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Abstract. In this paper, we study the MUltiple SIgnal Classification (MUSIC)

algorithm often used to image small targets when multiple measurement vectors are

available. We show that this algorithm may be used when the imaging problem can

be cast as a linear system that admits a special factorization. We discuss several

active array imaging configurations where this factorization is exact, as well as other

configurations where the factorization only holds approximately and, hence, the results

provided by MUSIC deteriorate. We give special attention to the most general setting

where an active array with an arbitrary number of transmitters and receivers uses

signals of multiple frequencies to image the targets. This setting provides all the

possible diversity of information that can be obtained from the illuminations. We give

a theorem that shows that MUSIC is robust with respect to additive noise provided

that the targets are well separated. The theorem also shows the relevance of using

appropriate sets of controlled parameters, such as excitations, to form the images

with MUSIC robustly. We present numerical experiments that support our theoretical

results.
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1. Introduction

Imaging is an inverse problem in which we seek to reconstruct a medium’s characteristics,

such as the reflectivity, by recording its response to one or more known excitations. The

output is usually an image giving an estimate of an unknown characteristic in a bounded

domain, the imaging window of interest. Although this problem is in all generality non-

linear, it is often adequately formulated as a set of ℵ linear systems of the form

Alqρ = blq , q = 1, . . . ,ℵ. (1)

Here, ρ ∈ CK is the unknown vector we seek to estimate and blq ∈ CN are different

measurement vectors. The essential point in (1) is that the model matrix Alq depends

on a parameter vector lq = [l1q, l2q, . . . , lKq]
ᵀ that contains the experimental constants

ljq, such as the excitations, that we control and change to form the images. To

simplify the notation, we will denote the different excitations by the scalar q and write

Aqρ = bq instead, unless it is necessary to explicitly state that the model matrix, and

the measurements, depend on a vector lq. We are interested in underdetermined linear

systems, so N < K, where the unknown vector is M-sparse with M � K.

To solve (1) we consider the MUltiple SIgnal Classification (MUSIC) algorithm

which has been used successfully in signal processing [31, 18, 16, 21, 22] and imaging

[9, 10, 30, 1, 12, 15]. In this work we make the fundamental observation that the MUSIC

algorithm gives the exact support of the solution of (1), in the noise free case, when the

matrices Aq admit the following factorization

Aq = A Λq, with Λq diagonal, (2)

and A independent of the parameter vector lq. In this case, (1) can also be formulated

as the Multiple Measurement Vector (MMV) problem

Aρq = bq, with ρq = Λq ρ. (3)

Here, the multiple unknown vectors ρq share the same support T = supp(ρ), with

|T | = M . The MMV formulation is usually written as a matrix-matrix equation

AX = B , (4)

where the unknown is now the matrix X ∈ CK×ℵ whose columns are the vectors

ρq = Λqρ, and B ∈ CN×ℵ is the data or observation matrix whose columns are the

vectors bq.

The main advantage of the MMV formulation is that we can immediately infer

that the data vectors bq are linear combinations of the same M-columns of A, those

that belong to T . The implication is that, in the absence of noise, the columns of A
indexed by T span R(B), the range or column subspace of B. Thus, MUSIC finds the

support T as the zero set of the orthogonal projections of the columns of A onto the

left nullspace of the matrix B, which is the orthogonal complement of R(B) and can be

easily found with an SVD. Moreover, the support can be recovered exactly with MUSIC

under the assumption that all (M+1)-sets of columns of A are linearly independent.
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The support T can be recovered approximately if the data is noisy. In Theorem 1 we

quantify an acceptable level of noise for such approximate recovery.

The MMV problem can also be solved using an optimization perspective as

described in [8, 23, 33, 34]. The main idea is to seek the solution matrix X with

the minimal (2, 1)-norm, which consists in minimizing the `1 norm of the vector formed

by the `2 norms of the rows of the unknown matrix X . This guarantees the common

support of the solution’s columns. We do not pursue this approach here and refer the

reader to [6] for an application of this formalism to imaging strong scattering scenes as

well as to [2] where an MMV formulation for synthetic aperture imaging of frequency

and direction dependent reflectivity was introduced and analyzed.

In this paper, we present several configurations in array imaging that can be cast

under the general framework discussed here, such as single- and multiple-frequency array

imaging using single- or multiple-receivers. All these problems can be formulated as (1)

in which multiple measurement vectors are recorded. We show that some array imaging

problems admit the factorization (2) and, thus, the support of the unknown can be

recovered exactly by MUSIC. However, there are other configurations such as multiple

frequency imaging with several transmitters and receivers for which this factorization is

not feasible. Still, we show that factorization (2) approximately holds under the paraxial

approximation, i.e., when the image region is far from the array and is small.

We also consider the non-linear phase retrieval problem, which according to

[26, 24, 25] can be reduced to a linear system of the form (1). This requires

intensity data corresponding to multiple coherent illuminations which are transformed

to interferometric data using the polarization identity. We consider multiple frequency

intensity data collected at a single receiver due to multiple coherent illuminations.

To summarize, the main contributions of this work are as follows. We show (i)

in Section 3 that the support of the solution of (1) can be recovered exactly with

MUSIC when the (noiseless) data can be structured so that the model matrix admits a

factorization in terms of a universal model matrix multiplied by a diagonal matrix that

depends on the excitation as in (2). Then the noisy case is considered in Theorem 1 that

gives conditions under which MUSIC is robust with respect to additive noise. We also

show (ii) that when we have full data diversity, that is, we have data from multiple

sources, multiple receivers and multiple frequencies, then there is a data structure

that is associated with a model matrix that admits an approximate factorization (2)

in particular imaging regimes such as the paraxial regime that is considered in Section

4. As a consequence, MUSIC can be used with full interaction over multiple frequencies

to image in this regime as illustrated in Section 5.

The paper is organized as follows. In Section 2 we present the active array imaging

problem and its linear algebra formulation. In Section 3 we discuss in an abstract linear

algebra framework the conditions under which MUSIC provides the exact solution to the

MMV problem (3) and analyze its performance for noisy data. In Section 4 we consider

some common configurations used in active array imaging and discuss the adequate

data-structures to be used in imaging with MUSIC. In particular, Section 4 contains



Robust multifrequency imaging with MUSIC 4

a description of our approximate MUSIC for multiple frequency imaging with several

transmitters and receivers. In Section 5, we explore with numerical simulations the

performance of multifrequency MUSIC with intensity-only data. Section 6 contains our

conclusions.

2. The active array imaging problem

The goal of array imaging is to form images inside a region of interest called the image

window IW. In active array imaging the array probes the medium by sending signals

and recording the echoes. Probing of the medium can be done with many different

types of arrays that differ in their number of transmitters and receivers, their geometric

layouts, or the type of signals they use for illumination. Moreover, they may use single

frequency signals sent from different positions, or multifrequency signals sent from one

or more positions. Obviously, the problem of active array imaging also depends on the

receivers. They can record the intensities and phases of the signals that arrive to the

array or only their intensities.

IW

~xr

λ

~xs
L

a

~zj

h

Figure 1. General setup of an array imaging problem. The transducer at ~xs emits a

probing signal and the reflected signals are recorded at ~xr. The scatterers located at

~zj , j = 1, . . . ,M are at distance L from the array and inside the image window IW.

In Figure 1, an array of size a probes the medium by sending and recording signals

from positions ~xs and ~xr, respectively, s, r = 1, 2, . . . , N . It can send signals of one or

several frequencies ωl, l = 1, . . . , S. The goal is to reconstruct a sparse scene consisting

of M point-scatterers at a distance L from the array. The positions of the scatterers in

the IW are denoted by ~zj, and their reflectivities by αj ∈ C, j = 1, . . . ,M . The ambient

medium between the array and the scatterers can be homogeneous or inhomogeneous. In

this paper, we consider that wave propagation is described by the scalar wave equation.

Nevertheless, the methodology described here directly extends to other types of vector

waves such as electromagnetic waves.

In order to form the images we discretize the IW using a uniform grid of points ~yk,
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k = 1, . . . , K, and we introduce the true reflectivity vector‡

ρ = [ρ1, . . . , ρK ]ᵀ ∈ CK ,

such that

ρk =

{
αj, if ‖~zj − ~yk‖∞ < grid-size, for some j = 1, . . . ,M,

0, otherwise

We will not assume that the scatterers lie on the grid, so {~z1, . . . , ~zM} 6⊂ {~y1, . . . , ~yK}
in general. To write the data received on the array in a compact form, we define the

Green’s function vector

g(~y;ω) = [G(~x1, ~y;ω), G(~x2, ~y;ω), . . . , G(~xN , ~y;ω)]ᵀ (5)

at location ~y in the IW, where

G(~x, ~y;ω) =
exp(iκ|~x− ~y|)

4π|~x− ~y|
, κ =

ω

c0

, (6)

denotes the free-space Green’s function of the background medium. It characterizes the

propagation of a signal of angular frequency ω from point ~y to point ~x, so (5) represents

the signal received at the array due to a point source of frequency ω at ~y.

We assume that the scatterers are far apart or that the reflectivities are small, so

multiple scattering between them is negligible. In this case, the Born approximation

holds and, thus, the response at ~xr due to a pulse of angular frequency ωl, amplitude

one and phase zero sent from ~xs, and reflected by the M scatterers, is given by

P (~xr, ~xs;ωl) =
M∑
j=1

αjG(~xr, ~zj;ωl)G(~zj, ~xs;ωl)

=
K∑
k=1

ρkG(~xr, ~yk;ωl)G(~yk, ~xs;ωl).

(7)

When all the sources and the receivers in the array are used for imaging, the data are

arranged in the so called single frequency response matrix

P (ωl) = [P (~xr, ~xs;ωl)]
N
r,s=1 =

K∑
k=1

ρkg(~yk;ωl) g
ᵀ(~yk;ωl). (8)

If only one frequency is used to probe the medium, all the information available for

imaging is contained in (8). The most general configuration is the one of multiple

sources, multiple receivers and multiple frequencies. In this case, the array response

forms a tensor with elements P (~xr, ~xs;ωl), r, s = 1, . . . , N , and l = 1, . . . , S.

‡ Superscript ᵀ here, and throughout the paper, means transpose. It looks similar to T that we use as

the index set of the support of a vector. As such, T appears as a subscript.
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3. The MUSIC algorithm

MUSIC is a subspace imaging algorithm based on the decomposition of the

measurements into two orthogonal domains. The dominant one is due to the signals

and is referred to as the signal subspace, while the other is attributed to the noise and

is referred to as the noise subspace. Both are easily found through the SVD of the data

matrix

B =


b11 b12 . . . b1ℵ

b21 b22 . . . b2ℵ

. . . . . . . . . . . .

bN1 bN2 . . . bNℵ

 =

 ↑ ↑ ↑
b1 b2 . . . bℵ
↓ ↓ ↓

 ∈ CN×ℵ, (9)

whose column vectors bq are obtained from a family of linear systems (1).

Our first result is Proposition 1, which is the key observation that MUSIC provides

the exact support of the unknown vector ρ when the matrices Aq in the original problem

(1) admit a factorization of the form (2). Physically, this factorization means that the

data vectors bq are just different weighted sums of the same columns of the matrix A
in (2).

In this framework, we also obtain Theorem 1 which gives conditions for MUSIC to

be robust with respect to noise in the data.

Proposition 1 Assume ρ ∈ CK is M-sparse with M < N , and assume that (1) can be

rewritten in the form

AΛq ρ = bq , q = 1, . . . ,ℵ, (10)

with the matrix

A =

 ↑ ↑ ↑
a1 a2 . . . aK
↓ ↓ ↓

 ∈ CN×K (11)

independent of the parameter vector lq = [l1q, l2q, . . . , lKq]
ᵀ and thus fixed, and

Λq =


l1q 0

0 l2q
. . .

0 lKq

 ∈ CK×K (12)

diagonal. Then, under the assumptions that all sets of M + 1 columns of A are linearly

independent, and the rank of the data matrix B is M , MUSIC provides the exact support

of ρ if the data are noiseless.

Remark 1 The assumption that rank of the data matrix B is M means that the

excitations are sufficiently diverse, which is usually the case in practice.
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Proof: All data vectors bq, q = 1, . . . ,ℵ, are linear combinations of the same M

columns ak of A, indexed by T = supp(ρ), with M = |T |. Thus, the columns of A
indexed by T span a vector subspace of CN called the signal subspace. Furthermore,

if all sets of M + 1 columns of A are linearly independent, no other column of A is

contained in the signal subspace in the noiseless case. Hence, the unknown support T

is uniquely determined by the zero set of the projections of the columns of A onto the

noise subspace, which is the orthogonal complement to the signal subspace. �
The objective of the MUSIC algorithm is to find the support T of an unknown sparse

vector ρ = [ρ1, ρ2, . . . , ρK ]ᵀ, when a number of nonzero entries M is much smaller than

its length K. With a sufficiently diverse number of experiments ℵ ≥ M we create a

data matrix B, and we compute its SVD

B = UΣV ∗ =
K∑
j=1

σjujv
∗
j . (13)

If the data are noiseless there are exactly M nonzero singular values σ1 > σ2 > . . . >

σM > 0 with corresponding left singular vectors uj, j = 1, . . . ,M , that span the signal

subspace. The remaining singular values σj, j = M + 1, . . . , K, are zero, and the

corresponding left singular vectors span the noise subspace. Since the set of columns

of A indexed by T = supp(ρ) also spans the signal subspace, the sought support T

corresponds to the zero set of the orthogonal projections of the columns vectors ak onto

the noise subspace. Thus, it follows that the support of ρ can be found among the peaks

of the imaging functional

IMUSIC
k =

‖ak‖`2∑N
j=M+1 |〈ak,uj〉|2

, k = 1, . . . , K. (14)

In (14), the numerator is a normalization factor. If all sets of M + 1 columns of A are

linearly independent, the peaks of (14) exactly coincide with the support of ρ.

Once the support of ρ is recovered, the problem (10) typically becomes

overdetermined (N > M) and the nonzero values of ρ can be easily found by solving

the linear system restricted to the given support with an `2 or an `1 method [7].

Consider imaging with noisy data. It follows from Weyl’s theorem [36] that when

noise is added to the data so B → Bδ with ‖Bδ − B‖`2 < δ, then no singular value

σδ moves more than the norm of the perturbation, i.e., ‖σδ − σ‖`2 < δ. It follows

that (i) perturbed and unperturbed singular values are paired, and (ii) the spectral

gap between the zero and the nonzero singular values remains large if the smallest

nonzero unperturbed singular value σM � δ. Hence, if the noise is not too large, we can

determine the number of scatterers because it equals the number of significant singular

values of the data matrix Bδ.

The signal and noise subspaces are also perturbed in the presence of noise. It can be

shown that the perturbed and unperturbed subspaces also remain close, with changes

proportional to the reciprocal of the spectral gap β = σδM − σM+1 [35]. We refer to

[22], and references therein, for a recent discussion about how much noise the MUSIC

algorithm can tolerate. Next, we give a result that states that MUSIC is robust provided
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certain orthogonality conditions hold. For this theorem we introduce the parameter

matrix

L =


l11 l12 l1ℵ
l21 l22 l2ℵ
...

...
...

lK1 lK2 lKℵ

 ∈ CK×ℵ , (15)

with which problem (10) can be rewritten as AXL = B, with X =Diag(ρ) (see (16)

below). In order to formulate our next result we introduce the following notation.

Definition 1 Suppose T = supp(ρ). We denote by XT be the sub-matrix of X where

we keep the rows that correspond to T . Similarly, we denote by yT the sub-vector of any

vector y where we keep the entries that correspond to T .

Theorem 1 Assume ρ ∈ CK is M-sparse with T = supp(ρ). Let X =Diag(ρ) be a

diagonal matrix that solves

AXL = B, (16)

with B and L given in (9) and (15), respectively. Let

γ = σmin(LT ) (17)

be the minimal singular value of LT . Suppose the perturbed matrix Bδ satisfies

σmax(Bδ −B) 6 δ, and that the columns of A are normalized to one, that is ‖ai‖`2 = 1

∀i.
If for some ε < 1/3 the columns from the support of ρ satisfy the following

approximate orthogonality condition

∀i, j ∈ T, i 6= j, |〈ai,aj〉| <
ε

M − 1
, (18)

and δ is small so that

2δ < µ γ (1− 2ε), with µ = min
ρi 6=0
{|ρi|}, (19)

then we can find a decomposition Bδ = Qδ + Qδ
0 such that orthogonal projections onto

the subspaces R(Qδ) and R(B) are close, so

‖PR(Qδ) − PR(B)‖`2 6
δ

µ γ (1− 2ε)
. (20)

Theorem 1 is, to the best of our knowledge, new. It gives conditions under which

the perturbed and unperturbed subspaces remain close so MUSIC is robust with respect

to additive noise. Note that Theorem 1 allows the columns of A to be almost collinear as

long as the columns that are in the support of the solution are approximately orthogonal,

so (18) holds. The fact that the error in the orthogonal projections (20) is inversely

proportional to the minimal singular value γ (see (17)) can be interpreted as a quality

control on the different sets of parameters lq used to collect the data. It says that

MUSIC is not robust if these sets are chosen so that the data are not diverse enough
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so γ is small. In order for MUSIC to be robust the parameter vectors lq that form the

columns of L should be as orthogonal as possible. The proof of Theorem 1 is given in

Appendix A.

We also refer to [20] for a subspace-augmented MUSIC algorithm that improves

the performance of MUSIC under unfavorable conditions such as the lack of diversity

of the data matrix.

4. Data structures in active array imaging

We consider here the active array imaging problem introduced in Section 2. Our aim is

to examine for which configurations the imaging problem can be written in the MMV

form (3) so that MUSIC can be used. It is known that MUSIC could be used successfully

in two cases: either for fixed frequency data (S = 1) and multiple transducers, or for

a single transducer and multiple frequencies. We show that a factorization as in (2)

can be obtained for these two cases in Subsections 4.1 and 4.2, respectively. We discuss

these two cases in detail, because they are the building blocks of our construction for

multiple frequencies and many transducers. We show in Subsection 4.3 how to construct

an approximate MUSIC for multiple frequencies and many transducers. To the best of

our knowledge, this is the first, albeit approximate, MUSIC algorithm for multiple

frequencies and many transducers. The approximation holds in the paraxial regime,

when the array and the IW are small and the distance between them is large. We

investigate numerically the quality of this approximation in Subsection 5.2, where we

chose to use intensity-only measurements. This the most challenging type of data, that

we consider in this work. In Subsection 4.3.1 (and Appendix B) we explain how this

type of data can be recast as a linear system of the form (3).

4.1. Single frequency signals and multiple receivers

Fix a frequency ω. We denote by f(ω) = [f1(ω), . . . , fN(ω)]ᵀ the illumination vector

whose entries are the signals sent from the corresponding sources ~xs, s = 1, . . . , N , on

the array. The most basic illumination vectors are ei, with all entries equal to zero except

the ith entry which is 1. We will often use them in this work. Given an illumination

f(ω), our imaging data are

bf(ω) = P (ω)f(ω), (21)

where P (ω) is the single frequency response matrix (8). These are the echoes recorded

at the N receivers located at ~xr, r = 1, . . . , N , on the array.

Let

g
(k)
f(ω) = g(~yk;ω)ᵀf(ω), k = 1, . . . , K,

be the fields at the grid positions ~yk in the IW, with g(~yk;ω) given by (5). Then, the

data depend on the vector l = [g
(1)
f(ω), g

(2)
f(ω), . . . , g

(K)
f(ω)]

ᵀ. With a slight abuse of notation

from Section 3, we have indicated in (21) that the control vectors are the illuminations



Robust multifrequency imaging with MUSIC 10

f(ω) instead of the vectors l. The latter depend on the Green’s function vectors g(~y;ω)

that are fixed by the physical layout, and on the illumination vector f(ω) that we

control.

Lemma 1 Suppose the data bf(ω), corresponding to an illumination f(ω) is obtained

by

bf(ω) = P (ω)f(ω)

Then

bf(ω) = Af(ω)ρ ; Af(ω) = AΛf(ω) (22)

where

A =

 ↑ ↑ ↑
g(~y1;ω) g(~y2;ω) . . . g(~yK ;ω)

↓ ↓ ↓

 ∈ CN×K , (23)

and

Λf(ω) =


g

(1)
f(ω) 0

0 g
(2)
f(ω)

. . .

0 g
(k)
f(ω)

 ∈ CK×K . (24)

The proof of this Lemma immediately follows from the explicit formula

Af(ω) =

 ↑ ↑ ↑
g

(1)
f(ω)g(~y1;ω) g

(2)
f(ω)g(~y2;ω) . . . g

(K)
f(ω)g(~yK ;ω)

↓ ↓ ↓

 ∈ CN×K .

A few remarks are now in order. The Lemma guarantees that for any family bfq(ω),

q = 1, . . . ,ℵ, of illuminations the decomposition

Afq(ω)ρ = bfq(ω) (25)

holds. Hence, it follows from the discussion in Section 3 that the support of ρ can

be found with MUSIC exactly if enough data vectors bq = bfq(ω) are available. How

to choose illuminations for these data vectors? A natural choice is to use the ℵ = N

illuminations f q(ω) = eq. Then, the data-matrix is B = P (ω), the single frequency

response matrix (8). This is a typical choice in practice.

Secondly, in the noisy case the robustness of MUSIC depends on γ defined in (17)

as the minimum singular vector of the sub-matrix of L with rows corresponding to the

support of ρ. Let us investigate further this optimality for the single-frequency regime.

Here, the illumination matrix is

L =

 ↑ ↑ ↑
Aᵀf 1(ω) Aᵀf 2(ω) . . . Aᵀfℵ(ω)

↓ ↓ ↓

 ∈ CK×ℵ .
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The ith column Aᵀf i(ω) = [g
(1)
fi(ω), g

(2)
fi(ω), . . . , g

(K)
fi(ω)]

ᵀ of matrix L contains the fields at all

grid positions ~yk, k = 1, . . . , K, due to illumination f i(ω). If we use the ℵ = N

illuminations f q(ω) = f(ω)eq, then L = f(ω)Aᵀ. Thus, assuming A satisfies the

conditions of Theorem 1, we get

γ = σmin(LT ) ≥ (1− 2ε)|f(ω)| .

4.2. Multiple frequencies and one transducer: the one-dimensional problem

Consider a one-dimensional multifrequency imaging problem where we use only one

transducer that works as source and receiver. Denote by yn = L+(n−1)∆y the distance

between the transducer and the scatterer of reflectivity ρn, n = 1, . . . , K. Then,

K∑
n=1

ei2κmynρn = bm , m = 1, . . . , S, (26)

relates the positions and reflectivities of the scatterers to the measurements bm at

frequencies ωm = κm c0, where c0 is the wave speed in a homogeneous medium. In

this problem, we seek to recover the unknown vector ρ = [ρ1, ρ2, . . . , ρK ] from the

multifrequency data vector b = [b1, b2, . . . , bS] recorded at the single transducer.

Problem (26) is well known in the signal processing literature as the estimation

of signal parameters from a noisy exponential data sequence [32]. It can be solved

efficiently with several methods, we refer for example to the SVD-prony method [19]

and the matrix pencil method [17]. We explain in this section how MUSIC can be used

to find the solution for this one-dimensional imaging problem. In the next section we

built upon this methodology to propose a multiple frequency MUSIC algorithm for the

array imaging problem with many sources and many receivers.

We certainly can write (26) in matrix form Aρ = b, but we will only have one

data vector b ∈ CS. The next assumption allows to elegantly formulate our data

in the MMV format (3) using a Prony-type argument [28] (see for example [15]).

Namely, suppose that the measurements are obtained at equally spaced wavenumbers

κm = κ1 + (m− 1)∆κ, m = 1, 2, . . . , S, and let S = 2ℵ− 1. Then, fill up the ℵ×ℵ data

matrix B as the square Toeplitz matrix

B =


b1 b2 . . . bℵ
b2 b3 . . . bℵ+1

. . . . . . . . . . . .

bℵ bℵ+1 . . . b2ℵ−1

 . (27)

It is straightforward to verify the following claim.

Lemma 2 If bq is the qth column of the matrix B in (27), then

AΛq ρ = bq, q = 1, 2, . . . ,ℵ,
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where

A =


ei2κ1y1 ei2κ1y2 . . . ei2κ1yK

ei2κ2y1 ei2κ2y2 . . . ei2κ2yK

. . . . . . . . . . . .

ei2κℵy1 ei2κℵy2 . . . ei2κℵyK

 , (28)

and the K ×K diagonal matrices

Λq = (Λ1)q , with Λ1 :=


ei2∆κy1 0 . . . 0 0

0 ei2∆κy2 . . . 0 0

. . . . . . . . . ei2∆κyK−1 0

0 0 . . . 0 ei2∆κyK

 .

As promised, we have obtained the desired structure of our data matrix B for

MUSIC to work. The key here was to stack the data in the cyclic fashion (27). Such

stacking worked because wavenumbers were equally spaced. Clearly, B does not have

to be square. As always, it needs to have at least M linearly independent columns for

MUSIC to recover M scatterers.

4.3. Multiple frequency signals, multiple sources and receivers

Finally, we consider the most general case in which multiple frequency signals are

used to probe the medium using several transducers that emit and record them. This

case considers all the possible diversity of information that can be obtained from the

illuminations. We discuss first the situation in which the receivers measure amplitudes

and phases, and then the case in which they can only measure amplitudes squared.

The idea to stack data in the cyclic fashion (27) motivated us to think whether

there is a way to organize multiple frequency data that guarantees our decomposition

AΛq ρ = bq, q = 1, 2, . . . ,ℵ. (29)

We were not able to find an exact factorization (29) in general, and therefore, at present,

MUSIC cannot be used to identify the support of ρ exactly. We claim, however, that

factorization (29) is approximately valid in the paraxial regime λ� a� L if we choose

B = P c := [P (ω1)ᵀ,P (ω2)ᵀ, . . . ,P (ωS)ᵀ]ᵀ , (30)

where P (ωk) are the single frequency ωk response matrices (8). In this case ℵ = N ,

where N is the number of transducers. Indeed, denote κc = ωc/c0 as the central

wavenumber, ~yj = (yj, L+ ηj), and ~xs = (xs, 0). Then, we have:

Lemma 3 Suppose we are in the paraxial regime, and the IW is small compared to L.

If bq is the qth column of the matrix B in (30), then

Aqρ = bq, with Aq ≈ AΛq, q = 1, . . . ,ℵ, (31)
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where A and Λq are given by

A =



↑ ↑ ↑
h(~y1;ω1) h(~y2;ω1) . . . h(~yK ;ω1)

↓ ↓ ↓
↑ ↑ ↑

h(~y1;ω2) h(~y2;ω2) . . . h(~yK ;ω2)

↓ ↓ ↓
...

...
...

↑ ↑ ↑
h(~y1;ωS) h(~y2;ωS) . . . h(~yK ;ωS)

↓ ↓ ↓



(32)

with h(~yj;ωl) = eiκl(L+ηj)g(~yj;ωl), and

Λq =


eiκc(xq−y1)2/2L 0

0 eiκc(xq−y2)2/2L

. . .

0 eiκc(xq−yK)2/2L

 . (33)

The approximation is of order O
(
Ba2

c0L
+ ωca4

c0L3

)
.

Proof: The proof of Lemma 3 is straightforward. We only outline the idea here.

Assume we use an illumination eq, then the jth column of Aq is

↑
G(~yj, ~xq;ω1)g(~yj;ω1)

↓
↑

G(~yj, ~xq;ω2)g(~yj;ω2)

↓
...

↑
G(~yj, ~xq;ωS)g(~yj;ωS)

↓



, (34)

where G(~yj, ~xq;ωl) is (6). Thus, if L is much larger than a and the IW is small

G(~yj, ~xq;ωl) =
eiκl|~xs−~yj |

4π|~xq − ~yj|
≈ 1

4πL
eiκl|~xq−~yj | = eiκl(L+ηj)ei(ϕ+ϕ̃) ,

with ϕ = κc(xq − yj)2/2L and ϕ̃ = O
(
Ba2

c0L
+ ωca4

c0L3

)
. �

Similar considerations imply that the factorization (29) works if illuminations

satisfy f(ωl) = f(ωl)f . This means that the array uses the same illumination pattern

f for all the frequencies. We do not discuss this case for simplicity of presentation.
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It is natural to ask whether other approaches may be more fruitful. After all, we

obtain only approximate MUSIC so perhaps one could have used instead an alternative

data structure and obtain an exact MUSIC. In our previous work [25] we tried to use

B = P d =


P (ω1) . . . 0 0

0 P (ω2) . . . 0

. . . . . . . . . . . .

0 0 0 P (ωS)

 (35)

to image with MUSIC. We showed that imaging with such data structure is equivalent

to imaging with each frequency separately and summing up the resulting images

incoherently. Therefore there is no significant improvement over imaging with a single

frequency if one uses (35) for imaging with MUSIC [25].

4.3.1. Imaging without phases In its classical form, the phase retrieval problem consists

in finding a function from the amplitude of its Fourier transform. In imaging, it consists

in finding a vector ρ that is compatible with a set of quadratic equations for measured

amplitudes. This occurs in imaging regimes where only intensity data is recorded and,

thus, most of the information encoded in the phases is lost. Phase retrieval algorithms

have been developed over a long time to deal with this problem [14, 13]. They are

flexible and effective but depend on prior information about the image and can give

uneven results. An alternative convex approach that guarantees exact recovery has been

considered in [4, 3], but its computational cost is extremely high when the problem

is large. When, however, we control the illuminations we may recover the missing

phase information using a completely different strategy. This strategy was introduced

in [26, 24, 25]. We explain here some of its aspects that are relevant to this work.

Assume that only the intensities can be recorded at the array. In Appendix B we

show that, for a fixed receiver location, we could recover single frequency cross correlated

data from multiple intensity-only measurements. On the other hand, as noted in [26], the

support of the reflectivity ρ can be recovered exactly by using the MUSIC algorithm on

the single frequency interferometric matrixM (ω) = P ∗(ω)P (ω) if the data are recorded

at several receivers. For multiple frequencies, multiple sources and multiple receivers

one can use the data structure

B = M c :=


P (ω1)∗P (ω1)

P (ω2)∗P (ω1)
...

P (ωS)∗P (ω1)

 (36)

for pairs of frequencies (ωl, ω1), l = 1, . . . , S, to image coherently using MUSIC. Indeed,

the matrix M c in (36) and the matrix P c in (30) have the same column space and,

therefore, MUSIC can form the images using the SVD of M c and the column vectors

of matrix (32) as imaging vectors. We denote this data structure with the superscript

c to point out that we have stacked the one frequency matrices P (ωl) and the two

frequencies matrices P (ωl)
∗P (ω1) in a column.
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5. Numerical Simulations

We present here numerical simulations that illustrate the performance of MUSIC. The

data are simulated using the model in (8) with G(~x, ~y;ω) as in (6). We first illustrate

the relevance of Theorem 1 for active array imaging in the presence of noise, and then

we discuss multifrequency imaging with phaseless data as it was explained in Subsection

4.3.1.

5.1. Imaging results in the framework of Theorem 1

To study the robustness of MUSIC with respect to additive noise we consider in this

section active array imaging with multiple sources and multiple receivers, but a single

frequency; see subsection 4.1. Given a set of illuminations {f q(ω)}q=1,...,ℵ, the imaging

problem is to determine the location and reflectivities of the scatterers from a data

matrix B whose column vectors are given by (21), including phases. This problem

admits an exact factorization of the form (2) and, therefore, MUSIC can be used for

recovering the support of the solution. Furthermore, MUSIC provides the exact support

of the reflectivity under the assumptions of Proposition 1.

According to Theorem 1 the effectiveness of the illuminations can be characterized

by γ defined in (17). This parameter quantifies how well the support of the reflectivity

is illuminated and, thus, it affects the robustness of the MUSIC results. Specifically,

from (20) the distance between the orthogonal projections onto the perturbed and

unperturbed signal subspaces is inversely proportional to γ and, thus, a good set of

illuminations is one for which γ is large.

It was observed in [5, 6] that imaging using the top singular vectors of the data

matrix as illuminations lowers the impact of the noise in the data. These illumination

vectors are optimal in the sense that they result in array data with maximal power, which

is proportional to the associated singular values. They can be computed systematically

from the singular value decomposition of the array response matrix (8) if it is available,

or with an iterative time reversal process, which is a very efficient acquisition method

for obtaining the essential part of the array response matrix as discussed in [27].

It is easy to understand Theorem 1 when the scatterers are well separated, meaning

that the Green’s function vectors g(~y;ω) evaluated on the support of the solution are

approximately orthogonal. Indeed, in this limit, the top singular vectors correspond

one-to-one to the scatterers. Then, it follows that γ is optimal and close to ‖g(~zj;ω)‖2

evaluated at the weakest scatterer.

We plot in Figure 2 the images obtained with MUSIC using different set of

illuminations. The value of γ that corresponds to each set of illuminations is displayed

above the images. The images are obtained in a homogeneous medium using an active

array of N = 81 transducers that transmit and receive the signals. The frequency used is

600 THz, corresponding to a wavelength λ of 500 nm (blue light). The array size is 100λ

and the distance from the array to the IW is L = 100λ as well. The IW is a rectangle of

size 5λ× 50λ discretized with a regular mesh of 50× 50 rectangular elements. Different
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sets of illuminations are used to gather the data matrix B. In all the figures, the true

locations of the scatterers are indicated with white crosses, and the length scales are

measured in units of λ0. In this numerical experiment, the scatterers are on the grid.

We add to the data mean zero uncorrelated noise corresponding to SNR = 0 dB.

The left most image of Figure 2 shows the results obtained with MUSIC using

optimal illuminations. We observe that MUSIC is very robust with respect to additive

noise. The other three images are obtained with random illuminations: from top to

bottom and from left to right the value of γ decreases. As expected from Theorem 1 ,

the results are only good for sets of illuminations with large γ. Observe that MUSIC

misses several scatterers in the two images in the bottom row of Figure 2 corresponding

to small γ values.

γ = 0.22 γ = 0.16
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Figure 2. Imaging results using MUSIC with multiple sources and multiple receivers,

but a single frequency. SNR = 0dB corresponding to additive noise. The scatterers are

on the grid. The top left image is obtained using the optimal illuminations, for which

γ = 0.22. The other three images are obtained using 12 randomly chosen illuminations,

for which the values of γ vary.

5.2. Multifrequency phaseless imaging

Next, we consider imaging with multiple sources, multiple receivers, and multiple

frequencies, but phaseless data; see subsection 4.3.1. This case does not admit an

exact factorization of the form (2) and, therefore, MUSIC does not provide the exact

support of the solution. Still, it can be used to estimate the support in the paraxial

regime, when the scatterers are very far from the array and the IW is small. Next, we



Robust multifrequency imaging with MUSIC 17

examine numerically the deterioration of the resolution provided by MUSIC as the IW

gets closer to the array.

We consider a central frequency f0 = 600THz, typically used in optics,

corresponding to a central wavelength λ0 = 500nm. We use S = 12 equally spaced

frequencies covering a total bandwidth of 30THz. All considered wavelengths are in the

visible spectrum of green light. The size of the array is a = 500λ0, and the distance

between the array and the IW is L = 10000λ0. The medium between the array and

the IW is homogeneous. The IW, whose size is 100λ0 × 100λ0, is discretized using a

uniform lattice with mesh size 2λ0× 2λ0. Thus, the unknown image has 51× 51 pixels.

For this imaging system, we expect the cross-range and range resolutions to be of the

order of λ0L/a = 20λ0 and C0/B = λ0f0/B = 20λ0, respectively. In this setup, the

propagation distance L is large, and the array and the IW sizes are small so that the

paraxial approximation holds.

We assume that the phases of the signals received at the array cannot be measured.

Hence, only their intensities are available for imaging. These measurements are collected

at multiple receivers, so we use the methods explained in subsection 4.3.1 to image

interferometrically.
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Figure 3. There is no noise added to the data and the scatterers are on the grid.

The left panel is the image constructed using MUSIC with Md. The right panel is

obtained using MUSIC with M c that couples the data over frequencies.

In Figure 3, the scatterers lie on the grid and no noise is added to the data. Hence,

the data are exact. We observe that imaging with MUSIC using the block-diagonal

matrix M d (left image) gives exact recovery, while MUSIC using the M c matrix (right

image) that couples all the frequencies is less accurate. This is so because, as we

explained in Section 4.3, MUSIC with M c is not exact as it only provides, in the

paraxial regime, approximate locations of the scatterers.

Figure 4 shows the same experiment as Figure 3 but with off-grid scatterers. In

this figure, the scatterers are displaced by half the grid size with respect to the grid

points in both range and cross-range directions. This produces perturbations in the

unknown phases of the signals collected at the array due to modeling errors. We remark

that although the phases are not directly measured they are encoded in the intensity

measurements. We observe in Figure 4 that the image obtained with MUSIC using the

M d data structure (left plot) deteriorates dramatically because the multiple-frequency
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information contained in the data is not processed in a coherent way. On the other

hand, MUSIC with the M c data structure (right plot) is very robust with respect to

the off-grid displacements.
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Figure 4. Same as Figure 3 but with the scatterers off the grid. The scatterers are

displaced by half the grid size in both directions from a grid point.

As noted above, multifrequency MUSIC using the matrix M c is not exact. It only

gives an approximation to the support of the scatterers in the paraxial regime. Thus,

we expect the resolution to improve (resp. deteriorate) as the IW is moved further

(resp. closer) from the array. To examine its accuracy, we consider in Figure 5 imaging

configurations with different ratios a/L. We display from left to right the results for

a/L equal to 1/100, 1/20, 1/4 and 1. For a meaningful comparison, the mesh size in

cross-range is adjusted so that it is always one tenth of the nominal resolution λ0L/a,

i.e., the mesh size in cross-range is λ0L/(10a) in all the images shown in Figure 5. In

order words, the number of pixels in the images is kept constant by changing the sizes

of the IWs according to the relation 5λ0L/a× 5(C0/B). Thus, all the images in Figure

5 have 51 × 51 pixels. As expected, the images in this figure show an almost exact

recovery for small a/L ratios and a worsening of the results as the ratio increases.

6. Conclusions

In this paper we discussed appropriate data structures that allow robust images

with MUSIC, a method that is well adapted to finding sparse solutions of linear

underdetermined systems of equations of the form Alqρ = blq . In this work ρ is the

reflectivity, the image that we want to form, and lq is a parameter vector that can be

varied, such as the illumination profile of the imaging system in space and/or frequency.

Given the data blq , our first main result is the key observation that MUSIC provides

the exact support of the unknown ρ when the matrix Alq admits a factorization of the

form Alq = AΛlq with Λlq diagonal. We also show in Theorem 1 that MUSIC is robust

with respect to noise provided the diversity of the data is high enough. Our second

main contribution is an approximate MUSIC algorithm for multifrequency and multiple

receiver imaging which is obtained under the paraxial approximation. Its robustness is

illustrated with numerical simulations in an optical digital microscopy imaging regime.
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a/L = 0.01 a/L = 0.05
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Figure 5. Imaging results using MUSIC with M c coupling over frequencies. From

left to right and top to bottom the ratio a/L increases and, therefore, the error due

to the paraxial approximation increases so the accuracy of the MUSIC reconstruction

decreases. The scatterers are on the grid.
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Appendix A. Proof of theorem 1

Proof: We claim that

(1− 2 ε)2‖z‖2
`2
6 ‖(A∗z)T‖2

`2
6 (1 + 2 ε)2‖z‖2

`2
(A.1)

if z ∈ R(B) and ε < 1/3. Indeed, suppose that

z =
∑
i∈T

αiai.

Then, defining α as the vector in CK whose components are zero except the ith

components with i ∈ T that are equal to αi, we get∣∣‖z‖2
`2
− ‖α‖2

`2

∣∣ =

∣∣∣∣∣ ∑
i,j∈T,i 6=j

ᾱiαj〈ai,aj〉

∣∣∣∣∣ 6 ε‖α‖2
`2
,

and

(1− ε)‖α‖2
`2
6 ‖z‖2

`2
6 (1 + ε)‖α‖2

`2
.

For any j ∈ T we have

(A∗z)j =
∑
i∈T

αi〈aj,ai〉 ,

and, therefore,

‖(A∗z)T‖2
`2

=
∑
i,j,k∈T

ᾱjαi〈ak,ai〉〈ak,aj〉 .

Hence, ∣∣‖(A∗z)T‖2
`2
− ‖α‖2

`2

∣∣ =

∣∣∣∣∣ ∑
j,k∈T,j 6=k

|αj|2 |〈ak,aj〉|2 +
∑

i,j,k∈T,i 6=j

ᾱjαi〈ak,ai〉〈ak,aj〉

∣∣∣∣∣
6

ε2

M − 1
‖α‖2

`2
+
∑

i,j∈T,i 6=j

|αj|2 + |αi|2

2

(
2ε

M − 1
+
ε2(M − 2)

(M − 1)2

)
6 (2ε+ ε2)‖α‖2

`2
.

Therefore,

(1− 2 ε− ε2)‖α‖2
`2
6 ‖(A∗z)T‖2

`2
6 (1 + ε)2‖α‖2

`2
,

and we obtain

1− 2 ε− ε2

1 + ε
‖z‖2

`2
6 ‖(A∗z)T‖2

`2
6

(1 + ε)2

1− ε
‖z‖2

`2
,

which implies (A.1) if ε < 1/3§.
In order to compute the smallest nonzero singular value of B we observe that

min
z∈R(B),||z||`2=1

z∗BB∗z = min
z∈R(B),||z||`2=1

(A∗z)∗TXTLTL
∗
T X̄T (A∗z)T

> (1− 2ε)2 min
y∈CM ||y||`2=1

y∗XTLTL
∗
T X̄Ty > (1− 2ε)2µ2(γ)2 ,

§ This is an overestimate. It suffices to have ε− ε2 − 4ε3 > 0.
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where we have used that γ is the smallest singular value of L. Since σmax(Bδ−B) 6 δ,

we conclude that Bδ = Qδ +Qδ
0, where Qδ has M nonzero singular values, with smallest

nonzero singular value

σmin(Qδ) > µγ(1− 2ε)− δ ,

and Qδ
0 has largest singular value σmax(Qδ

0) 6 δ. If 2δ < µγ(1−2ε), then we can discard

Qδ
0 by truncation of the singular values smaller than the noise level. We now apply

Wedin Theorem [35] (see Theorem 2 below) to obtain

‖PR(Qδ) − PR(B)‖`2 6
δ

µγ(1− 2ε)
.

�

Theorem 2 (Wedin) Let B = Q+Q0, where Q has the SVD Q = UΣV ᵀ, and consider

the perturbed matrix Bδ = B+E. If there exists a decomposition Bδ = Qδ+Qδ
0, and two

constants α ≥ 0 and β > 0 such that largest singular value σmax(Q0) ≤ α and smallest

singular value σmin(Qδ) ≥ α + β, then the distance between the orthogonal projections

onto the subspaces R(Q) and R(Qδ) is bounded by

‖PR(Qδ) − PR(Q)‖`2 6
δ

β
, (A.2)

where δ = max(‖EV ‖`2 , ‖E∗U‖`2).

Appendix B. The single frequency phase retrieval problem

We consider here the same imaging configuration as in subsection 4.1, where signals

of only one frequency ω are sent from an array of transducers that emit and record

the signals. However, we assume now that only the intensities of the signals can be

measured, so only the amplitudes square of the data vectors bq = Aρq are recorded.

Then, the phase retrieval problem is to find the unknown vector ρ from the family of

quadratic equations

|Aρq|2 = |bq|2 , q = 1, . . . ,ℵ, (B.1)

where | · | is understood component wise.

Appendix B.1. A single receiver

Problem (B.1) is nonlinear and nonconvex and, hence, difficult to solve. In fact, it is in

general NP hard [29]. However, if an appropriate set of illuminations is used, we can

take advantage of the polarization identity

2 Re < u, v > = |u+ v|2 − |u|2 − |v|2

2 Im < u, v > = |u− iv|2 − |u|2 − |v|2 (B.2)

to solve simple linear systems of the form

Aρq = m(r)
q , q = 1, . . . ,ℵ, (B.3)
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for a fixed receiver location xr. The polarization identity allows us to find the inner

product between two complex numbers and, therefore, its phase differences. In (B.3),

m
(r)
q is the vector whose ith component is the correlation b

(r)
q b

(r)
ei between two signals

measured at the receiver ~xr; one corresponding to a general illumination f q(ω) and the

other to an illumination ei whose entries are all zero except the ith entry which is one.

Using the polarization identity (B.2) we can obtain b
(r)
q b

(r)
ei from linear combinations of

the magnitudes squared |b(r)
q |2, |b(r)

ei |2, |b(r)
q + b

(r)
ei |2, and |b(r)

q + ib
(r)
ei |2 [24]. A physical

interpretation of (B.3) is as follows. Send an illumination f q(ω), collect the response at

~xr, time reverse the received signal at ~xr, and send it back to probe the medium again.

Then, m
(r)
q represents the signals recorded at all receivers ~xi, i = 1, . . . , N .

To wrap up, if the phases are not measured but we control the illuminations, the

images can be formed by solving (B.3) using a MUSIC algorithm with several vectors

m
(r)
q obtained in the data acquisition process. In the approach explained here the

receiver is fixed. In the next subsection we explain how to image with the MUSIC

algorithm using intensity data gathered at several receivers.

Appendix B.2. Several receivers

In [26], we propose to image using MUSIC with the frequency interferometric matrix

M (ω) = P ∗(ω)P (ω) which can be obtained from intensity-only measurements if

the illuminations are controlled. The columns of this matrix are the vectors m
(r)
q ,

r = 1, . . . , N , obtained with the illuminations f q = ei, i = 1, . . . , N . Observe that each

entry of the interferometric matrix M (ω) can be written as

mij =
N∑
k=1

bkib̄kj,

where bki = |bki|eiθki denotes the signal (with phase) received at ~xk for illumination

ei. To recover bkib̄kj it suffices to measure the amplitudes |bki|, |bkj| and to find the

phase differences θki − θkj, k = 1, . . . , N . The amplitudes (squared) are recorded using

the illumination vectors ei, i = 1, 2, . . . , N . The phase differences can be recovered as

follows. Since

θki − θkj = (θk1 − θkj)− (θk1 − θki),

it suffices to find the phase differences θk1− θkj for j = 2, . . . , N , which means that only

the phase differences between the first vector b1 and all the other vectors are needed. If

all bk1 6= 0, these phase differences can be found from the polarization identities (B.2).

When the image is sparse, the assumption bk1 6= 0 is not restrictive because of the

uncertainty principle [11].

Since matrices M (ω) and P (ω) have the same column space MUSIC can form

the images using the SVD of M (ω) and the column vectors of matrix (23) as imaging

vectors.
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