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New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient v1, are 
presented for transverse momenta pT, and centrality intervals in Au+Au collisions recorded by the STAR 
experiment for the center-of-mass energy range √sN N = 7.7–200 GeV. The measurements underscore 
the importance of momentum conservation, and the characteristic dependencies on √sN N , centrality and 
pT are consistent with the expectations of geometric fluctuations generated in the initial stages of the 
collision, acting in concert with a hydrodynamic-like expansion. The centrality and pT dependencies 
of veven

1 , as well as an observed similarity between its excitation function and that for v3, could serve 
as constraints for initial-state models. The veven

1 excitation function could also provide an important 
supplement to the flow measurements employed for precision extraction of the temperature dependence 
of the specific shear viscosity.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
High-energy nuclear collisions at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC) can result in the 
creation of a plasma composed of strongly coupled quarks and glu-
ons (QGP). Full characterization of this hot and dense matter is 
a major goal of present-day high-energy physics research. Recent 
studies have emphasized the use of anisotropic flow measurements 
to study the transport properties of this matter [1–9]. A current fo-
cus is centered on delineating the role of initial-state fluctuations, 
as well as reducing their influence on the uncertainties associated 
with the extraction of the temperature dependent specific shear 
viscosity (i.e. the ratio of shear viscosity to entropy density η

s (T)) 
of the QGP produced in these collisions [4–14].

The vn coefficients used to characterize anisotropic flow, are 
normally obtained from a Fourier expansion of the azimuthal angle 
(φ) distribution of the particles produced orthogonal to the beam 
direction [15,16]:

dN

dφ
∝ 1 + 2

∞∑

n=1

vn cos n(φ − �n), (1)

where �n represents the nth order event plane, i.e., 〈einφ〉 =
vnein�n and the brackets indicate averaging over particles and 
events. The coefficient v1 is commonly termed directed flow, v2 is 
the elliptic flow, v3 is the triangular flow etc. For flow dominated 
distributions, the vn coefficients are related to the Fourier coeffi-
cients vnn used to characterize two-particle correlations in relative 
azimuthal angle �φ = φa − φb for particle pairs a,b [17]:

dNpairs

d�φ
∝ 1 + 2

∞∑

n=1

vnn cos(n�φ). (2)

However, so-called non-flow (NF) correlations can also contribute 
to the two-particle correlations [17–21]:

vnn(pT
a,pT

b) = vn(pT
a)vn(pT

b) + δNF, (3)
where δNF includes possible contributions from resonance decays, 
Bose–Einstein correlations, jets, and global momentum conserva-
tion (GMC).

In the absence of fluctuations, the directed flow v1 develops 
along the direction of the impact parameter [22] and is an odd 
function, vodd

1 (η) = −vodd
1 (−η), of pseudorapidity. However, initial-

state fluctuations, acting in concert with hydrodynamic-like expan-
sion, gives an additional rapidity-even, veven

1 (η) = veven
1 (−η), com-

ponent [19,23] resulting in the total:

v1(η) = veven
1 (η) + vodd

1 (η). (4)

The magnitude of vodd
1 (η) can be made negligible via a symmetric 

pseudorapidity selection, to give a straightforward measurement of 
veven

1 (η).
The rapidity-even v1 is proportional to the fluctuations-driven 

dipole asymmetry ε1 of the system [19,23,24]; veven
1 ∝ ε1, where 

ε1 ≡ 〈|r3eiφ |〉/ 〈r3
〉

and averaging is taken over the initial energy 
density after re-centering the coordinate system, i.e., 

〈|reiφ |〉 = 0. 
Hydrodynamical model calculations [20] indicate that the magni-
tude of veven

1 is sensitive to η/s, albeit with less sensitivity than for 
the higher order harmonics, n ≥ 2. It has not been experimentally 
established whether this sensitivity depends on the temperature T, 
baryon chemical potential μB or both. Similarly it has not been 
established whether this sensitivity could reflect the influence of 
a possible critical end point (CEP) in the phase diagram for nu-
clear matter [25]. Therefore, differential veven

1 measurements that 
span a broad range of 

√
sN N (T and μB ), could potentially provide 

(i) unique supplemental constraints to discern between different 
initial-state models, (ii) aid precision extraction of η/s and study 
its possible dependence on T and μB, and (iii) give insight on the 
CEP. It is noteworthy that the paucity of veven

1 measurements at 
RHIC energies precludes their current use as constraints.

The present work employs two-particle correlation functions to 
extract v11 = 〈cos�φ〉 values as a function of pT

a, pT
b and cen-

trality for a broad selection of beam energies. In turn the GMC 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. v11 vs. pb
T for several selections of pa

T for 0–5% central Au+Au collisions at √sN N = 200 GeV. The curve shows the result of the simultaneous fit with Eq. (7). The fit 
resulted in the value χ2 = 1.1 per degree of freedom (see text).
ansatz [18,26] is used in conjunction with the two-component 
fitting procedure outlined in Refs. [20,21] and discussed be-
low, to extract veven

1 as a function of pT and centrality for each 
value of 

√
sN N . The measurements indicate the characteristic 

pT-dependent directed flow patterns associated with rapidity-even 
dipolar flow [19,23,24], as well as striking centrality and 

√
sN N

dependencies which could serve as constraints for initial- and 
final-state model inputs.

The data reported in this analysis are from Au+Au collisions 
spanning the full range of energies, 

√
sN N = 7.7–200 GeV, in beam 

energy scan I (BES-I), collected with the STAR detector using a 
minimum bias trigger. The collision vertices were reconstructed us-
ing charged-particle tracks measured in the Time Projection Cham-
ber (TPC) [27]. The TPC covers the full azimuth and has a pseudo-
rapidity range of |η| < 1.0. Events were selected to have a ver-
tex position about the nominal center of the TPC (in the beam 
direction) of ±30 cm at 

√
sN N = 200 GeV, ±40 cm at 

√
sN N =

62, 39, 27, 19.6 and 14.5 GeV, ±50 cm at 
√

sN N = 11.5 GeV and 
±70 cm at 

√
sN N = 7.7 GeV, and to be within a radius of 1–2 cm 

with respect to the beam axis. Note that the distribution of the 
vertex positions broadens (in the beam direction) as the beam en-
ergy is lowered.

The centrality of each collision was determined by measur-
ing event-by-event multiplicity and interpreting the measurement 
with a tuned Monte Carlo Glauber calculation [28,29]. Analyzed 
tracks were required to have a distance of closest approach to 
the primary vertex to be less than 3 cm, and to have at least 
15 TPC space points used in their reconstruction. Furthermore, the 
ratio of the number of fit points to the maximum possible num-
ber of TPC space points was required to be larger than 0.52 to 
remove split tracks. The pT of tracks was limited to the range 
0.2 < pT < 4 GeV/c.

The correlation function technique [17] was used to generate 
the two-particle �φ correlations,

Cr(�φ,�η) = (dN/d�φ)same

(dN/d�φ)mixed
, (5)

where �η = ηa − ηb is the pseudorapidity separation between the 
particle pairs a,b, (dN/d�φ)same represents the normalized az-
imuthal distribution of particle pairs from the same event and 
(dN/d�φ)mixed represents the normalized azimuthal distribution 
for particle pairs in which each member is selected from different 
events but with a similar classification for the vertex, and central-
ity. The pseudorapidity requirement |�η| > 0.7 was also imposed 
on track pairs to minimize possible non-flow contributions asso-
ciated with the short-range correlations from resonance decays, 
Bose–Einstein correlations and jets.

The two-particle Fourier coefficients vnn are obtained from the 
correlation function as:
vnn =
∑

�φ Cr(�φ) cos(n�φ)
∑

�φ Cr(�φ)
, (6)

where the �φ bin width was chosen to optimize statistical sig-
nificance. The vnn values were then used to extract veven

1 via a 
simultaneous fit of v11 as a function of pT

b for several selections 
of pT

a with Eq. (3),

v11(pT
a,pT

b) = veven
1 (pT

a)veven
1 (pT

b) − KpT
apT

b. (7)

Here, K ∝ 1/(〈Nch〉〈p2
T〉) takes into account the non-flow corre-

lations induced by global momentum conservation [20,21]; 〈Nch〉
is the mean multiplicity and 〈p2

T〉 is proportional to the variance of 
the transverse momentum over the full phase space. The charged 
particle multiplicity measured in the TPC acceptance is used as a 
proxy for 〈Nch〉. For a given centrality selection, the left hand side 
of Eq. (7) represents a N-by-M v11 matrix (i.e., N values for pT

b

for each of the M pT
a selections) which we fit with the right hand 

side of Eq. (7) using N + 1 parameters: N values of veven
1 (pT) and 

one additional parameter K, the coefficient of momentum conser-
vation [30]. Fig. 1 illustrates the efficacy of the fitting procedure 
for 0–5% central Au+Au collisions at 

√
sN N = 200 GeV. The solid 

curve (obtained with Eq. (7)) in each panel illustrates the effective-
ness of the simultaneous fits, as well as the constraining power of 
the data. That is, v11(pT

b) evolves from purely negative to negative 
and positive values as the selection range for pT

a is increased.
The veven

1 extractions, were carried out for several centrality in-
tervals at each beam energy, depending on the available statistics. 
The associated systematic uncertainties were estimated from vari-
ations in the extracted values after (i) varying all of the analysis 
cuts by a chosen range about the standard values, (ii) crosschecks 
to determine the uncertainty associated with the expectation that 
〈pTveven

1 (pT)〉 ∼ 0 and (iii) varying the number of data points used 
in the fits. The resulting relative uncertainties, which range from 
∼ 2% to ∼ 10%, were added in quadrature to assign an overall sys-
tematic uncertainty for each measurement. The overall uncertainty 
for each measurement ranges from ∼ 4% at 

√
sN N = 200 GeV and 

grows to ∼ 20% at 
√

sN N = 7.7 GeV.
The resulting extracted values of veven

1 (pT) for 0–10% central 
Au+Au collisions are shown for the full span of BES-I energies in 
Fig. 2. These values indicate the characteristic pattern of a change 
from negative veven

1 (pT) at low pT, to positive veven
1 (pT) for pT �

1 GeV/c, with a crossing point that only very slowly shifts with √
sN N . This predicted pattern for rapidity-even dipolar flow [19,23]

is also indicated by the solid line in panel (a), which shows the re-
sult of a hydrodynamic model calculation [20]. It stems from the 
requirement that the net transverse momentum of the system is 
zero, i.e., 〈pTveven

1 (pT)〉 = 0, which implies that the hydrodynamic 
flow direction of low-pT particles is opposite to those for high-pT
particles. Crosschecks made with a large sample of the data, con-
firmed that 〈pTveven(pT)〉 ∼ 0, within systematic uncertainties. The 
1
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Fig. 2. Extracted values of veven
1 vs. pT for 0–10% central Au+Au collisions for several values of √sN N as indicated; the veven

1 values are obtained via fits with Eq. (7). The 
curve in panel (a) shows the result from a viscous hydrodynamically based predictions [20]. The shaded bands indicate the systematic uncertainties.

Fig. 3. (a) Centrality dependence of veven
1 for 0.4 < pT < 0.7 GeV/c for Au+Au collisions at √sN N = 200, 39, and 19.6 GeV; (b) K vs. 〈Nch〉−1 for the veven

1 values shown in (a). 
The 〈Nch〉 values correspond to the centrality intervals indicated in panel (a). The veven

1 and K values are obtained via fits with Eq. (7) (see text). The indicated lines show 
linear fits to the data; the shaded bands represent the systematic uncertainties.
crossing point is also expected to shift with 
√

sN N since the 〈pT〉
and 〈pT

2〉 values change with 
√

sN N [30]. For these data, there is 
little, if any, shift due to the weak dependence of the 〈pT〉 on 

√
sN N

for the indicated centrality selection. It is noteworthy that the low 
statistical significance of the data for 

√
sN N < 19.6 GeV, precluded 

similar centrality dependent plots for these beam energies.
The centrality dependencies of the pT-weighted |veven

1 | and K
are shown in Figs. 3 (a) and (b) for several 

√
sN N values as indi-

cated, and for 0.4 < pT < 0.7 GeV/c; this pT range was selected to 
minimize the associated statistical uncertainties and a possible in-
fluence from a change in the crossing point with 

√
sN N . For each 

value of 
√

sN N , Fig. 3(b) indicates a linear dependence of K on 
〈Nch〉−1 with slopes that decrease with increasing 

√
sN N . This is 

to be expected since K ∝ 1/(〈Nch〉〈pT
2〉) and the values for 〈pT

2〉
increase with 

√
sN N for most of the centrality range. The increase 

in the magnitude of |veven
1 | as collisions become more peripheral 

(Fig. 3(a)), is expected since veven
1 is driven by fluctuations which 

become more important for smaller systems, i.e., for more periph-
eral collisions. 

Fig. 3(a) also hints at both a sizable decrease in the magnitude 
of |veven

1 | and a possible weakening of its centrality dependence, as 
the beam energy is reduced. These patterns and the ones shown 
in Fig. 2 cannot be explained solely by the small change in the 
Glauber model eccentricity values at a given centrality which result 
Fig. 4. Comparison of the √
sN N dependence of veven

1 and v3 for 0.4 < pT <

0.7 GeV/c in 0–10% central Au+Au collisions. The veven
1 results are reflected about 

zero (and shifted horizontally) to facilitate a comparison of the magnitudes. The 
shaded bands indicate the systematic uncertainties.

from a change in the beam energy. Thus, they provide a new set 
of supplemental constraints for the extraction of η

s (T).
The constraining power of veven

1 is further illustrated in Fig. 4
where a comparison of the excitation functions for veven

1 and v3
is shown for 0.4 < pT < 0.7 GeV/c; the veven

1 data are reflected 
about zero to facilitate a comparison of the magnitudes. The v3
data, which are obtained from the present analysis, are in good 
agreement with the data reported in Ref. [31] for the same cen-
trality and pT cuts. The comparison indicates strikingly similar 
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magnitudes and trends for |veven
1 | and v3, suggesting a much larger 

viscous attenuation of v3. Note that while ε1 and ε3 are both 
fluctuations-driven, ε3 ∼ 2ε1 for 0–10% central Au+Au collisions 
[23,32] over the 

√
sN N range of interest. A similar pattern was 

observed for comparisons made at higher pT, albeit with lower sta-
tistical significance. These excitation functions are expected to pro-
vide important experimental input to ongoing theoretical attempts 
to pin down initial state models and make precision extractions of 
the specific shear viscosity.

In summary, we have employed two-particle correlation func-
tions to carry out new measurements of the pT and centrality 
dependence of the anisotropic flow coefficient veven

1 in Au+Au 
collisions spanning the beam energy range 

√
sN N = 7.7–200 GeV. 

The results show the expected patterns for momentum conserva-
tion and the characteristic pattern of an evolution from negative 
veven

1 (pT) for pT � 1 GeV/c, to positive veven
1 (pT) for pT � 1 GeV/c. 

That is, the trends expected when initial-state geometric fluctua-
tions act in concert with hydrodynamic-like expansion to generate 
rapidity-even dipolar flow. The measured dependencies on 

√
sN N , 

centrality and pT, as well as the similarity in magnitude and trend 
of the excitation functions for veven

1 and v3, constitute a new set 
of experimental constraints. These new constraints could prove in-
valuable to future theoretical attempts to discern between different 
initial-state models, as well as for precision extraction of the tem-
perature dependence of the specific shear viscosity.
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