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Abstract. In this paper, we study the MUltiple SIgnal Classification (MUSIC)
algorithm often used to image small targets when multiple measurement vectors are
available. We show that this algorithm may be used when the imaging problem can
be cast as a linear system that admits a special factorization. We discuss several
active array imaging configurations where this factorization is exact, as well as other
configurations where the factorization only holds approximately and, hence, the results
provided by MUSIC deteriorate. We give special attention to the most general setting
where an active array with an arbitrary number of transmitters and receivers uses
signals of multiple frequencies to image the targets. This setting provides all the
possible diversity of information that can be obtained from the illuminations. We give
a theorem that shows that MUSIC is robust with respect to additive noise provided
that the targets are well separated. The theorem also shows the relevance of using
appropriate sets of controlled parameters, such as excitations, to form the images
with MUSIC robustly. We present numerical experiments that support our theoretical
results.
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1. Introduction

Imaging is an inverse problem in which we seek to reconstruct a medium’s characteristics,
such as the reflectivity, by recording its response to one or more known excitations. The
output is usually an image giving an estimate of an unknown characteristic in a bounded
domain, the imaging window of interest. Although this problem is in all generality non-
linear, it is often adequately formulated as a set of N linear systems of the form

Ap=b,, q=1,... X (1)

Here, p € C¥ is the unknown vector we seeck to estimate and b, € CY are different
measurement vectors. The essential point in (1) is that the model matrix A;, depends
on a parameter vector I, = [l14,lag, - - ., lxy|T that contains the experimental constants
ljq, such as the excitations, that we control and change to form the images. To
simplify the notation, we will denote the different excitations by the scalar ¢ and write
A,p = b, instead, unless it is necessary to explicitly state that the model matrix, and
the measurements, depend on a vector {,. We are interested in underdetermined linear
systems, so N < K, where the unknown vector is M-sparse with M < K.

To solve (1) we consider the MUItiple SIgnal Classification (MUSIC) algorithm
which has been used successfully in signal processing [31, 18, 16, 21, 22] and imaging
9, 10, 30, 1, 12, 15]. In this work we make the fundamental observation that the MUSIC
algorithm gives the exact support of the solution of (1), in the noise free case, when the
matrices A4, admit the following factorization

A, = A A, with A, diagonal, (2)

and A independent of the parameter vector I,. In this case, (1) can also be formulated
as the Multiple Measurement Vector (MMYV) problem

Ap,=b,, with p, = A,p. (3)

Here, the multiple unknown vectors p, share the same support 7' = supp(p), with
|T| = M. The MMV formulation is usually written as a matrix-matrix equation

AX =B, (4)

where the unknown is now the matrix X € CM® whose columns are the vectors
p, = N¢p, and B € CYM*X is the data or observation matrix whose columns are the
vectors by,.

The main advantage of the MMV formulation is that we can immediately infer
that the data vectors b, are linear combinations of the same M-columns of A, those
that belong to T. The implication is that, in the absence of noise, the columns of A
indexed by T span R(B), the range or column subspace of B. Thus, MUSIC finds the
support T as the zero set of the orthogonal projections of the columns of A onto the
left nullspace of the matrix B, which is the orthogonal complement of R(B) and can be
easily found with an SVD. Moreover, the support can be recovered exactly with MUSIC
under the assumption that all (M+1)-sets of columns of A are linearly independent.
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The support T' can be recovered approximately if the data is noisy. In Theorem 1 we
quantify an acceptable level of noise for such approximate recovery.

The MMV problem can also be solved using an optimization perspective as
described in [8, 23, 33, 34]. The main idea is to seek the solution matrix X with
the minimal (2, 1)-norm, which consists in minimizing the ¢; norm of the vector formed
by the ¢ norms of the rows of the unknown matrix X. This guarantees the common
support of the solution’s columns. We do not pursue this approach here and refer the
reader to [6] for an application of this formalism to imaging strong scattering scenes as
well as to [2] where an MMV formulation for synthetic aperture imaging of frequency
and direction dependent reflectivity was introduced and analyzed.

In this paper, we present several configurations in array imaging that can be cast
under the general framework discussed here, such as single- and multiple-frequency array
imaging using single- or multiple-receivers. All these problems can be formulated as (1)
in which multiple measurement vectors are recorded. We show that some array imaging
problems admit the factorization (2) and, thus, the support of the unknown can be
recovered exactly by MUSIC. However, there are other configurations such as multiple
frequency imaging with several transmitters and receivers for which this factorization is
not feasible. Still, we show that factorization (2) approximately holds under the paraxial
approximation, z.e., when the image region is far from the array and is small.

We also consider the non-linear phase retrieval problem, which according to
[26, 24, 25] can be reduced to a linear system of the form (1). This requires
intensity data corresponding to multiple coherent illuminations which are transformed
to interferometric data using the polarization identity. We consider multiple frequency
intensity data collected at a single receiver due to multiple coherent illuminations.

To summarize, the main contributions of this work are as follows. We show (i)
in Section 3 that the support of the solution of (1) can be recovered exactly with
MUSIC when the (noiseless) data can be structured so that the model matrix admits a
factorization in terms of a universal model matrix multiplied by a diagonal matrix that
depends on the excitation as in (2). Then the noisy case is considered in Theorem 1 that
gives conditions under which MUSIC is robust with respect to additive noise. We also
show (ii) that when we have full data diversity, that is, we have data from multiple
sources, multiple receivers and multiple frequencies, then there is a data structure
that is associated with a model matrix that admits an approximate factorization (2)
in particular imaging regimes such as the paraxial regime that is considered in Section
4. As a consequence, MUSIC can be used with full interaction over multiple frequencies
to image in this regime as illustrated in Section 5.

The paper is organized as follows. In Section 2 we present the active array imaging
problem and its linear algebra formulation. In Section 3 we discuss in an abstract linear
algebra framework the conditions under which MUSIC provides the exact solution to the
MMV problem (3) and analyze its performance for noisy data. In Section 4 we consider
some common configurations used in active array imaging and discuss the adequate
data-structures to be used in imaging with MUSIC. In particular, Section 4 contains
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a description of our approximate MUSIC for multiple frequency imaging with several
transmitters and receivers. In Section 5, we explore with numerical simulations the
performance of multifrequency MUSIC with intensity-only data. Section 6 contains our
conclusions.

2. The active array imaging problem

The goal of array imaging is to form images inside a region of interest called the image
window IW. In active array imaging the array probes the medium by sending signals
and recording the echoes. Probing of the medium can be done with many different
types of arrays that differ in their number of transmitters and receivers, their geometric
layouts, or the type of signals they use for illumination. Moreover, they may use single
frequency signals sent from different positions, or multifrequency signals sent from one
or more positions. Obviously, the problem of active array imaging also depends on the
receivers. They can record the intensities and phases of the signals that arrive to the
array or only their intensities.

Figure 1. General setup of an array imaging problem. The transducer at &, emits a
probing signal and the reflected signals are recorded at &,. The scatterers located at
Z;,j=1,..., M are at distance L from the array and inside the image window IW.

In Figure 1, an array of size a probes the medium by sending and recording signals
from positions &, and &,, respectively, s, = 1,2,..., N. It can send signals of one or
several frequencies w;, [ = 1,...,5. The goal is to reconstruct a sparse scene consisting
of M point-scatterers at a distance L from the array. The positions of the scatterers in
the IW are denoted by Z;, and their reflectivities by o; € C, j = 1,..., M. The ambient
medium between the array and the scatterers can be homogeneous or inhomogeneous. In
this paper, we consider that wave propagation is described by the scalar wave equation.
Nevertheless, the methodology described here directly extends to other types of vector
waves such as electromagnetic waves.

In order to form the images we discretize the IW using a uniform grid of points ¥,
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k=1,..., K, and we introduce the true reflectivity vectort

P:[p1>---aPK]T€CK>

such that
aj, if ||Z; — Yl < grid-size, for some j =1,..., M,
Pr = :
0,  otherwise
We will not assume that the scatterers lie on the grid, so {Z1,..., 2y} € {Yy, .-, Yk}

in general. To write the data received on the array in a compact form, we define the
Green’s function vector

g(,ga w) = [G(:ﬁh gy w)7 G(j\?’ Z_jv w)7 ey G(-’EN, :'j7 w)]T (5)
at location gy in the IW, where
explinl — ) w

G(F, §;w) = i 6

denotes the free-space Green’s function of the background medium. It characterizes the
propagation of a signal of angular frequency w from point g to point &, so (5) represents
the signal received at the array due to a point source of frequency w at y.

We assume that the scatterers are far apart or that the reflectivities are small, so
multiple scattering between them is negligible. In this case, the Born approximation
holds and, thus, the response at @&, due to a pulse of angular frequency w;, amplitude
one and phase zero sent from @&,, and reflected by the M scatterers, is given by

M
P(&,, &w) =) 0;G(E, Zj;w) G(Z), &y w)
o (7)
:Z prG(&r, Yy 1) G (Y, Ty )
k=1
When all the sources and the receivers in the array are used for imaging, the data are
arranged in the so called single frequency response matrix

K
P(w) = [P(&, & w)]Noey = > prg ([l w1) g7 (F; w)- (8)
k=1

If only one frequency is used to probe the medium, all the information available for
imaging is contained in (8). The most general configuration is the one of multiple
sources, multiple receivers and multiple frequencies. In this case, the array response
forms a tensor with elements P(&,,Zs;w;), r,s=1,...,N,and [ =1,...,5.

1 Superscript T here, and throughout the paper, means transpose. It looks similar to 7" that we use as
the index set of the support of a vector. As such, T appears as a subscript.
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3. The MUSIC algorithm

MUSIC is a subspace imaging algorithm based on the decomposition of the
measurements into two orthogonal domains. The dominant one is due to the signals
and is referred to as the signal subspace, while the other is attributed to the noise and
is referred to as the noise subspace. Both are easily found through the SVD of the data
matrix

211 212 ZIN T T T
B=| " 7 7 =1 b by ... by | eC, 9)

whose column vectors b, are obtained from a family of linear systems (1).

Our first result is Proposition 1, which is the key observation that MUSIC provides
the exact support of the unknown vector p when the matrices A, in the original problem
(1) admit a factorization of the form (2). Physically, this factorization means that the
data vectors b, are just different weighted sums of the same columns of the matrix A
in (2).

In this framework, we also obtain Theorem 1 which gives conditions for MUSIC to
be robust with respect to noise in the data.

Proposition 1 Assume p € CE is M-sparse with M < N, and assume that (1) can be
rewritten in the form

AANgp=0b,, qg=1,...,), (10)
with the matriz
T 71 T
A: a; as, ... ag S CNXK (1].)
o \J
independent of the parameter vector l, = [lig, log, - . ., kg7 and thus fived, and
lig O
0 I
Ay = o € CExK (12)
0 kg

diagonal. Then, under the assumptions that all sets of M + 1 columns of A are linearly
independent, and the rank of the data matriz B is M, MUSIC provides the exact support
of p if the data are noiseless.

Remark 1 The assumption that rank of the data matriz B is M means that the
excitations are sufficiently diverse, which is usually the case in practice.
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Proof: All data vectors b,, ¢ = 1,...,R, are linear combinations of the same M
columns ay, of A, indexed by T" = supp(p), with M = |T|. Thus, the columns of A
indexed by T span a vector subspace of CV called the signal subspace. Furthermore,
if all sets of M + 1 columns of A are linearly independent, no other column of A is
contained in the signal subspace in the noiseless case. Hence, the unknown support T
is uniquely determined by the zero set of the projections of the columns of A onto the
noise subspace, which is the orthogonal complement to the signal subspace. O

The objective of the MUSIC algorithm is to find the support 7" of an unknown sparse
vector p = [p1, p2, ..., pk|T, when a number of nonzero entries M is much smaller than
its length K. With a sufficiently diverse number of experiments X > M we create a
data matrix B, and we compute its SVD

K
B=USV* =Y ou,v;. (13)

j=1
If the data are noiseless there are exactly M nonzero singular values o1 > g9 > ... >
oy > 0 with corresponding left singular vectors w;, j = 1,..., M, that span the signal
subspace. The remaining singular values o;, 7 = M + 1,..., K, are zero, and the

corresponding left singular vectors span the noise subspace. Since the set of columns
of A indexed by T' = supp(p) also spans the signal subspace, the sought support T
corresponds to the zero set of the orthogonal projections of the columns vectors a; onto
the noise subspace. Thus, it follows that the support of p can be found among the peaks
of the imaging functional

phosic _ ___ llaxle Jk=1,... K. (14)
Zj:M-i—l [(ak, u;)[?
In (14), the numerator is a normalization factor. If all sets of M + 1 columns of A are
linearly independent, the peaks of (14) exactly coincide with the support of p.

Once the support of p is recovered, the problem (10) typically becomes
overdetermined (N > M) and the nonzero values of p can be easily found by solving
the linear system restricted to the given support with an ¢, or an ¢; method [7].

Consider imaging with noisy data. It follows from Weyl’s theorem [36] that when
noise is added to the data so B — B° with ||B° — Bl|,, < J, then no singular value
o® moves more than the norm of the perturbation, i.e., ||[0° — olls, < 0. It follows
that (i) perturbed and unperturbed singular values are paired, and (ii) the spectral
gap between the zero and the nonzero singular values remains large if the smallest
nonzero unperturbed singular value o), > . Hence, if the noise is not too large, we can
determine the number of scatterers because it equals the number of significant singular
values of the data matrix B?.

The signal and noise subspaces are also perturbed in the presence of noise. It can be
shown that the perturbed and unperturbed subspaces also remain close, with changes
proportional to the reciprocal of the spectral gap 8 = 09, — ou41 [35]. We refer to
[22], and references therein, for a recent discussion about how much noise the MUSIC
algorithm can tolerate. Next, we give a result that states that MUSIC is robust provided
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certain orthogonality conditions hold. For this theorem we introduce the parameter
matrix

lll l12 llN
o lao Do Foxen
lKl ZKQ ZKN

with which problem (10) can be rewritten as AXL = B, with X =Diag(p) (see (16)
below). In order to formulate our next result we introduce the following notation.

Definition 1 Suppose T = supp(p). We denote by Xp be the sub-matriz of X where
we keep the rows that correspond to T'. Similarly, we denote by y, the sub-vector of any
vector y where we keep the entries that correspond to T

Theorem 1 Assume p € CX is M-sparse with T = supp(p). Let X =Diag(p) be a
diagonal matriz that solves

AXL = B, (16)
with B and L given in (9) and (15), respectively. Let
Y = Omin(L7) (17)

be the minimal singular value of Lp. Suppose the perturbed matriz B° satisfies
Omax(B° — B) < 8, and that the columns of A are normalized to one, that is ||a;||s, = 1
Vi.

If for some ¢ < 1/3 the columns from the support of p satisfy the following

approximate orthogonality condition
€

T i a. 7 1
VZ7]€ 7Z7é.77|<a’ a’]>|<M_1 (8)
and ¢ is small so that
20 <py(1=2¢), with p=min{|p}, (19)
Pi

then we can find a decomposition B® = Q° + QY such that orthogonal projections onto
the subspaces R(Q°) and R(B) are close, so

0
py (1—2e)

Theorem 1 is, to the best of our knowledge, new. It gives conditions under which

1Pris) = Preslle, < (20)

the perturbed and unperturbed subspaces remain close so MUSIC is robust with respect
to additive noise. Note that Theorem 1 allows the columns of A to be almost collinear as
long as the columns that are in the support of the solution are approximately orthogonal,
so (18) holds. The fact that the error in the orthogonal projections (20) is inversely
proportional to the minimal singular value « (see (17)) can be interpreted as a quality
control on the different sets of parameters I, used to collect the data. It says that
MUSIC is not robust if these sets are chosen so that the data are not diverse enough
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so v is small. In order for MUSIC to be robust the parameter vectors I, that form the
columns of L should be as orthogonal as possible. The proof of Theorem 1 is given in
Appendix A.

We also refer to [20] for a subspace-augmented MUSIC algorithm that improves
the performance of MUSIC under unfavorable conditions such as the lack of diversity
of the data matrix.

4. Data structures in active array imaging

We consider here the active array imaging problem introduced in Section 2. Our aim is
to examine for which configurations the imaging problem can be written in the MMV
form (3) so that MUSIC can be used. It is known that MUSIC could be used successfully
in two cases: either for fixed frequency data (S = 1) and multiple transducers, or for
a single transducer and multiple frequencies. We show that a factorization as in (2)
can be obtained for these two cases in Subsections 4.1 and 4.2, respectively. We discuss
these two cases in detail, because they are the building blocks of our construction for
multiple frequencies and many transducers. We show in Subsection 4.3 how to construct
an approximate MUSIC for multiple frequencies and many transducers. To the best of
our knowledge, this is the first, albeit approximate, MUSIC algorithm for multiple
frequencies and many transducers. The approximation holds in the paraxial regime,
when the array and the IW are small and the distance between them is large. We
investigate numerically the quality of this approximation in Subsection 5.2, where we
chose to use intensity-only measurements. This the most challenging type of data, that
we consider in this work. In Subsection 4.3.1 (and Appendix B) we explain how this
type of data can be recast as a linear system of the form (3).

4.1. Single frequency signals and multiple receivers

Fix a frequency w. We denote by f(w) = [fi(w),..., fn(w)]T the illumination vector
whose entries are the signals sent from the corresponding sources #&,, s =1,..., N, on
the array. The most basic illumination vectors are e;, with all entries equal to zero except
the ith entry which is 1. We will often use them in this work. Given an illumination
f(w), our imaging data are

bsw) = P(w)f(w), (21)
where P(w) is the single frequency response matrix (8). These are the echoes recorded

at the N receivers located at &,, r = 1,..., N, on the array.
Let

91(”]80 =9(Gw) flw), k=1,... K,
be the fields at the grid positions g, in the IW, with g(4,;w) given by (5). Then, the

data depend on the vector I = [gj(cl(‘)d), g;Z(L), ceey g;l(i))]T. With a slight abuse of notation
from Section 3, we have indicated in (21) that the control vectors are the illuminations
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f(w) instead of the vectors I. The latter depend on the Green’s function vectors g(y; w)
that are fixed by the physical layout, and on the illumination vector f(w) that we
control.

Lemma 1 Suppose the data by, corresponding to an illumination f(w) is obtained

by
bsw) = Pw)f(w)
Then
biw) = AP 5 Asw) = Al (22)
where
T T T
A= g(@iw) g(Uyw) ... g(Fxiw) | €CVE, (23)
\ 3
and
1)
5w Y
0 g(2)
Af(w) — f(w) . c CKXK. (24)
(k)
0 Ffw)
The proof of this Lemma immediately follows from the explicit formula
T T T
1 — 2 — K _
Apwy = | 9ylya@nw) gi,9@iw) .. gl g@iw) | €CVE
\: } }
A few remarks are now in order. The Lemma guarantees that for any family by, .,
qg=1,...,N, of illuminations the decomposition

Af )P = by, w) (25)

holds. Hence, it follows from the discussion in Section 3 that the support of p can
be found with MUSIC exactly if enough data vectors b, = by, () are available. How
to choose illuminations for these data vectors? A natural choice is to use the X = N
illuminations f, (w) = e,. Then, the data-matrix is B = P(w), the single frequency
response matrix (8). This is a typical choice in practice.

Secondly, in the noisy case the robustness of MUSIC depends on + defined in (17)
as the minimum singular vector of the sub-matrix of L with rows corresponding to the
support of p. Let us investigate further this optimality for the single-frequency regime.
Here, the illumination matrix is

) T T
L=| ATfw) ATfo(w) ... ATfyw) | e ci,
4 I 1
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i) Ifi@) 0 Ifiw)
grid positions 4, £k = 1,..., K, due to illumination f,(w). If we use the X = N

1
illuminations f (w) = f(w)e,, then L = f(w)AT. Thus, assuming A satisfies the
conditions of Theorem 1, we get

The ith column ATf,(w) = [g(}) @ g |7 of matrix L contains the fields at all

3 = GuinlLr) > (1 29) ()]

4.2. Multiple frequencies and one transducer: the one-dimensional problem

Consider a one-dimensional multifrequency imaging problem where we use only one
transducer that works as source and receiver. Denote by y, = L+ (n—1)Ay the distance

between the transducer and the scatterer of reflectivity p,, n =1,..., K. Then,
K
Ze”“mynpn:bm, m=1,...,5, (26)
n=1

relates the positions and reflectivities of the scatterers to the measurements b, at
frequencies w,, = k., ¢y, where ¢y is the wave speed in a homogeneous medium. In
this problem, we seek to recover the unknown vector p = [p1,p2,...,px| from the
multifrequency data vector b = [by, by, ..., bs| recorded at the single transducer.

Problem (26) is well known in the signal processing literature as the estimation
of signal parameters from a noisy exponential data sequence [32]. It can be solved
efficiently with several methods, we refer for example to the SVD-prony method [19]
and the matrix pencil method [17]. We explain in this section how MUSIC can be used
to find the solution for this one-dimensional imaging problem. In the next section we
built upon this methodology to propose a multiple frequency MUSIC algorithm for the
array imaging problem with many sources and many receivers.

We certainly can write (26) in matrix form Ap = b, but we will only have one
data vector b € C°. The next assumption allows to elegantly formulate our data
in the MMV format (3) using a Prony-type argument [28] (see for example [15]).
Namely, suppose that the measurements are obtained at equally spaced wavenumbers
km =K1+ (m—1)Ar, m=1,2,...,5, and let § = 2R — 1. Then, fill up the X x X data
matrix B as the square Toeplitz matrix

by by ... by
by bapr oo b

It is straightforward to verify the following claim.

Lemma 2 If b, is the qth column of the matriz B in (27), then

AN p=b,q=1,2,... X
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where
ei2rmyr  pi281y2  pI2RIYK
6i2nzy1 6i2/{2y2 o 6i2n2yK
A= , (28)
ei2rRyL  pi28RY2  QI2RRUK

and the K x K diagonal matrices

i2Aky1 0 0 0

, 0 gi2Bryz 0 0

A= (A7, with = g a1
0 0 0 o

As promised, we have obtained the desired structure of our data matrix B for
MUSIC to work. The key here was to stack the data in the cyclic fashion (27). Such
stacking worked because wavenumbers were equally spaced. Clearly, B does not have
to be square. As always, it needs to have at least M linearly independent columns for
MUSIC to recover M scatterers.

4.3. Multiple frequency signals, multiple sources and receivers

Finally, we consider the most general case in which multiple frequency signals are
used to probe the medium using several transducers that emit and record them. This
case considers all the possible diversity of information that can be obtained from the
illuminations. We discuss first the situation in which the receivers measure amplitudes
and phases, and then the case in which they can only measure amplitudes squared.
The idea to stack data in the cyclic fashion (27) motivated us to think whether
there is a way to organize multiple frequency data that guarantees our decomposition

AN, p=b,, ¢=1,2,... /N (29)

We were not able to find an exact factorization (29) in general, and therefore, at present,
MUSIC cannot be used to identify the support of p exactly. We claim, however, that
factorization (29) is approximately valid in the paraxial regime A\ < a < L if we choose

B =P°:=[P(w)", P(w)T,..., P(ws)T]", (30)

where P(wy) are the single frequency wy response matrices (8). In this case X = N,
where N is the number of transducers. Indeed, denote k. = w./co as the central
wavenumber, §; = (y;, L + ), and &, = (x,,0). Then, we have:

Lemma 3 Suppose we are in the paraxial regime, and the IW is small compared to L.
If b, is the qth column of the matriz B in (30), then

A,p=b,, with Ay~ AN, g=1,... R, (31)
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where A and A, are given by

T T )
h(g;wi) h(¥ywi) ... h(Yg;wr)
1 { {
T T )
o h(y;w2) h(Pg;w) .. h(§x;wa)
A= ) I I (32)
T T )
h(y;ws) h(Pg;ws) .. h(fg;ws)
! ! 4
with h(g;;w) = e g(g:w), and
ei’fC(mq_y1)2/2L 0
0 cire(Tq~Y,)?/2L
Ag= . : (33)

0 emc(ar:q—yK)?/zL

The approximation is of order O (fo‘i + Z’Og§> .

Proof: The proof of Lemma 3 is straightforward. We only outline the idea here.
Assume we use an illumination e,, then the jth column of A, is

/]\
Gy, Ty w1)g (Y5 w1)
1
/[\
G(:l_jj? CEq;w?)g(ngWZ)
. , 3
T
G(Y;, Tgsws)9 (Y5 ws)
1
where G(¥;, &,;wi) is (6). Thus, if L is much larger than a and the IW is small
eifﬂ‘ﬁs—yj‘ 1 . - — . . ~
(i & w) — ~ | =Y ;I _ iri(LAn)) oi(p+p)
(yquvwl) 47T‘~’ffq—jljj‘ 47TL6 J € € )
with ¢ = ke(zq —y;)?/2L and@zO(i‘lz +2’OCZ§> l

Similar considerations imply that the factorization (29) works if illuminations
satisfy f(w;) = f(w;)f. This means that the array uses the same illumination pattern
f for all the frequencies. We do not discuss this case for simplicity of presentation.
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It is natural to ask whether other approaches may be more fruitful. After all, we
obtain only approximate MUSIC so perhaps one could have used instead an alternative
data structure and obtain an exact MUSIC. In our previous work [25] we tried to use

Pw) ... 0 0
B pi_ 0 P(wy) ... 0 (35)
0 0 0 P(ws)

to image with MUSIC. We showed that imaging with such data structure is equivalent
to imaging with each frequency separately and summing up the resulting images
incoherently. Therefore there is no significant improvement over imaging with a single
frequency if one uses (35) for imaging with MUSIC [25].

4.3.1. Imaging without phases In its classical form, the phase retrieval problem consists
in finding a function from the amplitude of its Fourier transform. In imaging, it consists
in finding a vector p that is compatible with a set of quadratic equations for measured
amplitudes. This occurs in imaging regimes where only intensity data is recorded and,
thus, most of the information encoded in the phases is lost. Phase retrieval algorithms
have been developed over a long time to deal with this problem [14, 13]. They are
flexible and effective but depend on prior information about the image and can give
uneven results. An alternative convex approach that guarantees exact recovery has been
considered in [4, 3], but its computational cost is extremely high when the problem
is large. When, however, we control the illuminations we may recover the missing
phase information using a completely different strategy. This strategy was introduced
in [26, 24, 25]. We explain here some of its aspects that are relevant to this work.

Assume that only the intensities can be recorded at the array. In Appendix B we
show that, for a fixed receiver location, we could recover single frequency cross correlated
data from multiple intensity-only measurements. On the other hand, as noted in [26], the
support of the reflectivity p can be recovered exactly by using the MUSIC algorithm on
the single frequency interferometric matrix M (w) = P*(w)P(w) if the data are recorded
at several receivers. For multiple frequencies, multiple sources and multiple receivers
one can use the data structure

B =M= : (36)

P(ws)"P(w)

for pairs of frequencies (w;,wy), I =1,..., 95, to image coherently using MUSIC. Indeed,
the matrix M“ in (36) and the matrix P in (30) have the same column space and,
therefore, MUSIC can form the images using the SVD of M*“ and the column vectors
of matrix (32) as imaging vectors. We denote this data structure with the superscript
¢ to point out that we have stacked the one frequency matrices P(w;) and the two
frequencies matrices P(w;)*P(w;) in a column.
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5. Numerical Simulations

We present here numerical simulations that illustrate the performance of MUSIC. The
data are simulated using the model in (8) with G(&, y;w) as in (6). We first illustrate
the relevance of Theorem 1 for active array imaging in the presence of noise, and then
we discuss multifrequency imaging with phaseless data as it was explained in Subsection
4.3.1.

5.1. Imaging results in the framework of Theorem 1

To study the robustness of MUSIC with respect to additive noise we consider in this
section active array imaging with multiple sources and multiple receivers, but a single
frequency; see subsection 4.1. Given a set of illuminations {f q(w)}q:L,_.’N, the imaging
problem is to determine the location and reflectivities of the scatterers from a data
matrix B whose column vectors are given by (21), including phases. This problem
admits an exact factorization of the form (2) and, therefore, MUSIC can be used for
recovering the support of the solution. Furthermore, MUSIC provides the exact support
of the reflectivity under the assumptions of Proposition 1.

According to Theorem 1 the effectiveness of the illuminations can be characterized
by 7 defined in (17). This parameter quantifies how well the support of the reflectivity
is illuminated and, thus, it affects the robustness of the MUSIC results. Specifically,
from (20) the distance between the orthogonal projections onto the perturbed and
unperturbed signal subspaces is inversely proportional to v and, thus, a good set of
illuminations is one for which ~ is large.

It was observed in [5, 6] that imaging using the top singular vectors of the data
matrix as illuminations lowers the impact of the noise in the data. These illumination
vectors are optimal in the sense that they result in array data with maximal power, which
is proportional to the associated singular values. They can be computed systematically
from the singular value decomposition of the array response matrix (8) if it is available,
or with an iterative time reversal process, which is a very efficient acquisition method
for obtaining the essential part of the array response matrix as discussed in [27].

It is easy to understand Theorem 1 when the scatterers are well separated, meaning
that the Green’s function vectors g(y;w) evaluated on the support of the solution are
approximately orthogonal. Indeed, in this limit, the top singular vectors correspond
one-to-one to the scatterers. Then, it follows that v is optimal and close to ||g(Z;;w)|?
evaluated at the weakest scatterer.

We plot in Figure 2 the images obtained with MUSIC using different set of
illuminations. The value of v that corresponds to each set of illuminations is displayed
above the images. The images are obtained in a homogeneous medium using an active
array of N = 81 transducers that transmit and receive the signals. The frequency used is
600 THz, corresponding to a wavelength A of 500 nm (blue light). The array size is 100\
and the distance from the array to the IW is L = 100\ as well. The IW is a rectangle of
size 5\ x B0 discretized with a regular mesh of 50 x 50 rectangular elements. Different
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sets of illuminations are used to gather the data matrix B. In all the figures, the true
locations of the scatterers are indicated with white crosses, and the length scales are
measured in units of \g. In this numerical experiment, the scatterers are on the grid.
We add to the data mean zero uncorrelated noise corresponding to SNR = 0 dB.

The left most image of Figure 2 shows the results obtained with MUSIC using
optimal illuminations. We observe that MUSIC is very robust with respect to additive
noise. The other three images are obtained with random illuminations: from top to
bottom and from left to right the value of v decreases. As expected from Theorem 1 ,
the results are only good for sets of illuminations with large . Observe that MUSIC
misses several scatterers in the two images in the bottom row of Figure 2 corresponding
to small v values.

cross-range in \g
)
e
cross-range in AO

80 90 100 110 120 - 80 90 100 110 120
range in AO range in AO

~ = 0.065 ~ = 0.064

cross-range in Ay
cross-range in )\0

80 90 100 110 120 - 80 90 100 110 120
range in )\0 range in )\0

Figure 2. Imaging results using MUSIC with multiple sources and multiple receivers,
but a single frequency. SNR = 0dB corresponding to additive noise. The scatterers are
on the grid. The top left image is obtained using the optimal illuminations, for which
~v = 0.22. The other three images are obtained using 12 randomly chosen illuminations,
for which the values of ~ vary.

5.2. Multifrequency phaseless imaging

Next, we consider imaging with multiple sources, multiple receivers, and multiple
frequencies, but phaseless data; see subsection 4.3.1. This case does not admit an
exact factorization of the form (2) and, therefore, MUSIC does not provide the exact
support of the solution. Still, it can be used to estimate the support in the paraxial
regime, when the scatterers are very far from the array and the IW is small. Next, we
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examine numerically the deterioration of the resolution provided by MUSIC as the IW
gets closer to the array.

We consider a central frequency f, = 600THz, typically used in optics,
corresponding to a central wavelength Ao = 500nm. We use S = 12 equally spaced
frequencies covering a total bandwidth of 30THz. All considered wavelengths are in the
visible spectrum of green light. The size of the array is a = 500\, and the distance
between the array and the IW is L = 10000)\y. The medium between the array and
the IW is homogeneous. The IW, whose size is 100\; x 100\, is discretized using a
uniform lattice with mesh size 2\ X 2)\g. Thus, the unknown image has 51 x 51 pixels.
For this imaging system, we expect the cross-range and range resolutions to be of the
order of \gL/a = 20Xy and Cy/B = Ao fo/B = 20\, respectively. In this setup, the
propagation distance L is large, and the array and the IW sizes are small so that the
paraxial approximation holds.

We assume that the phases of the signals received at the array cannot be measured.
Hence, only their intensities are available for imaging. These measurements are collected
at multiple receivers, so we use the methods explained in subsection 4.3.1 to image
interferometrically.

50

cross-range in A,
o
)
o
cross-range in )\0

0 -50
9960 9980 10000 10020 10040 9960 9980 10000 10020 10040
range in A, range in A,

Figure 3. There is no noise added to the data and the scatterers are on the grid.
The left panel is the image constructed using MUSIC with M¢. The right panel is
obtained using MUSIC with M€ that couples the data over frequencies.

In Figure 3, the scatterers lie on the grid and no noise is added to the data. Hence,
the data are exact. We observe that imaging with MUSIC using the block-diagonal
matrix M? (left image) gives exact recovery, while MUSIC using the M¢ matrix (right
image) that couples all the frequencies is less accurate. This is so because, as we
explained in Section 4.3, MUSIC with M€ is not exact as it only provides, in the
paraxial regime, approximate locations of the scatterers.

Figure 4 shows the same experiment as Figure 3 but with off-grid scatterers. In
this figure, the scatterers are displaced by half the grid size with respect to the grid
points in both range and cross-range directions. This produces perturbations in the
unknown phases of the signals collected at the array due to modeling errors. We remark
that although the phases are not directly measured they are encoded in the intensity
measurements. We observe in Figure 4 that the image obtained with MUSIC using the
M*? data structure (left plot) deteriorates dramatically because the multiple-frequency
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information contained in the data is not processed in a coherent way. On the other
hand, MUSIC with the M¢ data structure (right plot) is very robust with respect to
the off-grid displacements.

50 1 50 1
0.9 0.9
0.8 0.8
0.7
0.7
+ 0.6 -
0.6
0 05 0
7 0.5
~ 0.4
03 0.4
0.2 0.3
0.1 0.2
-50 -50

9960 9980 10000 10020 10040 9960 9980 10000 10020 10040
range in AO range in AO

cross-range in A,
cross-range in )\0

Figure 4. Same as Figure 3 but with the scatterers off the grid. The scatterers are
displaced by half the grid size in both directions from a grid point.

As noted above, multifrequency MUSIC using the matrix M€ is not exact. It only
gives an approximation to the support of the scatterers in the paraxial regime. Thus,
we expect the resolution to improve (resp. deteriorate) as the IW is moved further
(resp. closer) from the array. To examine its accuracy, we consider in Figure 5 imaging
configurations with different ratios a/L. We display from left to right the results for
a/L equal to 1/100, 1/20, 1/4 and 1. For a meaningful comparison, the mesh size in
cross-range is adjusted so that it is always one tenth of the nominal resolution A\yL/a,
i.e., the mesh size in cross-range is A\gL/(10a) in all the images shown in Figure 5. In
order words, the number of pixels in the images is kept constant by changing the sizes
of the IWs according to the relation 5A\gL/a x 5(Cy/B). Thus, all the images in Figure
5 have 51 x 51 pixels. As expected, the images in this figure show an almost exact
recovery for small a/L ratios and a worsening of the results as the ratio increases.

6. Conclusions

In this paper we discussed appropriate data structures that allow robust images
with MUSIC, a method that is well adapted to finding sparse solutions of linear
underdetermined systems of equations of the form A; p = b;,. In this work p is the
reflectivity, the image that we want to form, and [, is a parameter vector that can be
varied, such as the illumination profile of the imaging system in space and/or frequency.
Given the data b, our first main result is the key observation that MUSIC provides
the exact support of the unknown p when the matrix A;, admits a factorization of the
form A;, = AN, with A;, diagonal. We also show in Theorem 1 that MUSIC is robust
with respect to noise provided the diversity of the data is high enough. Our second
main contribution is an approximate MUSIC algorithm for multifrequency and multiple
receiver imaging which is obtained under the paraxial approximation. Its robustness is
illustrated with numerical simulations in an optical digital microscopy imaging regime.
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a/L =0.01

o 100 * 0.7

cross-range in \
o
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Figure 5. Imaging results using MUSIC with M€ coupling over frequencies. From
left to right and top to bottom the ratio a/L increases and, therefore, the error due
to the paraxial approximation increases so the accuracy of the MUSIC reconstruction
decreases. The scatterers are on the grid.
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Appendix A. Proof of theorem 1

Proof: We claim that
(1 —=2e)?|12l7, < (A" 2)7ll7, < (1+2¢)%|2]l7, (A1)
if z € R(B) and ¢ < 1/3. Indeed, suppose that
z = Z ;Qa;.
€T
Then, defining a as the vector in C¥ whose components are zero except the ith
components with ¢ € T' that are equal to «;, we get

Z o?iozj(ai,aj>

i JET i#j

1217, = llexll?,| = <eleli,

and
(1 =o)llexlls, < N2, < (1 +e)llexllz,.
For any j € T" we have

(A2); = aila;,a;),
€T

and, therefore,

I(A*2)r|7, = Z ajai(ak, a;)(ax, a;) .

i,5,k€T
Hence,
* 2 2 —
(A 277, = Nl =| Y ol Kawa)+ > aoilar, a)ar a))
k€T, j#k i,j, k€T i#j
2 2 2 2
€ 2 | |* + ] 2e e(M—-2) 2 2
Syt > o1t o ) S G+l
1,J€Ti#]
Therefore,

(1—2e —&)llely, < [(A2)zll7, < (1 +e)?[lexll?,,
and we obtain
1—2¢—¢&?
I1+e
which implies (A.1) if ¢ < 1/38.
In order to compute the smallest nonzero singular value of B we observe that

min z*BB*z = min (A*2)e XpLr Ly Xp(A*2)
ZER(B),[|Z]]e;=1 ZEeR(B),[|Z][e;=1

(1+¢)?

212, < WA =)l < 5

12117,

> (1 —2¢)? min *XopLp L Xpy > (1 — 2e)% 1 (v)?,
( ) yeCMllszQ:ly rLrLlyXry = ( )1 (7)

§ This is an overestimate. It suffices to have ¢ — 2 — 4¢3 > 0.
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where we have used that 7 is the smallest singular value of L. Since amax(85 —B) <9,
we conclude that B® = Q° + QJ, where Q° has M nonzero singular values, with smallest
nonzero singular value

Umin(Qé) > py(l1—2¢e) =0,

and Q) has largest singular value o,.,(Q4) < 6. If 25 < py(1 —2¢), then we can discard
QS by truncation of the singular values smaller than the noise level. We now apply

Wedin Theorem [35] (see Theorem 2 below) to obtain
I1Prgs) — Pruslles € —=——
pry(1 = 2¢)
U

Theorem 2 (Wedin) Let B = Q+Qq, where Q has the SVD QQ = UXVT, and consider
the perturbed matriz B® = B+ E. If there exists a decomposition B® = Q°+Q5, and two
constants a > 0 and > 0 such that largest singular value opmq.(Qo) < o and smallest
singular value 0,,(Q°) > a + 3, then the distance between the orthogonal projections

onto the subspaces R(Q) and R(Q°) is bounded by

5
1Prs) = Prealle < 5 (A.2)

where § = max(||EV |4, [[E*Ulls,)-

Appendix B. The single frequency phase retrieval problem

We consider here the same imaging configuration as in subsection 4.1, where signals
of only one frequency w are sent from an array of transducers that emit and record
the signals. However, we assume now that only the intensities of the signals can be

measured, so only the amplitudes square of the data vectors b, = Ap, are recorded.

Then, the phase retrieval problem is to find the unknown vector p from the family of
quadratic equations

Ap, 2= [b,f2, q=1,... .}, B.1)

where |- | is understood component wise.

Appendiz B.1. A single receiver

Problem (B.1) is nonlinear and nonconvex and, hence, difficult to solve. In fact, it is in
general NP hard [29]. However, if an appropriate set of illuminations is used, we can
take advantage of the polarization identity

2Re < u,v > = |u+v* - |ul* — |v|?
2Im < u,v > = |u—iv|]* — |Ju* — |v]? (B.2)
to solve simple linear systems of the form

Ap,=m{), ¢=1,... )}, (B.3)
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for a fixed receiver location @x,.. The polarization identity allows us to find the inner
product between two complex numbers and, therefore, its phase differences. In (B.3),
m{” is the vector whose ith component is the correlation by'b{"” between two signals
measured at the receiver &,; one corresponding to a general illumination f (w) and the
other to an illumination e; whose entries are all zero except the 7th entry which is one.

Using the polarization identity (B.2) we can obtain bJb{"” from linear combinations of
21657 + 712, and b + b0 |2 [24]. A physical
interpretation of (B.3) is as follows. Send an illumination f (w), collect the response at

the magnitudes squared |b¢(f)|2, |b.(3:)

&,, time reverse the received signal at &,, and send it back to probe the medium again.
Then, m((f) represents the signals recorded at all receivers &;, i =1,..., N.

To wrap up, if the phases are not measured but we control the illuminations, the
images can be formed by solving (B.3) using a MUSIC algorithm with several vectors
mff) obtained in the data acquisition process. In the approach explained here the
receiver is fixed. In the next subsection we explain how to image with the MUSIC

algorithm using intensity data gathered at several receivers.

Appendiz B.2. Several receivers

In [26], we propose to image using MUSIC with the frequency interferometric matrix
M (w) = P*(w)P(w) which can be obtained from intensity-only measurements if
the illuminations are controlled. The columns of this matrix are the vectors mff),
r=1,..., N, obtained with the illuminations f, =e;, i =1,..., N. Observe that each

entry of the interferometric matrix M (w) can be written as

N
mg; = E bkibkj>
k=1

where by; = |bri|e®® denotes the signal (with phase) received at @, for illumination
e;. To recover bkil_pkj it suffices to measure the amplitudes |by;|, |bx;| and to find the
phase differences 0y; — 0y, k =1,..., N. The amplitudes (squared) are recorded using
the illumination vectors e;, © = 1,2,..., N. The phase differences can be recovered as
follows. Since

Ori — Oy = (01 — 1) — (k1 — Ori),

it suffices to find the phase differences 0y — 0y; for j = 2,..., N, which means that only
the phase differences between the first vector b; and all the other vectors are needed. If
all bg; # 0, these phase differences can be found from the polarization identities (B.2).
When the image is sparse, the assumption by; # 0 is not restrictive because of the
uncertainty principle [11].

Since matrices M (w) and P(w) have the same column space MUSIC can form
the images using the SVD of M (w) and the column vectors of matrix (23) as imaging
vectors.
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