attention recently for their 

ability to achieve high accuracy and computational efficiency. However, existing stopping criteria, which 

are used to terminate the training of surrogate models, do not directly relate to the error in estimated 

failure probabilities. This limitation can lead to high computational demands because of unnecessary calls 

to costly performance functions (e.g. involving Finite Element models) or potentially inaccurate estimates 

of failure probability due to premature termination of the training process. Here we propose the Error-

based Stopping Criterion (ESC) to address these limitations. First, it is shown that the total number of 

wrong sign estimation of the performance function for candidate design samples by Kriging, S, follows a 

Poisson binomial distribution. This finding is subsequently used to estimate the lower and upper bounds 

of S for a given confidence level for sets of candidate design samples classified by Kriging as safe and 

unsafe. An upper bound of error of the estimated failure probability is subsequently derived according to 

the probabilistic properties of Poisson binomial distribution. The proposed upper bound is implemented in 

the Kriging-based reliability analysis method as the stopping criterion. The efficiency and robustness of 

ESC are investigated here using five benchmark reliability analysis problems. Results indicate that the 

proposed method achieves the set accuracy target and substantially reduces the computational demand, in 

some cases by over 50%. 

Key words: Reliability analysis; Surrogate model; Stopping Criterion; Adaptive Kriging; Estimation 

error; Poisson binomial distribution; 

1. Introduction 
Reliability analysis is primarily concerned with the vulnerability of components or systems under the 

impact of factors such as deterioration, normal operation loads, or extreme disturbances. In this context, 

the failure probability, 𝑃𝑓, is commonly defined as: 

𝑃𝑓 = 𝑃(𝑔(𝒙) ≤ 0) = ∫ 𝜌(𝒙)𝑑𝒙
𝑔(𝒙)≤0

(1) 

where 𝒙 is the vector of random variables, 𝑔(𝒙) is the so-called limit state function or performance 

function and 𝜌(𝒙) is the joint probability density function (PDF) of 𝒙. Multiple groups of techniques have 

been developed for estimating 𝑃𝑓 in Eq. (1). These include, but are not limited to, sampling approaches 

(e.g., Crude Monte-Carlo Simulation [1], [2], Importance Sampling(IS) [3] , Subset Simulation (SS) [4], 

etc.), optimization approaches (e.g., First or Second Order Reliability Method (FORM & SORM) [5], [6]) 

and the state-of-the-art surrogate modeling methods (e.g., Response Surface [7], [8], [9], Polynomial 

Chaos Expansion [10], Support Vector Regression [11], [12], or Kriging [13]–[15]). 

Recently, Kriging-based surrogate modeling approaches have gained considerable attention. This is 

in part because of the ability of Kriging to estimate responses in the form of a distribution with Kriging 

mean and variance, as opposed to other surrogate models, which provide only the best estimate of the 

responses. This feature enables adaptive and efficient refinement of the surrogate model in the vicinity of 

the limit state, 𝑔(𝒙) = 0. Reviews of Kriging-based reliability analysis algorithms and their advantages 

compared to other surrogate model-based approaches can be found in [13], [16], [17]. Two representative 

algorithms called Efficient Global Reliability Analysis (EGRA) proposed by Bichon et al. [18] and 

Adaptive Kriging with MCS (AK-MCS) proposed by Echard et al. [13] are widely used. Compared to 

EGRA, AK-MCS uses the coefficient of variation of failure probability 𝐶𝑂𝑉𝑃𝑓  to evaluate the sufficiency 

of the considered number of candidate design samples.  
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A number of recent studies have further improved the performance of Kriging-based reliability 

analysis. These improvements target sampling strategies, Kriging learning functions and stopping criteria. 

For sampling strategies, Echard et al. [3], Balesdent et al. [19] and Dubourg et al. [20] used importance 

sampling techniques alongside the adaptive Kriging model, which facilitates reliability analysis for rare 

events. Additionally, Subset Simulation techniques are used with Kriging-based reliability analysis in  

[4],[21] [22]. Wen et al. [23] and Yang et al. [24] proposed the truncated candidate samples region, which 

cuts off candidate samples with small values of probability density. It is shown that using this approach, 

the number of calls to performance function can be reduced and acceptable accuracy in failure probability 

estimates can be achieved [23]. With regard to learning functions, Bichon et al. [15] proposed the 

expected feasible function (EFF), which prioritizes points with high uncertainty and those in the 

proximity of the limit state, 𝑔(𝒙) = 0. Echard et al. [13] proposed a learning function called U for 

quantification of the likelihood of wrong sign estimation. This function is widely used in other Kriging-

based methodologies [3], [4], [25]. An information entropy-based learning function H, which follows a 

similar strategy to EFF, is developed by Lv et al. [26]. Sun et al. [27] proposed the Least Improvement 

Function (LIF), which enhances the learning process by searching next best training points among those 

that have high probability of wrong sign estimation, are in the vicinity of the limit state, and have high 

probability density. Xiao et al. [28] combined three learning functions 𝝍𝑑 , 𝝍𝜎 and 𝝍𝑚 for measuring the 

distance among the limit state, new training points and candidate design samples with high variances to 

pick the next training point, while avoiding ‘clustering’ phenomenon. For stopping criteria, most of 

existing studies set thresholds on values of learning functions. Bichon et al. [18] and Wen et al. [23] 

adopted the maximum EFF smaller than a prescribed threshold (e.g.,  𝑚𝑎𝑥(𝐸𝐹𝐹) ≤ 10−3) as the 

stopping criterion. On the other hand, the stopping criterion 𝑚𝑖𝑛(𝑈) ≥ 2 is widely used in many adaptive 

Kriging-based reliability analysis algorithms [3], [4], [13], [25], [29]. Kriging-based stopping criteria 

have also been developed and implemented in the field of optimization to achieve sufficient accuracy and 

avoid unnecessary training of surrogate models [30], [31]. All of these approaches show great merits and 

improve the performance of Kriging-based reliability analysis. However, there is no systematic approach 

to establish stopping criteria that can guarantee convergence to the true failure probability and avoid calls 

to the performance function when the estimated failure probability is close to the true one estimated by 

MCS.  

It is shown that the unnecessary training of the surrogate model in adaptive Kriging-based methods 

exists for both stopping criteria 𝑚𝑎𝑥(𝐸𝐹𝐹) ≤ 10−3 and 𝑚𝑖𝑛(𝑈) ≥ 2 [13], [14], [32], [33]. Gaspar et al. 

[32] proposed a new stopping criterion based on the stability of the estimated failure probability. Fauriat 

et al. [14] states that the accuracy of the Kriging model will be sufficiently high if 2% of the candidate 

design samples satisfy 𝑚𝑖𝑛(𝑈) ≥ 2. Different from those approaches, Hu et al. [29] derived an estimate 

of the maximum error for the estimated failure probability assuming that the signs of the limit state 

function for points satisfying 𝑈 ≥ 2 are all correctly estimated and that the true number of failure points 

satisfying 𝑈 < 2 is no more than the number of points satisfying 𝑈 < 2. However, these assumptions may 

not be acceptable since there is a possibility of wrong sign estimation even for points that satisfy 𝑈 ≥ 2. 

For example, if there are thousand samples that satisfy 𝑈 = 2 and are categorized into failure domain, the 

expected number of true failure points is equal to 𝑁̅𝑓
𝑈=2 = 1000 − 1000 × 𝛷(−2) = 977, where 𝛷(∙) is 

the cumulative density function (CDF) of the standard normal distribution. The maximum error proposed 

in [29] fails to capture this crucial point. The lack of direct correspondence of existing stopping criteria 

with error in estimated failure probabilities can also potentially lead to inaccurate reliability analysis 

results due to premature termination of the training process. 

In this paper, a maximum error 𝜖𝑚̂𝑎𝑥 for the estimated failure probability is derived and an Error-

based Stopping Criterion (ESC) is proposed. First, it is shown that the number of candidate design 

samples wrongly assigned to safe and failure domains follows a Poisson binomial distribution. The 

probabilistic properties of these distributions are subsequently derived. Based on these information, a 

procedure to estimate the maximum error in the estimated failure probabilities for a given confidence 

level is proposed. Finally, an error-based stopping criterion is presented by setting a threshold value for 
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the presented maximum error. The proposed stopping criterion, ESC, solves the unnecessary training 

problem for Kriging-based reliability analyses methods and guarantees convergence to target accuracy 

levels. Five reliability analysis examples are investigated to show the advantages offered by the proposed 

ESC, especially for high-dimensional problems.  

This paper is organized in four sections. The elements of Kriging-based reliability analysis are 

briefly introduced in Section 2. In Section 3, the derivation of the proposed maximum error 𝝐̂𝑚𝑎𝑥  and 

ESC stopping criterion are presented. In Section 4, five examples are investigated to demonstrate the 

application of 𝝐̂𝑚𝑎𝑥 and ESC in solving reliability problems. Section 5 summarizes and concludes this 

study. 

 

2. Kriging-Based Reliability Analysis 
2.1 Kriging elements 
Kriging, also called Gaussian Process Regression, is an interpolation-based regression method [34]. It 

assumes that the estimated responses 𝐾(𝒙) for unknown observations and the true responses for known 

observations 𝒀(𝒙)  follow a joint Gaussian distribution [34], [35]. In this section, a brief overview of 

Kriging is presented. More information about this method can be found in [3], [4], [13], [25]. The Kriging 

model 𝐾(𝒙) can be described as follows: 

 

𝐾(𝒙) = 𝐹(𝜷, 𝒙) +  𝑍(𝒙) = 𝜷𝑇𝒇(𝒙) + 𝑍(𝒙) (2) 
 

where 𝐹(𝜷, 𝒙) is the deterministic regression part representing the Kriging trend and 𝑍(𝒙) is the stochastic 

interpolation part with Gaussian distribution assumption. Expanding 𝐹(𝜷, 𝒙),  𝒇(𝒙) is the Kriging basis and 

𝜷 is the regression coefficient of 𝒇(𝒙). 𝜷𝑇𝑓(𝒙) often takes ordinary (𝛽0), linear (𝛽0+∑ 𝛽𝑖𝑥𝑖
𝑁
𝑖=1 ) or quadratic 

(𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑁
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑁
𝑗=𝑖

𝑁
𝑖=1 ) forms,  where N is the dimension of the random input vector x. In this 

paper, we use the ordinary Kriging model. Moreover, 𝑍(𝒙) follows a stationary normal Gaussian process 

with zero mean and covariance matrix as shown below: 

 

COV (𝑍(𝒙𝑖), 𝑍(𝒙𝑗)) =  𝜎
2𝑅(𝒙𝑖 , 𝒙𝑗; 𝜽) (3) 

 

where 𝜎2 is the process variance from the regression part (e.g., generalized mean square error), 𝒙𝑖 and 𝒙𝑗 

are two observations, and 𝑅(𝒙𝑖 , 𝒙𝑗; 𝜽) is the correlation function or the so-called kernel function, which 

represents the correlation function of the process with hyper-parameter 𝜽. Several forms have been used 

for the correlation function in Kriging approach; these include linear, exponential, Gaussian, and Matérn 

functions, among others. In this paper, the Gaussian kernel function is used with the following form: 

 

𝑅(𝒙𝑖 , 𝒙𝑗; 𝜽) =∏exp (−𝜃𝑘(𝑥𝑖
𝑘 − 𝑥𝑗

𝑘)
2
)

𝑁

𝑘=1

(4) 

where N is the dimension of the random input vector. The hyper-parameter 𝜽  can be estimated via 

Maximum Likelihood Estimation (MLE) or Cross-Validation (CV) [34]. It is shown that 𝜽 has a significant 

impact on the performance of Kriging [16], [23], [36]. To keep the consistency with previous studies for 

comparison purposes, here, an optimization toolbox called DACE [37], [38] that uses MLE is used to search 

for optimal 𝜃𝑘 in (0,10). The Maximum Likelihood Estimation can be represented as: 

 

𝜽∗ = argmin
𝜽∈Θ

(|𝑹(𝒙𝑖 , 𝒙𝑗; 𝜽)|
1
𝑚 𝜎2) (5) 

 

Accordingly, the regression coefficient 𝜷, and Kriging estimated mean and variance can be determined as 

follows [34]: 
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𝜷 = (𝑭𝑇𝑹−1𝑭)−1𝑭𝑇𝑹−1𝒀  

𝜇𝐾(𝒙) = 𝒇
𝑇(𝒙)𝜷 + 𝒓𝑇(𝒙)𝑹−1(𝒚 − 𝑭𝜷)  

𝜎𝐾
2(𝒙) = 𝜎2(1 − 𝒓𝑇(𝒙)𝑹−1𝒓(𝒙) + (𝑭𝑇𝑹−1𝒓(𝒙) − 𝒇(𝒙))𝑇(𝑭𝑇𝑹−1𝑭)−1(𝑭𝑇𝑹−1𝒓(𝒙) − 𝒇(𝒙))) (6) 

 

where 𝑭 is the matrix of basis function 𝒇(𝒙) evaluated at known training points, i.e. 𝐹𝑖𝑗 = 𝑓𝑗(𝒙𝑖), 𝑖 =

1, 2, … ,𝑚 ; 𝑗 = 1,2, … , 𝑝 , 𝒓(𝒙)  is the vector of correlation between known training points 𝒙𝑖  and an 

unknown point 𝒙: 𝑟𝑖 = 𝑹(𝒙, 𝒙𝑖 , 𝜽), 𝑖 = 1,2…𝑚, and 𝑹 is the autocorrelation matrix for known training 

points: 𝑅𝑖𝑗 =  𝑹(𝒙𝑖 , 𝒙𝑗 , 𝜽), 𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … ,𝑚. Due to the prior assumption of Kriging model, the 

responses from Kriging follow a normal distribution with Kriging mean 𝜇𝐾(𝒙) and Kriging variance 𝜎𝐾
2(𝒙): 

 

𝐾(𝒙) ~ 𝑁 (𝜇𝐾(𝒙), 𝜎𝐾
2(𝒙)) (7) 

 

Compared with the points that are further away from the training points, responses of points close to the 

training points are expected to have higher confidence. The Kriging-based reliability analyses apply 

‘learning functions’ that use information of Kriging mean and variance to strategically pick points from the 

candidate design samples. Two learning functions, i.e. the EFF and U are briefly introduced in the following 

subsection. 

 

2.2 Learning function & stopping criterion 
Learning functions play an important role in Kriging-based reliability analysis. Learning functions facilitate 

searching for points in the set of candidate design samples that lead to highest gains for failure probability 

estimation. As stated in the introduction of this paper, multiple learning functions have been proposed. Two 

popular learning functions including Expected Learning Function (𝐸𝐹𝐹) and 𝑈 function, are considered in 

this paper. In EFF, the proximity of points to the limit state 𝑔(𝒙) = 𝑎 and their variance are the two key 

factors. The mathematical expression of 𝐸𝐹𝐹 is presented below:  

𝐸𝐹𝐹(𝒙) = ∫ [𝛿(𝒙) − |𝑎 − ℎ|]ϕ(ℎ; 𝜇𝐾(𝒙), 𝜎𝐾(𝒙))𝑑ℎ

𝑎+𝛿(𝒙)

𝑎−𝛿(𝒙)

= (𝜇𝐾(𝒙) − 𝑎) [2Φ(
𝑎 − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
) − Φ(

𝑎− − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
) − Φ(

𝑎+ − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
)]

−𝜎𝐾(𝒙) [2ϕ(
𝑎 − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
) − ϕ(

𝑎− − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
) − ϕ(

𝑎+ − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
)]

+2𝜎𝐾(𝒙) [Φ(
𝑎+ − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
) − Φ(

𝑎− − 𝜇𝐾(𝒙)

𝜎𝐾(𝒙)
)] (8)

 

 

where ϕ(∙) is the standard normal probability density function. Here, 𝑎 = 0, 𝛿(𝒙) = 2𝜎𝐾(𝒙), 𝑎
+ = 𝑎 +

𝛿(𝒙) and 𝑎− = 𝑎 − 𝛿(𝒙). The term [𝛿(𝒙) − |𝑎 − ℎ|] in Eq. (8) measures the proximity of the target 

point, and is weighted by the term 𝜙(ℎ; 𝜇𝐾(𝒙), 𝜎𝐾(𝒙)). The point that maximizes the 𝐸𝐹𝐹 response is 

chosen as the next point to refine the Kriging model. The conventional stopping criterion based on this 

learning function is expressed as 𝑚𝑎𝑥(𝐸𝐹𝐹(𝒙)) ≤ 10−3.  

Another widely accepted learning function is U learning function, which represents the uncertainties 

in the sign (±) estimation by 𝑔̂(𝒙)=0. This learning function is also investigated in this paper. U takes the 

probabilistic distribution of estimated responses into consideration, and quantifies the probability of making 

a wrong sign estimation for 𝑔̂(𝒙). The formulation of 𝑈 is: 
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𝑈(𝒙) =  
|𝜇𝐾(𝒙)|

𝜎𝐾(𝒙)
(9) 

The point that minimizes the response of U learning function is selected as the next training point. The 

conventional stopping criterion based on 𝑈 is defined as 𝑚𝑖𝑛(𝑈(𝒙)) ≥ 2, which is interpreted as that the 

probability of making wrong sign estimation should not exceed 0.023. It is shown that both EFF and U 

learning functions are efficient for the selection of appropriate points in the adaptive Kriging process [13]. 

Moreover, EFF tends to converge faster than U in achieving true probability of failure 𝑃𝑓, while U 

learning function converges faster to its own stopping criterion (𝑚𝑖𝑛(𝑈(𝒙)) ≥ 2) than EFF 

(𝑚𝑎𝑥(𝐸𝐹𝐹(𝒙)) ≤ 10−3). As 𝐸𝐹𝐹 and 𝑈 do not directly correspond to the error in the failure probability 

that is estimated at each iteration of the adaptive Kriging process, the corresponding stopping criteria are 

set to be overly conservative to ensure that the true error in the estimates of failure probability is 

confidently acceptable for reliability problems. The lack of direct correspondence to the error, therefore, 

leads to a large number of required costly simulations. Thus, it is necessary to derive a stopping criterion 

that is based on the accuracy of the estimates of the failure probability. To address this challenge, we 

present a maximum error for estimated failure probabilities within the adaptive Kriging reliability 

analysis process. Furthermore, based on this accuracy measure, a new stopping criterion called ESC is 

proposed. The performance of this measure is compared with (𝑚𝑖𝑛(𝑈(𝒙)) ≥ 2) and (𝑚𝑎𝑥(𝐸𝐹𝐹(𝒙)) ≤

10−3) strategies. 

 

3. ESC: An Error-Based Stopping Criterion 
Since the true failure probability, denoted as 𝑃𝑓, is unavailable, the failure probability estimated via 

Monte Carlo Simulations, 𝑃𝑓
𝑀𝐶𝑆, can be regarded as the benchmark for measuring the accuracy, assuming 

that sufficiently large number of simulations are used in the calculation of 𝑃𝑓
𝑀𝐶𝑆. Thus, the estimated 

failure probability via Kriging-based reliability analysis with MCS can be denoted as  𝑃̂𝑓
𝑀𝐶𝑆. The relative 

error of the 𝑃̂𝑓
𝑀𝐶𝑆 with respect to 𝑃𝑓

𝑀𝐶𝑆 can be defined as: 

 

𝜖 =  
|𝑃̂𝑓
𝑀𝐶𝑆 − 𝑃𝑓

𝑀𝐶𝑆|

𝑃𝑓
𝑀𝐶𝑆 = |

𝑃̂𝑓
𝑀𝐶𝑆

𝑃𝑓
𝑀𝐶𝑆 − 1| (10) 

 

For consistency in the comparison, the set of candidate design samples for crude MCS and Kriging-based 

MCS should be the same. This way, a reliability analysis algorithm 𝛹 is optimal, if it requires the least 

number of calls to performance function, 𝑁𝑐𝑎𝑙𝑙, while maintaining the error below a prescribed threshold 

𝜖𝑡ℎ𝑟 ∈ (0,1): 
 

𝛹∗ = arg min
𝛹∈𝜋,   𝜖≤𝜖𝑡ℎ𝑟 

 𝑁𝑐𝑎𝑙𝑙 (11) 

 

where 𝜋 is the set of all feasible reliability analysis algorithms. As the true error 𝜖 for MCS-based 

reliability approaches is not known, our objective here is to mathematically derive the maximum error 

𝜖𝑚̂𝑎𝑥  for a given confidence level by leveraging the statistical information available via Kriging. 

Subsequently, a stopping criterion named ESC is proposed to demonstrate the ability of this approach in 

solving the unnecessary training problem. 
 

3.1 Derivation of the maximum error  
Let us define the true and estimated probabilities of failure as: 

 

𝑃𝑓
𝑀𝐶𝑆 = 

𝑁𝑓

𝑁𝑀𝐶𝑆
(12) 
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𝑃̂𝑓
𝑀𝐶𝑆 = 

𝑁̂𝑓

𝑁𝑀𝐶𝑆
(13) 

where 𝑁𝑀𝐶𝑆 is the number of candidate design samples for MCS, 𝑁𝑓 is the number of failures determined 

using the true performance function 𝑔(𝒙), and 𝑁̂𝑓 denotes the number of points from the candidate design 

samples Ω determined by the Kriging model to indicate failure. The true domains of failure and survival 

within Ω are denoted as Ω𝑓 and Ω𝑠, respectively, while the Kriging-estimated failure and survival 

domains are represented by Ω̂𝑓 and Ω̂𝑠, respectively. Therefore, 𝑁̂𝑓 is the size of Ω̂𝑓. Subsequently, the 

relative error in Eq. (10) can be rewritten as, 

𝜖 =  |
𝑃̂𝑓
𝑀𝐶𝑆

𝑃𝑓
𝑀𝐶𝑆 − 1| =  |

𝑁̂𝑓

𝑁𝑓
− 1| (14)  

In Kriging surrogate models, the true error 𝜖 is not known, since 𝑁𝑓 is unknown. Let us denote the total 

number of candidate design points in Ω̂𝑓 that belong to Ω𝑠 as 𝑆̂𝑓 and those in Ω̂𝑠 that belong to Ω𝑓 as 𝑆̂𝑠. 

Thus, 𝑁𝑓 can be determined as: 

𝑁𝑓 = 𝑁̂𝑓  +  𝑆̂𝑠 − 𝑆̂𝑓 (15) 

The probabilistic distribution of 𝑆̂𝑠and 𝑆̂𝑓 are explored in the next subsection. With confidence level α, a 

confidence interval of 𝑁𝑓  can be represented as: 

𝑁𝑓 ∈ [𝑁̂𝑓 − 𝑆̂𝑓
𝑢,    𝑁̂𝑓 + 𝑆̂𝑠

𝑢 ] (16) 

where 𝑆̂𝑓
𝑢 and 𝑆̂𝑠

𝑢 are the upper bound of the confidence interval of 𝑆̂𝑠 and 𝑆̂𝑓, respectively. Accordingly, 

the maximum error can be calculated as, 

𝜖 = |
𝑁̂𝑓

𝑁𝑓
− 1| ≤ 𝑚𝑎𝑥 (|

𝑁̂𝑓

𝑁̂𝑓 − 𝑆̂𝑓
𝑢 − 1| , |

𝑁̂𝑓

𝑁̂𝑓 + 𝑆̂𝑠
𝑢 
− 1|) = 𝜖𝑚̂𝑎𝑥 (17) 

where 𝑆̂𝑓
𝑢and 𝑆̂𝑠

𝑢 are unknown. In the following section, it is shown that both 𝑆̂𝑠 and Ŝ𝑓 follow a Poisson 

binomial distribution, and the confidence intervals can be determined accordingly. 

 

3.2 Probability distribution of  𝑺̂𝒔 and 𝐒̂𝒇 

For each candidate design point 𝒙𝑖 in Ω̂𝑓 or Ω̂𝑠, let’s define an indicator function 𝐼𝑖 that takes one when 

𝐾(𝒙𝑖) makes a wrong estimation of the sign of 𝑔(𝒙𝑖), and zero when the sign estimation is correct. 

Subsequently, 𝑆̂𝑓 = ∑ 𝐼𝑖
𝑁̂𝑓 

𝑖=1
, 𝒙𝑖 ∈  Ω̂𝑓 and 𝑆̂𝑠 = ∑ 𝐼𝑖

𝑁̂𝑠 
𝑖=1 , 𝒙𝑖 ∈  Ω̂𝑠, where 𝑁̂𝑠 denotes the number of points 

from the candidate design samples Ω that are determined by the Kriging model to be safe. Since the 

output of the Kriging model follows a normal distribution with mean 𝑦̂𝒙𝑖 and standard deviation 𝜎̂𝒙𝑖 , the 

probability of the event that the sign estimate of 𝒙𝑖 is wrong is [13]: 

𝑃(𝐼𝑖 = 1 | 𝒙𝑖 ∈  Ω̂𝑓  ∪  Ω̂𝑠) = 𝑃𝑖
𝑤𝑠𝑒 = 𝛷 (− |

𝑦̂𝒙𝑖 
𝜎̂𝒙𝑖 
|) (18) 

where 𝑃𝑖
𝑤𝑠𝑒  denotes the probability of wrong sign estimation for 𝒙𝑖 . This derivation is illustrated in Fig. 

1. Thus, it is evident that 𝐼𝑖 follows a Bernoulli distribution with the following mean and variance: 

E[𝐼𝑖|𝒙𝑖 ∈  Ω̂𝑓  ∪  Ω̂𝑠] =  𝑃𝑖
𝑤𝑠𝑒 (19) 

Var[𝐼𝑖|𝒙𝑖 ∈  Ω̂𝑓  ∪  Ω̂𝑠] =  𝑃𝑖
𝑤𝑠𝑒(1 − 𝑃𝑖

𝑤𝑠𝑒) (20) 

It can be shown that the sum of independent Bernoulli trials follows a Poisson binomial distribution [39]. 

Consequently, 𝑆̂𝑓 and 𝑆̂𝑠 follow Poisson binomial distributions as follows: 

𝑆̂𝑠~𝑃𝐵 (𝜇𝑆̂𝑠 , 𝜎𝑆̂𝑠
2 ) , 𝑥𝑖 ∈  Ω̂𝑠, 𝜇𝑆̂𝑠 =∑𝑃𝑖

𝑤𝑠𝑒  

𝑁̂𝑠

𝑖=1

, 𝜎𝑆̂𝑠
2 =∑𝑃𝑖

𝑤𝑠𝑒  (1 − 𝑃𝑖
𝑤𝑠𝑒)

𝑁̂𝑠 

𝑖=1

 (21) 

𝑆̂𝑓~𝑃𝐵 (𝜇𝑆̂𝑓 , 𝜎𝑆̂𝑓
2 ) , 𝑥𝑖 ∈  Ω̂𝑓 , 𝜇𝑆̂𝑓 =∑𝑃𝑖

𝑤𝑠𝑒  

𝑁̂𝑓

𝑖=1

, 𝜎𝑆̂𝑓
2 =∑𝑃𝑖

𝑤𝑠𝑒  (1 − 𝑃𝑖
𝑤𝑠𝑒)

𝑁̂𝑓 

𝑖=1

(22) 
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(a) (b) 

  

Fig. 1. An illustration of the probability of wrong sign estimation in Eq.(18) considering (a) 𝑦̂𝒙𝑖 ≥ 0 or (b) 

𝑦̂𝒙𝑖 ≤ 0. 

 

Based on these distributions, the confidence intervals (CIs) of 𝑆̂𝑠 and 𝑆̂𝑓 are given by: 

𝑆̂𝑠 ∈ (𝜣𝑆̂𝑠
−1 (

𝛼

2
) , 𝜣𝑆̂𝑠

−1 (1 −
𝛼

2
)) (23) 

𝑆̂𝑓 ∈ (𝜣𝑆̂𝑓
−1 (

𝛼

2
) , 𝜣𝑆̂𝑓

−1 (1 −
𝛼

2
)) (24) 

where 𝜣𝑆̂𝑠
−1(∙) and 𝜣𝑆̂𝑓

−1(∙) are the inverse CDF of the Poisson binomial distribution of 𝑆̂𝑠 and 𝑆̂𝑓, 

respectively, and 𝛼 is the confidence level. Analytical solutions for the above confidence intervals are 

typically not available, instead, numerical approaches or approximate analytical methods can be pursued. 

Sampling techniques can be used to numerically determine the inverse CDF of Poisson binomial 

distributions. However, in most cases, the confidence interval of 𝑆̂𝑠 can be approximately determined 

using the Central Limit theorem. In cases where the probability of failure is small, 𝑆̂𝑓 can be 

approximately obtained using Poisson distribution. These two cases are presented below in the form of 

corollaries: 

Corollary 1. 𝑆̂𝑠 in distribution converges to a normal distribution for sufficiently large 𝑁̂𝑠, and the 

confidence interval of 𝑆̂𝑠 can be obtained accordingly. 

Proof: Given that  

lim
𝑁̂𝑠→∞

( max
𝑖=1,…,𝑁̂𝑠

𝑉𝑎𝑟[𝐼𝑖]

𝑉𝑎𝑟[𝑆̂𝑠]
) = 0,   𝑥𝑖 ∈  Ω̂𝑠 (25) 

 

Lindeberg’s condition for the Central Limit theorem for the sum of independent, not identically distributed 

random variables is satisfied [40]. Subsequently, for sufficiently large 𝑁̂𝑠, 𝑆̂𝑠 in distribution converges to a 

normal distribution:  

𝑆̂𝑠 ~ 𝑁 (𝜇𝑆̂𝑠 , 𝜎𝑆̂𝑠
2 ),        𝑥𝑖 ∈  Ω̂𝑠 (26) 

The CI of 𝑆̂𝑠 can then be obtained as: 

𝑆̂𝑠  ∈ [𝜇𝑆̂𝑠 − 𝛾𝑐𝑖𝜎𝑆̂𝑠 ,   𝜇𝑆̂𝑠 + 𝛾𝑐𝑖𝜎𝑆̂𝑠], (27)

𝑥𝑖 ∈  Ω̂𝑠
 

where  𝛾𝑐𝑖 = 1.96 for the confidence level α = 0.05. As 𝑁̂𝑠 is large in Kriging-based reliability analysis 

problems, the above confidence bounds for 𝑆̂𝑠 are accurate. It should be noted that because the event of 

failure is often rare, 𝑁̂𝑓 is not sufficiently large for the distribution of 𝑆̂𝑓 to converge to a normal 

distribution and therefore to use corollary 1. 

Corollary 2. The distribution of 𝑆̂𝑓 can be approximately represented using a Poisson distribution and the 

confidence interval of 𝑆̂𝑓 can be obtained accordingly.  

Proof: It is shown that 𝑆̂𝑓 follows a Poisson binomial distribution. According to Le cam’s theorem [39], 

[41]: 

0 0 

𝑦̂𝒙𝑖 ≤ 0 

𝛷 (− |
𝑦̂𝒙𝑖 
𝜎̂𝒙𝑖 

|) 
𝛷 (− |

𝑦̂𝒙𝑖 
𝜎̂𝒙𝑖 

|) 

𝑦̂𝒙𝑖 ≥ 0 
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∑|Pr(𝑆̂𝑓 = 𝑘) −
𝜇Ŝ𝑓
𝑘 𝑒

−𝜇Ŝ𝑓

𝑘!
| < 2∑(𝑃𝑖

𝑤𝑠𝑒)2

𝑁̂𝑓

𝑖=1

∞

𝑘=0

(28) 

which indicates that the distribution of 𝑆̂𝑓 can be approximately represented as a Poisson distribution: 

Pr(𝑆̂𝑓 = 𝑘) ≈
𝜇Ŝ𝑓
𝑘 𝑒

−𝜇Ŝ𝑓

𝑘!
, 𝑘 = 0,1, … , 𝑁̂𝑓 (29) 

The CI of 𝑆̂𝑓 can be determined as: 

𝑆̂𝑓 ∈ [𝜞𝑆̂𝑓
−1 (

𝛼

2
) , 𝜞𝑆̂𝑓

−1 (1 −
𝛼

2
)] (30) 

where 𝜞𝑆̂𝑓
−1(∙) is the inverse CDF of the Poisson distribution with both mean and variance equal to 𝜇Ŝ𝑓 

defined in Eq. (22), and 𝛼 is the confidence level. It is recommended that 𝑆̂𝑠 be estimated as normal 

distribution since 𝑁̂𝑠 is large in most cases and 𝑆̂𝑓 be estimated as Poisson distribution due to the fact 𝑁̂𝑓 

is relatively small.  

 

3.3 ESC: Error-based Stopping Criterion 
In adaptive procedures of reliability analysis, the stopping criterion is very important. However, it is 

shown that traditional stopping criteria do not have direct correspondence with the extent of error, thus 

they are set to be very strict to ensure that the estimation error is acceptable. To address this limitation, 

ESC includes an upper bound for the error, 𝜖𝑚̂𝑎𝑥, determined using Eq. (17) to ensure that the extent of 

error in failure probability estimation does not exceed a prescribed error threshold 𝜖𝑡ℎ𝑟. The updating 

process of the Kriging model stops when the following condition is reached: 

𝜖𝑚̂𝑎𝑥 ≤ 𝜖𝑡ℎ𝑟 (31) 
Accordingly, it is expected that the true error (denoted as 𝜖), with the confidence level α, should be 

smaller than 𝜖𝑚̂𝑎𝑥. The relationship between 𝜖, 𝜖𝑚̂𝑎𝑥, and 𝜖𝑡ℎ𝑟 can be presented as: 

𝜖 ≤ 𝜖𝑚̂𝑎𝑥 ≤ 𝜖𝑡ℎ𝑟 (32) 
3.4 Implementation of ESC 
The procedure to implement ESC for reliability analysis is illustrated in the flowchart presented in Fig. 2. 

The primary steps for the implementation of the proposed method are described below: 

 Step 1: Generation of initial candidate design samples. Generate 𝑁𝑀𝐶𝑆 candidate design samples 

using Latin Hypercube Sampling (LHS). These samples are denoted as S.  

 

 Step 2: Selection of initial training points. Randomly select from S an initial set of training points 

denoted as 𝒙𝑡𝑟 for Kriging construction, and evaluate their responses 𝑔(𝒙𝑡𝑟).  
 

 Step 3: Kriging construction. Construct the Kriging model using 𝒙𝑡𝑟. Denote the Kriging model as 

𝐾(𝒙). For the construction of the Kriging model, MATLAB toolbox DACE [37] is used here with 

ordinary Kriging basis and Gaussian correlation function.  

 

 Step 4: Kriging estimation. Obtain the current Kriging responses including the mean 𝜇𝐾(𝒙) and 

variance 𝜎𝐾
2(𝒙), and subsequently estimate the 𝑃̂𝑓

𝑀𝐶𝑆 on S. 

 

 Step 5: Identification of the next training point. Select the next most valuable point for training 

according to 𝒙∗ = Max
𝒙 ∈ 𝑆

(𝐸𝐹𝐹) or 𝒙∗ = Min
𝒙 ∈ 𝑆

(𝑈). 

 

 Step 6: Updating the set of training points. Add the identified point 𝒙∗ to the set of training 

points 𝒙𝑡𝑟 . 
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 Step 7: Estimation of the maximum error. Determine the maximum error 𝜖𝑚̂𝑎𝑥 using Eq. (16), (17), 

(23), (24), (27), (30). 

 

 Step 8: Evaluation of the stopping criterion. Check the stopping criterion (𝜖𝑚̂𝑎𝑥 ≤ 𝜖𝑡ℎ𝑟). If the 

stopping criterion is not satisfied, then go to step 3, otherwise, go to step 9. 

 

 Step 9: Evaluation of the sufficiency of initial design sample set. Determine the coefficient of 

variation of 𝑃̂𝑓 using: 

𝐶𝑂𝑉𝑃𝑓 = √
1 − 𝑃̂𝑓

𝑃̂𝑓𝑁𝑀𝐶𝑆
≤ 𝐶𝑂𝑉thr (33) 

where 𝐶𝑂𝑉thr is the threshold for the coefficient of variation of 𝑃̂𝑓, and is usually assigned 0.05 [13]. 

If Eq. (33) is satisfied then go to step 10. If not, it means that the number of candidate design samples 

𝑁𝑀𝐶𝑆 is not sufficient, and an additional number 𝑁∆𝑆 of candidate design samples ∆𝑆 should be added 

to S. Then go back to step 4. 

 Step 10: End. Report 𝑃̂𝑓.  
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Fig 2. Flowchart of the proposed adaptive Kriging-based reliability analysis method using ESC 

Generate S with LHS 

Select initial training points 𝒙𝑡𝑟, 

and evaluate responses  𝑔(𝒙𝑡𝑟) 

Construct Kriging model 𝐾(𝒙) 

Estimate 𝜇𝐾(𝒙), 𝜎𝐾(𝒙) and 𝑃̂𝑓
𝑀𝐶𝑆  

on S 

Search for the next best training point 

𝒙∗ with EFF or U function 

Update the training points 𝒙𝑡𝑟 

Estimate the maximum error 𝜖𝑚̂𝑎𝑥  

ESC 

𝐶𝑂𝑉𝑃𝑓 ≤ 𝐶𝑂𝑉thr 

End 

Update S by adding 

𝑁∆𝑆extra candidate 

design points 

Evaluate 𝑔(𝒙∗) on 𝒙∗  
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4. Numerical Investigations 
In this section, five examples with different forms of complexities are investigated. These examples have 

one or more of the following properties: highly nonlinear, non-differentiable, and high-dimensional.  

4.1 Four-boundary series system 
The first analytical example is a series-system with four boundaries [13], [23], [27], [32]. The 

performance function includes two independent identically distributed standard normal random variables 

(e.g. mean of 0 and standard deviation of 1) 𝑥1 and 𝑥2 as follows: 

𝑔(𝑥1, 𝑥2) = 𝑚𝑖𝑛

{
 
 
 
 

 
 
 
 3 + 0.1(𝑥1 − 𝑥2)

2 −
(𝑥1 + 𝑥2)

√2

3 + 0.1(𝑥1 − 𝑥2)
2 +

(𝑥1 + 𝑥2)

√2

(𝑥1 − 𝑥2) +
6

√2

−(𝑥1 − 𝑥2) +
6

√2

(34) 

This reliability analysis is performed using MCS and adaptive Kriging with EFF and U learning functions 

for different stopping criteria. The proposed stopping criterion ESC is compared with the conventional 

stopping criteria 𝑀𝑎𝑥(𝐸𝐹𝐹) ≤ 10−3 and 𝑀𝑖𝑛(𝑈) ≥ 2. The number of initial training points affects the 

quality of the initial Kriging model and the computational demand of the reliability analysis. For the same 

or very similar problems to those considered in this paper, the study in [13] indicated that 12 initial 

training points are adequate. This value is adopted in this research. The performance of these methods is 

compared in terms of the number of calls to performance function, 𝑁𝑐𝑎𝑙𝑙, estimated probability of 

failure, 𝑃̂𝑓, coefficient of variation of estimated probability of failure, 𝐶𝑂𝑉𝑃𝑓 , estimated maximum error, 

𝜖𝑚̂𝑎𝑥, and the true error, 𝜖. Table 1 presents reliability analysis results for ESC + EFF, AK-MCS + EFF, 

ESC + U and AK-MCS + U methods for different 𝜖𝑡ℎ𝑟 values. The threshold 𝐶𝑂𝑉thr for  𝐶𝑂𝑉𝑃𝑓 is set as 

0.05, and the initial number of candidate design points for each simulation is 𝑁𝑆 = 10
4 with  𝑁∆𝑆 = 10

4. 

In this comparison, the same set of candidate design samples and initial training points are used for all 

methods in order to remain consistent in failure probability estimation.  

 

Table 1. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U 

for different 𝜖𝑡ℎ𝑟 (𝐶𝑂𝑉thr = 0.05, 𝑁𝑆 = 10
4, and 𝑁∆𝑆 = 104).  

𝜖𝑡ℎ𝑟 Methodology  𝑁𝑐𝑎𝑙𝑙 𝑃̂𝑓(𝐶𝑂𝑉𝑃̂𝑓) 𝜖𝑚̂𝑎𝑥 𝜖 

- Monte Carlo 105 4.520 × 10−3 (4.7%) - - 

AK-MCS + EFF 12 + 93 4.520 × 10−3  No estimation 0 

AK-MCS + U 12 + 68 4.510 × 10−3  No estimation 0.0022 

0.05 ESC + EFF 12 + 40 4.700 × 10−3 0.0444 0.0398 

ESC + U 12 + 41 4.530 × 10−3 0.0362 0.0022 

0.03 ESC + EFF 12 + 60 4.520 × 10−3 0.0216 0 

ESC + U 12 + 43 4.530 × 10−3 0.0279 0.0022 

0.01 ESC + EFF 12 + 67 4.540 × 10−3 0.0089 0.0044 

ESC + U 12 + 58 4.500 × 10−3 0.0090 0.0044 

 

As shown in Table 1, the conventional stopping criterion 𝑀𝑎𝑥(𝐸𝐹𝐹) ≤ 10−3 requires 105 calls to the 

performance function, while the proposed ESC + EFF for 𝜖𝑡ℎ𝑟 = 0.05, 𝜖𝑡ℎ𝑟 = 0.03 and 𝜖𝑡ℎ𝑟 = 0.01 

requires 𝑁𝑐𝑎𝑙𝑙 of 52, 72 and 79, respectively. Furthermore, the true error for the case of 𝜖𝑡ℎ𝑟 = 0.05 is 

only 3.98%, which is considered accurate for engineering applications. The true error reduces 

significantly to 0 and 0.44% for  𝜖𝑡ℎ𝑟 = 0.03 and 𝜖𝑡ℎ𝑟 = 0.01, respectively. In the case of U learning 

function, ESC yields even a better performance. The 𝑁𝑐𝑎𝑙𝑙 for ESC + U approach is 53, 55 and 70 for 
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𝜖𝑡ℎ𝑟 = 0.05, 𝜖𝑡ℎ𝑟 = 0.03 and 𝜖𝑡ℎ𝑟 = 0.01, respectively. The limit states estimated for different levels of 

error threshold are plotted in the Fig. 3 and Fig. 4 for EFF and U learning functions. It is shown that the 

proposed stopping criterion can achieve the target errors for estimated failure probability with limited 

number of performance function evaluations. In both figures, it is observed that as the target threshold for 

error decreases, the accuracy of the Kriging-based estimate of the limit state function increases.  

 

  
          (a)           (b) 

  
         (c)          (d) 

  

Fig. 3. The limit state with different levels of thresholds by EFF learning function in Table 1 (a) 𝜖𝑡ℎ𝑟 ≤
0.05, (b) 𝜖𝑡ℎ𝑟 ≤ 0.03,  (c) 𝜖𝑡ℎ𝑟 ≤ 0.01,  and  (d) max(𝐸𝐹𝐹) ≤ 10−3. 
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            (a)             (b) 

  
          (c)            (d) 

Fig. 4. The limit state with different levels of thresholds by U learning function in Table 1 (a) 𝜖𝑡ℎ𝑟 ≤ 0.05, 

(b) 𝜖𝑡ℎ𝑟 ≤ 0.03,  (c) 𝜖𝑡ℎ𝑟 ≤ 0.01,  and  (d) min(𝑈) ≥ 2. 

 

The convergence of the estimated failure probability by the conventional and proposed methods to true 

failure probability is presented in Fig. 5. It is seen that the case of 𝜖𝑡ℎ𝑟 = 0.05 yields fastest convergence, 

as expected. Even in the strict case of 𝜖𝑡ℎ𝑟 = 0.01, the convergence of the failure probability is faster than 

the traditional stopping criteria. Moreover, one should note that at about 𝑁𝑐𝑎𝑙𝑙 = 60 in Fig. 5 (a) and  

𝑁𝑐𝑎𝑙𝑙 = 50 in Fig. 5 (b), 𝑁∆𝑆 = 10
4 extra candidate design samples are added nine times to satisfy the 

requirement of 𝐶𝑂𝑉𝑃̂𝑓 ≤ 𝐶𝑂𝑉𝑡ℎ𝑟 (see step 9 in Section 3.4). With every addition of new candidate design 

sample sets, the estimated error rate changes. However, all simulations finally converge to the red solid 

line, i.e. the estimate of the failure probability by MCS. 
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       (a)         (b) 

Fig. 5. The convergence performance in Table 1 with: (a) 𝑃𝑓 vs 𝑁𝑐𝑎𝑙𝑙 in ESC + EFF and AK-MCS + EFF. 

(b) 𝑃𝑓 vs 𝑁𝑐𝑎𝑙𝑙 in ESC + U and AK-MCS + U. 

 

The performance of ESC in avoiding unnecessary training of the surrogate model is more significant for 

the case of 𝐶𝑂𝑉𝑡ℎ𝑟 = 0.015, as presented in Table 2. As this threshold for the variation in estimated 

probability of failure is stricter compared to 𝐶𝑂𝑉𝑡ℎ𝑟 = 0.05 in Table 1, a larger set of candidate design 

samples is required. For this reason, the initial number of candidate design points for each simulation is 

𝑁𝑆 = 10
5 with 𝑁∆𝑆 = 10

5. To remain consistent in the comparisons, the set of candidate design samples 

and the set of initial training points are kept the same for failure probability estimation. According to the 

results in Table 2, 𝑁𝑐𝑎𝑙𝑙 for AK-MCS + EFF and AK-MCS + U is 120 and 117, respectively, while this 

quantity for ESC + EFF and ESC + U cases for 𝜖𝑡ℎ𝑟 = 0.05 are 53 and 58, respectively, representing 

over 50% reduction in the computational demand. Therefore, the proposed method can help researchers 

reduce the number of calls to complex computational codes according to their accuracy requirement. 

 

Table 2. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U 

for different 𝜖𝑡ℎ𝑟 (𝐶𝑂𝑉thr = 0.015 [13], 𝑁𝑆 = 10
5, and 𝑁∆𝑆 = 10

5).  

𝜖𝑡ℎ𝑟 Methodology  𝑁𝑐𝑎𝑙𝑙 𝑃̂𝑓(𝐶𝑂𝑉𝑃̂𝑓) 𝜖𝑚̂𝑎𝑥 𝜖 

- Monte Carlo 106 4.434 × 10−3 (1.5%) - - 

AK-MCS + EFF 12 + 108 4.437 × 10−3  No estimation 0.0007 

AK-MCS + U 12 + 105 4.434 × 10−3 No estimation 0 

0.05 ESC + EFF 12 + 41 4.424 × 10−3 0.0434 0.0023 

ESC + U 12 + 46 4.390 × 10−3 0.0218 0.0099 

0.03 ESC + EFF 12 + 49 4.468 × 10−3 0.0253 0.0077 

ESC + U 12 + 46 4.390 × 10−3 0.0218 0.0099 

0.01 ESC + EFF 12 + 61 4.429 × 10−3 0.0080 0.0011 

ESC + U 12 + 54 4.419 × 10−3 0.0068 0.0034 

 

In simulation-based reliability analysis methods, the estimate of the failure probability and the 

performance of the analysis techniques may vary with the sample set used. To capture these variations 

and ensure the robustness of the proposed method, the variation in the performance for 100 simulations is 

investigated via boxplot for the considered set of error thresholds. Considered performance measures 

include the number of calls to performance function 𝑁𝑐𝑎𝑙𝑙 and the difference between the estimated 

maximum error and true error, 𝜖𝑚𝑎𝑥 − 𝜖. The 𝐶𝑂𝑉𝑃̂𝑓 is chosen as 0.05 and the total number of candidate 
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design points is 105 with initial number of samples 𝑁𝑆 = 104 and 𝑁∆𝑆 = 10
4. Results of these analyses 

are presented in Fig. 6 in terms of (a) 𝑁𝑐𝑎𝑙𝑙 vs 𝜖𝑡ℎ𝑟 for ESC +EFF, (b) 𝜖𝑚𝑎𝑥 − 𝜖 vs 𝜖𝑡ℎ𝑟 for ESC +EFF, 

(c) 𝑁𝑐𝑎𝑙𝑙 vs 𝜖𝑡ℎ𝑟 for ESC + U, and (d) 𝜖𝑚𝑎𝑥 − 𝜖 vs 𝜖𝑡ℎ𝑟 for ESC + U, (e) 𝑁𝑐𝑎𝑙𝑙 for AK-MCS + EFF and 

AK-MCS + U. Results indicate that: 

 

  

    
            (a)              (b) 

    
            (c)               (d) 

 
(e) 

 

Fig. 6. Boxplots of (a) 𝑁𝑐𝑎𝑙𝑙 vs 𝜖𝑡ℎ𝑟 for ESC +EFF, (b) 𝜖𝑚𝑎𝑥 − 𝜖 vs 𝜖𝑡ℎ𝑟 for ESC +EFF, (c) 𝑁𝑐𝑎𝑙𝑙 vs 𝜖𝑡ℎ𝑟 

for ESC + U, and (d) 𝜖𝑚𝑎𝑥 − 𝜖 vs 𝜖𝑡ℎ𝑟 for ESC + U, (e) 𝑁𝑐𝑎𝑙𝑙 for AK-MCS + EFF or AK-MCS + U 
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 The average number of calls to performance function for AK-MCS + EFF, AK-MCS + U, ESC + EFF 

and ESC + U methods are 92, 80, 52 and 50 as shown in Fig. 6 (a), (c) and (e), respectively, for the 

case when the error threshold 𝜖𝑡ℎ𝑟 is 0.05. This shows that the proposed method based on ESC reduces 

𝑁̅𝑐𝑎𝑙𝑙 considerably compared to AK-MCS. Even for the higher accuracy of 𝜖𝑡ℎ𝑟= 0.01, the average 

number of calls to performance function for the ESC-based EFF and U approaches are 82 and 74, 

respectively, which are smaller than 92 and 80 for AK-MCS + EFF and AK-MCS + U.  

 

 Generally, as the threshold for error 𝜖𝑡ℎ𝑟 increases, the average number of calls to performance 

function 𝑁̅𝑐𝑎𝑙𝑙 decreases. This point is evident in Fig. 6 (a) and (c).  

 

 The estimated maximum error 𝜖𝑚𝑎𝑥 is greater than the true error 𝜖 in most cases as seen in Fig. 6 (b) 

and (d), which follows the principle in Eq. (32). However, there indeed exists some cases that 𝜖 is 

slightly greater than 𝜖𝑚𝑎𝑥. This is attributed to the fact that the derivation of  𝜖𝑚𝑎𝑥 is based on a 

prescribed confidence level, here 95% with 𝛼 = 0.05. Therefore, it is expected that for a limited 

number of cases, 𝜖 will be larger than 𝜖𝑚𝑎𝑥.  

 

4.2 Modified Rastrigin function 
The second example considered here is the modified Rastrigin function, which is a highly nonlinear limit 

state function and thus requires a large number of calls to performance function to refine surrogate models 

[13], [27], [42]. This performance function is defined as: 

𝑔(𝑥1, 𝑥2) = 10 − ∑(𝑥𝑖
2 − 5𝑐𝑜𝑠(2𝜋𝑥𝑖))

2

𝑖=1

(49) 

where 𝑥𝑖s are independent standard normal random variables (e.g. mean of 0 and standard deviation of 1). 

Reliability analysis results for three levels of error are summarized in Table 3. In these analyses, the 

threshold 𝐶𝑂𝑉thr for  𝐶𝑂𝑉𝑃𝑓  is set as 0.037, and the initial number of candidate design points for each 

simulation is 𝑁𝑆 = 10
3 with 𝑁∆𝑆 = 10

3. For consistency in the comparisons, the set of candidate design 

samples and the set of initial training points are kept the same. 

 

Table 3. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U 

for different 𝜖𝑡ℎ𝑟 (𝐶𝑂𝑉thr = 0.037, 𝑁𝑆 = 10
3, and 𝑁∆𝑆 = 10

3) 

𝜖𝑡ℎ𝑟 Methodology  𝑁𝑐𝑎𝑙𝑙 𝑃̂𝑓(𝐶𝑂𝑉𝑃̂𝑓) 𝜖𝑚̂𝑎𝑥 𝜖 

- Monte Carlo 104 7.120 × 10−2 (<3.7%) - - 

AK-MCS + EFF 12 + 370 7.120 × 10−2  No estimation 0 

AK-MCS + U 12 + 335 7.120 × 10−2  No estimation 0 

0.05 ESC + EFF 12 + 220 7.010 × 10−2 0.0494 0.0154 

ESC + U 12 + 189 6.84 × 10−2 0.0487 0.0393 

0.03 ESC + EFF 12 + 260 7.120 × 10−2 0.0289 0 

ESC + U 12 + 211 7.04 × 10−2 0.0246 0.0112 

0.01 ESC + EFF 12 + 313 7.090 × 10−2 0.0098 0.0042 

ESC + U 12 + 287 7.060 × 10−2 0.0098 0.0084 

 

It is evident that ESC is computationally very efficient compared to the conventional AK-MCS approach. 

When 𝜖𝑡ℎ𝑟 is 0.05, ESC + EFF and ESC + U estimate the failure probability with 𝑁𝑐𝑎𝑙𝑙 of 232 (𝜖 = 

1.54%) and 201 (𝜖 = 3.93%), respectively, compared to 𝑁𝑐𝑎𝑙𝑙 of 382 and 347 for AK-MCS + EFF and 

AK-MCS + U methods. Even in the strict case of 𝜖𝑡ℎ𝑟 = 0.01, the 𝑁𝑐𝑎𝑙𝑙 using ESC is still lower than the 

traditional stopping criteria. The complex form of the limit state function of this problem is illustrated in 

Fig. 7 and Fig.8 for EFF and U learning functions, respectively. The unnecessary training in the 

conventional AK-MCS is clearly seen here as it refines the Kriging model in regions with weak 
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probability density. However, in the proposed stopping criterion, these ‘overfitting’ problems are solved 

by setting a threshold to control the maximum error; as such, the Kriging model is refined in regions that 

contribute the most to the failure probability estimation until the set error threshold is met. 

 

 

  
         (a)          (b) 

  
           (c)             (d) 

Fig. 7. The limit state with different levels of thresholds by EFF learning function in Table 3 (a) 𝜖𝑡ℎ𝑟 ≤
0.05, (b) 𝜖𝑡ℎ𝑟 ≤ 0.03,  (c) 𝜖𝑡ℎ𝑟 ≤ 0.01,  and  (d) max(𝐸𝐹𝐹) ≤ 10−3. 
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     (a)       (b) 

  
     (c)       (d) 

Fig. 8. The limit state with different levels of thresholds by U learning function in Table 3 (a) 𝜖𝑡ℎ𝑟 ≤ 0.05, 

(b) 𝜖𝑡ℎ𝑟 ≤ 0.03,  (c) 𝜖𝑡ℎ𝑟 ≤ 0.01,  and  (d) 𝑚𝑖𝑛(𝑈) ≥ 2. 

 

4.3 Nonlinear oscillator 
The third example is a nonlinear and un-damped single degree of freedom (Fig. 9) with six random 

variables. The details of this model can be found in [13], [42]–[45]. The performance function is 

described below: 

𝑔(𝑐1, 𝑐2, 𝑚, 𝑟, 𝑡1, 𝐹1) = 3𝑟 − |
2𝐹1

𝑚𝜔0
2 𝑠𝑖𝑛 (

𝜔0𝑡1
2
)| (50) 

where 𝜔0 = √
𝑐1+𝑐2

𝑚
  is the system frequency. The probabilistic description of the six random variables is 

presented in Table 4, and the results of reliability analyses are summarized in Table 5.  
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Fig. 9 Example 3, nonlinear oscillator 

 

Table 4. Random variables in example 3. 

Random variable Distribution type Mean Standard Deviation 

𝑚 Normal 1 0.05 

𝑐1 Normal 1 0.1 

𝑐2 Normal 0.1 0.01 

𝑟 Normal 0.5 0.05 

𝐹1 Normal 1 0.2 

𝑡1 Normal 1 0.2 

 

For this example, the threshold 𝐶𝑂𝑉𝑡ℎ𝑟 is 0.022, the initial number of candidate design points is 𝑁𝑆 = 10
4 

with 𝑁∆𝑆 = 10
4. Consistent with other examples, results in Table 5 indicate that ESC is very efficient for 

this moderate dimensional problem. As seen, the use of ESC averts the unnecessary training points while 

accurately estimating the error. These are key features that are not available in AK-MCS. The number of 

calls to performance function when the error threshold is 0.05 is only 25 for ESC + EFF and 24 for ESC 

+ U compared with 53 and 73 for AK-MCS + U and AK-MCS + EFF, respectively. Furthermore, 𝑁𝑐𝑎𝑙𝑙 
slightly increases to 27 for ESC + EFF and ESC + U, when the error threshold is 𝜖𝑡ℎ𝑟 = 0.03. For the 

strict error threshold of 0.01, the number of calls to performance function is 29 for both ESC + EFF and 

ESC + U compared with 53 in AK-MCS + EFF and 73 in AK-MCS + U. As seen in Table 5, the accuracy 

reaches a high level for 𝜖𝑡ℎ𝑟 = 0.03. In the case of 𝜖𝑡ℎ𝑟 = 0.01, the Kriging model achieved a high 

accuracy for failure probability estimation after 29 number of calls (including the 12 initial points) to 

performance function. The additional 24 points for EFF or 44 for U that are used to further refine the 

model may not be necessary for engineering applications. However, ESC stopping criterion successfully 

avoids unnecessary training by setting the target accuracy. 

 

Table 5. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS 

+ U for different 𝜖𝑡ℎ𝑟 (𝐶𝑂𝑉thr = 0.022, 𝑁𝑆 = 10
4, and 𝑁∆𝑆 = 10

4).  

𝜖𝑡ℎ𝑟 Methodology  𝑁𝑐𝑎𝑙𝑙 𝑃̂𝑓(𝐶𝑂𝑉𝑃̂𝑓) 𝜖𝑚̂𝑎𝑥 𝜖 

- Monte Carlo 7 × 104 2.800 × 10−2 (<2.2%) - - 

AK-MCS + EFF 12 + 41 2.809 × 10−2  No estimation 0.0031 

AK-MCS + U 12 + 61 2.800 × 10−2  No estimation 0 

0.05 ESC + EFF 12 + 13 2.781 × 10−2 0.0304 0.0067 

ESC + U 12 + 12 2.794 × 10−2 0.0355 0.0020 

0.03 ESC + EFF 12 + 15 2.841 × 10−2 0.0187 0.0148 

ESC + U 12 + 15 2.807 × 10−2 0.0195 0.0026 

0.01 ESC + EFF 12 + 17 2.823 × 10−2 0.0093 0.0082 

ESC + U 12 + 17 2.807 × 10−2 0.0072 0.0026 

 

4.4 Ten-dimensional analytical example 
The last example is an analytical example presented in [4], [12], [13] with the following form: 

𝑔(𝑥1, … , 𝑥𝑛) = (𝑛 + 3𝜎√𝑛) −∑𝑥𝑖

𝑛

𝑖=1

(51) 

The random variables, 𝑥𝑖s, follow lognormal distribution with mean of 1 and standard deviation 𝜎 = 0.2. 
To investigate the efficiency of the considered reliability analysis methods for a high dimensional 

problem, here 𝑛 = 10. Table 6 presents reliability analysis results for three levels of error threshold. Here 

𝐶𝑂𝑉thr = 0.022, the initial number of candidate design points for each simulation is 𝑁𝑆 = 10
5 and 𝑁∆𝑆 =

105.  
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For this ten-dimensional problem, the proposed method based on ESC outperforms the conventional 

techniques. With 23 number of calls to performance function, the proposed method reaches the true error 

of 0.07%, while AK-MCS requires more than 60 number of calls to performance function.  This result 

points to the fact that AK-MCS leads to unnecessary training of the Kriging model; however, ESC can 

address this issue and dramatically reduce the number of calls. For the strict error threshold of 𝜖𝑡ℎ𝑟 =
0.01, the number of calls for ESC + EFF is 42 and for ESC + U is 44, which are still smaller than those 

for AK-MCS + EFF (𝑁𝑐𝑎𝑙𝑙 = 61) and AK-MCS + U (𝑁𝑐𝑎𝑙𝑙 = 60). Thus, the stopping criterion ESC 

successfully alleviates the unnecessary training of the Kriging model in adaptive reliability analysis 

methods. 

 

Table 6. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U 

for different 𝜖𝑡ℎ𝑟 (𝐶𝑂𝑉thr= 0.022, 𝑁𝑆 = 10
5, and 𝑁∆𝑆 = 105) 

𝜖𝑡ℎ𝑟 Methodology  𝑁𝑐𝑎𝑙𝑙 𝑃̂𝑓(𝐶𝑂𝑉𝑃̂𝑓) 𝜖𝑚̂𝑎𝑥 𝜖  

- Monte Carlo 2 × 105 2.770 × 10−3 (<2.2%) - -  

AK-MCS + EFF 12 + 49 2.770 × 10−3  No estimation 0  

AK-MCS + U 12 + 48 2.770 × 10−3  No estimation 0  

0.05 ESC + EFF 12 + 11 2.772 × 10−3 0.0414 0.0007  

ESC + U 12 + 12 2.770 × 10−3 0.0433 0  

0.03 ESC + EFF 12 + 18 2.770 × 10−3 0.0278 0  

ESC + U 12 + 17 2.770 × 10−3 0.0195 0  

0.01 ESC + EFF 12 + 30 2.770 × 10−3 0.0091 0  

ESC + U 12 + 32 2.770 × 10−3 0.0092 0  

 

4.5 Truss structure with ten dimensions 
A 23-bar truss structure with 10 random variables is considered here [36], [46]. The configuration of the 

truss is shown in Fig. 10. The implicit nonlinear performance function is defined as: 

𝑔(𝑥) = 0.14 − |𝑑𝑖𝑠(𝒙)|, (52) 
where 𝑑𝑖𝑠(𝒙) is the vertical displacement of the truss at point E. The truss is subject to six vertical 

loadings, 𝑃1 to 𝑃6, which follow Gumbel distributions. 𝐴1 and 𝐴2 are the cross-section areas and 𝐸1 and 

𝐸2  are the Young’s modulus of the horizontal and diagonal bars, respectively. The 10 mutually 

independent random variables are described in Table 7.  

 

 
Fig. 10 Example 5, the truss with 10 random variables. 

 

Table 7. Random variables in example 5. 

Random variable Distribution Mean Standard deviation 

𝑃1 − 𝑃6 Gumbel 6.5 × 104 6.5 × 103 

𝐴1 Lognormal 2 × 10−3 2 × 10−4 

𝐴2 Lognormal 1 × 10−3 1 × 10−4 

𝐸1 Lognormal 2.1 × 1011 2.1 × 1011 

𝐸2 Lognormal 2.1 × 1011 2.1 × 1011 

P1 

 

P2 
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P4 
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P6 
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For this nonlinear example, the threshold for COVthr is set as 0.05, and the initial number of candidate 

design points is NS = 10
4 with N∆S = 10

4.  The simulation results are presented in Table 8. An 

interesting observation in this example is the inability of AK-MCS+EFF to converge to an accurate 

estimate of failure probability (ϵ = 0.0543) because of the premature termination of the training process. 

The premise behind EFF-based stopping criterion is that the threshold of 10−3 in max(𝐸𝐹𝐹) ≤ 10−3 is 

small enough to ensure that the adaptive reliability analysis yields accurate P̂f. As argued in this paper 

earlier, EFF and in general existing stopping criteria do not directly correspond to the extent of error in 

failure probability estimates. Thus as observed in this example, the threshold is not sufficiently small. 

Reducing the threshold for the maximum of EFF to values smaller than 10−3, however, may considerably 

increase the unnecessary calls to the performance function for other problems. In this example, AK-MCS 

+ U provides an accurate estimate of P̂f with total 67 simulations. The proposed ESC + EFF requires 49, 

54 and 58 evaluations to the performance function for error thresholds of 0.05, 0.03, and 0.01, 

respectively. This indicates that adaptive reliability analysis using the proposed stopping criterion can 

properly converge to true failure probability. Similar trend can be observed for the case of ESC + U 

approach.   

 

Table 8. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U 

for different 𝜖𝑡ℎ𝑟 (𝐶𝑂𝑉thr= 0.05, 𝑁𝑆 = 10
4, and 𝑁∆𝑆 = 104) 

𝜖𝑡ℎ𝑟 Methodology  𝑁𝑐𝑎𝑙𝑙 𝑃̂𝑓(𝐶𝑂𝑉𝑃̂𝑓) 𝜖𝑚̂𝑎𝑥 𝜖  

- Monte Carlo 5 × 104 9.200 × 10−3 (<5%) - -  

AK-MCS + EFF 12 + 28 9.700 × 10−3  No estimation 0.0543  

AK-MCS + U 12 + 55 9.200 × 10−3  No estimation 0  

0.05 ESC + EFF 12 + 37 9.400 × 10−3 0.0309 0.0217  

ESC + U 12 + 29 9.100 × 10−3 0.0299 0.0109  

0.03 ESC + EFF 12 + 42 9.300 × 10−3 0.0152 0.0109  

ESC + U 12 + 37 9.300 × 10−3 0.0148 0.0109  

0.01 ESC + EFF 12 + 46 9.200 × 10−3 0.0022 0  

ESC + U 12 + 55 9.200 × 10−3 0 0  

 

5. Conclusion 
In this article, an Error-based stopping criterion (ESC) for Kriging-based reliability analysis algorithms is 

proposed. It is shown that the total number of candidate design samples wrongly categorized by Kriging 

as safe and failed follows a Poisson binomial distribution. Based on the statistical properties of this 

distribution, the confidence intervals of the number of points with wrong sign estimation in both failure 

and safe domains are derived for a given confidence level. These bounds are subsequently used to 

determine the maximum error for estimated failure probabilities in the adaptive Kriging reliability 

analysis process. Finally, a new stopping criterion based on the derived maximum error is proposed. It is 

shown that the proposed stopping criterion, ESC, can avoid unnecessary calls to performance functions 

and guarantee convergence to target accuracies in Kriging-based reliability analysis methods for the 

considered confidence level. This new feature helps researchers to establish a balance between 

computational demand and required accuracy. Five examples are considered to investigate the 

performance of ESC and two other widely used stopping criteria. Numerical results showcase the high 

efficiency and accuracy of adaptive reliability analysis using ESC compared to existing methods.  
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