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Abstract

The ever-increasing complexity of numerical models and associated computational demands have
challenged classical reliability analysis methods. Surrogate model-based reliability analysis techniques,
and in particular those using Kriging meta-model, have gained considerable attention recently for their
ability to achieve high accuracy and computational efficiency. However, existing stopping criteria, which
are used to terminate the training of surrogate models, do not directly relate to the error in estimated
failure probabilities. This limitation can lead to high computational demands because of unnecessary calls
to costly performance functions (e.g. involving Finite Element models) or potentially inaccurate estimates
of failure probability due to premature termination of the training process. Here we propose the Error-
based Stopping Criterion (ESC) to address these limitations. First, it is shown that the total number of
wrong sign estimation of the performance function for candidate design samples by Kriging, S, follows a
Poisson binomial distribution. This finding is subsequently used to estimate the lower and upper bounds
of S for a given confidence level for sets of candidate design samples classified by Kriging as safe and
unsafe. An upper bound of error of the estimated failure probability is subsequently derived according to
the probabilistic properties of Poisson binomial distribution. The proposed upper bound is implemented in
the Kriging-based reliability analysis method as the stopping criterion. The efficiency and robustness of
ESC are investigated here using five benchmark reliability analysis problems. Results indicate that the
proposed method achieves the set accuracy target and substantially reduces the computational demand, in
some cases by over 50%.

Key words: Reliability analysis; Surrogate model; Stopping Criterion, Adaptive Kriging,; Estimation
error; Poisson binomial distribution;

1. Introduction

Reliability analysis is primarily concerned with the vulnerability of components or systems under the
impact of factors such as deterioration, normal operation loads, or extreme disturbances. In this context,
the failure probability, Py, is commonly defined as:

P=Pe@=0=| pGdx M
g(x)<0
where x is the vector of random variables, g(x) is the so-called limit state function or performance
function and p(x) is the joint probability density function (PDF) of x. Multiple groups of techniques have
been developed for estimating P in Eq. (1). These include, but are not limited to, sampling approaches
(e.g., Crude Monte-Carlo Simulation [1], [2], Importance Sampling(IS) [3], Subset Simulation (SS) [4],
etc.), optimization approaches (e.g., First or Second Order Reliability Method (FORM & SORM) [5], [6])
and the state-of-the-art surrogate modeling methods (e.g., Response Surface [7], [8], [9], Polynomial
Chaos Expansion [10], Support Vector Regression [11], [12], or Kriging [13]-[15]).

Recently, Kriging-based surrogate modeling approaches have gained considerable attention. This is
in part because of the ability of Kriging to estimate responses in the form of a distribution with Kriging
mean and variance, as opposed to other surrogate models, which provide only the best estimate of the
responses. This feature enables adaptive and efficient refinement of the surrogate model in the vicinity of
the limit state, g(x) = 0. Reviews of Kriging-based reliability analysis algorithms and their advantages
compared to other surrogate model-based approaches can be found in [13], [16], [17]. Two representative
algorithms called Efficient Global Reliability Analysis (EGRA) proposed by Bichon et al. [18] and
Adaptive Kriging with MCS (AK-MCS) proposed by Echard et al. [13] are widely used. Compared to
EGRA, AK-MCS uses the coefficient of variation of failure probability COVp ; to evaluate the sufficiency

of the considered number of candidate design samples.
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A number of recent studies have further improved the performance of Kriging-based reliability
analysis. These improvements target sampling strategies, Kriging learning functions and stopping criteria.
For sampling strategies, Echard et al. [3], Balesdent et al. [19] and Dubourg et al. [20] used importance
sampling techniques alongside the adaptive Kriging model, which facilitates reliability analysis for rare
events. Additionally, Subset Simulation techniques are used with Kriging-based reliability analysis in
[4],]21] [22]. Wen et al. [23] and Yang et al. [24] proposed the truncated candidate samples region, which
cuts off candidate samples with small values of probability density. It is shown that using this approach,
the number of calls to performance function can be reduced and acceptable accuracy in failure probability
estimates can be achieved [23]. With regard to learning functions, Bichon et al. [15] proposed the
expected feasible function (EFF), which prioritizes points with high uncertainty and those in the
proximity of the limit state, g(x) = 0. Echard et al. [13] proposed a learning function called U for
quantification of the likelihood of wrong sign estimation. This function is widely used in other Kriging-
based methodologies [3], [4], [25]. An information entropy-based learning function A, which follows a
similar strategy to EFF, is developed by Lv et al. [26]. Sun et al. [27] proposed the Least Improvement
Function (L/F), which enhances the learning process by searching next best training points among those
that have high probability of wrong sign estimation, are in the vicinity of the limit state, and have high
probability density. Xiao et al. [28] combined three learning functions P4, P, and P, for measuring the
distance among the limit state, new training points and candidate design samples with high variances to
pick the next training point, while avoiding ‘clustering’ phenomenon. For stopping criteria, most of
existing studies set thresholds on values of learning functions. Bichon et al. [18] and Wen et al. [23]
adopted the maximum EFF smaller than a prescribed threshold (e.g., max(EFF) < 1073) as the
stopping criterion. On the other hand, the stopping criterion min(U) > 2 is widely used in many adaptive
Kriging-based reliability analysis algorithms [3], [4], [13], [25], [29]. Kriging-based stopping criteria
have also been developed and implemented in the field of optimization to achieve sufficient accuracy and
avoid unnecessary training of surrogate models [30], [31]. All of these approaches show great merits and
improve the performance of Kriging-based reliability analysis. However, there is no systematic approach
to establish stopping criteria that can guarantee convergence to the true failure probability and avoid calls
to the performance function when the estimated failure probability is close to the true one estimated by
MCS.

It is shown that the unnecessary training of the surrogate model in adaptive Kriging-based methods
exists for both stopping criteria max(EFF) < 1073 and min(U) = 2 [13], [14], [32], [33]. Gaspar et al.
[32] proposed a new stopping criterion based on the stability of the estimated failure probability. Fauriat
et al. [14] states that the accuracy of the Kriging model will be sufficiently high if 2% of the candidate
design samples satisfy min(U) > 2. Different from those approaches, Hu et al. [29] derived an estimate
of the maximum error for the estimated failure probability assuming that the signs of the limit state
function for points satisfying U > 2 are all correctly estimated and that the true number of failure points
satisfying U < 2 is no more than the number of points satisfying U < 2. However, these assumptions may
not be acceptable since there is a possibility of wrong sign estimation even for points that satisty U > 2.
For example, if there are thousand samples that satisfy U = 2 and are categorized into failure domain, the
expected number of true failure points is equal to IVfUZZ = 1000 — 1000 x ®(—2) = 977, where @(*) is

the cumulative density function (CDF) of the standard normal distribution. The maximum error proposed
in [29] fails to capture this crucial point. The lack of direct correspondence of existing stopping criteria
with error in estimated failure probabilities can also potentially lead to inaccurate reliability analysis
results due to premature termination of the training process.

In this paper, a maximum error €,,,, for the estimated failure probability is derived and an Error-
based Stopping Criterion (ESC) is proposed. First, it is shown that the number of candidate design
samples wrongly assigned to safe and failure domains follows a Poisson binomial distribution. The
probabilistic properties of these distributions are subsequently derived. Based on these information, a
procedure to estimate the maximum error in the estimated failure probabilities for a given confidence
level is proposed. Finally, an error-based stopping criterion is presented by setting a threshold value for



the presented maximum error. The proposed stopping criterion, ESC, solves the unnecessary training
problem for Kriging-based reliability analyses methods and guarantees convergence to target accuracy
levels. Five reliability analysis examples are investigated to show the advantages offered by the proposed
ESC, especially for high-dimensional problems.

This paper is organized in four sections. The elements of Kriging-based reliability analysis are
briefly introduced in Section 2. In Section 3, the derivation of the proposed maximum error €,,,, and
ESC stopping criterion are presented. In Section 4, five examples are investigated to demonstrate the
application of €,,,,, and ESC in solving reliability problems. Section 5 summarizes and concludes this
study.

2. Kriging-Based Reliability Analysis

2.1 Kriging elements

Kriging, also called Gaussian Process Regression, is an interpolation-based regression method [34]. It
assumes that the estimated responses K (x) for unknown observations and the true responses for known
observations Y (x) follow a joint Gaussian distribution [34], [35]. In this section, a brief overview of
Kriging is presented. More information about this method can be found in [3], [4], [13], [25]. The Kriging
model K (x) can be described as follows:

K@) =FB,x)+ Z(x) =B f(x) +Z(x) (2)

where F (B, x) is the deterministic regression part representing the Kriging trend and Z (x) is the stochastic
interpolation part with Gaussian distribution assumption. Expanding F (B, x), f(x) is the Kriging basis and
B is the regression coefficient of f(x). BT f (x) often takes ordinary (B,), linear (By+X.), B;x;) or quadratic
Bo + XN, Bix; + XN, Z?’:i pBijxix;) forms, where N is the dimension of the random input vector x. In this
paper, we use the ordinary Kriging model. Moreover, Z(x) follows a stationary normal Gaussian process
with zero mean and covariance matrix as shown below:

cov (Z(xi),Z(xj)) = o2R(x;,x;;0) (3)

where g2 is the process variance from the regression part (e.g., generalized mean square error), x; and X;
are two observations, and R(xl-,xj; 0) is the correlation function or the so-called kernel function, which
represents the correlation function of the process with hyper-parameter 6. Several forms have been used
for the correlation function in Kriging approach; these include linear, exponential, Gaussian, and Matérn
functions, among others. In this paper, the Gaussian kernel function is used with the following form:

N
R(x;,x;;0) = 1_[ exp (—Hk(x{‘ - x}‘)z) (4)
k=1

where N is the dimension of the random input vector. The hyper-parameter @ can be estimated via
Maximum Likelihood Estimation (MLE) or Cross-Validation (CV) [34]. It is shown that 8 has a significant
impact on the performance of Kriging [16], [23], [36]. To keep the consistency with previous studies for
comparison purposes, here, an optimization toolbox called DACE [37], [38] that uses MLE is used to search
for optimal 8% in (0,10). The Maximum Likelihood Estimation can be represented as:

1
0* = argmin <|R(xi,xj; 0)|™ 02> (5)
e

Accordingly, the regression coefficient #, and Kriging estimated mean and variance can be determined as
follows [34]:



B= (FFR'F)7'F'R™'Y
me () = f1(0)B + 1" (R (y — FB)
og(x) = 0?1 =" (O)R™'r(x) + (F'R™'r(x) - () (F'RTFH)'(F'R™'r(x) - f(x)))  (6)

where F is the matrix of basis function f(x) evaluated at known training points, i.e. F;; = fj(x;), i =
1,2,..,m;j=12,..,p, r(x) is the vector of correlation between known training points x; and an
unknown point x: 1; = R(x,x;,0),i = 1,2..m, and R is the autocorrelation matrix for known training
points: R;; = R(xi,xj, 0), i=12,..,mj=1,2,..,m. Dueto the prior assumption of Kriging model, the
responses from Kriging follow a normal distribution with Kriging mean i (x) and Kriging variance o (x):

K@) ~ N (1 (), 02 () (7)

Compared with the points that are further away from the training points, responses of points close to the
training points are expected to have higher confidence. The Kriging-based reliability analyses apply
‘learning functions’ that use information of Kriging mean and variance to strategically pick points from the
candidate design samples. Two learning functions, i.e. the EFF and U are briefly introduced in the following
subsection.

2.2 Learning function & stopping criterion

Learning functions play an important role in Kriging-based reliability analysis. Learning functions facilitate
searching for points in the set of candidate design samples that lead to highest gains for failure probability
estimation. As stated in the introduction of this paper, multiple learning functions have been proposed. Two
popular learning functions including Expected Learning Function (EFF) and U function, are considered in
this paper. In EFF, the proximity of points to the limit state g(x) = a and their variance are the two key
factors. The mathematical expression of EFF is presented below:

a+8(x)
BFFG) = [ 1660~ la = Rl (ki i (3,0 (0
a-8(x)
_ B a—p®)\  fa” -\ fat—pe(x)
= () “)[Zq’( aK(x>> q’( ey ) q’( e )

—oy (x)

Q- @\ (a -\ . (a* - ()
2"’( o () )“"( o () )“"( o () >
+20K(x)[¢<a —ux(x)>_q)<a —ux(x)>

ok (x) ok (x)

(8)

where ¢(+) is the standard normal probability density function. Here, a = 0, §(x) = 20x(x),a™ = a +
6(x) and a” = a — §(x). The term [6(x) — |a — h|] in Eq. (8) measures the proximity of the target
point, and is weighted by the term ¢ (h; ug (x), ox (x)). The point that maximizes the EFF response is
chosen as the next point to refine the Kriging model. The conventional stopping criterion based on this
learning function is expressed as max(E FF (x)) <1073.

Another widely accepted learning function is U learning function, which represents the uncertainties
in the sign (1) estimation by §(x)=0. This learning function is also investigated in this paper. U takes the
probabilistic distribution of estimated responses into consideration, and quantifies the probability of making
a wrong sign estimation for §(x). The formulation of U is:



|pge ()

ok (x)

The point that minimizes the response of U learning function is selected as the next training point. The
conventional stopping criterion based on U is defined as min(U (x)) > 2, which is interpreted as that the
probability of making wrong sign estimation should not exceed 0.023. It is shown that both EFF and U
learning functions are efficient for the selection of appropriate points in the adaptive Kriging process [13].
Moreover, EFF tends to converge faster than U in achieving true probability of failure Pr, while U

Ux) = 9)

learning function converges faster to its own stopping criterion (min(U (x)) > 2) than EFF

(max(E FF (x)) < 10_3). As EFF and U do not directly correspond to the error in the failure probability
that is estimated at each iteration of the adaptive Kriging process, the corresponding stopping criteria are
set to be overly conservative to ensure that the true error in the estimates of failure probability is
confidently acceptable for reliability problems. The lack of direct correspondence to the error, therefore,
leads to a large number of required costly simulations. Thus, it is necessary to derive a stopping criterion
that is based on the accuracy of the estimates of the failure probability. To address this challenge, we
present a maximum error for estimated failure probabilities within the adaptive Kriging reliability
analysis process. Furthermore, based on this accuracy measure, a new stopping criterion called ESC is
proposed. The performance of this measure is compared with (min(U(x)) > 2) and (max(EFF(x)) <

10'3) strategies.

3. ESC: An Error-Based Stopping Criterion

Since the true failure probability, denoted as Py, is unavailable, the failure probability estimated via

Monte Carlo Simulations, P}V’ €5 can be regarded as the benchmark for measuring the accuracy, assuming

that sufficiently large number of simulations are used in the calculation of PfM €S Thus, the estimated

failure probability via Kriging-based reliability analysis with MCS can be denoted as 13}"’ ¢s

error of the 13}" €S with respect to P}” €S can be defined as:

. The relative

e e

6 =
MCS
Py

AMCS
Py

P 1’ (10)

For consistency in the comparison, the set of candidate design samples for crude MCS and Kriging-based
MCS should be the same. This way, a reliability analysis algorithm ¥ is optimal, if it requires the least
number of calls to performance function, N.4;;, while maintaining the error below a prescribed threshold
€thr € (0,1)

P* = argmin Ny (11)

YER, €<€thr

where 7 is the set of all feasible reliability analysis algorithms. As the true error € for MCS-based
reliability approaches is not known, our objective here is to mathematically derive the maximum error
€max for a given confidence level by leveraging the statistical information available via Kriging.
Subsequently, a stopping criterion named ESC is proposed to demonstrate the ability of this approach in
solving the unnecessary training problem.

3.1 Derivation of the maximum error
Let us define the true and estimated probabilities of failure as:
pMcs _ Ny
4 Nycs

(12)
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pHes = - ! (13)
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where Ny¢s is the number of candidate design samples for MCS, Ny is the number of failures determined

using the true performance function g(x), and IVf denotes the number of points from the candidate design
samples ( determined by the Kriging model to indicate failure. The true domains of failure and survival
within () are denoted as () and (g, respectively, while the Kriging-estimated failure and survival
domains are represented by ﬁf and Q, respectively. Therefore, Nf is the size of ﬁf. Subsequently, the
relative error in Eq. (10) can be rewritten as,

I_’-jMCS N
- | __ 1= &£
€= [phms 1|_ ‘Nf 1| (14)

In Kriging surrogate models, the true error € is not known, since N¢ is unknown. Let us denote the total
number of candidate design points in ﬁf that belong to (), as .§f and those in {), that belong to Qf as S..
Thus, Ny can be determined as:
Np=Rj + 5, - 5 (15)

The probabilistic distribution of S;and S'f are explored in the next subsection. With confidence level o, a
confidence interval of Ny can be represented as:

Ny € [Ny =S¢, Ny +S] (16)
where S ¢ and S are the upper bound of the confidence interval of s and S ¢, respectively. Accordingly,
the maximum error can be calculated as,

—~ —~

/A < Ny ‘ Ny 1) 2 (17)
€= |—7— smax\ |\'=———=-— == = €
Ny Ny — SF Ny + S¥ max

where §}‘and S are unknown. In the following section, it is shown that both S and §f follow a Poisson
binomial distribution, and the confidence intervals can be determined accordingly.

3.2 Probability distribution of S; and S;
For each candidate design point x; in ﬁf or {s, let’s define an indicator function /; that takes one when
K (x;) makes a wrong estimation of the sign of g(x;), and zero when the sign estimation is correct.
Subsequently, S = Zf]:f i x; € Qpand $s = Z?’;l I;,x; € Qg, where N, denotes the number of points
from the candidate design samples () that are determined by the Kriging model to be safe. Since the
output of the Kriging model follows a normal distribution with mean J,, and standard deviation &y, , the
probability of the event that the sign estimate of x; is wrong is [13]:

) (18)

where P}"*¢ denotes the probability of wrong sign estimation for x; . This derivation is illustrated in Fig.
1. Thus, it is evident that [; follows a Bernoulli distribution with the following mean and variance:
E[l;|x; € Qf U Q5] = PY*e (19)
Var[L;|x; € Qf U Q] = P¢(1 — P}**°) (20)
It can be shown that the sum of independent Bernoulli trials follows a Poisson binomial distribution [39].
Consequently, ff and S, follow Poisson binomial distributions as follows:

~

Yx;

O,

P(L=1|x;€ Qf U ﬁs)=Pl.Wse=¢><—

Ny Ny

$o~PB (s, 02 ) 2 € Qus, = ) P ,0F = )" P (1= P¥*) (21)
i=1 i=1
Ng Ny

& 2 ) — 2 _

Sf"-'PB (ﬂgf,dgf),xi € Qf’llﬁf = zpiwse ’U§f = Z PiWSe (1- Piwse) (22)
i=1 i=1



Fig. 1. An illustration of the probability of wrong sign estimation in Eq.(18) considering (a) 3, = 0 or (b)
Vx; < 0.

Based on these distributions, the confidence intervals (Cls) of S and S'f are given by:

= <@§: (%),@Srsl (1- %)) (23)
= <9§f1 (%) 05" (1- %)) (24)

where @5?51 () and @;fl () are the inverse CDF of the Poisson binomial distribution of S and .S},

respectively, and « is the confidence level. Analytical solutions for the above confidence intervals are
typically not available, instead, numerical approaches or approximate analytical methods can be pursued.
Sampling techniques can be used to numerically determine the inverse CDF of Poisson binomial
distributions. However, in most cases, the confidence interval of S; can be approximately determined
using the Central Limit theorem. In cases where the probability of failure is small, .§'f can be
approximately obtained using Poisson distribution. These two cases are presented below in the form of
corollaries:

Corollary 1. S, in distribution converges to a normal distribution for sufficiently large Ny, and the
confidence interval of Sy can be obtained accordingly.

Proof: Given that

. Var[IL-] —~
lim [ max — =0, x; € Q (25)
Ns—oo \i=1,..8 Var[$]

Lindeberg’s condition for the Central Limit theorem for the sum of independent, not identically distributed
random variables is satisfied [40]. Subsequently, for sufficiently large N, S, in distribution converges to a
normal distribution:

S;~N (ugs, crgzs), x; € Q (26)
The CI of S can then be obtained as:
Ss € us, — veios, Hs, + veios,], (27)
x; € Q

where y,; = 1.96 for the confidence level a = 0.05. As N, is large in Kriging-based reliability analysis
problems, the above confidence bounds for S are accurate. It should be noted that because the event of
failure is often rare, IVf is not sufficiently large for the distribution of Sf to converge to a normal
distribution and therefore to use corollary 1.

Corollary 2. The distribution of .§f can be approximately represented using a Poisson distribution and the
confidence interval of 5} can be obtained accordingly.

Proof: 1t is shown that ff follows a Poisson binomial distribution. According to Le cam’s theorem [39],
[41]:



Z Pr($; = k) — fT < 22(10{"5"’)2 (28)
k=0 ' i=1
which indicates that the distribution of .§'f can be approximately represented as a Poisson distribution:
k ,Hs,
A Hs, € _
Pr($y =k) = T,k =0,1,.., Ny (29)
The CI of ff can be determined as:
S “1(% (1%
S €|rs; (2),r§f (1 2)] (30)

where I' §f1 () is the inverse CDF of the Poisson distribution with both mean and variance equal to ug ;

defined in Eq. (22), and « is the confidence level. It is recommended that S be estimated as normal
distribution since N is large in most cases and .§f be estimated as Poisson distribution due to the fact IVf
is relatively small.

3.3 ESC: Error-based Stopping Criterion
In adaptive procedures of reliability analysis, the stopping criterion is very important. However, it is
shown that traditional stopping criteria do not have direct correspondence with the extent of error, thus
they are set to be very strict to ensure that the estimation error is acceptable. To address this limitation,
ESC includes an upper bound for the error, €,,,,, determined using Eq. (17) to ensure that the extent of
error in failure probability estimation does not exceed a prescribed error threshold €,y,-. The updating
process of the Kriging model stops when the following condition is reached:
EAmax < Ethr (3 1)
Accordingly, it is expected that the true error (denoted as €), with the confidence level a, should be
smaller than &,,,,. The relationship between €, €,,,,, and €;,- can be presented as:
€= émax < Ethr (32)
3.4 Implementation of ESC
The procedure to implement £SC for reliability analysis is illustrated in the flowchart presented in Fig. 2.
The primary steps for the implementation of the proposed method are described below:
o Step 1: Generation of initial candidate design samples. Generate Ny;.s candidate design samples
using Latin Hypercube Sampling (LHS). These samples are denoted as S.

o Step 2: Selection of initial training points. Randomly select from S an initial set of training points
denoted as x;, for Kriging construction, and evaluate their responses g(X;,.).

e Step 3: Kriging construction. Construct the Kriging model using x;,.. Denote the Kriging model as
K (x). For the construction of the Kriging model, MATLAB toolbox DACE [37] is used here with
ordinary Kriging basis and Gaussian correlation function.

o Step 4: Kriging estimation. Obtain the current Kriging responses including the mean py (x) and
variance g (x), and subsequently estimate the 13fM ¢ onS.

e Step 5: Identification of the next training point. Select the next most valuable point for training
according to x* = Mgg{(EFF) orx* = MEiI;(U).
X X

o Step 6: Updating the set of training points. Add the identified point x* to the set of training
points xy-.



Step 7: Estimation of the maximum error. Determine the maximum error &,,,, using Eq. (16), (17),
(23), (24), (27), (30).

Step 8: Evaluation of the stopping criterion. Check the stopping criterion (€4, < €tnr)- If the
stopping criterion is not satisfied, then go to step 3, otherwise, go to step 9.

Step 9: Evaluation of the sufficiency of initial design sample set. Determine the coefficient of
variation of I3f using:

1-P
COVp, = |= < COViyr (33)
! PfNMCS

where COVy,, is the threshold for the coefficient of variation of Pf, and is usually assigned 0.05 [13].
If Eq. (33) is satisfied then go to step 10. If not, it means that the number of candidate design samples
Nycs is not sufficient, and an additional number N, of candidate design samples Ag should be added
to S. Then go back to step 4.

Step 10: End. Report Py.
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Fig 2. Flowchart of the proposed adaptive Kriging-based reliability analysis method using ESC
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4. Numerical Investigations

In this section, five examples with different forms of complexities are investigated. These examples have
one or more of the following properties: highly nonlinear, non-differentiable, and high-dimensional.

4.1 Four-boundary series system

The first analytical example is a series-system with four boundaries [13], [23], [27], [32]. The
performance function includes two independent identically distributed standard normal random variables
(e.g. mean of 0 and standard deviation of 1) x; and x, as follows:

34 0.10x; —x)% — %
34 01(x; —x,)? + T x2)
g(xlxxz) = min-« . \/f 34)
(xl - xz) + ﬁ
\ —(x1 —x) + \/—67

This reliability analysis is performed using MCS and adaptive Kriging with EFF and U learning functions
for different stopping criteria. The proposed stopping criterion ESC is compared with the conventional
stopping criteria Max(EFF) < 1073 and Min(U) > 2. The number of initial training points affects the
quality of the initial Kriging model and the computational demand of the reliability analysis. For the same
or very similar problems to those considered in this paper, the study in [13] indicated that 12 initial
training points are adequate. This value is adopted in this research. The performance of these methods is
compared in terms of the number of calls to performance function, N_,;;, estimated probability of

failure, I3f, coefficient of variation of estimated probability of failure, COVp - estimated maximum error,
€max- and the true error, €. Table 1 presents reliability analysis results for ESC + EFF, AK-MCS + EFF,
ESC + U and AK-MCS + U methods for different €;5,,- values. The threshold COVyy,, for COVp y is set as
0.05, and the initial number of candidate design points for each simulation is Ng = 10* with Ny, = 104,

In this comparison, the same set of candidate design samples and initial training points are used for all
methods in order to remain consistent in failure probability estimation.

Table 1. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U
for different €4, (COViyr = 0.05, Ng = 10%, and N, = 10%).

€nr  Methodology Neau Pe(covp ) Emax €
- Monte Carlo 10° 4.520 X 1073 (4.7%) - -
AK-MCS + EFF  12+93 4520 x 1073 No estimation 0
AK-MCS + U 12 + 68 4510 x 1073 No estimation 0.0022
0.05 ESC + EFF 12 +40 4700 x 1073 0.0444 0.0398
ESC+U 12 +41 4530 x 1073 0.0362 0.0022
0.03 ESC + EFF 12 + 60 4520 x 1073 0.0216 0
ESC+U 12+43 4530 x 1073 0.0279 0.0022
0.01 ESC + EFF 12+ 67 4.540 x 1073 0.0089 0.0044
ESC+U 12 + 58 4500 x 1073 0.0090 0.0044

As shown in Table 1, the conventional stopping criterion Max(EFF) < 1073 requires 105 calls to the
performance function, while the proposed ESC + EFF for €;, = 0.05, €5, = 0.03 and €;p,,, = 0.01
requires N.q;; of 52, 72 and 79, respectively. Furthermore, the true error for the case of €;p, = 0.05 is
only 3.98%, which is considered accurate for engineering applications. The true error reduces
significantly to 0 and 0.44% for €., = 0.03 and €5, = 0.01, respectively. In the case of U learning
function, ESC yields even a better performance. The N_,;; for ESC + U approach is 53, 55 and 70 for
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€tnr = 0.05, €4 = 0.03 and €;,- = 0.01, respectively. The limit states estimated for different levels of
error threshold are plotted in the Fig. 3 and Fig. 4 for EFF and U learning functions. It is shown that the
proposed stopping criterion can achieve the target errors for estimated failure probability with limited
number of performance function evaluations. In both figures, it is observed that as the target threshold for
error decreases, the accuracy of the Kriging-based estimate of the limit state function increases.
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Fig. 3. The limit state with different levels of thresholds by EFF learning function in Table 1 (a) €45, <
0.05, (b) €tpr < 0.03, (¢) €4y < 0.01, and (d) max(EFF) < 1073,

12



o mxy with U o my with U
g(z) =10

g(x) =0
§(z) = 0 with ey < 0.0

- §(z) = 0 with ey < 0.03 A
4 o ) 5

2
2 [o o ° —K o/ o ° —K
;?0 P o o )_/' QO P o P o ;
Yo 9 - Yo 9 r -
LY A < . A
6
o

O

o
-2 7

° / ° / °
-4 ° 4 o o

-6 -6
6 -4 2 0 2 4 6 -6 -4 -2 0 2 4 6
X] XI
(a) (b)
o xy with U o xy with U ‘

g9(z) =0 g(z) =0

§(z) = 0 with ey, < 0.0 §(z) = 0 with min(U) > 2

P! o)

o& 4 0&
(¢}
2 S \e 2 > ouﬁﬁea,,
o [}
o/ﬂ o . ;\Qwo\ 0/6{/ o R N
b 0 / o ;v =0 % uoc°° ;V
-2 7 -2 © #
o o

O

{
-6
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
X] XI
(c) (d)

Fig. 4. The limit state with different levels of thresholds by U learning function in Table 1 (a) €4, < 0.05,
(b) €ty < 0.03, (¢) €¢pr < 0.01, and (d) min(U) = 2.

The convergence of the estimated failure probability by the conventional and proposed methods to true
failure probability is presented in Fig. 5. It is seen that the case of €5, = 0.05 yields fastest convergence,
as expected. Even in the strict case of €;, = 0.01, the convergence of the failure probability is faster than
the traditional stopping criteria. Moreover, one should note that at about N.,; = 60 in Fig. 5 (a) and
Negu = 50 in Fig. 5 (b), Npg = 10* extra candidate design samples are added nine times to satisfy the
requirement of COVp S COVyp, (see step 9 in Section 3.4). With every addition of new candidate design

sample sets, the estimated error rate changes. However, all simulations finally converge to the red solid
line, i.e. the estimate of the failure probability by MCS.
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Fig. 5. The convergence performance in Table 1 with: (a) Pr vs Nggy in ESC + EFF and AK-MCS + EFF.
(b) Pr vs N¢gy in ESC + U and AK-MCS + U.

The performance of ESC in avoiding unnecessary training of the surrogate model is more significant for
the case of COV;y,- = 0.015, as presented in Table 2. As this threshold for the variation in estimated
probability of failure is stricter compared to COV;p,, = 0.05 in Table 1, a larger set of candidate design
samples is required. For this reason, the initial number of candidate design points for each simulation is
Ng = 10> with N, ¢ = 105. To remain consistent in the comparisons, the set of candidate design samples
and the set of initial training points are kept the same for failure probability estimation. According to the
results in Table 2, N4 for AK-MCS + EFF and AK-MCS + U is 120 and 117, respectively, while this
quantity for ESC + EFF and ESC + U cases for €;,, = 0.05 are 53 and 58, respectively, representing
over 50% reduction in the computational demand. Therefore, the proposed method can help researchers
reduce the number of calls to complex computational codes according to their accuracy requirement.

Table 2. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U
for different €1, (COVypy = 0.015 [13], Ng = 10°, and Ny, = 105).

Ethr Methodology Neau Ps(coVs P €max €
- Monte Carlo 10° 4434 x 1073 (1.5%) - -
AK-MCS + EFF 12+ 108 4437 x 1073 No estimation 0.0007
AK-MCS + U 12+ 105 4434 x 1073 No estimation 0
0.05 ESC + EFF 12 +41 4424 x 1073 0.0434 0.0023
ESC+U 12 +46 4390 x 1073 0.0218 0.0099
0.03 ESC + EFF 12 +49 4468 x 1073 0.0253 0.0077
ESC+U 12 +46 4390 x 1073 0.0218 0.0099
0.01 ESC + EFF 12 + 61 4429 x 1073 0.0080 0.0011
ESC+U 12+ 54 4419 x 1073 0.0068 0.0034

In simulation-based reliability analysis methods, the estimate of the failure probability and the
performance of the analysis techniques may vary with the sample set used. To capture these variations
and ensure the robustness of the proposed method, the variation in the performance for 100 simulations is
investigated via boxplot for the considered set of error thresholds. Considered performance measures
include the number of calls to performance function N.4;; and the difference between the estimated
maximum error and true error, €,,,, — €. The COVp ; is chosen as 0.05 and the total number of candidate

14



design points is 10° with initial number of samples Ny = 10* and Ny, = 10*. Results of these analyses

are presented in Fig. 6 in terms of (a) N.gy; VS €¢y for ESC +EFF, (b) €04 — € VS €ppy for ESC +EFF,
(¢) Nequt Vs €gpy for ESC + U, and (d) €45 — € VS €y Tor ESC + U, (€) Nigyy for AK-MCS + EFF and
AK-MCS + U. Results indicate that:
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Fig. 6. Boxplots of (a) N.4y; VS €tpy for ESC +EFF, (b) €0 — € VS €tpy for ESC +EFF, (¢) Negyp VS €tny
for ESC + U, and (d) €40 — € VS €5y for ESC + U, (€) N_q; for AK-MCS + EFF or AK-MCS + U
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e The average number of calls to performance function for AK-MCS + EFF, AK-MCS + U, ESC + EFF
and ESC + U methods are 92, 80, 52 and 50 as shown in Fig. 6 (a), (c) and (e), respectively, for the
case when the error threshold €y, is 0.05. This shows that the proposed method based on ESC reduces
N_qu considerably compared to AK-MCS. Even for the higher accuracy of €;,,,= 0.01, the average
number of calls to performance function for the ESC-based EFF and U approaches are 82 and 74,

respectively, which are smaller than 92 and 80 for AK-MCS + EFF and AK-MCS + U.

e Generally, as the threshold for error €5, increases, the average number of calls to performance
function N_,;; decreases. This point is evident in Fig. 6 (a) and (c).

e The estimated maximum error €,,,, is greater than the true error € in most cases as seen in Fig. 6 (b)
and (d), which follows the principle in Eq. (32). However, there indeed exists some cases that € is
slightly greater than €,,,,. This is attributed to the fact that the derivation of ¢€,,,, is based on a
prescribed confidence level, here 95% with a = 0.05. Therefore, it is expected that for a limited
number of cases, € will be larger than €,,,,.

4.2 Modified Rastrigin function
The second example considered here is the modified Rastrigin function, which is a highly nonlinear limit
state function and thus requires a large number of calls to performance function to refine surrogate models
[13], [27], [42]. This performance function is defined as:
2
g(xy,x) =10 — Z (xl2 - 5605(2nxi)) (49)
i=1

where x;s are independent standard normal random variables (e.g. mean of 0 and standard deviation of 1).
Reliability analysis results for three levels of error are summarized in Table 3. In these analyses, the
threshold COViyy for COVp, is set as 0.037, and the initial number of candidate design points for each

simulation is Ng = 103 with Ny, = 103. For consistency in the comparisons, the set of candidate design
samples and the set of initial training points are kept the same.

Table 3. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U
for different €., (COVyy,r = 0.037, Ng = 103, and Ny, = 103)

€thr Methodology Neau Pr(Ccovp P Emax €
- Monte Carlo 10* 7.120 X 1072 (<3.7%) - -
AK-MCS + EFF 12 +370 7.120 x 1072 No estimation 0
AK-MCS + U 12+ 335 7.120 x 10~2 No estimation 0
0.05 ESC + EFF 12 +220 7.010 x 1072 0.0494 0.0154
ESC+U 12+ 189 6.84 x 1072 0.0487 0.0393
0.03 ESC + EFF 12 +260 7.120 x 10~2 0.0289 0
ESC+U 12+ 211 7.04 x 1072 0.0246 0.0112
0.01 ESC + EFF 12 +313 7.090 x 10~2 0.0098 0.0042
ESC+U 12 + 287 7.060 x 1072 0.0098 0.0084

It is evident that £SC is computationally very efficient compared to the conventional AK-MCS approach.
When €y, i 0.05, ESC + EFF and ESC + U estimate the failure probability with N.,;; of 232 (€ =
1.54%) and 201 (€ = 3.93%), respectively, compared to N,,;; of 382 and 347 for AK-MCS + EFF and
AK-MCS + U methods. Even in the strict case of €4, = 0.01, the N,,;; using ESC is still lower than the
traditional stopping criteria. The complex form of the limit state function of this problem is illustrated in
Fig. 7 and Fig.8 for EFF and U learning functions, respectively. The unnecessary training in the
conventional AK-MCS is clearly seen here as it refines the Kriging model in regions with weak
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probability density. However, in the proposed stopping criterion, these ‘overfitting” problems are solved
by setting a threshold to control the maximum error; as such, the Kriging model is refined in regions that
contribute the most to the failure probability estimation until the set error threshold is met.
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Fig. 7. The limit state with different levels of thresholds by EFF learning function in Table 3 (a) €4, <
0.05, (b) €ipy < 0.03, (C) €4y < 0.01, and (d) max(EFF) < 1073,
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4.3 Nonlinear oscillator

The third example is a nonlinear and un-damped single degree of freedom (Fig. 9) with six random
variables. The details of this model can be found in [13], [42]-[45]. The performance function is
described below:

5 sin (= (50)

2F wot
9(61'62lm1r5 tllFl) =3r — ‘ E Sln( 0 1)
maw,

c1+¢Cy

where wy = is the system frequency. The probabilistic description of the six random variables is

presented in Table 4, and the results of reliability analyses are summarized in Table 5.

F
Zit)
F;

F
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Fig. 9 Example 3, nonlinear oscillator

Table 4. Random variables in example 3.

Random variable Distribution type Mean Standard Deviation
m Normal 1 0.05
C1 Normal 1 0.1
Cy Normal 0.1 0.01
r Normal 0.5 0.05
Fi Normal 1 0.2
51 Normal 1 0.2

For this example, the threshold COV,y, is 0.022, the initial number of candidate design points is Ng = 10*
with Ny = 10*. Consistent with other examples, results in Table 5 indicate that ESC is very efficient for
this moderate dimensional problem. As seen, the use of ESC averts the unnecessary training points while
accurately estimating the error. These are key features that are not available in AK-MCS. The number of
calls to performance function when the error threshold is 0.05 is only 25 for ESC + EFF and 24 for ESC
+ U compared with 53 and 73 for AK-MCS + U and AK-MCS + EFF, respectively. Furthermore, N.4;
slightly increases to 27 for ESC + EFF and ESC + U, when the error threshold is €;,- = 0.03. For the
strict error threshold of 0.01, the number of calls to performance function is 29 for both ESC + EFF and
ESC + U compared with 53 in AK-MCS + EFF and 73 in AK-MCS + U. As seen in Table 5, the accuracy
reaches a high level for €;5,, = 0.03. In the case of €5, = 0.01, the Kriging model achieved a high
accuracy for failure probability estimation after 29 number of calls (including the 12 initial points) to
performance function. The additional 24 points for EFF or 44 for U that are used to further refine the
model may not be necessary for engineering applications. However, ESC stopping criterion successfully
avoids unnecessary training by setting the target accuracy.

Table 5. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS
+ U for different €., (COVyp = 0.022, Ny = 10*, and Ny, = 10%).

Ethr Methodology Neau Pr(covp P €max €
- Monte Carlo 7 x 10* 2.800 X 1072 (<2.2%) - -
AK-MCS + EFF 12 +41 2.809 x 1072 No estimation 0.0031
AK-MCS + U 12+61 2.800 x 102 No estimation 0
0.05 ESC + EFF 12+13 2.781 x 1072 0.0304 0.0067
ESC+U 12+ 12 2.794 x 1072 0.0355 0.0020
0.03 ESC + EFF 12+ 15 2.841 x 1072 0.0187 0.0148
ESC+U 12+ 15 2.807 x 1072 0.0195 0.0026
0.01 ESC + EFF 12+ 17 2.823 x 1072 0.0093 0.0082
ESC+U 12+ 17 2.807 x 1072 0.0072 0.0026

4.4 Ten-dimensional analytical example

The last example is an analytical example presented in [4], [12], [13] with the following form:
n

g(xq, ., xp) = (n+ 30vn) — Z X (51)
i=1

The random variables, x;s, follow lognormal distribution with mean of 1 and standard deviation o = 0.2.
To investigate the efficiency of the considered reliability analysis methods for a high dimensional
problem, here n = 10. Table 6 presents reliability analysis results for three levels of error threshold. Here
COVyp, = 0.022, the initial number of candidate design points for each simulation is Ng = 10> and Ny, =
105.
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For this ten-dimensional problem, the proposed method based on ESC outperforms the conventional
techniques. With 23 number of calls to performance function, the proposed method reaches the true error
of 0.07%, while AK-MCS requires more than 60 number of calls to performance function. This result
points to the fact that AK-MCS leads to unnecessary training of the Kriging model; however, ESC can
address this issue and dramatically reduce the number of calls. For the strict error threshold of €;, =
0.01, the number of calls for ESC + EFF is 42 and for ESC + U is 44, which are still smaller than those
for AK-MCS + EFF (Ngq;; = 61) and AK-MCS + U (Nqy; = 60). Thus, the stopping criterion £SC
successfully alleviates the unnecessary training of the Kriging model in adaptive reliability analysis
methods.

Table 6. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U
for different €1, (COVypy=0.022, Ny = 10°, and N, = 10°)

€y Methodology Neau P:(cov;s P €max €
- Monte Carlo 2x 105  2.770 x 1073 (<2.2%) - -
AK-MCS + EFF 12 +49 2.770 x 1073 No estimation 0
AK-MCS + U 12 +48 2.770 x 1073 No estimation 0

0.05 ESC + EFF 12+11 2.772x 1073 0.0414 0.0007
ESC+ U 12+12 2.770 x 1073 0.0433 0
0.03 ESC + EFF 12+18 2.770 x 1073 0.0278 0
ESC+U 12+ 17 2.770 x 1073 0.0195 0
0.01 ESC + EFF 12 + 30 2.770 x 1073 0.0091 0
ESC+U 12 +32 2.770 x 1073 0.0092 0

4.5 Truss structure with ten dimensions
A 23-bar truss structure with 10 random variables is considered here [36], [46]. The configuration of the
truss is shown in Fig. 10. The implicit nonlinear performance function is defined as:

g(x) =0.14 — |dis(x)], (52)
where dis(x) is the vertical displacement of the truss at point E. The truss is subject to six vertical
loadings, P; to Pg, which follow Gumbel distributions. A; and A, are the cross-section areas and E; and
E, are the Young’s modulus of the horizontal and diagonal bars, respectively. The 10 mutually
independent random variables are described in Table 7.

Fig. 10 Example 5, the truss with 10 random variables.

Table 7. Random variables in example 5.

Random variable Distribution Mean Standard deviation
P; — Py Gumbel 6.5 x 10* 6.5 x 103
Ay Lognormal 2 x 1073 2x107*
A, Lognormal 1 x 1073 1x107*
E; Lognormal 2.1 x 10! 2.1 x 10!
E, Lognormal 2.1 x 10! 2.1 x 101
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For this nonlinear example, the threshold for COVyy,, is set as 0.05, and the initial number of candidate
design points is Ng = 10* with N A = 10*. The simulation results are presented in Table 8. An

interesting observation in this example is the inability of AK-MCS+EFF to converge to an accurate
estimate of failure probability (e = 0.0543) because of the premature termination of the training process.
The premise behind EFF-based stopping criterion is that the threshold of 1073 in max(EFF) < 1073 is
small enough to ensure that the adaptive reliability analysis yields accurate Ps. As argued in this paper
earlier, EFF and in general existing stopping criteria do not directly correspond to the extent of error in
failure probability estimates. Thus as observed in this example, the threshold is not sufficiently small.
Reducing the threshold for the maximum of EFF to values smaller than 10~3, however, may considerably
increase the unnecessary calls to the performance function for other problems. In this example, AK-MCS
+ U provides an accurate estimate of P¢ with total 67 simulations. The proposed ESC + EFF requires 49,
54 and 58 evaluations to the performance function for error thresholds of 0.05, 0.03, and 0.01,
respectively. This indicates that adaptive reliability analysis using the proposed stopping criterion can
properly converge to true failure probability. Similar trend can be observed for the case of ESC + U
approach.

Table 8. Reliability analysis results for MCS, ESC + EFF, AK-MCS + EFF, ESC + U and AK-MCS + U
for different €5, (COVip= 0.05, Ns = 10*, and Ny, = 10%)

€y Methodology Neau P:(covs P €max €
- Monte Carlo 5 x 10* 9.200 x 1073 (<5%) - -
AK-MCS + EFF 12 +28 9.700 x 1073 No estimation 0.0543
AK-MCS + U 12 +55 9.200 x 1073 No estimation 0
0.05 ESC + EFF 12+ 37 9.400 x 1073 0.0309 0.0217
ESC+U 12+29 9.100 x 1073 0.0299 0.0109
0.03 ESC + EFF 12 +42 9.300 x 1073 0.0152 0.0109
ESC+U 12+ 37 9.300 x 1073 0.0148 0.0109
0.01 ESC + EFF 12 +46 9.200 x 1073 0.0022 0
ESC+ U 12 + 55 9.200 x 1073 0 0

5. Conclusion

In this article, an Error-based stopping criterion (ESC) for Kriging-based reliability analysis algorithms is
proposed. It is shown that the total number of candidate design samples wrongly categorized by Kriging
as safe and failed follows a Poisson binomial distribution. Based on the statistical properties of this
distribution, the confidence intervals of the number of points with wrong sign estimation in both failure
and safe domains are derived for a given confidence level. These bounds are subsequently used to
determine the maximum error for estimated failure probabilities in the adaptive Kriging reliability
analysis process. Finally, a new stopping criterion based on the derived maximum error is proposed. It is
shown that the proposed stopping criterion, £SC, can avoid unnecessary calls to performance functions
and guarantee convergence to target accuracies in Kriging-based reliability analysis methods for the
considered confidence level. This new feature helps researchers to establish a balance between
computational demand and required accuracy. Five examples are considered to investigate the
performance of £SC and two other widely used stopping criteria. Numerical results showcase the high
efficiency and accuracy of adaptive reliability analysis using ESC compared to existing methods.
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