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In this study, an inverse dynamics optimization formulation and
solution procedure is developed for musculoskeletal simulations.
The proposed method has three main features: high order recur-
sive B-spline interpolation, partition of unity, and inverse dynam-
ics formulation. First, joint angle and muscle force profiles are
represented by recursive B-splines. The formula for high order
recursive B-spline derivatives is derived for state variables calcu-
lation. Second, partition of unity is used to handle the multicon-
tact indeterminacy between human and environment during the
motion. The global forces and moments are distributed to each
contacting point through the corresponding partition ratio. Third,
joint torques are inversely calculated from equations of motion
(EOM) based on state variables and contacts to avoid numerical
integration of EOM. Therefore, the design variables for the opti-
mization problem are joint angle control points, muscle force con-
trol points, knot vector, and partition ratios for contacting points.
The sum of muscle stress/activity squared is minimized as the cost
function. The constraints are imposed for human physical con-
straints and task-based constraints. The proposed formulation is
demonstrated by simulating a trajectory planning problem of a
planar musculoskeletal arm with six muscles. In addition, the gait
motion of a two-dimensional musculoskeletal model with sixteen
muscles is also optimized by using the approach developed in this
paper. The gait optimal solution is obtained in about I min central
processing unit (CPU) time. The predicted kinematics, kinetics,
and muscle forces have general trends that are similar to those
reported in the literature. [DOI: 10.1115/1.4042436]
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1 Introduction

Dynamic optimization of a musculoskeletal model is a
challenging problem. The difficulties are threefold: First, the
appropriate cost function and constraints; second, the correct
muscle-tendon property; and third, the optimization formulation
and solution procedure. The last difficulty affects the computation
efficiency most, and the key component is how to treat equations of
motion (EOM) in the optimization process. Recently, there has been
significant progress on reducing the computational effort for muscu-
loskeletal motion prediction, thanks to various optimization formula-
tions and large-scale optimization algorithms development [1-11].

Pure forward dynamics optimization usually requires heavy
computational effort [12]. The following four formulations can
effectively reduce the computational cost and have become
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popular recently: direct collocation method [1,2,7], inverse
dynamics optimization [4-6,10,13], mixed forward and inverse
dynamics optimization [8,9], and mixed forward dynamics simu-
lation and feedback control [14,15]. It is important to note that
both accuracy and efficiency are important for musculoskeletal
motion prediction. Tracking joint angles and ground reaction
forces (GRFs) in the optimization process can predict more accu-
rate muscle activities. It also facilitates a practical implementation
[5,7,15-17]. However, definitely, it sacrifices some power of pre-
diction since tracking term is included in the cost function. In con-
trast, a purely optimization-based prediction model can show
more cause-and-effect. But the human central nervous system is
complicated, it is hard for such a model to be completely accurate
compared with experimental results. Thus, researchers need to
balance the two sides of tracking and prediction based on
applications.

In this study, an inverse dynamics optimization formulation is
developed for musculoskeletal models. Partition of unity is used
to handle the multicontact indeterminacy between human and
environment. A high order recursive B-spline interpolation with
derivatives is developed for state variable calculation and sensitiv-
ity analysis. The recursive interpolation is efficient and easy-to-
implement to discretize joint angle and muscle force profiles.
Most importantly, the higher order smoothness makes the EOM
and symmetry/continuity equality constraints much easier to sat-
isfy for the optimization [6]. Design sensitivities are implemented
analytically for the gradient-based optimization algorithm [11].
The developed formulation can treat open-loop and closed-loop
mechanical systems with multiple contacts using partition of
unity. The proposed formulation is used to solve two optimal tra-
jectory planning problems for planar musculoskeletal arm and
gait models. Muscle stress/activity squared is minimized subject
to the physical and task-based limits. The two-dimensional (2D)
gait optimal solution is obtained in about 1 min central processing
unit (CPU) time. The optimal solutions are partially verified with
the solutions available in the literature.

2 Musculoskeletal Dynamics

2.1 Equations of Motion. The musculoskeletal model has n
joints and m muscle-tendons among which 7, is the number of
global translation and rotation joints in inertial frame. The
Lagrange equation for the musculoskeletal model can be written
in vector-matrix form [6,18]

tsx = M(q)i + V(. 4) + G(q) + > J5[FL.ML]"

T

+3T5 [FXJ-,MI].] (1a)
j

wr = R(q)f (1b)

Tsx + Tur = 0 (Ic)

where g is the skeleton joint torque (n x 1); M(q) is the system
mass matrix (n x n); V(q,q) is the centrifugal and Coriolis load-
ing (nx 1); G(q) is the gravitational loading (nx 1); J¢i is the
augmented Jacobian matrix (6 x 1) for the ith contact point where
contact force F¢; and moment M; applied; similarly, J,; is the
augmented Jacobian matrix (6 x n) for the jth given applied exter-
nal force F,; and moment My;; Tyr is the muscular joint torque
(nx 1); f is the muscle-tendon force (m x 1); and R(q) is the
matrix of muscular moment arms (n X m). ()T denotes the
transpose operation.

2.2 Contact Model: Partition of Unity. Contact force and
moment are inversely calculated from unbalanced global skeletal
joint torque 5, (n, x 1), through the following procedures [10,19]:

Step 1. Given the joint state variables (¢q,q,q) and external
applied force and moment (F4, M,), excluding contact force and
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moment (F¢,Mc), the skeletal joint torque t%, (7 x 1), can be
calculated as

T
S = M(@)i +V(@.0)+Gla)+ > Iy [FLMy] @
J

Step 2. For 9, the corresponding global force and moment vector

. T . . -
1s r?K = [F ;,MIT;] , where Fp is the global translational joint tor-

que and My is the global rotational joint torque. t5; is usually not
zero and needs to be balanced (become zero) by contact forces.

Step 3. For each contact point, there is a corresponding decom-
posed global force and moment term p,-rgK, where p; is the parti-
tion ratio for the ith contact, and

> pi=1 3)

Step 4. Bach decomposed global force and moment p; 75 is trans-
ferred to corresponding contact point location r¢;(q), which is a
vector from contact point to global force location, to obtain con-
tact force and moment as

Fc;
Mc;

—piFs;i
—piMp; —rci(q) x p;Fp

@

3 Recursive B-Spline Discretization

A joint profile ¢(r) is parameterized by using B-spline curve as
follows:
S
q(t) = > NI (1)P; ®)

i=1

where N (1) is the p degree basis function associated with the ith
control point P; and s is the number of control points.

3.1 Recursive B-Spline Basis Function. The basis function
is constructed from the knot vector ¢ = {#1,0, ..., ls4p1}. The p
degree basis function is calculated recursively starting from the
zero-degree basis function N?(¢) as [20]

1 for 1€ [titit1)
NY(1) = , (6a)
0 otherwise
D o I—1 p—1 livpy1 — 1 p—1
Ni(t)=——N]" () +————N; (1) (6b)
tivp — ti Litp+1 — lit1

3.2 Recursive B-Spline Time Derivatives. The first time
derivative of B-spline curve defined in Eq. (5) can be evaluated as

G(0) =Y N ()P, @)
i=1

where the first time derivative of the basis function can be com-
puted as [21]

NG =

=L -—L N ®
i+p — ki

! Livp+1 — lit1

Higher time derivative of the curve is calculated through the
higher derivative of the basis function which is constructed recur-
sively as

d® .
a0 =3 N (0P, a)

i=1
NP = —L N ) - —L N ) o)

[1+p — 1 tl+p+1 — lit1
Dk p—1k—1 p—1k—1 .
Ny = —P N H-—P " ©
i T4 ) - - i+1 c)
livp — 1 Litp+1 — tit1

where the superscript k denotes the kth time derivative and k > 2.
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4 Inverse Dynamics Optimization

For musculoskeletal motion prediction, the design variables x
are joint angle control points P,, muscle-tendon force control
points Py, global force and moment partition ratios p, and B-

T
spline knot vector ¢, where x = [PqT P; P’ tT] .

The cost function E; for human performance measure is the
integral of the muscle-tendon stress squared as in Eq. (10), where
PCSA; is the physiological cross-sectional area of the ith muscle
[22]. The cost function E, is the integral of the normalized
muscle-tendon force squared as in Eq. (11). The normalized
muscle-tendon force is usually referred to as the muscle activity
[4,23], where ™ is the ith muscle-tendon strength obtained from
the literature [24]

(10)

b3 (rli)
b5 (1)

The physics-based constraints for musculoskeletal motion
include joint angle limit, joint torque limit, muscle-tendon force
limit, musculoskeletal EOM, bounds on design variables, and par-
tition of unity as shown in the following equations:

an

¢ <q<q’ (12)
Tox < Tsk < Tik (13)
0<f<fm™ (14)
Tk +Tur =0 15)
¥ <x <Y (16)
> opi=1 (17)

where g" and ¢V are joint angle lower and upper limits, respec-
tively; and ‘céK and réfK are skeletal joint torque lower and upper
limits, respectively.

5 Numerical Examples

In this study, the skeleton 1is constructed using
Denavit—Hartenberg method [25]. The kinematics is computed
recursively and the EOM (Eq. (1)) is implemented with recursive
Lagrange equations [26]. The sequential quadratic programming
(SQP) algorithm in SNOPT is used to solve the optimization prob-
lem [11]. Analytical gradients are provided for all cost function
and constraints for use in the optimization process. The optimality
and feasibility tolerances are set to ¢ = 107> in SNOPT. The con-
stant starting points for design variables x are used in the optimi-
zation: Py, =0, Py =10, p; = 0.5, and ¢ is evenly distributed
between 0 and 1.

5.1 Musculoskeletal Planar Arm Motion Prediction. The
musculoskeletal planar arm model [27] consists of two body seg-
ments (upper arm and forearm) and the relative joint angles ¢
(shoulder ¢; and elbow ¢,) are selected as skeleton degrees-of-
freedom (DOF) as shown in Fig. 1(a). Six muscle groups are
included in the model: anterior deltoid (AD), posterior deltoid
(PD), brachialis (Brach), lateral triceps (LT), long head of
biceps (LHB), and long head of triceps (LHT). The arm skeleton
physical parameters are obtained from Refs. [27] and [28], and the
muscle properties are obtained from Ref. [22]. The additional
joint frictional torques in Ref. [27], which are proportional to joint
angular velocities, are also added into the right-hand side of
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1. AD
2.PD
3. Brach
4. 1T
5.LHB
6. LHT
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Fig.2 Arm joint angle and torque profiles

Eq. (1a). The arm is assumed to lie in the horizontal plane moving
from the initial position [g1(0) ¢2(0)] to the final position
[¢1(T) >(T)] in the time interval 7. In addition, the arm is at
rest at the initial and final points. The additional task-based con-
straints for the arm motion are defined as

[47(0) ¢"(0)] =[04 100 0]
[q"(T) ¢"(T)]=[16 180 0]

(18)
19)

In this example, the EOM (Eq. (1)) is simplified because there
are no global DOF, gravity (horizontal planar motion), and exter-
nal contact force and moment. Cubic B-splines (degree p = 3) are
used for both joint angle and muscle-tendon force profiles time
discretization with the same knot vector. Each joint angle and
muscle-tendon force is represented by 13 control points and 17 kn
with the multiplicity (4 repeated knots at initial and final time
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points, respectively). In addition, there are four additional time
nodes between any two adjacent distinguished knots, and this
results in a total of 51 temporal nodes to evaluate the cost function
and constraints values in the time interval 7. Given the total time
T=2s, the knots are assumed evenly distributed except the
repeated knots at the boundaries.

The musculoskeletal arm motion prediction problem is formu-

T
lated as to find the optimal design variables x = [P; P,T] , and

to minimize the cost function Eq. (10) subject to physics-based
constraints Eqgs. (12)—(16) and task-based constraints Eqs. (18)
and (19). There are in total 105 design variables and 194 nonlinear
constraints. The optimal solution is obtained in 0.68 CPU seconds
on a 3.90GHz Dell Inspiron desktop computer (Intel Core i3-
7100 processor).

The optimal joint angle and torque profiles are shown in Fig. 2.
The arm muscle forces are depicted in Fig. 3. The arm’s trajectory
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Fig.3 Arm muscle-tendon forces

is illustrated in Fig. 4(a). To verify the EOM equality constraint
(Eq. (15)), its value is plotted every 0.01s at the optimal solution
in Fig. 4(b).

5.2 Musculoskeletal Gait Prediction. The musculoskeletal
gait model [8,29] consists of nine body segments (trunk, thighs,
shanks, hind feet, and forefeet) and has twelve kinematic DOF
(three global joints, z,y, 0, and nine physical joints) as shown in
Fig. 1(b). Eight muscle groups are included in each leg: iliopsoas
(Ilio), glutei (Glu), hamstrings (Ham), rectus femoris (RF), vasti
(Vas), gastrocnemius (Gas), soleus (Sol), and tibialis anterior
(TA). The anthropometric data for a 50th percentile male obtained
from GEBOD™ are used in this study [10], and the muscle prop-
erties are obtained from Ref. [24]. The model is assumed to move
in the sagittal plane where the gait is bilateral symmetric so that
only half a gait cycle is simulated. The gait task-based constraints
include bilateral symmetry constraint, feet contact position con-
straint, feet penetration constraint, zero-moment-point (ZMP) bal-
ance constraint, and vertical spine constraint [8] as illustrated in
the following equations:

1 1 1

(a)

[4"0) ") T (0) £70) p"(0)]

= et aiw) @l fm Ao eo
pc(q,1) = ps(t) @1

pu(g:1) >0 (22)
P2we(4,4,4,t) € FSR(1) (23)

Gspine (1) € [0deg 5 deg] (24)

where g is the corresponding symmetric joints for g vector; f is
the symmetric muscle-tendon force; pg is the symmetric partition
ratio; p is the foot point position; py is the specified foot contact
position which depends on the given step length (0.54 m in this
case); py is the foot point height; p,\p is ZMP position; and FSR
denotes foot support region.

Hexic B-splines (degree p = 6) are used for joint angle and
muscle-tendon force time discretization with nine control points
and 16kn. In addition, there are three additional time nodes
between any two adjacent distinguished knots, and this results in a
total of ten temporal nodes in the time interval 7. The total time
duration T is divided into three physical segments: double support
duration «T, hind foot single support duration (1 — o)T, and
forefoot single support duration (I — f8)(1 — «)7. Thus, the knot
vector is a function of ¢ = #(o, 5, T).

The musculoskeletal gait prediction problem is formulated as to

T
find the optimal design variables x = PZ PfT Pt a BT,

and to minimize the cost function Eq. (11) subject to physics-based
constraints Eqs. (12)—(17) and task-based constraints Egs.
(20)—~(24). There are in total 259 design variables and 515 nonlinear
constraints. The optimal solutions are obtained in 42.72 CPU
seconds.

The optimal joint angle, torque, and GRF profiles are shown in
Fig. 5. The leg muscle activities are depicted in Fig. 6. The gait
motion trajectory is illustrated in Fig. 7.

6 Conclusion and Discussion

In this paper, an inverse dynamics optimization formulation is
presented, and the proposed method is successfully applied to pla-
nar musculoskeletal arm and gait simulations. The gait optimal
solution is obtained in about 1 min CPU time. Partition of unity is
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Fig.4 Arm motion trajectory (a) and EOM constraint (b)
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Fig. 6 Gait muscle-tendon activities (f;(f)/f/®* [23])

used to solve the indeterminacy of double support phase of gait.
This method is general and can be extended to multicontact situa-
tions between human and environment. New higher order recur-
sive B-spline derivatives are derived. This is quite important for
making the symmetry and EOM equality constraints satisfied due
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to extra smoothness of the interpolated curve, which can be seen
from EOM constraint value in Fig. 4(b) and symmetry constraints
in Figs. 5 and 6 (initial and final values of the curves). In addition,
the recursive formulation makes the B-spline implementation
easier.

Inverse dynamics optimization formulation can effectively
reduce the number of equality constraints compared to direct col-
location method. For the partition of unity constraint in Eq. (17),
since the partition ratios are design variables, Eq. (17) is
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implemented in the way that the last ratio is equal to 1 minus the
sum of all other ratios, so that this equality constraint is eliminated
in the implementation [19]. Therefore, for physical constraints,
the only unavoidable equality constraint is EOM in Eq. (15).
Higher order B-spline interpolation can reduce the chance of
infeasible solutions for this equality constraint.

For musculoskeletal arm motion planning, the predicted joint
angles match well with the solution in the literature [27,28]. How-
ever, there are some discrepancies for the joint torques between
the simulation and the data in the literature, likewise for the mus-
cle forces [27]. This may be due to different solution methods for
the optimization. Sharifi et al. [27] used indirect optimal control
approach: variation of extremals. In contrast, inverse dynamics
optimization method is used in this study. Suzuki et al. [28] did
not report joint torque and muscle-tendon forces. In Fig. 4(b), we
can see that EOM between the muscle-tendon torque and the skel-
eton torque are satisfied very well within 107° N magnitude of
error.

For musculoskeletal gait simulation, the predicted joint angle,
torque, and GRF have trends similar to the literature [10,30]
except the second peak value of knee joint angle during swing
phase. In Xiang et al. [10], there was discussion on specifying a
midswing angle constraint to increase the second peak value of
knee joint to avoid foot drag and its effect on gait kinematics and
kinetics. A reasonable gait motion is generated as shown in Fig. 7.
In addition, Fig. 6 shows muscle activities compared to the data
available in the literature [23]. The glutei muscle shows higher
activity during gait cycle compared to the value in the literature.
This may be due to the inaccuracy of the 2D model and the small
knee flexion angle during the swing phase.

It is noted that there are some limitations in this study: first,
only 2D models are used to demonstrate the method; second, mus-
cle activation and contraction dynamics are not modeled; third,
some discrepancies are observed between the prediction and the
experimental data available in the literature. Although studies
[6,8] show that contraction dynamics can be modeled using
inverse formulation based on state variables and muscle-tendon
forces, the gradients of such problem are discontinuous due to the
inherent piecewise physiological muscle property [6,8,31]. This
might cause some difficulties for gradient-based optimization
[11,32]. Instead, approximate continuous muscle-tendon property
might be used in this case [32,33] or nongradient based optimiza-
tion methods could be employed [34]. For future research, (1)
tracking term in cost function will be explored; (2) 3D musculo-
skeletal model with wrapping will be developed; (3) multicontact
task will be validated; (4) muscle activation and contraction
dynamics will be included; and (5) the proposed methodology
might be able to open some opportunities for predictive musculo-
skeletal research and application.
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