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We report the first observation of the hadronic transition ϒð4SÞ → η0ϒð1SÞ, using 496 fb−1 data
collected at theϒð4SÞ resonance with the Belle detector at the KEKB asymmetric-energy eþe− collider. We
reconstruct the η0 meson through its decays to ρ0γ and to πþπ−η, with η → γγ. We measure
Bðϒð4SÞ → η0ϒð1SÞÞ ¼ ½3.43� 0.88ðstatÞ � 0.21ðsystÞ� × 10−5, with a significance of 5.7σ.

DOI: 10.1103/PhysRevLett.121.062001

One of the major challenges in particle physics is the
treatment of quantum chromodynamics (QCD) in the
nonperturbative regime [1]. In particular, heavy quarkonia,
i.e., bound states of one heavy quark and its antiquark,
thanks to their intrinsic multiscale behavior, are one of the
most promising and clean laboratories in which to explore
these dynamics [2]. Hadronic transitions between botto-
monia (i.e., bb̄ bound states) have been, in the past few
years, a fertile field for both experiment and theory. On the
basis of heavy quark spin symmetry, the QCD multipole
expansion (QCDME) model predicts that transitions
involving the η particle should be suppressed relative to
dipion transitions [3]. Several recent results [4–7] challenge
this long-standing expectation. Following these measure-
ments, it has been argued that the light-quark degrees of
freedom actively intervene in the transitions [8].
Few processes for the ϒð4SÞmeson decaying to the non-

BB̄ system have been measured thus far [9]. There have
been no searches for the kinematically allowed transition
ϒð4SÞ → η0ϒð1SÞ, which is expected to be as strong as
ϒð4SÞ → ηϒð1SÞ [8], where the relative strength of the η0

and η transitions depends on the relative uūþ dd̄ content of
the mesons, and is predicted to range between 20% and
60%. In contrast, a significant dominance of the η0
transition is predicted by QCDME models. In the charmo-
nium sector, searches for ψð4160Þ → η0J=ψ and
Yð4260Þ → η0J=ψ transitions have been made by CLEO
[10] without the observation of significant signals, while
the observation of eþe− → η0J=ψ at center-of-mass ener-
gies of 4.226 and 4.258 GeV has been reported by
BESIII [11].
In this Letter, we present the first observation of the

transition ϒð4SÞ → η0ϒð1SÞ. The ϒð1SÞ meson is recon-
structed via its leptonic decay to two muons, which is
considerably cleaner than the dielectron mode. The η0

meson is reconstructed via its decays to ρ0γ and to
πþπ−η, with the η meson reconstructed as two photons.
We use a sample of ð538� 8Þ × 106 ϒð4SÞ mesons,

corresponding to an integrated luminosity of 496 fb−1,

collected by the Belle experiment at the KEKB
asymmetric-energy eþe− collider [12,13]. In addition, a
data sample corresponding to 56 fb−1, collected about
60 MeV below the resonance, is used to estimate the
background contribution.
The Belle detector (described in detail elsewhere

[14,15]) is a large-solid-angle magnetic spectrometer that
consists of a silicon vertex detector, a 50-layer central drift
chamber (CDC), an array of aerogel threshold Cherenkov
counters (ACC), a barrel-like arrangement of time-of-flight
scintillation counters, and an electromagnetic calorimeter
comprised of CsI(Tl) crystals (ECL) located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux return located outside of the
coil (KLM) is instrumented to detect K0

L mesons and to
identify muons.
Monte Carlo (MC) simulated events are used for the

efficiency determination and the selection optimization;
these are generated using EVTGEN [16] and simulated to
model the detector response using GEANT3 [17]. The
changing detector performance and accelerator conditions
are taken into account in the simulation. The distributions
of generated dimuon decays incorporate the ϒð1SÞ polari-
zation. The angular distribution in the ϒð4SÞ → η0ϒð1SÞ
transition is simulated as a vector decaying to a pseudo-
scalar and a vector. The η0 → πþπ−η and the η → γγ decays
are generated uniformly in phase space, while the η0 →
ρ0γ → πþπ−γ decay is generated assuming the appropriate
helicity. Final state radiation effects are modeled in the
generator by PHOTOS [18].
Charged tracks must originate from a cylindrical region

of length�5 cm along the z axis, which is aligned opposite
to the positron beam, and radius 1 cm in the transverse
plane, centered on the eþe− interaction point, and must
have a transverse momentum (pT) greater than 0.1 GeV=c.
Charged particles are assigned a likelihood Li, with i ¼ μ,
π, K [19], based on the range of the particle extrapolated
from the CDC through the KLM; particles are identified as
muons if the likelihood ratio Pμ ¼ Lμ=ðLμ þ Lπ þ LKÞ
exceeds 0.8, corresponding to a muon efficiency of about
91.5% over the polar angle range 20° ≤ θ ≤ 155° and the
momentum range 0.7 GeV=c ≤ p ≤ 3.0 GeV=c in the
laboratory frame. Electron identification uses a similar
likelihood ratio Pe based on CDC, ACC, and ECL
information [20]. Charged particles that are not identified
as muons and having a likelihood ratio Pe < 0.1 are treated
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as pions. Calorimeter clusters not associated with recon-
structed charged tracks and with energies greater than
50 MeV are classified as photon candidates. Pairs of
oppositely charged tracks, of which at least one is posi-
tively identified as a muon, are selected as dimuon
candidates. Pairs of oppositely charged tracks, both classi-
fied as pions, are selected as dipion candidates. Retained
events contain exactly one dimuon candidate and one
dipion candidate. For η0 → ρ0γ decays, hereinafter labeled
as 2π1γ, only events with at least one photon and with the
photon-dipion invariant mass within 50 MeV=c2 (�3σ)
of the nominal η0 mass [9] are retained. Similarly, for the
η0 → πþπ−η, η → γγ decay chain, hereinafter labeled as
2π2γ, only events with at least two photons having an
invariant mass within 50 MeV=c2 (�3σ) of the nominal
η mass [9] and with an invariant-mass difference
Mðπþπ−γγÞ −MðγγÞwithin 20 MeV=c2 (�3σ) ofMðη0Þ −
MðηÞ are considered. In 2π1γ (2π2γ) final states, 1.2 (1.4)
candidates per event are present on average, where the
multiplicity is due to one or more accidental photons.
The ambiguity is resolved by choosing the one whose
reconstructed η0 mass is closest to the nominal value. This
choice has an efficiency of ∼90% on the MC-simulated
signal samples. The events with j ffiffiffi

s
p

−M½ϒð1SÞη0�c2j <
150 MeV, where M½ϒð1SÞη0� ¼ Mðμþμ−πþπ−γÞ
[Mðμþμ−πþπ−γγÞ] in the 2π1γ [2π2γ] final state and

ffiffiffi
s

p
is the center-of-mass (c.m.) eþe− energy, are retained.
The kinematic bound expressed by the quantity pKB¼

pðμμÞc:m:− ½s−MðμμÞ2c4�=ð2c ffiffiffi
s

p Þ, where pðμμÞc:m: is the
c.m. momentum of the dimuon system, is constrained to
negative values for signal events and is used to reject part
of the background contribution due to QED processes
[eþe− → eþe−ðγÞ and eþe− → μþμ−ðγÞ]. Further reduc-
tions of QED processes and of cosmic background
events are achieved by requiring the opening angle of
the charged pion candidates in the c.m. frame to satisfy
j cos θðππÞc:m:j < 0.9.
The 2π1γ final state has contributions from dipion

transitions to the ϒð1SÞ resonance from either ϒð2S; 3SÞ
resonances produced in initial state radiation events or the
ϒð4SÞ resonance in which a random photon is incorporated
into the η0 candidate. The high production cross section
values [21] and decay rates [9] make these processes
competitive with the signal transition, and particular care
is needed to reduce them to negligible levels. A boosted
decision tree (BDT) method, as implemented in the Toolkit
for Multivariate Data Analysis package [22], is trained to
separate the signal events from those due to dipion
transitions. The performance of the classifier is optimized
and tested using MC-simulated samples for both the signal
and dipion transitions. The input variables used to construct
the BDT are the difference between invariant masses
ΔMππ ¼ Mðμþμ−πþπ−Þ −Mðμþμ−Þ and the total recon-
structed mass of the event Mðμþμþπþπ−γÞ. The highest
discrimination is provided by ΔMππ. This variable is

broadly distributed for signal events, while backgrounds
are sharply peaked at the values 563.0� 0.4, 894.9� 0.6,
and 1119.1� 1.2 MeV=c2, for ϒð2SÞ, ϒð3SÞ, and
ϒð4SÞ → πþπ−ϒð1SÞ, respectively [9], with experimental
resolutions of a few MeV=c2. It has been verified that, with
respect to a cut-based approach, the BDT method enhances
the dipion rejection while retaining a higher signal
efficiency. The reconstructed invariant mass of the η0

candidate must lie within 0.93 GeV=c2 < Mðπþπ−γÞ <
0.98 GeV=c2, which retains 90% of signal events.
The overall selection efficiencies for the signal events in

the 2π1γ and 2π2γ final states are ϵ ¼ ð17.64� 0.05Þ% and
ð5.02� 0.03Þ%, respectively, as determined fromMC-simu-
lated samples. The selection efficiency for ϒð2S; 3S; 4SÞ →
πþπ−ϒð1SÞ events is in the range of 10−6 − 10−4, making
their contribution negligible. The contributions from these
and other background sources are measured with a data
sample collected below the ϒð4SÞ resonance; a fraction of
less than ∼10−8 of the data remains in the 2π1γ final state,
while no events are present in the 2π2γ final state.
The signal events are identified by the variable

ΔMη0 ¼ M½ϒð4SÞ� −M½ϒð1SÞ� −Mðη0Þ; ð1Þ

where M½ϒð1SÞ� ¼ Mðμþμ−Þ in both final states;
for the 2π1γ [2π2γ] final state, M½ϒð4SÞ� ¼
Mðμþμ−πþπ−γÞ½Mðμþμ−πþπ−γγÞ� andMðη0Þ¼Mðπþπ−γÞ
[Mðπþπ−γγÞ]. The expected resolution for the signal
is 7–8 MeV=c2, depending on the reconstructed η0
decay mode. The distribution of ΔMη0 versus Mðη0Þ
[Mðη0Þ −MðηÞ] for the 2π1γ [2π2γ] candidates is shown
in Fig. 1 [Fig. 2] in a broad range of the abscissa in order to
illustrate the distribution.
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FIG. 1. Distribution of ΔMη0 versus Mðη0Þ for the selected
events (binned into the boxes) in the 2π1γ final state. The vertical
dashed lines show the �3σ selected region. The signal-selection
region of 0.93 GeV=c2 < Mðπþπ−γÞ < 0.98 GeV=c2 is boun-
ded by the vertical solid lines. The two-dimensional region where
97% of the signal events are expected is bounded by these vertical
lines and the two red horizontal lines.
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The signal and background yields are determined by an
unbinned maximum likelihood fit to the ΔMη0 distribution,
shown in Fig. 3. The signal component is parametrized by a
Gaussian-like analytical function

F ðxÞ ¼ exp

�
−

ðx − μÞ2
2σ2L;R þ αL;Rðx − μÞ2

�
; ð2Þ

with mean value μ, distinct widths σL;R, and asymmetric-
tail parameters αL;R on either side of the peak. The
background is described by a very broad Gaussian (linear)
function in the 2π1γ (2π2γ) final state. The signal shape
parameters are fixed to the values determined from the MC-
simulated sample. The signal and background yields in the
2π1γ final state are Nsig ¼ 22� 7 and Nbkg ¼ 96� 11,
respectively. In the 2π2γ final state, the signal and back-
ground yields are Nsig ¼ 5.0� 2.3 and Nbkg ¼ 2.0� 1.6,
respectively.
The statistical significance of the signal is determined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log½LðNsigÞ=Lð0Þ�

p
, where LðNsigÞ=Lð0Þ is the ratio

between the likelihood values for a fit that includes a signal
component versus a fit with only the background hypoth-
esis. The statistical significance is estimated to be 4.2σ
(4.1σ) in the 2π1γ (2π2γ) final state.

Several sources of systematic uncertainty affect the
branching fraction measurement, including the number
of ϒð4SÞ events Nϒð4SÞ (�1.4%) and the values used for
the secondary branching fractions Bsecondary (�2.7% for
2π1γ and �2.6% for 2π2γ) [9]. The uncertainties in
charged track reconstruction (�1.4%) and muon identifi-
cation efficiency (�1.1%) are determined by comparing
data and MC events using independent control samples.
The largest contribution to the systematic uncertainty
comes from the signal extraction procedure (�6.8% for
2π1γ and �2.0% for 2π2γ). The uncertainty due to the
choice of signal parameterizations is estimated by changing
the functional forms used; the systematic uncertainty for
the background form is evaluated by using second-order
polynomial or exponential functions and by varying the
range chosen for the fit. An additional uncertainty is related
to the chosen values for the signal shape parameters and is
evaluated by repeating the fit while varying each of them by
�1σ with respect to their nominal value. In each case, the
uncertainty is estimated as the variation in the signal yield
when using an alternate configuration with respect to that
obtained with the nominal one. Not all of the partial width
of η0 → πþπ−γ can be explained by a resonant decay
through a ρ0 [23,24]. The potential systematic bias in
the signal efficiency due to the presence of nonresonant
decays is estimated by comparing the selection efficiencies
between the default resonant sample and a completely
nonresonant one. Half of the difference is conservatively
assigned as a systematic error (−1.9% for 2π1γ). Other
possible sources of systematic uncertainties, due to dis-
crepancies between the data and MC simulations in the
efficiency of the applied selection requirements or in the
photon energy calibration, have been found to be relatively
small. The total systematic uncertainty is obtained by
adding in quadrature all of the contributions and amounts
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FIG. 2. Distribution of ΔMη0 versus Mðη0Þ −MðηÞ for the
selected events (binned into the boxes) in the 2π2γ final state.
The vertical dashed lines show the�3σ selected region. The two-
dimensional region where 97% of the signal events are expected
is bounded by these vertical lines and the two red horizontal lines.
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FIG. 3. Fit to the ΔMη0 distribution for ϒð4SÞ → η0ϒð1SÞ
candidates reconstructed in the 2π1γ (top) and 2π2γ (bottom)
final states. Data are shown as points, and the solid blue line
shows the best fit to the data, while the dashed red line shows the
background contribution.
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to 7.6% for the 2π1γ final state and 3.5% for the 2π2γ
final state.
The value of the branching fraction B is calculated as

B ¼ Nsig

ϵ × Nϒð4SÞ × Bsecondary
: ð3Þ

We measure B ¼ ð3.19� 0.96ðstatÞ � 0.24ðsystÞÞ × 10−5

in the 2π1γ final state and B ¼ ð4.53� 2.12ðstatÞ �
0.16ðsystÞÞ × 10−5 in the2π2γ final state. Themeasurements
obtained from the two independent subsamples are combined
in a weighted average, where the weight is the inverse of the
squared sum of the statistical and systematic uncertainties on
each yield, considering only the systematic contributions that
are uncorrelated between the two channels. The systematic
uncertainties in common between the two channels are then
added in quadrature to obtain the total uncertainty. The
measured branching fraction is Bðϒð4SÞ → η0ϒð1SÞÞ ¼
ð3.43� 0.88ðstatÞ � 0.21ðsystÞÞ × 10−5. The statistical sig-
nificance of the combined measurement is estimated by
performing a simultaneous fit to the two disjoint data sets,
using the same parameterizations as before and constraining
the signal normalization so that the ratio of the signal yield
divided by the signal efficiency and the secondary branching
fractions is the same in the two data sets. The statistical
significance of the combined measurement is 5.8σ; this is
reduced to 5.7σ when considering yield-related systematic
uncertainties by convolving the likelihood function with a
Gaussian whose width equals the systematic uncertainty.
This measurement represents the first observation of the
hadronic transition ϒð4SÞ → η0ϒð1SÞ.
We also determine the ratios of branching fractions:

Rη0=h ¼
Bðϒð4SÞ → η0ϒð1SÞÞ
Bðϒð4SÞ → hϒð1SÞÞ ; ð4Þ

where the decay is mediated by a hadronic state h ¼ η or
πþπ−. ForBðϒð4SÞ → hϒð1SÞÞ, we use the values obtained
in Ref. [5], which analyzes the same data sample considered
in this Letter. Several systematic uncertainties cancel, being
common to the numerator and denominator. The results
from the two η0 decay modes are combined in a weighted
average, as for the branching fraction measurement, and are
Rη0=η ¼ 0.20� 0.06 and Rη0=πþπ− ¼ 0.42� 0.11. The for-
mer ratio, in particular, is in agreement with the expected
value in the case of an admixture of a state containing light
quarks in addition to thebb̄ pair in theϒð4SÞ in bottomonium
hadronic transitions; a value of 0.2 is predicted in Eq. (6) in
Ref. [8], with a reasonable assumption of the ratio of the form
factors, i.e., FðpηÞ=Fðpη0 Þ ≈ 1.
The past few years have seen a large amount of activity

by both experiment and theory to study more closely the
unexpected nature of η transitions between bottomonium
states. Following this path, the described measurement,
being the first observation of an η0 transition, adds another

tile to our effort to understand the puzzle of hadronic
transitions between heavy quarkonia.
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