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ABSTRACT	
	
Transcriptional	enhancers	play	a	major	role	in	regulating	metazoan	gene	expression.	

Recent	developments	in	genomics	and	next-generation	sequencing	have	accelerated	and	

revitalized	the	study	of	this	important	class	of	sequence	elements.	Increased	interest	and	

attention,	however,	has	also	led	to	troubling	trends	in	the	enhancer	literature.	In	this	

Perspective,	I	describe	some	of	these	issues	and	show	how	they	arise	from	shifting	and	

non-uniform	enhancer	definitions,	and	genome-era	biases.	I	discuss	how	they	can	lead	to	

interpretative	errors	and	an	unduly	narrow	focus	on	certain	aspects	of	enhancer	biology	to	

the	potential	exclusion	of	others.		

	

	

HIGHLIGHTS	

Historically	imprecise	along	with	recently	shifting	criteria	for	how	we	define	

transcriptional	enhancers	pose	unique	challenges	for	the	study	of	enhancer	biology	

The	recent	enhancer	literature	reveals	a	number	of	concerning	trends	to	look	out	for	and	

guard	against	

The	“founder	fallacy”	occurs	when	older	enhancer	sequences	are	used	for	analysis	despite	

newer	data	refining	the	functional	enhancer	boundaries	

“Validation	creep”	is	the	tendency	to	designate	a	set	of	predicted	enhancer	sequences	as	a	

set	of	confirmed	enhancers	without	any	additional	data	justifying	the	switch	

“Large	scale/small	scale	bias”	and	“empirical	result	bias”	reflect	a	trend	to	be	more	

accepting	of	genome-scale	experimental	data	than	would	be	typical	for	small-scale	studies	

or	data	derived	primarily	from	computational	analysis	 	
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The	state	of	enhancer	research	
	
Since	their	first	description	almost	40	years	ago	[1],	there	has	been	an	increasing	

recognition	of	the	importance	of	transcriptional	enhancers	for	all	aspects	of	metazoan	

biology	including	development,	physiology,	evolution,	and	disease	[2-5].	In	particular,	the	

era	of	sequenced	genomes	has	brought	with	it	renewed	interest	in	establishing	a	more	

complete	annotation	of	the	regulatory	genome,	and	the	emergence	of	genome-scale	

methods,	especially	next-generation	sequencing,	has	created	unprecedented	opportunities	

for	enhancer	discovery	and	characterization	[6,	7].	However,	this	resurgent	interest	in	

enhancers	has	also	generated	increased	opportunities	for	shifting	definitions,	inconsistent	

interpretations,	and	subtle	biases.	In	the	following	paragraphs	I	discuss	several	problems	

pervading	the	current	enhancer	biology	literature,	providing	some	recent	examples	of	each.	

It	is	worth	noting	that	these	are	drawn	from	excellent	papers	by	insightful	scientists,	and	

are	chosen	simply	as	representative	illustrations	from	the	broader	literature.	

	

What	are	enhancers?	

Enhancers	are	cis-regulatory	sequences	that	work	in	concert	with	a	gene’s	core	promoter	

to	regulate	much	of	the	spatiotemporal	control	of	gene	expression	in	metazoa.	Typically	on	

the	order	of	a	few	hundred	basepairs	in	length,	enhancers	serve	as	a	scaffold	for	the	

recruitment	of	transcription	factors	and	chromatin	modifying	enzymes.	They	can	regulate	

gene	expression	irrespective	of	their	orientation,	position,	or	distance	from	the	

transcription	start	site.	Enhancer	biology	is	the	subject	of	several	excellent	recent	reviews,	

and	the	reader	is	referred	to	these	for	details	[3,	5,	8,	9].	

The	traditional	definition	of	an	enhancer	is	a	functional	one—enhancers	were	originally	

characterized	by	their	activity,	rather	than	by	a	physical	property.	This	makes	enhancers	

rare	if	not	unique	among	annotated	genomic	features	in	that	their	annotated	sequences	are	

not	based	on	objective	and	unambiguous	criteria	such	as	a	sequenced	transcript,	

translation	product,	defined	nucleotide	sequence,	et	cetera.	(A	major	exception	could	be	
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argued	to	be	the	gene	itself,	on	whose	definition	biologists	are	notoriously	in	disagreement	

[10-12].	But	in	terms	of	genome	annotation	there	is	general	consensus	that	an	annotated	

gene	begins	at	the	transcription	start	site	of	its	most	5’	exon	and	continues	through	the	

sequence	of	its	most	3’	exon.)	With	the	development	of	high-throughput	genomic	methods	

for	enhancer	discovery	(reviewed	in	[7])	has	come	a	shift	from	this	functional	definition	of	

the	enhancer	to	one	based	on	one	or	more	of	a	variety	of	chromatin	and	transcriptional	

properties.	Enhancers	are	now	frequently	defined	as	sequences	possessing	any	of	a	range	

of	characteristics	including	binding	by	specific	sets	of	transcription	factors	or	co-activators;	

containing	certain	histone	modifications,	either	alone	or	in	combination;	being	

nucleosome-depleted	regions;	or	transcribing	‘enhancer	RNAs’	(eRNAs)	[3-5,	8].	Indeed,	

this	definitional	shift	has	become	so	entrenched	that	a	recent	paper	erroneously	states	that	

enhancers	“were	first	described	as	nucleosome-depleted	regions	with	a	high	density	of	

sequence	motifs	recognized	by	DNA-binding	transcription	factors”	(ref.	[13],	emphasis	

added).	However,	there	is	no	clear	consensus	as	to	which	new	enhancer	definition	to	use,	

and	all	of	the	current	measures	lead	to	overlapping	but	non-identical	sets	of	“enhancers”	

when	applied	to	the	same	cell	types	and	genomes.	Significantly,	all	of	these	enhancer	

definitions	assume	that	enhancers	function	as	compact,	modular	units.	Nevertheless,	there	

are	several	clear	and	long-recognized	exceptions	to	this	[e.g.	14,	15,	16],	and	from	a	

biochemical	standpoint,	there	“is	no	inherent	reason”	that	enhancers	must	be	short	

contiguous	segments	of	DNA,	nor	that	they	must	contain	tight	clusters	of	transcription	

factor	binding	sites	[17,	see	also	18,	19].	

This	fundamental	question	of	how	to	define	an	enhancer	is	not	one	that	is	readily	solved.	In	

the	meantime,	however,	it	creates	significant	opportunities	for	ambiguities,	contradictions,	

and	interpretive	confusion	in	the	literature	and	even	within	individual	studies.	In	

particular,	several	common	problems	bear	further	scrutiny.	

	

The	founder	fallacy	
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The	founder	fallacy	comes	into	play	when	multiple	experiments	have	defined	overlapping	

or	nested	enhancers	in	a	small	genomic	region,	and	results	from	giving	primacy	of	function	

to	an	earlier-defined	sequence	over	a	more	recently-defined	one.	We	can	state	the	founder	

fallacy	as	“defining	an	enhancer	sequence	based	on	its	historical	(earlier)	description	

despite	the	availability	of	updated	functional	information.”	Figure	1A	illustrates	a	common	

scenario	in	which	successive	functional	assays	over	a	span	of	years	have	characterized	a	

regulatory	region.	Enhancer	e2	has	identical	activity	to	Enhancer	e1,	but	was	described	

several	years	later.	Had	the	two	been	identified	contemporaneously,	for	instance	in	a	single	

set	of	deletion	experiments,	Enhancer	e2	would	have	been	named	as	the	enhancer	and	

Enhancer	e1	consigned	to	the	dustbin	of	history	as	one	of	a	number	of	sequence	fragments	

tested	on	the	way	to	defining	the	enhancer’s	boundaries.	The	founder	fallacy	comes	about	

when,	because	for	a	period	of	years	Enhancer	e1	was	referred	to	as	“the”	enhancer,	it	

continues	to	be	considered	so	even	now	that	the	functional	boundaries	have	shifted	

substantially	narrower.	Note	that	the	“true”	enhancer	does	not	necessarily	mean	a	shorter	

sequence;	in	Figure	1B	the	newer	Enhancer	e2	is	longer	than	the	original	Enhancer	e1,	but	

regulates	a	cleaner	expression	pattern	lacking	the	ectopic	expression	observed	in	tissue	C	

due	to	inclusion	of	important	repressor	sequences.		

Reasons	for	the	founder	fallacy	can	be	many	and	are	often	quite	innocuous,	such	as	a	lag	in	

updating	the	genome	annotation	or	the	well-known	preference	for	authors	to	continue	to	

use	their	own	original	designations	for	features.	However,	failure	to	consider	critically	the	

implications	for	the	regulatory	architecture	of	the	locus	can	lead	to	important	interpretive	

consequences.	(See	Box	1	for	a	discussion	of	how	this	issue	is	dealt	with	in	a	regulatory	

genome	annotation	project.)		

An	example	can	be	found	in	a	recent	paper	exploring	enhancer	pleiotropy	[20].	Enhancer	

pleiotropy	refers	to	the	situation	where	a	single	enhancer	regulates	gene	expression	in	

more	than	one	spatiotemporal	domain	[21].	This	is	a	more	common	situation	than	may	be	

generally	realized,	but	one	that	has	not	been	well	studied.	Preger-Ben	Noon	et	al.	[20]	ask	

the	important	question	of	whether	pleiotropic	enhancers	make	use	of	the	same	or	different	

transcription	factor	binding	sites	to	regulate	multiple	domains	of	gene	expression.	Using	a	
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previously-described	set	of	enhancers	in	the	Drosophila	shavenbaby	(svb)	locus,	the	authors	

claim	that	seven	out	of	seven	enhancers	demonstrate	pleiotropy	by	driving	expression	in	

both	the	embryo	and	the	pupa.	Closer	examination	of	two	of	these	enhancers,	“E6”	and	

“Z1.3,”	is	said	to	reveal	“two	fundamentally	distinct	models”	of	enhancer	pleiotropy:	E6	

utilizes	common	binding	sites	to	execute	its	function	in	both	tissues	(“site	pleiotropy”;	

Figure	2A),	whereas	Z1.3	does	not—the	transcription	factor	binding	sites	that	mediate	

embryonic	versus	pupal	function	“act	independently”	(Figure	2B,	C).	The	analysis	of	the	E6	

enhancer	is	masterfully	carried	out	and	provides	a	beautiful	example	of	site	pleiotropy,	

leaving	no	question	that	this	is	a	key	mechanism	with	important	implications	for	enhancer	

function	and	evolution.	However,	the	analysis	of	the	Z1.3	enhancer,	and	by	extension	that	of	

the	other	five	less-studied	putatively	pleiotropic	enhancers,	falls	victim	to	the	founder	

fallacy.	Figure	1A	is	not	a	purely	hypothetical	example	but	rather	a	simplified	diagram	of	

the	svb	locus,	adapted	from	[20].	Enhancer	e2	corresponds	to	Z1.3	and	is	active	in	both	

embryos	and	pupae.	Enhancer	e3	is	an	embryo-specific	enhancer	“Z0.3”	and	enhancer	e4	is	

the	pupa-specific	enhancer	“Z1.3R.”	Viewed	without	bias	toward	the	originally-identified	

Z1.3	fragment,	the	most	straightforward	interpretation	of	the	results	is	that	instead	of	Z1.3	

being	a	pleiotropic	enhancer	with	independently-acting	binding	sites	for	two	tissues,	it	

simply	represents	two	different	enhancers,	the	Z0.3	embryonic	enhancer	and	the	Z1.3R	

pupal	one	(Figure	2C).	A	simple	thought	experiment	makes	the	founder	fallacy	clear:	if	the	

order	of	discovery	had	been	reversed	and	the	Z0.3	and	Z1.3R	enhancers	defined	first,	

without	the	larger	Z1.3	enhancer	having	been	described,	would	there	be	any	rationale	for	

combining	these	into	a	single	pleiotropic	enhancer?	In	this	light,	the	authors’	claim	that	the	

remaining	five	enhancers,	which	have	not	been	further	dissected,	are	similarly	pleiotropic	

must	also	be	called	into	question:	would	further	dissection	reveal	that	some	or	all	of	these	

too	can	simply	be	separated	into	functionally	distinct	sequences?		

The	founder	fallacy	has	implications	that	go	well	beyond	the	question	of	enhancer	

pleiotropy.	For	example,	“shadow	enhancer,”	a	term	coined	by	Levine	and	colleagues	to	

describe	a	type	of	redundant	enhancer	[22],	fell	prey	at	its	inception	to	the	founder	fallacy	

by	reference	to	previously-discovered	and	more	proximally-located	“primary”	enhancers.	

Although	this	definition	has	been	walked	back	to	some	extent	to	establish	“shadow	
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enhancer”	in	the	lexicon	as	more-or-less	synonymous	with	“redundant	enhancer,”	it	is	

almost	impossible	to	separate	the	connotation	of	“shadow”	from	“secondary”	and	therefore	

“less	important”	in	cases	where	one	of	the	pair	was	discovered	earlier	than	the	other.	In	

recognition	of	this	point,	Barolo	[23]	has	suggested	replacing	the	term	with	“distributed	

enhancer,”	but	this	designation	has	failed	to	catch	on.		

The	founder	fallacy	similarly	may	have	a	role	in	the	establishment	of	“super-enhancers”	

as	a	more	recently-described	new	class	of	regulatory	element	[24,	25].	Currently,	there	is	

much	debate	over	whether	or	not	super-enhancers	constitute	a	bona	fide	new	regulatory	

type	or	simply	reflect	regions	of	highly	clustered,	redundant	and/or	cooperating	enhancers	

[3,	5,	26].	The	jury	is	still	out	on	this	question,	and	while	some	of	the	problem	stems	from	

the	lack	of	a	clear	functional	or	bioinformatic	definition	[5],	some	also	stems	from	the	

founder	fallacy:	super-enhancers	have	been	defined	as	large	regions	by	chromatin-based	

assays	and	only	subsequently	broken	down	functionally	into	constituent	component	

enhancers.	In	Drosophila,	where	extensive	enhancer	identification	has	often	been	

performed	using	reporter	gene	analysis,	the	existence	of	dense	clusters	of	enhancers	

(with	chromatin	features	similar	to	super-enhancers,	e.g.	[13])	has	been	known	for	many	

years	without	leading	to	the	suggestion	that	such	clustering	defines	a	unique	regulatory	

structure	(e.g.	[27-30]).	In	studies	where	there	has	been	functional	testing	of	the	individual	

component	enhancers	of	super-enhancers,	most	appear	to	be	typical	enhancers	that	act	

either	additively	[31]	or	redundantly	[32]	to	regulate	target	gene	expression.	Had	these	

component	enhancers	simply	been	identified	first—as	was	the	case	in	Drosophila—would	

the	larger	region	still	have	been	proposed	after	the	fact	to	be	a	novel	regulatory	entity?	

	

Validation	Creep	

A	second	disturbing	trend	seen	in	the	enhancer	literature	can	be	termed	“validation	creep.”	

Validation	creep	is	the	tendency	to	move	from	considering	a	set	of	sequences	as	“putative	

enhancers”	to	accepting	them	as	“enhancers”—sometimes	within	the	context	of	a	single	

publication—without	providing	additional	evidence	of	function.	Consider,	for	example,	the	
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large-scale	cis-regulatory	annotation	of	the	mouse	genome	[33].	The	authors	conducted	

RNA-seq	and	four	or	more	additional	ChIP-seq	experiments	on	a	set	of	13	adult	mouse	

tissues,	four	embryonic	tissues,	and	two	cell	lines	to	predict	promoter,	enhancer,	and	

insulator	sequences	across	the	mouse	genome—an	experimental	and	bioinformatics	tour-

de-force	that	provides	an	invaluable	first-approximation	description	of	the	mouse	

regulatory	genome.	Using	a	model	incorporating	presence	of	monomethylated	histone	H3	

lysine	4	(H3K4me1)	and	absence	of	trimethylated	H3K4	(H3K4me3),	trained	on	sites	

bound	by	the	histone	acetyltransferase	p300,	the	authors	predicted	what	they	

appropriately	refer	to	as	234,764	“potential	enhancers”	[33].	These	were	compared	to	a	set	

of	over	700	known,	experimentally-identified	enhancers,	with	an	82%	validation	rate,	and	

luciferase-based	reporter	gene	assays	were	conducted	for	a	randomly	selected	eight	new	

predictions,	yielding	a	75%	validation	rate.	The	75-82%	validation	range	is	consistent	with	

earlier	studies	using	similar	methodology	[34,	35].	

By	the	second	figure,	however,	despite	the	possible	20-25%	false-positive	rate,	the	

“potential	enhancers”	have	become	the	identified	set	of	“enhancers”	and	remain	so	for	the	

rest	of	the	paper,	where	they	form	the	basis	for	further	analysis.	This	includes	development	

of	a	new	measure	for	pairing	enhancers	with	their	target	promoters,	motivated	by	the	

observation	that	two	existing	methods	gave	poor	results.	This	may	well	be	because	those	

methods,	as	the	authors	suggest,	are	not	effective.	On	the	other	hand,	it	is	at	least	possible	

that	the	culprit	is	instead	that	a	high	number	of	non-enhancers	in	the	data	set	(due	to	false-

positive	predictions)	negatively	affect	the	results,	and	the	“better”	new	method	is	merely	

overfit	to	the	noisy	data.	The	problem	with	validation	creep	is	that	it	eliminates	

consideration	of	this	possibility,	as	the	predicted	enhancer	set—false	positives	and	all—has	

already	become	the	true	enhancer	set.	

A	similar	example	of	validation	creep	can	be	seen	in	another	landmark	genomics	study,	the	

“atlas	of	active	enhancers	across	human	cell	types	and	tissues”	based	on	the	FANTOM5	cap	

analysis	of	gene	expression	(CAGE)	data	[36].	CAGE	[37]	detects	capped	RNAs	and	was	

used	to	show	that	bi-directional	capped	RNAs	could	serve	as	a	signature	for	active	

enhancers.	In	the	paper’s	first	figure,	the	enhancers	are	“candidates”	and	123	sequences	
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spanning	both	strong	and	weak	predictions	are	tested	in	reporter	gene	assays.	67-74%	of	

these	had	reporter	gene	activity,	whereas	a	smaller	set	of	potential	enhancers	predicted	

based	on	different	genomic	criteria	only	gave	a	20-33%	validation	rate.	In	subsequent	

figures,	CAGE-defined	enhancers	are	shown	to	strongly	overlap	features	previously	

proposed	to	mark	active	enhancers,	such	as	H3K4me1	+	H3K27ac	(71%)	and	accessible	

chromatin	(87%).	However,	these	chromatin	features	were	poor	predictors	of	CAGE-

defined	enhancers	(11%	and	4%	respectively).	In	vivo	reporter	gene	assays	in	zebrafish	

successfully	validated	three	out	of	five	(60%)	CAGE-predicted	enhancers.	By	all	these	

criteria,	the	CAGE	bidirectional	RNAs	appear	to	be	strong	predictors	of	enhancer	activity—

but	seemingly	not	perfect	ones.	Nevertheless,	by	the	second	figure	all	reference	to	the	

enhancers	as	“candidates”	has	been	dropped.	

This	study	[36]	illustrates	once	again	how	validation	creep	allows	a	predictive	method	with	

an	experimental	validation	rate	in	the	60-80%	range	to	morph	into	an	accepted	data	set	

within	a	single	publication.	Interestingly,	the	higher-than-typical	amount	of	experimental	

validation	conducted	by	the	authors	suggests	that	other	common	methods	for	determining	

active	enhancers,	such	as	presence	of	H3K27ac	or	open-chromatin	profiling,	may	be	weak	

predictors,	with	validation	rates	equivalent	to	the	33%	seen	in	other	extensively-validated	

studies	[38].	Nevertheless,	validation	creep	results	in	enhancer	annotations	based	on	these	

methods	being	used	as	“true”	data	sets,	such	that	there	are	multiple	competing	versions	of	

regulatory	annotations	and	continued	new	analyses	based	on	one	or	the	other	of	these	

“defined”	sets	of	enhancers.	Abandoning	the	qualification	of	“predicted”	or	“putative”	

enhancers	thus	creates	tremendous	potential	for	confusion,	as	well	as	opens	the	door	to	

founder	fallacy	errors	as	newer	predictions	based	on	refined	criteria	potentially	supersede	

older	ones.	

A	major	concern	with	validation	creep	is	not	so	much	a	fear	that	the	broad	outlines	of	the	

discoveries	reported	in	these	papers	is	incorrect—as	stated	previously,	they	represent	

useful	first-approximation	descriptions	of	the	regulatory	genome—but	rather	the	

circularity	in	enhancer	definition	that	stems	from	the	fact	that	“known”	enhancers	

frequently	serve	as	the	basis	for	ascribing	new	enhancer	characteristics.	Tracing	the	route	
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to	the	mouse	enhancer	predictions	reveals	how	self-reinforcing	the	definition	can	be.	

Earlier	work	[35]	noticed	a	correlation	between	enhancers	and	p300	binding,	although	it	

was	unknown	what	percentage	of	confirmed	enhancers	bound	p300	and	what	percentage	

of	p300-bound	sites	are	not	enhancers.	From	this	it	was	observed	that	H3K4me1	was	

enriched	“at	nearly	all	enhancers”	(defining	enhancers	as	p300-bound	sites)	and	that	

enhancers	“generally	lack”	H3K4me3.	Shen	et	al.	[33]	then	used	just	these	three	criteria—

p300	binding,	H3K4me1	enrichment,	and	H3K4me3	depletion—to	build	their	model	for	

enhancer	prediction.	While	there	is	no	reason	to	believe	that,	within	their	apparent	20-

25%	false	positive	rate,	they	failed	to	successfully	identify	a	large	number	of	enhancers,	the	

circular	approach	effectively	precludes	the	discovery	of	any	enhancers	that	do	not	meet	

these	criteria.	As	long	as	the	result	set	is	firmly	considered	as	a	set	of	predictions,	this	is	not	

a	problem.	However,	the	validation	creep	tends	to	elide	the	fact	that	the	results	are	not	a	

comprehensive	catalog	of	all	enhancers,	but	only	those	based	on	a	narrow	set	of	

characteristics.	Thus	reduced	sensitivity	as	much	as	low	specificity	becomes	a	serious	

potential	consequence	of	validation	creep.	By	the	same	token,	Andersson	et	al.	[36],	by	

making	their	active	enhancer	definition	exclusive	to	transcribed	sequences,	propagate	a	

narrow	active-enhancer	definition	that	risks	leading	others	to	pass	over	potentially	

important	regulatory	sequences.		

Is	this	concern	valid	or	merely	hypothetical?	I	would	argue	that	the	problem	is	real.	A	

growing	number	of	studies	have	adopted	one	or	the	other	of	these	enhancer	definitions,	

and	there	is	increasing	evidence	that	each	provides	only	a	partial	characterization	of	the	

enhancer	landscape	(Figure	3).	While	there	is	general	agreement,	for	instance,	that	

enhancer	transcription	correlates	with	enhancer	activity,	several	studies	(e.g.	[39,	40])	

suggest	that	enhancers	can	be	active	without	the	transcriptional	signature	defined	in	[36].	

Strikingly,	Henriques	et	al.	[13]	recently	showed	that	rather	than	being	excluded	from	

enhancers,	H3K4me3	is	found	at	enhancers—but	only	at	those	with	the	strongest	activity,	

suggesting	that	previous	enhancer	definitions	explicitly	excluding	H3K4me3-marked	

sequences	are	leaving	out	the	most	active	enhancers.	Other	studies	indicate	that	

characterized	enhancer	regions	can	contain	a	wide	variety	of	histone	modifications	in	

many	different	combinations,	and	without	necessarily	bearing	the	“canonical”	H3K4me1	or	
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H3K27ac	marks	(e.g.,	[41-44]).	Moreover,	accumulating	evidence	points	to	chromatin	

marks	such	as	H3K4me1	being	associated	with	but	not	required	for	enhancer	activity	[45,	

46],	while	chromatin	modifications	caused	by	the	Hairy	long-range	repressor	may	often	be	

the	result	of	“errant	targeting”	that	have	little	or	no	consequence	on	gene	regulation	[47].	

Taken	together,	the	available	data	suggest	that	the	chromatin	and	transcriptional	

characteristics	of	enhancers	are	complex	and	varied,	and	potentially	differ	based	on	

enhancer	activity,	cell	type,	role	of	target	gene,	or	other	yet-to-be-determined	criteria.	

Validation	creep,	by	promoting	circular	definitions	and	confusing	predicted	elements	with	

established	ones,	masks	much	of	this	complexity.	

	

The	large	scale/small	scale	bias	

The	tendency	toward	validation	creep	is	understandable	and	perhaps	even	inevitable	given	

genome-scale	assays,	where	validation	of	all	results	is	impossible	and	data	must	often	be	

interpreted	broadly	based	on	statistical	arguments.	However,	there	is	still	something	

troubling	about	taking	an	experiment	in	which	only	75%	of	tested	sequences	are	shown	to	

have	enhancer	function	and	then	accepting	all	the	sequences	as	enhancers,	regardless.	

Consider	the	experiment	in	Figure	4,	which	depicts	a	hypothetical	old-school	“enhancer	

bashing”	assay	in	which	eight	sequences	were	tested	for	enhancer	function	by	reporter	

gene	assays.	The	six	red	fragments	had	activity,	whereas	the	two	black	ones	did	not:	a	75%	

validation	rate.	It	would	be	unheard	of	to	proceed	with	an	analysis	on	the	basis	that	all	

eight	sequences	are	enhancers,	and	no	credible	peer	reviewer	would	go	on	to	allow	the	

authors	to	assert,	absent	empirical	testing,	that	a	similar	set	of	eight	sequences	from	

another	locus	were	all	enhancers,	having	just	seen	a	25%	failure-to-validate	rate	in	a	

preceding	figure.	Yet,	this	is	exactly	the	situation	we	see	occurring	time	and	again	with	

respect	to	genome-scale	enhancer	studies.	

	

The	empirical	result	bias	
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I	suspect	that	validation	creep	is	also	abetted	by	what	I	term	“empirical	result	bias.”	This	is	

the	tendency	to	give	greater	weight	to	results	obtained	through	experiment	versus,	for	

instance,	from	computational	modeling.	In	cases	where	experimental	results	are	

dispositive,	of	course,	this	makes	perfect	sense—but	this	is	not	the	case	for	many	genomics	

studies,	where	the	experimental	results	are	not	individually	controlled,	and	the	results	are	

mainly	correlative	with	support	from	bulk	statistical	analysis.	Enhancer	identification	is	a	

prime	example	of	this	(although	hardly	exclusive).	When	enhancers	are	predicted	strictly	

computationally,	whether	by	analysis	of	potential	binding	sites,	machine	learning	methods	

trained	on	subsequence	(k-mer)	composition,	or	some	other	means	[7,	48],	the	results	are	

acknowledged	as	merely	predictive	and	validation	creep	is	minimal.	However,	when	

enhancers	are	predicted	by	virtue	of	histone	modification,	chromatin	accessibility,	or	

bidirectional	transcription,	for	instance,	validation	creep	is	common,	as	discussed	above—

even	though	these	results,	too,	are	merely	predictive.	The	imprimatur	of	“experiment”	

seems	to	lead	to	a	misplaced	acceptance	of	prediction	for	proof.	As	a	result,	validation	rates	

that	would	be	considered	low	for	many	computational	prediction	methods	are	often	

accepted	when	considering	experimental	methods,	and	computational	methods	with	

higher	apparent	true-positive	rates	are	given	less	credibility.	

Interestingly,	empirical	result	bias	cuts	both	ways,	as	it	also	impacts	what	is	accepted	as	

“validation”	for	enhancer	predictions—a	longstanding	problem	that	deserves	more	

attention	than	it	usually	receives.	The	primary	accepted	validation	method	for	enhancers	is	

the	reporter	gene	assay,	often	performed	in	cell	culture.	Empirical	result	bias	implies	that	if	

there	is	a	75%	validation	rate	of	enhancer	prediction	by	reporter	assay,	then	there	is	a	25%	

false	positive	prediction	rate.	But	this	is	of	course	not	true:	like	any	negative	experimental	

result,	failure	of	validation	cannot	be	treated	as	a	basis	to	refute	a	hypothesis.	This	is	

particularly	true	due	to	the	fact	that	reporter	gene	assays,	despite	being	the	gold	standard,	

have	a	number	of	serious	flaws.	Differences	in	cell	type,	in	choice	of	promoter,	in	genomic	

context	of	the	reporter	gene	as	compared	to	the	endogenous	gene,	and	myriad	other	issues	

can	all	affect	observed	enhancer	activity,	leading	to	false	positive	(ectopic	enhancer	

activity)	as	well	as	to	false	negative	results	[5,	7,	8,	49].	This	is	true	both	for	traditional	

enhancer-bashing	experiments	and	for	contemporary	genomic	methods.	However,	other	
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validation	methods	also	have	their	shortcomings.	For	instance,	while	it	is	now	possible	to	

mutate	or	silence	an	endogenous	enhancer	using	CRISPR	[50],	difficulties	in	assaying	the	

effect	on	gene	expression	due	to	enhancer	redundancy,	ambiguities	as	to	the	correct	target	

gene,	failure	to	remove	a	sufficient	portion	of	enhancer	sequences,	and	other	experimental	

considerations	can	all	lead	to	false	negative	results.	The	best	way	to	counter	this	will	be	to	

insist	on	increased	validation	experiments	using	both	ectopic	(reporter	gene)	and	

endogenous	(enhancer	deletion)	experiments	[8]—and	to	remember	that	just	because	a	

result	is	experimentally	derived,	it	is	not	necessarily	accurate.	

	

Concluding	remarks:	is	it	all	just	a	house	of	cards?	

Given	the	biases	in	the	enhancer	literature	I	have	illustrated	here,	and	the	circularity	in	

enhancer	feature	characterization,	the	reader	might	wonder	if	our	current	understanding	

of	enhancers	is	just	a	house	of	cards,	propped	up	by	the	thinnest	evidence	and	ready	to	

topple	with	the	next	clear	experiment.	Such	a	view	would	be	a	mistake,	and	not	what	I	am	

trying	to	suggest	here.	Indeed,	as	mentioned	above,	the	papers	cited	here	are	all	important	

and	well-conducted	studies,	and	provide	crucial	clues	to	determining	how	enhancers	work	

and	what	features	they	possess.	But	it	is	important	to	realize	that	much	about	enhancers	

still	remains	a	mystery,	and	there	is	much	we	still	need	to	learn	(see	Outstanding	

Questions).	Among	these	questions	are	how	enhancers	are	organized	in	the	genome;	what	

chromatin	features	and	modifications	are	associated	with	them,	and	to	what	purpose;	what	

the	role	of	transcription	at	enhancers	is;	and	how	to	define	enhancers	and	their	possible	

different	types	and	subtypes.	The	latter	may	be	a	particularly	important	question.	While	it	

is	not	known	if	there	are	functional	enhancer	subtypes,	it	is	possible	that	different	

regulatory	roles—e.g.	RNA	polII	recruitment,	release	of	paused	RNA	polII,	targeting	of	

genes	to	“transcription	factories,”	etc.—are	carried	out	by	separate	classes	of	enhancers	

with	distinct	properties.	Such	a	scenario	could	explain	some	of	the	discrepancies	seen	with	

the	presence	and	absence	of	various	chromatin	marks	and	eRNAs;	it	also	highlights	the	

potential	risk	of	methods	that	predict	enhancers	by	integrating	a	wide	assortment	of	



 14 

chromatin	features	[e.g.	51,	52],	and	provides	a	possible	explanation	for	why	such	methods	

have	shown	low	rates	of	empirical	validation	[38].		

To	answer	these	and	other	questions	effectively,	we	need	to	acknowledge	the	limitations	in	

both	traditional	and	newer	methods	for	investigating	enhancers.	We	need	to	begin	as	a	

field	to	use	a	wider	and	more	diverse	range	of	assays	to	establish	enhancer	function,	and	to	

insisit	on	higher	levels	of	proof	before	accepting	new	defining	enhancer	characteristics.	

Importantly,	we	must	be	cognizant	of	the	various	biases	that	color	our	interpretation	of	

experimental	and	analytical	results	(Box	2).	This	will	help	to	avoid	being	thrown	off	course	

by	founder	fallacies,	falling	into	narrow	and	circular	definitions	through	validation	creep,	

and	over-prioritizing	certain	sets	of	results	merely	because	they	were	obtained	through	

large-scale	experimental	approaches.	

	

	

	

	

Box	1:	Enhancers	and	Genome	Annotation	

	

How	to	properly	reflect	enhancer	sequences	in	a	genome	annotation	is	a	significant	

challenge.	Genome	features	must	be	annotated	with	specific	nucleotide	coordinates,	but	the	

indefinite	ways	used	to	define	enhancers	makes	this	difficult.	Nested	and	overlapping	

sequences	must	be	resolved,	and	the	annotation	must	be	kept	current	as	older	enhancer	

boundaries	are	refined	through	subsequent	experiments.	

An	example	of	a	highly	curated	metazoan	regulatory	annotation	is	that	of	Drosophila	

melanogaster.	While	the	Drosophila	annotation	is	maintained	by	FlyBase	[53],	enhancer	

annotations	are	primarily	based	on	data	from	the	REDfly	database	[54].	REDfly	annotates	

regulatory	data	based	on	a	variety	of	considerations,	but	applies	the	label	of	“cis-regulatory	

module	(CRM),”	essentially	used	synonymously	with	“enhancer,”	only	in	specific	
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circumstances.	To	qualify,	a	REDfly	regulatory	sequence	must	meet	both	of	the	following	

criteria:	

(1)	The	sequence	must	have	demonstrated	regulatory	activity,	typically	based	on	

sufficiency	to	regulate	reporter	gene	activity	in	either	transgenic	flies	or	cultured	cells	

(2)	the	sequence	must	be	the	minimal-length	sequence	in	a	set	of	one	or	more	nested	

sequences	that	regulate	the	same	expression	pattern	

Sequences	that	fail	to	meet	these	requirements	are	still	annotated	by	REDfly,	but	are	not	

labeled	as	CRMs.		

The	CRM	designation	is	re-evaluated	each	time	new	data	are	added	to	the	database,	so	that	

if	a	new,	more	minimal	sequence	with	identical	activity	is	added	within	the	boundaries	of	a	

current	CRM,	the	new	sequence	is	awarded	the	CRM	label	and	the	older	sequence	reverts	to	

a	non-CRM	classification.	FlyBase	includes	only	currently-designated	CRMs	in	the	

Drosophila	genome	annotation,	so	that	in	any	given	version	the	two	enhancer	criteria	listed	

above	are	maintained.	

The	choice	to	use	the	shortest	of	a	set	of	nested	sequences	to	represent	the	enhancer	can	be	

debated,	as	it	can	be	difficult	to	determine	whether	a	particular	reporter	construct	captures	

all	of	the	subtleties	of	endogenous	expression	as	well	as	another,	slightly	larger	sequence;	

also,	this	definition	enforces	the	conceptualization	of	enhancers	as	strictly	modular	units,	

for	instance	disallowing	the	possibility	that	in	the	context	of	the	genome	aspects	of	

enhancer	function	might	be	distributed	over	large	distances	[3,	18].	Nevertheless,	this	is	

the	typical	accepted	practice	across	the	enhancer	field	and	seems	necessary	to	avoid	

considering	ever-longer	genomic	sequences	as	potential	contributors	to	enhancer	function	

until	the	reductio	ad	absurdum	of	including	entire	chromosomes	is	reached.	

REDfly	is	also	careful	to	distinguish	functionally-demonstrated	regulatory	sequences	from	

those	predicted	by	genomic	or	computational	methods	(“predicted,”	or	“pCRMs”),	or	from	

those	inferred	by	the	overlapping	portions	of	two	enhancers	with	similar	function	

(“inferred,”	or	“iCRMs”).	By	segregating	out	these	sequences,	a	function-based	enhancer	

definition	is	maintained	in	the	genome	annotation.	
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Box	2:	Avoiding	common	traps	and	biases	when	studying	enhancers	

Competing	definitions	and	disagreements	over	the	most	conclusive	assays	can	make	

deciding	which	sequences	should	be	considered	enhancers	a	challenge.	These	guidelines	

will	help	in	avoiding	some	common	biases	and	pitfalls:	

• Remember	that	statistical	arguments	don’t	apply	to	individual	specific	sequences.	

Various	characteristics	might	suggest	that	a	sequence	is	more	or	less	likely	to	be	an	

enhancer,	but	only	a	functional	assay	can	demonstrate	function.		

• Beware	of	circularity	when	defining	enhancer	characteristics.	Ascribing	new	

characteristics	to	a	set	of	sequences	themselves	not	known	definitively	to	function	

as	enhancers	can	lead	to	narrow	and	self-reinforcing	definitions	that	omit	important	

features.	

• Don’t	be	afraid	to	use	terms	such	as	“putative”	and	“candidate.”	There’s	no	shame	in	

admitting	that	we	can’t	yet	validate	the	function	of	every	sequence	in	the	genome,	in	

every	cell	type,	under	every	condition.	

• Think	twice	before	defining	new	functional	classes	of	enhancers	and	new	terms	to	

describe	them.	Sometimes	an	enhancer	is	just	an	enhancer.	

• Use	the	most	up-to-date	genomic	data	and	genome	annotations	available,	and	

update	or	revise	previous	analyses	as	necessary.		

• Validate,	validate,	validate!	Know	the	limitations	of	each	assay,	and	recognize	that	

no	single	perfect	assay	yet	exists.	Use	multiple	methods,	including	those	that	test	

both	the	necessity	and	sufficiency	of	a	sequence	to	regulate	transcription.	Weigh	

each	assay	according	to	its	strength	and	reliability,	without	regard	to	whether	it	is	

genomic	or	locus-specific	in	scale,	or	experimental,	computational,	or	statistical	in	

nature.	
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• Remember	that	what	we	don’t	know	far	outweights	what	we	do	know.	As	always,	

treasure	your	exceptions!	

	

	

OUTSTANDING	QUESTIONS	

How	should	enhancers	be	defined?	Should	we	rely	only	on	functional	criteria	or	also	

incorporate	chromatin	and/or	transcriptional	features	into	the	definition?		

Given	the	difficulties	inherent	in	accurately	defining	enhancers,	how	can	we	maintain	an	

inclusive	enhancer	definition	without	falling	back	on	circular	and	overly	narrow	

definitions?		

Is	there	a	good	way	to	reflect	different	degrees	of	confidence	in	a	sequence’s	designation	as	

an	enhancer	in	the	genome	annotation?	

What	are	the	best	ways	to	measure	enhancer	activity	and	cooperativity?	

Is	it	useful	to	try	to	classify	enhancers	into	different	types	and	subtypes?	Can	we	do	this	

effectively	without	running	afoul	of	the	founder	fallacy?	

	

	

FIGURE	LEGENDS	

Figure	1:	The	founder	fallacy	

(A)	A	set	of	sequence	fragments	(e1-e4),	each	of	which	functions	as	an	enhancer	in	a	

reporter	gene	assay.	Fragment	e2	is	active	in	both	Tissue	A	and	Tissue	B,	identical	to	e1,	but	

was	identified	more	recently.	e3	and	e4	each	have	a	subset	of	the	function	of	e1	and	e2,	with	

distinct	activity.	(B)	In	this	second	set	of	sequence	fragments,	the	more	recently-identified	
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e2	is	longer	than	the	original	e1	enhancer,	but	lacks	ectopic	regulatory	activity	in	Tissue	C.	

Thus	e2	is	more	properly	the	“true”	enhancer	than	the	shorter	e1.	

	

Figure	2:	Enhancer	pleiotropy	and	site	pleiotropy	

Four	examples	of	potentially	pleiotropic	enhancers.	Each	polygon	represents	a	

transcription	factor	binding	site	(TFBS),	with	blue	fill	indicating	a	required	role	in	

regulating	gene	expression	in	one	tissue	and	yellow	fill	indicating	a	required	role	in	a	

second	tissue.	(A)	An	enhancer	with	complete	“site	pleiotropy”:	each	TFBS	is	used	in	both	

regulatory	contexts.	This	is	similar	to	the	“E6”	enhancer	in	[20].	(B)	A	pleiotropic	enhancer	

lacking	site	pleiotropy	such	that	each	TFBS	contributes	to	only	one	of	the	two	activities	of	

the	enhancer.	The	sites	are	integrated	in	the	enhancer	sequence	in	such	a	way	that	the	two	

activities	cannot	be	separated	without	disrupting	all	enhancer	activity.	(C)	This	situation	is	

similar	to	the	Z0.3	and	Z1.3R	enhancers	in	[20](see	Fig.	1).	The	sequence	can	be	divided	

into	two	functional	segments	as	all	of	the	TFBSs	necessary	for	blue	expression	reside	in	the	

left	half	and	all	those	for	yellow	expression	in	the	right.	It	can	be	argued	therefore	that	this	

sequences	does	not	represent	a	single	pleiotropic	enhancer,	but	rather	two	distinct	

enhancers,	a	“blue”	and	a	“yellow.”	(D)	A	more	complex	scenario	that	involves	both	

pleiotropic	TFBSs	and	TFBSs	specific	for	a	single	expression	pattern.	While	the	left	half	of	

the	sequence	could	function	as	a	blue-specific	enhancer,	the	right	side	by	itself	is	non-

functional	as	it	lacks	the	triangle	binding	site.	A	situation	similar	to	this	has	been	observed	

in	the	Drosophila	stumps	locus	(ref.	[55]	and	unpublished	data).			

	

Figure	3:	Enhancer	“definitions”	are	not	consistent	

Data	from	[36]	illustrate	how	defining	enhancers	based	on	reporter	gene	activity,	histone	

modifications,	chromatin	accessibility,	and	enhancer	transcription	provides	inconsistent	

and/or	contradictory	results.	(A)	Five	different	sequences	have	a	different	pattern	of	

possible	enhancer	characteristics	when	tested	in	a	common	cell	type	(T	cells).	Blue	squares	
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indicate	a	positive	assay	result,	yellow	negative.	Each	sequence	was	assessed	for:	its	ability	

to	drive	a	luciferase	reporter	gene;	H3K27	acteylation;	H3K4	monomethylation;	chromatin	

accessibility	in	the	form	of	DNAseI	hypersensitive	sites	(DHS);	and	bidirectional	

transcription	(CAGE).	No	clear	trend	emerges	from	the	set	of	assays.	(B)	The	identical	

sequence	can	drive	reporter	gene	expression	in	two	different	cell	lines,	but	in	one	cell	type	

can	be	positive	for	a	set	of	several	possible	enhancer	characteristics	whereas	in	the	other	it	

can	be	negative	for	the	entire	same	set.	[Data	for	this	figure	were	adapted	from	Figure	S17	

of	[36];	sequences	A-F	correspond	to	the	eighth,	ninth,	twenty-eighth,	first,	thirteenth,	and	

eighteenth	columns,	respectively.]	

	

Figure	4:	A	typical	small-scale	“enhancer	bashing”	experiment	

A	hypothetical	enhancer	bashing	experiment	with	tested	sequence	fragments	illustrated	

below	their	location	in	a	10	kb	region	upstream	of	a	gene.	Fragments	that	showed	activity	

in	a	reporter	assay	are	shown	in	red,	those	that	failed	to	show	activity	are	depicted	in	black.	

Six	out	of	eight	(75%)	of	the	tested	sequences	in	this	experiment	had	positive	regulatory	

activity.	

	

	

GLOSSARY	

	

CAGE:	Cap	Analysis	of	Gene	Expression.	CAGE	enables	both	gene	expression	profiling	and	

determination	of	the	transcription	start	site	(TSS)	of	each	transcript	by	sequencing	

fragments	(“tags”)	derived	from	trapping	the	5’	cap	of	mRNAs.	

	

CRM:	cis-regulatory	module,	a	generic	term	covering	enhancers	as	well	as	other	similar	

types	of	transcriptional	regulatory	sequences.	
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Enhancer:	a	cis-regulatory	sequence	that	binds	transcription	factors	and	acts	in	

conjunction	with	a	gene’s	promoter	to	positively	activate	gene	expression.	By	formal	

definition,	enhancers	act	independently	of	position,	orientation,	and	distance	relative	to	

their	target	gene,	although	these	characteristics	are	rarely	tested	in	a	rigorous	fashion.	

	

Pleiotropy:	pleiotropy	refers	to	when	a	gene	affects	multiple	traits.	With	respect	to	

regulatory	sequences,	enhancer	pleiotropy	refers	to	an	enhancer	that	regulates	more	than	

one	expression	pattern.	Site	pleiotropy	refers	to	a	transcription	factor	binding	site	within	an	

enhancer	that	regulates	a	pleiotropic	enhancer	in	more	than	one	regulatory	context.	

	

Reporter	gene	assay:	A	traditional	way	of	testing	DNA	sequences	for	regulatory	activity.	

The	sequence	to	be	tested	is	cloned	upstream	of	a	minimally-active	promoter	driving	the	

“reporter	gene,”	a	gene	whose	activity	is	easy	to	monitor,	e.g.,	the	bacterial	lacZ	gene	

encoding	b-galactosidase	or	a	fluorescent	protein.	

	

Shadow	enhancer:	one	of	a	pair	(or	small	group)	of	enhancers	driving	similar	patterns	of	

expression	of	the	same	gene.	

	

Super-enhancer:	a	regulatory	region	consisting	of	a	cluster	of	enhancers	and	highly	

enriched	for	binding	of	Mediator	and	activating	chromatin	marks.	This	terms	is	used	

differently	by	different	authors	and	remains	controversial	as	to	whether	or	not	super-

enhancers	constitute	a	true	separate	class	of	regulatory	feature.	
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