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Abstract
Given a complete metric measure space whose measure is doubling and supports
an ∞-Poincaré inequality, and a bounded domain � in such a space together with
a Lipschitz function f : ∂� → R, we show the existence and uniqueness of an
∞-harmonic extension of f to �. To do so, we show that there is a metric that is
bi-Lipschitz equivalent to the original metric, such that with respect to this new metric
the metric space satisfies an ∞-weak Fubini property and that a function which is
∞-harmonic in the original metric must also be ∞-harmonic with respect to the new
metric. We also show that if the metric on the metric space satisfies an∞-weak Fubini
property, then the notion of∞-harmonic functions coincide with the notion of AMLEs
proposed by Aronsson. The notion of ∞-harmonicity is in general distinct from the
notion of strongly absolutely minimizing Lipschitz extensions found in Crandall et al.
(Calc Var Partial Differ Equ 13: 123–139, 2001), Juutinen (Ann Acad Sci Fenn Math
27(1):57–67, 2002), Juutinen and Shanmugalingam (Math Nachr 279(9–10):1083–
1098, 2006), but coincides when the metric space supports a p-Poincaré inequality
for some finite p ≥ 1.
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1 Introduction

Since the pioneering work of Aronsson [2], the notions of absolute minimizing Lip-
schitz extensions (AMLEs) and ∞-harmonic functions in Euclidean domains have
been extensively studied in connection with a variety of applications. We refer to the
survey [3] for general information on this subject. Recent applications of these notions
include image processing and inpainting or brain and surface warping. The articles [6]
and [29] give a good overview of such applications.

The idea behind AMLEs is simple. The Lipschitz constant of a Lipschitz function
f : Y → R for a set Y ⊂ R

n is denoted LIP( f , Y ). Then we can construct at least
two Lipschitz extensions F : Rn → R of f to R

n with the same Lipschitz constant,
that is, LIP( f , Y ) = LIP(F,Rn) as follows. We can set:

F(x) = sup{ f (y) − LIP( f , Y )d(x, y) : y ∈ Y }

for all x ∈ R
n or, we can set:

F(x) = inf{ f (y) + LIP( f , Y )d(x, y) : y ∈ Y }

for all x ∈ R
n . These two extensions were first studied by McShane [32]. Note

that the quantity LIP(F,Rn) does not care about the local behavior of F , only the
global behavior. Aronsson sought to take into account also the local behavior. More
precisely, given a domain � ⊂ R

n and a Lipschitz function f on Y := ∂�, Aronsson
looked for a Lipschitz extension F : � → R of f to � such that in addition to
the above requirement that LIP( f , ∂�) = LIP(F,�), F also supports LIP(F, ∂V ) =
LIP(F, V ) for all subdomainsV ⊂ �. Functions F that satisfy this condition are called
absolutely minimizing Lipschitz extensions, or AMLEs for short. In [2], existence of
such a function was demonstrated using a variant of the Perron method. Note that such
F would equivalently satisfy the condition that whenever V ⊂ � is a subdomain and
ϕ : V → R such that ϕ = F on ∂V , we must have LIP(F, V ) ≤ LIP(ϕ, V ). Thus the
local nature of minimizing Lipschitz constant is established for AMLEs. It was also
shown in [2] and [24] that AMLEs F in Euclidean domains are ∞-harmonic in the
sense that they satisfy �∞F = 0, where

�∞F =
n∑

i, j=1

∂ F

∂xi

∂ F

∂x j

∂2F

∂xi∂x j
.

In fact, a function on an Euclidean domain is an AMLE if and only if it is∞-harmonic.
In the Euclidean setting, one can construct ∞-harmonic functions via p-harmonic
approximations, that is, p-harmonic functions in � that take on the value f on ∂�

approximate the ∞-harmonic functions as p → ∞. While the definition of AMLEs
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Existence and uniqueness of∞-harmonic functions. . . 883

requires only the metric d, the definition of ∞-harmonicity requires in addition the
knowledge of measure on the space as well (for the notion of weak partial derivatives).
The interested reader is referred to [3] for further information.

In applications to image processing, ∞-harmonic extensions are used for image
inpainting. In image inpainting an image with a patch of loss is corrected by “painting
in” the lost image. Usually it is preferable to make the extension of the image into the
lost patch as smooth as possible. For each 1 ≤ p < ∞ the p-harmonic extension is
the extension F whose p-th energy Jp(F) := ∫

�
|∇F |p dLn is minimal amongst all

Sobolev functions with the same boundary (outside image) data. When p = 1, the
corresponding minimizer preserves edges found in the image (see for example [1]);
as p → ∞, the corresponding processed image becomes smoother, with p = ∞
corresponding to Lipschitz smoothness. See [34] for a survey on this subject. By the
local nature of Jp, if F minimizes the energy Jp, then it does so locally as well.
This is not the case for p = ∞. Thus in requiring minimization of ∞-energy, we
require the minimizers to do so locally as well; this is in keeping with the behavior
of Euclidean solutions to the equation �∞u = 0. In keeping with the nomenclature
that minimizers of Jp are called p-harmonic, we call the global-local minimizers of
∞-energy ∞-harmonic.

In the abstract setting of separable length spaces, the existence ofAMLEswith given
Lipschitz boundary data was studied in [25] using Perron’s method. The existence
and uniqueness of AMLEs in general length spaces is obtained in [35] using random
games. Thanks to the development of a Sobolev theory in the setting of metric measure
spaces, the notion of p-harmonic function has been considered as well (see [7,23]).
In [26], for doubling metric measure spaces supporting a p-Poincaré inequality for
some finite p ≥ 1, it was shown that the limit (as p → ∞) of p-harmonic solutions to
the Dirichlet problem on the domain, with a given Lipschitz boundary data, yields a
so-called strongly absolutely minimizing Lipschitz extension. It was also shown there
that when X satisfies a “weak Fubini property” of exponent p, a function is an AMLE
if and only if it is a strongly absolutely minimizing Lipschitz extension. This latter
notion coincides with our notion of ∞-harmonic functions in the metric setting when
themetric space supports a p-Poincaré inequality for somefinite p ≥ 1.While strongly
absolutely minimizing Lipschitz extensions minimize (with respect to the L∞-norm),
both locally and globally, the local Lipschitz constant function Lip u associated with
the Lipschitz function u, the ∞-harmonic functions minimize the minimal ∞-weak
upper gradient of u (see Definition 2.5). It was shown in [12] that when the metric
space supports a p-Poincaré inequality for some finite p, the minimal p-weak upper
gradient of a Lipschitz function u agrees almost everywhere with Lip u. Since in our
setting the metric space may not support any p-Poincaré inequality for any finite
p > 1, the Euclidean notion of ∞-harmonicity is more naturally related to our notion
of minimizing∞-weak upper gradients; hence this is the object we study in this paper.

In [20] it was shown that there are complete metric measure spaces whose measure
is doubling and supports an ∞-Poincaré inequality but not supporting any p-Poincaré
inequality for finite p ≥ 1. The examples in [20] can still be addressed using the
techniques in [26] since the domain in consideration is a bounded domain, and the
failure of p-Poincaré inequality occurs only at large scales. However, the spherical-
ization of the examples in [20], using the procedure described in [31], also supports
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884 E. Durand-Cartagena et al.

an ∞-Poincaré inequality but does not support any p-Poincaré inequality for finite p,
see [18,19], and the techniques of [26] fail for domains in this sphericalized space that
contain the image of infinity from the original space of [20].

In light of these examples we are interested in knowing whether, given a bounded
domain in a doubling metric measure space supporting an∞-Poincaré inequality, and
given a Lipschitz function defined on the boundary of the domain, there is an ∞-
harmonic function on the domain with the prescribed boundary data. Our main result
is the following:

Theorem 1.1 Let (X , d, μ) be a complete metric measure space with μ doubling and
supporting an ∞-Poincaré inequality, and let � ⊂ X be a bounded domain such that
X\� has positive measure. Given a Lipschitz function f : ∂� → R, there is a unique
Lipschitz function u : � → R such that u = f on ∂� and u is ∞-harmonic in �.

The problem of existence of ∞-harmonic functions is studied in Sect. 3, and the
corresponding result is given in Theorem 3.3. The standard technique of considering
p-harmonic extensions of the Lipschitz boundary data and letting p tend to ∞ does
not work in our setting as in the absence of p-Poincaré inequality for finite p we do not
have control of the behavior of p-harmonic functions. Instead, we consider a different
minimization problem for each finite p, and the family of solutions to this problem is
shown to have the desirable limit as p → ∞.

The question of uniqueness is related to the equivalence between AMLEs and ∞-
harmonic functions. In [26], in order to obtain this equivalence, a p-weak Fubini
property with 1 < p < ∞ is needed for showing that one can neglect zero measure
sets when computing the Lipschitz constant of a function. In Sect. 4, we prove the
equivalence between AMLEs and∞-harmonic functions under the weaker hypothesis
of∞-weak Fubini property (see Definition 4.1). This is the content of the secondmain
result of this paper, Theorem 1.2 below.

Theorem 1.2 Let (X , d, μ) be a complete metric measure space with μ doubling and
satisfying an ∞-weak Fubini property. Consider a bounded domain � ⊂ X such that
X\� has positive measure and a Lipschitz function f : ∂� → R. A Lipschitz function
u : � → R is ∞-harmonic in � if and only if it is an AMLE of f to �.

In the Euclidean setting uniqueness of AMLEs for a given boundary data was
established via the tool of viscosity solutions in [24], and an alternate proof using
viscosity solutions and tug-of-war games was provided in [35]. A simpler proof of
this uniqueness is given in [4]. In the setting of Heisenberg groups, uniqueness was
demonstrated in [5]. Uniqueness for AMLEs in metric spaces that are length spaces
was established in [35, Theorem 1.4], see also [4]. In the Euclidean setting the notion
of AMLEs coincide with the notion of∞-harmonic functions, but in the metric setting
this is not the case.

Proposition 4.2 gives a simple metric characterization of ∞-weak Fubini property.
It shows that the link between ∞-weak Fubini property and the measure μ is only
via μ-null sets. Note that the hypotheses of Theorem 1.1 do not guarantee that the
space satisfies a weak Fubini property. Hence, to prove Theorem 1.1, we will show
that under the hypotheses of this theorem there is a bi-Lipschitz equivalent metric d̂
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Existence and uniqueness of∞-harmonic functions. . . 885

on X such that (X , d̂, μ) satisfies an ∞-weak Fubini property, see Proposition 4.4.
We then show that a function that is ∞-harmonic with respect to the original metric
is also ∞-harmonic with respect to d̂ , and as d̂ does satisfy a weak Fubini property,
we then know that the function is an AMLE with respect to the metric d̂. Finally
invoking the uniqueness result of [4,35], we have uniqueness of functions that are ∞-
harmonic solutions with respect to the metric d̂ and hence with respect to the original
metric d. Observe that Theorem 1.1 deals with ∞-harmonic functions; we do not
know uniqueness of AMLEs with respect to the original metric d as (X , d) need not
be a length space.

We also provide an example of a (length) space that does not satisfy any ∞-weak
Fubini property, and for which uniqueness of solutions to∞-harmonic Dirichlet prob-
lem fails, see Example 4.12. Given the uniqueness of AMLEs, this example also shows
that there are∞-harmonic functions that are notAMLEswhenwedo not have∞-weak
Fubini property.

In the final section of this paper we study the issue of stability of ∞-harmonic
functions, and show that uniform limits of ∞-harmonic functions are ∞-harmonic.

2 Notation and definitions

In this paper we will assume that (X , d, μ) is a complete metric measure space.
That is, (X , d) is a complete metric space equipped with a Borel measure μ which
is positive and finite on each ball. We also require that the measure μ is doubling
on X , that is, there is a constant CD ≥ 1 such that whenever x ∈ X and r > 0,
μ(B(x, 2r)) ≤ CD μ(B(x, r)).

Given a set A ⊂ X and a Lipschitz function u : A → R, we set for x ∈ A,

Lip u(x) := lim sup
x 	=y→x

|u(x) − u(y)|
d(x, y)

, and LIP(u, A) := sup
x,y∈A,x 	=y

|u(x) − u(y)|
d(x, y)

.

We say that u is L-Lipschitz on A if LIP(u, A) ≤ L . The class of all bounded Lipschitz
functions on X is denoted LIP∞(X). This class is equipped with the norm

‖u‖LIP∞(X) := sup
x∈X

|u(x)| + LIP(u, X).

We refer the reader to [21,23] for an exposition on path integrals in metric spaces. A
metric space (X , d) is a length space if for each pair x, y ∈ X , d(x, y) = infγ �(γ ), the
infimum being over curves with end points x, y. Themetric space X isC-quasiconvex,
or quasiconvex for some C ≥ 1, if for each pair x, y ∈ X there is a curve γ connecting
x and y with �(γ ) ≤ Cd(x, y).

In the setting of non-smooth metric measure spaces, the role of derivatives is taken
on by the upper gradients (see [22]). Given a function u : X → R, we say that a
Borel-measurable function g : X → [0,∞] is an upper gradient of f if

|u(y) − u(x)| ≤
∫

γ

g ds (1)

123

Author's personal copy



886 E. Durand-Cartagena et al.

whenever γ is a non-constant compact rectifiable curve in X connecting the points x
and y, and that

∫
γ

g ds = ∞ if at least one of u(x), u(y) is not finite. We refer the
interested reader to [23,36] for more on the theory of upper gradients. Henceforth,
in this paper we will assume all rectifiable curves to be compact and non-constant;
for such curves γ the arc-length integral

∫
γ

g ds is independent of re-parametrization
of γ . In places where we need the curves to be parametrized by arc-length, we will
explicitly state so.

Definition 2.1 Given a family � of curves in X , set F(�) to be the family of all Borel
measurable functions ρ : X → [0,∞] such that

∫
γ

ρ ds ≥ 1 for all γ ∈ �. We
define the ∞-modulus of � by

Mod∞(�) = inf
ρ∈F(�)

‖ρ‖L∞(X),

and for 1 ≤ p < ∞ the p-modulus of � is

Modp(�) = inf
ρ∈F(�)

∫

X
ρ p dμ.

In this paper we are only concerned with whether, given a family � of curves in X ,
we have Mod∞(�) is positive or zero; if it is positive, its precise value is not needed
here. In particular, we will use the following characterization.

Remark 2.2 Given a family � of curves in X , we have Mod∞(�) = 0 if and only if
there is a non-negative Borel function ρ that is zero a.e. in X such that

∫
γ

ρ ds = ∞
for each γ ∈ �, see [15, Lemma 5.7].

Definition 2.3 A non-negative Borel measurable function g on X is said to be a p-
weak upper gradient of a function u : X → R if the collection � of all non-constant
rectifiable curves γ in X forwhich the inequality (1) fails has zero p-modulus, see [28].

The Newton-Sobolev space N 1,p(X) (1 ≤ p ≤ ∞) is defined as follows. First
consider the class Ñ 1,p(X) of all functions in L p(X) that have a p-weak upper gra-
dient in L p(X). For u1, u2 ∈ Ñ 1,p(X) we say that u1 ∼ u2 if ‖u1 − u2‖L p(X) +
infg ‖g‖L p(X) = 0, where the infimum is taken over all p-weak upper gradients g of
u1 − u2. The relation ∼ is an equivalence relation on the vector space Ñ 1,p(X), and
we set N 1,p(X) to be the collection of all equivalence classes of Ñ 1,p(X). If A ⊂ X
is a measurable set, we can consider A to be endowed with the metric d|A and the
measure μ|A, and consider the space N 1,p(A).

From Remark 2.2 we have the following lemma.

Lemma 2.4 Let u ∈ N 1,∞(X). Every ∞-weak upper gradient g of u can be modified
on a set of measure zero so that the modification g̃ is an upper gradient of u.

From [33, Lemma 4.1], we know that if g1, g2 are ∞-weak upper gradients of a
function u ∈ N 1,∞(X), then g = min{g1, g2} is also an ∞-weak upper gradient of
u. In fact, we know from [33, Theorem 4.6] that for each u ∈ N 1,∞(X) there is an
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Existence and uniqueness of∞-harmonic functions. . . 887

∞-weak upper gradient gu ∈ L∞(X) which is minimal in the sense that whenever
g ∈ L∞(X) is an ∞-weak upper gradient of u, we have that gu ≤ g a.e. in X .
Furthermore, gu is unique up to sets of measure zero. By Lemma 2.4 we can also
assume that gu is an upper gradient of u.

We now define ∞-harmonic functions as follows. By a domain in a metric space
we mean a non-empty connected open subset.

Definition 2.5 Let X be a metric measure space, and � a bounded domain in X such
that X\� has positive measure. We say that a function u : � → R is ∞-harmonic in
� if it admits an extension, also denoted u, to X such that u ∈ N 1,∞(X) and whenever
V ⊂ � is an open set and v ∈ N 1,∞(X) such that v = u on X\V , we have

‖gu‖L∞(V ) ≤ ‖gv‖L∞(V ). (2)

Furthermore, we say that u ∈ N 1,∞(X) is ∞-harmonic in � with boundary data
f ∈ N 1,∞(X) if u is ∞-harmonic in � and u = f on X\�.

Remark 2.6 If N 1,∞(X) = L∞(X), then for each x ∈ X and r > 0 the function
χB(x,r) ∈ L∞(X) = N 1,∞(X); so χB(x,r) is absolutely continuous on ∞-modulus
almost every curve in X . Hence the collection of all rectifiable curves that intersect
both B(x, r) and X\B(x, r) has zero ∞-modulus. Recall that μ is doubling and
supported on X ; hence X is separable. As the collection of all non-constant compact
rectifiable curves in X is the union of the family �(B(xi , r j )) of all rectifiable curves
in X intersecting both B(xi , r j ) and X\B(xi , r j ), with {xi }i a countable dense subset
of X and {ri }i is the set of positive rational numbers, we must have by the countable
subadditivity of modulus that the ∞-modulus of the collection of all non-constant
compact rectifiable curves is zero and zero is an ∞-weak upper gradient of each
u ∈ L∞(X). Thus the following three conditions are equivalent:

1. N 1,∞(X) = L∞(X);
2. With �(X) the collection of all non-constant rectifiable curves in X ,
Mod∞(�(X)) = 0;
3. For each u ∈ L∞(X), g ≡ 0 is an ∞-weak upper gradient of u.

For X that supports any of the above three conditions, zero is an ∞-weak upper
gradient of each u ∈ N 1,∞(X), and so each u ∈ N 1,∞(X) = L∞(X) is ∞-harmonic,
and hence uniqueness of solutions to the Dirichlet problem for ∞-harmonic functions
fails here.

There are many metric measure spaces where the triviality N 1,∞(X) = L∞(X)

does not happen. For example, if X supports an ∞-Poincaré inequality, then
N 1,∞(X) 	= L∞(X), see [15,16]. Of such spaces, there is a collection of metric
spaces that do not support a p-Poincaré inequality for any finite p > 1, and in such
a setting the currently known approaches of constructing ∞-harmonic functions fail.
Thus in this paper we focus on giving a construction of ∞-harmonic functions that
does not rely on the existence of p-Poincaré inequality for any finite p > 1.

In the Euclidean setting, ∞-harmonic functions u are precisely those which satisfy
the equation �∞u = 0, see for example [13] or [3, Theorem 4.13]. This notion
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888 E. Durand-Cartagena et al.

depends intrinsically on the measure μ as well as the metric d. The following related
notion, due to Aronsson [2] (see also [3]), relies only on the metric d. Under certain
conditions on the metric measure space X we show that both these notions coincide;
see also [26] for a discussion in the metric setting, where a stronger assumption on the
metric measure space was required. See the beginning of this section for the definition
of LIP(u, V ).

Definition 2.7 Let (X , d) be a metric space, � a domain in X and f : ∂� → R a
Lipschitz function. We say that a Lipschitz function u defined on the closure � is an
absolutely minimizing Lipschitz extension (AMLE for short) of f to � if f = u on
∂� and whenever V ⊂ � is an open set and v : V → R is a Lipschitz function with
v = u on ∂V , we have

LIP(u, V ) ≤ LIP(v, V ).

If u is an N 1,∞(�)-function that has a minimal ∞-weak upper gradient gu on �

such that gu ≤ L a.e. in�, and f is a Lipschitz function on X\� such that L is an upper
gradient of f and u = f on ∂�, then u has an extension û = f to X\� such that the
extension ĝu of gu to X\� by the constant L is an∞-weak upper gradient of û, see [7,
Proposition 2.39]. As a consequence, we see that if u ∈ N 1,∞(�) has an ∞-weak
upper gradient that is a.e. in� bounded by L and u = f on ∂�, then u has an extension
û ∈ N 1,∞(X) to X that has an ∞-weak upper gradient dominated a.e. in X by L .

Lemma 2.8 Let �, G be two non-empty open subsets of X, G ⊂ � with
dist(G, X\�) > 0, and u ∈ N 1,p(�), f ∈ N 1,∞(X). If u = f on ∂G, then the
function û given by

û(x) =
{

u(x) if x ∈ G,

f (x) if x ∈ X\G

is in N 1,p
loc (X).

Proof To prove the lemma, it suffices to show that û has a p-weak upper gradient
in L p

loc(X). Note that, since f ∈ N 1,∞(X), it has an upper gradient in L∞(X), and
in particular in L p

loc(X). We set u0 = û − f , and then it suffices to show that u0 ∈
N 1,p

loc (X). Let g ∈ L p
loc(�) be an upper gradient of u − f in �, and let g0 be the zero

extension of g to X\�. We wish to show that g0 is a p-weak upper gradient of u0 in X .
Let γ be a non-constant compact rectifiable curve in X , and let x, y denote the two

end points of γ . It suffices to consider only γ for which x ∈ G and y ∈ X\G. In this
case we have that u0(y) = 0. Then, with γ : [a, b] → X and γ (a) = x , there is some
t0 ∈ (a, b] such that γ ((a, t0)) ⊂ G. Let t0 be the largest such number in (a, b]. Note
that as y /∈ G, we must have γ (t0) ∈ ∂G and u0(γ (t0)) = u(γ (t0)) − f (γ (t0)) = 0.
From the facts that g0 ◦ γ = g ◦ γ on [a, t0) and g is an upper gradient of u − f , we
can infer that

|u0(x) − u0(y)| = |u(x) − f (x) − (u(γ (t0)) − f (γ (t0)))| ≤
∫

γ |[a,t0]
g0 ds.
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It now follows that g0 is a p-weak upper gradient of u0 and so u0 ∈ N 1,p
loc (X). ��

We next introduce the notion of p-Poincaré inequalities, which play a main role in
this paper.

Definition 2.9 Given 1 ≤ p ≤ ∞, we say that a metric measure space X supports a p-
Poincaré inequality if there are positive constantsC, λ such thatwhenever B = B(x, r)

is a ball in X and g is an upper gradient of u,

∫

B
|u − u B | dμ ≤ C r

(∫

λB
g p dμ

)1/p

,

where the right-hand side of the above is replaced with Cr‖g‖L∞(λB) when p = ∞.
Here u B := μ(B)−1

∫
B u dμ =: ∫

B u dμ is the average of u on the ball B, and
λB := B(x, λr).

By Hölder’s inequality, we know that every metric measure space supporting a
p-Poincaré inequality for some 1 ≤ p < ∞ must necessarily support an ∞-Poincaré
inequality. The converse need not hold true, as demonstrated in [20].

The following geometric characterization of∞-Poincaré inequalitywas established
in [16,17].

Theorem 2.10 ([17, Theorem 3.1]) Let (X , d, μ) be a complete metric measure space
with μ be doubling. Then the following are equivalent:

(1) X supports an ∞-Poincaré inequality.
(2) There exists a constant C ≥ 1 such that if u ∈ N 1,∞(X) with an ∞-weak
upper gradient g ∈ L∞(X), then u is C‖g‖L∞(X)-Lipschitz continuous on X.
(3) There is a constant C ≥ 1 such that whenever N ⊂ X with μ(N ) = 0 and
x, y ∈ X with x 	= y, then there is a rectifiable curve γ with end points x, y such
that �(γ ) ≤ Cd(x, y) and H1(γ −1(N )) = 0.

Note that each of the criteria listed above imply that X is connected.

Example 2.11 Let (X , d, μ) be the Sierpiński carpet equipped with the Euclidean met-
ric and the correspondingHausdorff measure. Then X does not support an∞-Poincaré
inequality (see [16, Example 4.14]). From the discussion in [8], we know the existence
of a set N̂ ⊂ [0, 1] such that, with the Hausdorff measure on X denoted by μ, the
“first coordinate projection” �1μ of μ to [0, 1] given by �1μ(A) = μ(�−1

1 (A))

for Borel sets A ⊂ [0, 1] sees N̂ as of measure zero but H1(N̂ ) = 1. Let
N = (�−1

1 (N̂ ) ∪ �−1
2 (N̂ )). Here �1 and �2 are the first coordinate and the sec-

ond coordinate projection maps from X to the interval [0, 1]. Note that μ(N ) = 0.
Given any non-constant curve γ in X , by breaking the curve up into two sub-curves if
necessary, we can assume that its end points x, y satisfy (x1, x2) = x 	= y = (y1, y2).
Then

H1(γ −1(N )) ≥ H1(γ ∩ N ) ≥ max{H1(�1 ◦ γ (γ −1(N ))),H1(�2 ◦ γ (γ −1(N )))}
≥ max{|x1 − y1|, |x2 − y2|} > 0.
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Hence Mod∞(�(X)) = 0 where �(X) is the collection of all non-constant rectifiable
curves in the carpet X . By Remark 2.6, we obtain N 1,∞(X) = L∞(X). Moreover, for
each distinct pair x, y ∈ X and each rectifiable curve γ connecting x to y we must
have thatH1(γ −1(N )) > 0, with N independent of x, y. Therefore in some situations
where ∞-Poincaré inequality fails, we might have a universal choice of null set N
(that is, independent of x, y) that violates the third condition of the above theorem.

We end this section with a technical lemma that will be needed in Sect. 3, showing a
locality property of minimal ∞-weak upper gradients of functions in N 1,∞(X). This
lemma follows from [7, Theorem 2.18], [33, Lemma 4.1] and Lemma 2.4.

Lemma 2.12 Let X be a metric measure space and E a measurable subset of X.
Suppose that u, v ∈ N 1,∞(X) are such that u = v on E. Then gu = gv a.e. on E.

3 Existence of∞-harmonic functions

In this section we show the existence of an ∞-harmonic function on a domain � ⊂ X
with prescribed Lipschitz boundary data. To do so, we solve a variational (minimiza-
tion) problem corresponding to each exponent p > 1 and then let p → ∞ to obtain
the solution. A similar technique was employed in [26] where the variational problem
was to minimize the L p-energy and obtain a p-harmonic function for each finite p;
however, without a p-Poincaré inequality for some finite value of p, we have no con-
trol over the behavior of p-harmonic functions, and hence the variational problem we
consider is different.

Standing assumptions Throughout this section we assume that (X , d, μ) is a complete
metric measure space with μ doubling and supporting an ∞-Poincaré inequality. We
fix a bounded domain � ⊂ X and we assume that μ(X\�) > 0 in order to avoid
trivial statements.

Definition 3.1 Given L > 0, let N 1,∞
L (X) be the collection of all functions u in

N 1,∞(X) that have an upper gradient g with ‖g‖L∞(X) ≤ L . For u ∈ N 1,∞
L (X) we

set DL(u) to be the collection of all upper gradients g of u such that ‖g‖L∞(X) ≤ L .

Let f : X → R with f ∈ N 1,∞(X). In this section we establish the existence of
a function u ∈ N 1,∞(X) that is ∞-harmonic in � with boundary data f . Since X
is complete and supports an ∞-Poincaré inequality, by Theorem 2.10 we know that
every function in N 1,∞

L (X) isC L-Lipschitz on X , so as N 1,∞(X) = ⋃
L≥0 N 1,∞

L (X),
f is Lipschitz. Let L > 0 such that DL( f ) 	= ∅.
Definition 3.2 Fix 1 < p < ∞. For u ∈ N 1,∞

L (X) we set

I p
L (u) :=

∫

�

g p
u dμ = inf

{∫

�

g p dμ : g ∈ DL(u)

}
, (3)

J p
f := inf

{
I p

L (u) : u ∈ N 1,∞
L (X); u = f on X\�

}
. (4)
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Theorem 3.3 Given a Lipschitz function f : X → R, there is a Lipschitz function
ϕ : � → R such that ϕ = f on ∂� and ϕ is ∞-harmonic in �.

If f : ∂� → R is an L-Lipschitz function, then using the McShane extension
theorem [32] (see Sect. 1 of this paper), we can extend f to a bounded Lipschitz
function defined on X . Hence in the above theorem it suffices to prescribe f only on
∂�. The remainder of this section is devoted to the proof of this theorem. The proof
is divided into different steps:

Step 1 Fix L > 0 such that f is L-Lipschitz on X , and note that the constant function
g = L is an upper gradient of f . For every 1 < p < ∞, we will show that there is a
Lipschitz solution u p of the variational problem defined in (4) such that u p = f on
X\�.

Note that J p
f ≤ I p

L ( f ) ≤ L pμ(�) < ∞, and hencewe can find a sequence {uk}k ⊂
N 1,∞

L (X) such that uk = f on X\� and limk I p
L (uk) = J p

f . Since each uk is C L-
Lipschitz, the family {uk}k is equicontinuous on X , and since uk = f on X\� with �

bounded, it follows that the family is also equibounded on X . Thus an invocation of the
Arzela-Ascoli theorem leads us to conclude that, passing to a subsequence if necessary,
there is a C L-Lipschitz function u p on X such that {uk}k → u p uniformly on X .

Lemma 3.4 For each 1 < p < ∞ we have that u p ∈ N 1,∞
L (X), u p = f on X\�,

and

J p
f = I p

L (u p) =
∫

�

(gu p )
p dμ. (5)

Proof Since {uk}k → u p uniformly on X , we only need to consider upper gradients
of u p now. By passing to a subsequence if needed, for each k we can find an upper
gradient gk of uk such that gk ≤ L a.e. on X and

∫
�

g p
k dμ ≤ J p

f + 1/k.
Fix a bounded domain�0 in X such that� � �0. Thus {gk}k is a bounded sequence

in L p(�0). By the reflexivity of L p(�0), taking a further subsequence wemay assume
that {gk}k is weakly convergent in L p(�0) to a non-negative Borel function gp ∈
L p(�0). By Mazur’s lemma, there is a convex combination subsequence {hk}k (with
hk = ∑N (k)

j=k λk, j gk) such that {hk}k → gp both in L p(�0) and pointwise outside a set
E ⊂ �0 with μ(E) = 0. From [27, Lemma 3.1] we know that gp is a p-weak upper
gradient of u p on �0. Note that gp is defined only on �0. On the other hand, since
uk = f on �0\�, the extension of each uk by f to X\�0 is also in N 1,∞(X) with the
extension of gp by L to X\�0 a p-weak upper gradient of u p on X , see Lemma 2.8.
Because each guk ≤ L a.e. in X , we have that gp ≤ L on X\(E ∪⋃

k Ek), where each
Ek = {gk > L}; and note that by assumption on gk , we haveμ(Ek) = 0. However, we
do not know that gp is an upper gradient of u p. Thus we need to modify gp suitably
as follows.

Setting F = E∪⋃
k Ek , we haveμ(F) = 0. Let�+

F denote the collection of all non-
constant rectifiable (arc-length parametrized) curves γ in X such thatH1(γ −1(F)) >

0. Then, by considering ρ = ∞ · χF in Remark 2.2, we obtain that Mod∞(�+
F ) = 0.

For rectifiable non-constant curves γ in X that do not belong to �+
F we know that

{hk ◦ γ }k → gp ◦ γ H1-a.e. on the domain of γ , and that a.e. there we also have each
hk ≤ L and gp ≤ L . Therefore by the Lebesgue dominated convergence theorem,
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limk
∫
γ

hk ds = ∫
γ

gp ds. Denoting the endpoints of γ by x, y, and noting that the

convex combination sequence vk = ∑N (k)
j=k λk, j uk , with N (k), λk, j as in the choice

of hk , converges uniformly to u p as well on X , we have that

|u p(x) − u p(y)| = lim
k

|vk(x) − vk(y)| ≤ lim
k

∫

γ

hk ds =
∫

γ

gp ds.

Therefore gp is an ∞-weak upper gradient of u p (this is stronger than saying that gp

is a p-weak upper gradient of u p), with (1) being satisfied for all rectifiable curves in
X that are not in �+

F . Therefore ĝp := gp + ∞χF is an upper gradient of u p on X

such that ĝp ≤ L on X\F . Hence u p ∈ N 1,∞
L (X), and by construction, u p = f on

X\�. This also means that I p
L (u p) ≥ J p

f .

Finally, since hk → ĝp in L p(�) we have that limk
∫
�

h p
k dμ = ∫

�
ĝ p

p dμ. By the
lower continuity of L p-norms, we deduce that

J p
f ≤ I p

L (u p) ≤
∫

�

ĝ p
p dμ ≤ lim

k

∫

�

g p
k dμ ≤ J p

f .

Suppose now that g ∈ DL(u). Then by the lattice property of∞-weak upper gradients
(see [33, Lemma 4.1]) we have that min{gp, g} is an ∞-weak upper gradient of u p.
Hence by the minimality of I p

L (u p) we must have gp ≤ g a.e. in �, that is, gp = gu p .
��

Now let U be a subdomain of �, and consider the analogous variational problem
on U with boundary data u p. For u ∈ N 1,∞

L (X) we set I p
L,U (u) to be as in (3), with

� replaced with U , and for functions w ∈ N 1,∞(X), we set

J p
w,U := inf

{∫

U
g p

u dμ : u ∈ N 1,∞
L (X); u = w on ∂U

}
. (6)

The next Lemma shows that u p solves the minimization problem (6).

Lemma 3.5 Let 1 < p < ∞ and v ∈ N 1,∞
L (X) such that v = u p on ∂U. Then

∫

U
(gu p )

p dμ ≤
∫

U
g p
v dμ.

Proof Consider the Lipschitz function w = v · χU + u p · χX\U . By Lemma 2.12, we
have gw = gv a.e. on U and gw = gu p a.e. on X\U . In particular w ∈ N 1,∞

L (X), and
since w = f on X\�,

∫

�

(gu p )
p dμ = J p

f ≤ I p
L (w) ≤

∫

�

g p
w dμ =

∫

U
g p
v dμ +

∫

�\U
(gu p )

p dμ.

��
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Step 2 In this step we show that the function u p obtained in Step 1 is unique and
satisfies the comparison property. We start with the following lemma, which shows a
strong locality property for functions in N 1,∞(X).

The following lemmacan be proven by showingwith the aid of∞-Poincaré inequal-
ity that such u is locally constant on �, and then using the fact that � is connected.

Lemma 3.6 Let u ∈ N 1,∞(X) and suppose that g ∈ L∞(X) is an upper gradient of
u such that g = 0 a.e. in �. Then u is constant on �.

Next we show uniqueness of u p.

Lemma 3.7 Let 1 < p < ∞. If vp is another minimizer of J p
f , then vp = u p.

Proof The proof of this follows exactly as in [12, Theorem 7.14] (see [7, Theorem 7.2]
for a more detailed proof, considering the obstacle ψ = −∞ there), upon noticing
that DL(u) is a convex subset of L p(X) (since � is bounded, we may without loss of
generality assume that μ(X) < ∞), and by the proof of Lemma 3.4, DL(u) is closed
in L p(X) as well. Now invoking Lemma 3.6 we obtain the desired result. ��

The next lemma yields the desired comparison theorem for functions u p.

Lemma 3.8 Let 1 < p < ∞. Let f , F be two bounded functions in N 1,∞
L (X) such

that f ≤ F on X\�, and let u p, Up be the two respective minimizers of J p
f and J p

F .
Then u p ≤ Up on �.

Proof Since both u p andUp are Lipschitz continuous on X , and since u p = f ≤ F =
Up on X\�, it follows that W := {x ∈ X : u p(x) > Up(x)} is an open subset of �

with u p = Up on ∂W . Suppose that W is non-empty (if W is empty, then the claim
of the lemma follows). Then u p = Up on ∂W and hence has a common L-Lipschitz
extension � to X\W . It follows from the local nature of the L p-norm that both u p

and Up solve the minimization problem J p
� on W , and hence by Lemma 3.7 we must

have u p = Up in W , which contradicts the choice of W . Thus W must be empty. This
concludes the proof of the lemma. ��
Step 3 In this step we fix a monotone increasing sequence {pk}k with 1 < pk < ∞
and {pk}k → ∞, and for each k let u pk be the function constructed in Step 1. Note that
{u pk } is an equicontinuous and equibounded sequence of C L-Lipschitz functions on
X . So, by passing to a subsequence if necessary, and noting that each u pk = f in X\�
with � compact, by the Arzela-Ascoli theorem we can assume that {u pk } converges
uniformly on X to a Lipschitz function ϕ on X , with ϕ = f on X\�.

Lemma 3.9 The function ϕ is ∞-harmonic in �.

Proof For each k ∈ N, we will denote for simplicity by gk the minimal∞-weak upper
gradient gu pk

of u pk . Now for eachfixed k0 ∈ Nwehave that
∫
�

g
pk0
k dμ ≤ L pk0 μ(�),

and so {gk}k≥k0 forms a bounded sequence in L pk0 (�). An appeal to reflexivity of
L pk0 (�) and to Mazur’s lemma gives us a convex combination subsequence of the
sequence {gk}k≥k0 that converges both in L pk0 (�) and pointwise a.e. in � (and hence
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in X ) to some non-negative Borel function ρk0 . Since each gk ≤ L a.e. in X , by a
repeat of the proof of Lemma 3.4 we see that a modification of ρk0 on a set of measure
zero makes it an upper gradient of ϕ with ρk0 ≤ L a.e. in X .

To check that ϕ is ∞-harmonic on �, consider v ∈ N 1,∞(X) such that v = f on
X\� and let gv be its minimal ∞-weak upper gradient. If ‖gv‖L∞(�) > L then as
‖ρk0‖L∞(�) ≤ L , we have the comparison (2). Therefore, without loss of generality,
we assume that gv ≤ L a.e. in �. Since v = f on X\�, we have by the pasting
lemma [7, Theorem 2.18] together with the lattice property that the extension of gv

by L to X\� is an ∞-weak upper gradient of v. Thus we have gv ≤ L a.e. in X . That
is, gv ∈ DL(v).

For each k ∈ N we know from Lemma 3.4 that

I pk
L (u pk ) =

∫

�

g pk
k dμ ≤

∫

�

g pk
v dμ.

Therefore, using Hölder’s inequality, for each k0 ∈ N and each k ≥ k0, we have that

(∫

�

g
pk0
k dμ

)1/pk0 ≤
(∫

�

g pk
k dμ

)1/pk

≤
(∫

�

g pk
v dμ

)1/pk

≤ ‖gv‖L∞(�).

As pointed out above, ρk0 ≤ L a.e. in X . An argument analogous to the one given
in the proof of Lemma 3.4 also tells us that ρk0 is an ∞-weak upper gradient of ϕ.
Therefore gϕ ≤ ρk0 a.e. in X . Since ρk0 is a weak limit of {gpk }k≥k0 in L pk0 (�), it
follows by letting k → ∞ that

(∫

�

g
pk0
ϕ dμ

)1/pk0 ≤
(∫

�

ρ
pk0
k0

dμ

)1/pk0 ≤ ‖gv‖L∞(�).

Now letting k0 → ∞ we obtain

‖gϕ‖L∞(�) ≤ ‖gv‖L∞(�). (7)

We now need to prove the above inequality for every open subset V ⊂ � rather than
just �, and for every v ∈ N 1,∞(V ) such that v = ϕ on X\V . To do so, consider
first a connected component U of V . Note that, because of the quasiconvexity of X ,
each connected component of V is an open set. Furthermore, since � is connected
and U ⊂ �, it follows that ∂U is non-empty and we have v = ϕ on ∂U . Thus
the extension of v by ϕ to X\U is a test function for checking ∞-harmonicity of
ϕ in U . Now for each k ∈ N consider the problem of minimizing the functional
I pk

L,U (·) considered in (6) over all u ∈ N 1,∞
L (X) for which u = ϕ on ∂U . As in

Lemma 3.4, for each k ∈ N we obtain a minimizing function wpk ∈ N 1,∞
L (X) such

that J pk
ϕ,U = I pk

L,U (wpk ). See (6) for the definition of J pk
ϕ,U . As before, {wpk }k is an

equicontinuous and equibounded sequence of Lipschitz functions on X . Then, there
is a subsequence {wpk }k that converges uniformly on X to some Lipschitz function ψ

(in the same manner that we have obtained ϕ). Then as in (7), for every u ∈ N 1,∞(U )
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such that u = ϕ on X\U , ‖gψ‖L∞(U ) ≤ ‖gu‖L∞(U ). In particular,

‖gψ‖L∞(U ) ≤ ‖gv‖L∞(U ).

Since {u pk }k converges uniformly to ϕ in X , for each ε > 0 there is some kε ∈ N such
that whenever k ∈ N with k ≥ kε,

wpk − ε = ϕ − ε < u pk < ϕ + ε = wpk + ε on X\U .

FromLemma 3.5we know that u pk is aminimizer J pk
u pk ,U . Now by Lemma 3.8, applied

to the pair of functions wpk − ε and u pk on U , and again to the pair of functions u pk

and wpk + ε on U ,

wpk − ε ≤ u pk ≤ wpk + ε on U .

Thus, letting k → ∞, we obtain that ψ − ε ≤ ϕ ≤ ψ + ε on V whenever ε > 0, that
is, ψ = ϕ on U . Thus from Lemma 2.12 we have that gψ = gϕ a.e. on U . Then

‖gϕ‖L∞(U ) = ‖gψ‖L∞(U ) ≤ ‖gv‖L∞(U ) ≤ ‖gv‖L∞(V ).

To complete the proof, note that, since X is complete and μ doubling, we have that
X is a proper metric space, that is, every closed ball in X is compact (see, e.g. pg.
102 in [23]). In particular X is separable, and the open set V has at most a countable
number of connected components. Then we obtain that ‖gϕ‖L∞(V ) ≤ ‖gv‖L∞(V ) as
required. ��

The above three steps together complete the proof of Theorem 3.3.

4 Coincidence of∞-harmonicity and AMLEs under the assumption
of∞-weak Fubini property

In this section we compare the notions of ∞-harmonicity and AMLE. We show that
if X satisfies an ∞-weak Fubini property, then the two notions coincide.

In [26] it was shown that if themetric measure space supports a p-Poincaré inequal-
ity for some finite p ≥ 1 and satisfies a notion of weak Fubini property associated
with the index p, then a function is an AMLE if and only if it is ∞-harmonic. In our
paper we only require X to satisfy an ∞-weak Fubini property (see below). Note that
∞-weak Fubini property implies that X supports an∞-Poincaré inequality. However,
the satisfaction of a weak Fubini property as in [26] does not imply the support of
a p-Poincaré inequality, but does imply the satisfaction of ∞-weak Fubini property,
which in turn implies the support of an∞-Poincaré inequality. As described in Sect. 2,
there are metric measure spaces equipped with a doubling measure and supporting an
∞-Poincaré inequality, but supporting no p-Poincaré inequality, 1 ≤ p < ∞. Recall
the definition of Mod∞(�) of a family � of curves from Definition 2.1.
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Definition 4.1 We say that (X , d, μ) satisfies an∞-weak Fubini property if there exist
constants C > 0 and τ0 > 0 such that, for every 0 < τ < τ0 and for every pair of
balls B1, B2 in X with dist(B1, B2) > τ · max{diam(B1), diam(B2)}, we have that
Mod∞ (�(B1, B2, τ )) > 0, where�(B1, B2, τ ) denotes the family of all paths γ from
B1 to B2 with �(γ ) ≤ dist(B1, B2) + Cτ .

Given a subset N of a metric measure space X , we say that a curve γ is transversal
to N ifH1(γ −1(N )) = 0. The terminology of transversality is from [9–11]. The next
characterization of ∞-weak Fubini property will be useful to us.

Proposition 4.2 The space (X , d, μ) satisfies an ∞-weak Fubini property if and only
if for every set N ⊂ X with μ(N ) = 0 and every ε > 0, for each pair of distinct points
x, y ∈ X, there is a rectifiable curve γ transversal to N, with end points x, y and such
that �(γ ) ≤ d(x, y) + ε. Moreover, if X satisfies an ∞-weak Fubini property, then X
supports an ∞-Poincaré inequality.

Proof Note first that the support of ∞-Poincaré inequality is a consequence of ∞-
weak Fubini property, and this can be seen by following the proof of (b) ⇒ ( f ) given
in [17, Theorem 3.1.].

Suppose first that for every null set N ⊂ X and ε > 0, for each x, y ∈ X there is
a transversal curve γ with end points x, y and �(γ ) ≤ d(x, y) + ε. Let B1, B2 be as
in Definition 4.1 with τ = ε. If, with C = 2, we have Mod∞ �(B1, B2, ε) = 0, then
there is a non-negative Borel measurable function ρ such that ρ = 0 μ-a.e. in X and
for all γ ∈ �(B1, B2, ε) we have

∫
γ

ρ ds = ∞ (see Remark 2.2). Let N = {x ∈ X :
ρ(x) > 0}. We choose x1 ∈ B1 and x2 ∈ B2 such that

d(x1, x2) ≤ dist(B1, B2) + ε.

Then by assumption of ρ we have μ(N ) = 0 and so there is a transversal curve γ0
connecting x1 and x2 such that �(γ0) ≤ d(x1, x2)+ε. But thenwe have

∫
γ0

ρ ds = 0 <

∞, and �(γ0) ≤ dist(B1, B2)+2ε, which means that γ0 ∈ �(B1, B2, ε), contradicting
the choice of ρ. Thus we must have Mod∞ (�(B1, B2, ε)) > 0, that is, an ∞-weak
Fubini property is satisfied.

Conversely, suppose X satisfies an ∞-weak Fubini property. Let N ⊂ X with
μ(N ) = 0, ε > 0, and x, y ∈ X be two distinct points. Choose ε > 0 such
that τ < min{ε, τ0, d(x, y)}/(10C). Let B1, B2 be the balls of radius τ , centered
at x and y respectively. These balls satisfy the hypotheses in Definition 4.1, and so
Mod∞ �(B1, B2, τ ) > 0. Thus we can find xτ ∈ B1, yτ ∈ B2 and a transversal
rectifiable curve γτ with end points xτ , yτ such that �(γτ ) ≤ dist(B1, B2) + Cτ .

By choosing τ to be small enough, we can ensure that �(γτ ) ≤ d(x, y) + ε
2 .

Note that d(x, xτ ) < τ and d(y, yτ ) < τ , and so by the ∞-Poincaré inequality (a
consequence of the ∞-weak Fubini property as noted above), there exist curves βτ

connecting x to xτ and ατ connecting y to yτ such that �(βτ ) < Cτ and �(ατ ) < Cτ ,
withH1(β−1

τ (N )∪α−1
τ (N )) = 0. The concatenation γ = ατ ∗γτ ∗βτ is a transversal

rectifiable curve connecting x to y with

�(γ ) ≤ d(x, y) + ε
2 + 2Cτ.
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By choosing τ small enough so that we also have 2Cτ < ε/2, we obtain the result. ��
Now, we define a geodesic distance on themetric measure space by using the notion

of transversality for a given null set. This distance has been used in [9–11].

Definition 4.3 Let X be a metric measure space. For each null set N in X we define

d̂N (x, y) = inf{�(γ ) : γ is a curve transversal to N and connecting x to y}.

It is easily seen that for null sets N ⊂ X , d̂N is an extended metric on X , in the
sense that d̂N can possibly take infinite values (since the infimum of the empty set
is ∞). Furthermore, if X supports an ∞-Poincaré inequality, then by Theorem 2.10
there exists C ≥ 1 such that for each null set N ⊂ X ,

d(x, y) ≤ d̂N (x, y) ≤ Cd(x, y). (8)

The next result shows that, if a metric measure space X supports an ∞-Poincaré
inequality, then there is a bi-Lipschitz equivalent length metric on X that makes X
satisfy the ∞-weak Fubini property. In the proof, we use some ideas from [10].

For x, y ∈ X we set

d̂(x, y) = sup{d̂N (x, y) : N null set in X}. (9)

Proposition 4.4 Let (X , d, μ) be a complete metric measure space with μ doubling
and supporting an ∞-Poincaré inequality. Then the following properties are satisfied:

(a) There exists C ≥ 1 such that d(x, y) ≤ d̂(x, y) ≤ Cd(x, y) whenever x, y ∈ X.
(b) d̂ is a length metric on X and (X , d̂, μ) satisfies an ∞-weak Fubini property.
(c) (X , d, μ) satisfies an ∞-weak Fubini property if and only if d = d̂.
(d) For every domain � in X, a function u on � is ∞-harmonic in � with respect to

d̂ and μ if and only if it is ∞-harmonic with respect to d and μ.

Proof From the discussion preceding (8) we have that d̂ is a metric on X and also
that (a) holds.

In order to complete the proof we will need several claims.

Claim 1. For every x, y ∈ X and every ε > 0, there exists a null set E ⊂ X so that
d̂(x, y) = d̂E (x, y). Indeed, for each j ∈ N there exists a null set E j ⊂ X such that

d̂(x, y) ≤ d̂E j (x, y) + 1

j
.

It suffices now to consider N := ⋃∞
j=1 E j . Then for every j we have d̂E j ≤ d̂E and

so

d̂(x, y) ≤ d̂E (x, y) + 1

j
≤ d̂(x, y) + 1

j
.
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898 E. Durand-Cartagena et al.

Letting j → ∞, we obtain that d̂(x, y) = d̂E (x, y) as desired.
Our next Claim follows at once, taking into account that, since X is complete and

μ is doubling, X is separable.

Claim 2. Fix a countable dense subset D of X . There exists a null set M ⊂ X such
that d̂(p, q) = d̂M (p, q) for every p, q ∈ D.

Indeed, for every x, y ∈ X , Claim 1 provides a null set Exy (depending on x and
y) such that d̂(x, y) = d̂Exy (x, y). If we choose M = ⋃

x,y∈D Exy , then for p, q ∈ D

we have d̂(p, q) = d̂E pq (p, q) ≤ d̂M (p, q) ≤ d̂(p, q), and so Claim 2 follows.
Now denote by � and �̂ the corresponding length functionals associated to d and d̂,

respectively.

Claim 3. For every curve γ in X transversal to the set M , we have that �(γ ) = �̂(γ ).
In order to prove Claim 3, first note that, since d ≤ d̂, we have � ≤ �̂. Let γ :

[a, b] → X be transversal to M . To obtain the reverse inequality, fix ε > 0 and
choose a subdivision P = {a = t0 < t1 < · · · < tn = b} of [a, b] such that

�̂(γ ) ≤
n∑

i=1

d̂(γ (ti−1), γ (ti )) + ε.

For each i = 1, 2, . . . , n we obtain an estimate of d̂(γ (ti−1), γ (ti )) as follows. First
choose pi , qi ∈ D such that d̂(pi , γ (ti−1)) < ε/n and d̂(qi , γ (ti )) < ε/n. Since X
supports an ∞-Poincaré inequality, by [17, Theorem 3.1] there exist a curve β from
pi to γ (ti−1) and a curve α from γ (ti ) to qi , both transversal to M , such that �(α) <

C1ε/n and �(β) < C1ε/n, with the constant C1 depending only on the doubling
constant and the constants related to the Poincaré inequality. Then the concatenation
σ = α ∗ (γ |[ti−1,ti ]) ∗ β is a curve connecting pi and qi , transversal to M , and from
Claim 2 and the definition of d̂M we have d̂(pi , qi ) = d̂M (pi , qi ) ≤ �(σ ). Thus, for
each i = 1, 2, . . . , n,

d̂(γ (ti−1), γ (ti )) ≤ 2ε/n + d̂(pi , qi ) ≤ 2ε/n + �(α) + �(γ |[ti−1,ti ]) + �(β)

≤ 2[1 + C1]ε/n + �(γ |[ti−1,ti ]).

Summing up, we obtain that

�̂(γ ) − ε ≤
n∑

i=1

d̂(γ (ti−1), γ (ti )) ≤ 2[1 + C1]ε +
n∑

i=1

�(γ |[ti−1,ti ]) = 2[1 + C1]ε + �(γ ).

Letting ε → 0+, we see that �̂(γ ) ≤ �(γ ).

Claim 4. For every x, y ∈ X , every ε > 0 and every null set N ⊂ X , there exists a
curve γ from x to y, transversal to M ∪ N , such that d̂(x, y) ≤ �(γ ) ≤ d̂(x, y) + ε.

To see this, choose p, q ∈ D such that d̂(p, x) < ε1 and d̂(q, y) < ε1, where
ε1 > 0 is to be chosen below. As X supports an ∞-Poincaré inequality, we can find
as before a curve β from x to p and a curve α from q to y, both transversal to M ∪ N ,
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such that �(α) < C1ε1 and �(β) < C1ε1. On the other hand, since p, q ∈ D, from
Claim 2 above we have

d̂(p, q) = d̂M (p, q) ≤ d̂M∪N (p, q) ≤ d̂(p, q).

Therefore, there exists a curve σ from p to q, transversal to M ∪ N , such that �(σ ) ≤
d̂(p, q) + ε1. Consider then the concatenation γ = α ∗ σ ∗ β, which is a curve from
x to y transversal to M ∪ N , and satisfies

d̂(x, y) ≤ �(γ ) = �(α) + �(σ ) + �(β) ≤ 2C1ε1 + �(σ ) ≤ 2[1 + C1]ε1
+d̂(p, q) ≤ 2[2 + C1]ε1 + d̂(x, y).

We can choose ε1 = ε/[4 + 2C1] to conclude the proof of Claim 4.
Note that, as a consequence, we have that d̂ is a length metric. Furthermore, using

Proposition 4.2 again, we obtain the second part of Claim (b) as well as the Claim (c).
We next prove Claim (d). First note that, by Claim 3, the arc-length parametrization

of every curve γ in X transversal to the set M coincides for (X , d) and (X , d̂). Now, if
we denote by �+

M the family of curves in X which are not transversal to M , we know
that Mod∞(�+

M ) = 0 (because we can assume that M is a Borel set, and then see
that ∞χM is admissible for computing Mod∞(�+

M ), see [15, Lemma 5.8]). Thus if
ρ : X → [0,∞] is a Borel function, the path integral ∫

γ
ρ ds coincides for (X , d, μ)

and (X , d̂, μ) for Mod∞-almost every curve γ . This means that given a function u on
X , a function g is an ∞-weak upper gradient of u with respect to d if and only if it
is an ∞-weak upper gradient of u with respect to d̂. In particular, the corresponding
Newton-Sobolev spaces coincide: N 1,∞(X , d, μ) = N 1,∞(X , d̂, μ) isometrically.
Now the result follows from the definition of ∞-harmonicity. ��

The following example shows that Claim (b) of the above proposition is not true
without the hypothesis of ∞-Poincaré inequality.

Example 4.5 Without ∞-Poincaré inequality d̂ may possibly take infinite values, and
in particular it may not be equivalent to d. The Sierpiński carpet X from Example 2.11
does not support an ∞-Poincaré inequality and hence cannot satisfy any ∞-weak
Fubini property. Since the length metric on this carpet is bi-Lipschitz equivalent to the
Euclidean metric, it follows that the above statement holds also when X is equipped
with the length metric. To see that d̂ is not equivalent to d in this case, we consider
the set N constructed in Example 2.11. Observe that d̂N (x, y) = ∞, and so d̂ is not
equivalent to d in X .

Lemma 4.6 Suppose that (X , d, μ) is a complete metric measure space with μ dou-
bling and satisfying an ∞-weak Fubini property. Then for each u ∈ LIP∞(X) =
N 1,∞(X),

LIP(u, X) = sup
x∈X

Lip u(x) = ‖Lip u‖L∞(X) = ‖gu‖L∞(X). (10)
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Furthermore, if V ⊂ X is a non-empty open set, then for each u ∈ N 1,∞(V ) (noting
that such functions are necessarily locally Lipschitz continuous in V ),

sup
x∈V

Lip u(x) = ‖Lip u‖L∞(V ) = ‖gu‖L∞(V ). (11)

Proof Note that as Lip u is an upper gradient of u and gu is the minimal ∞-weak
upper gradient of u, we have that gu ≤ Lip u a.e. in X .

Let u ∈ LIP∞(X), and define N = {x ∈ X : Lip u(x) > ‖Lip u‖L∞(X)}. Now,
fix x, y ∈ X . Given ε > 0 take γ in X connecting x and y that is transversal to N ,
parametrized by the arc-length, such that �(γ ) ≤ d(x, y) + ε. Then

|u(x) − u(y)| ≤
∫ �(γ )

0
Lip u(γ (t))dt ≤ ‖Lip u‖L∞(X)�(γ )

≤ ‖Lip u‖L∞(X)[d(x, y) + ε].

Now, let ε → 0 and then take the supremum over x, y ∈ X to obtain LIP(u, X) ≤
‖Lip u‖L∞(X).

Replacing the role of Lip u in the above with gu and noting that the collection � of
curves for which the function-upper gradient inequality does not hold has∞-modulus
zero, there must be a set N ⊂ X with μ(N ) = 0 such that for each γ ∈ � we must
have H1(γ −1(N )) > 0, which gives the last equality in the first claim.

Let V ⊂ X be open and non-empty set, and u ∈ N 1,∞(V ) with B(x, 2r) ⊂ V
Fix r > 0 such that B(x, 2r) ⊂ V , and 0 < ε < r/2. Let x ∈ V and N = {y ∈
B(x, r) : gu(y) > ‖gu‖L∞(B(x,r))}. Then μ(N ) = 0. Note in the above inequality
that for each y ∈ B(x, r/2) there is a rectifiable curve γ with end points x, y such
that �(γ ) ≤ d(x, y) + ε, γ is transversal to N , and

|u(x) − u(y)|
d(x, y)

≤ �(γ )

d(x, y)

∫

[0,�(γ )]
gu ◦ γ ds ≤ �(γ )

d(x, y)
‖gu‖L∞(B(x,r)).

By the choice of r and ε, γ ⊂ V . It follows that Lip u(x) ≤ limr→0+ ‖gu‖L∞(B(x,r)).
From the previous inequality we also have that whenever V ⊂ X is a non-empty open
set, then

‖gu‖L∞(V ) ≤ ‖Lip u‖L∞(V ).

On the other hand, for each ε > 0 there exists z0 ∈ V such that

‖Lip u‖L∞(V ) − ε ≤ Lip u(z0) ≤ lim
r→0+ ‖gu‖L∞(B(z0,r)) ≤ ‖gu‖L∞(V ).

Therefore ‖gu‖L∞(V ) = ‖Lip u‖L∞(V ) for any non-empty open set V ⊂ X . ��
Remark 4.7 A converse of the above lemma also holds. Suppose that LIP∞(X) =
N 1,∞(X) and that (10) holds for each u ∈ N 1,∞(X). Then X satisfies an ∞-weak
Fubini property. To see this, note that under the above hypotheses, by Theorem 2.10
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we know that X supports an ∞-Poincaré inequality. Fix a set N ⊂ X with μ(N ) = 0
and consider d̂N as in Definition 4.3. It follows from Theorem 2.10 that there is a
constant C ≥ 1 with d̂N (z, w) ≤ C d(z, w) whenever z, w ∈ X . We fix y ∈ X ,
R > 1, and consider the function

u(x) = min

{
R, inf

γ

∫

γ

[1 + ∞ · χN ] ds

}
,

where the infimum is over all rectifiable curves γ connecting x to y. Note that u(x) ≤
d̂N (x, y) for each x ∈ X , and so u ∈ N 1,∞(X). Furthermore, g = 1+∞χN ∈ L∞(X)

is an upper gradient of u, and so by the hypothesis we have LIP(u, X) = ‖gu‖L∞(X) ≤
‖g‖L∞(X) = 1, that is, u is 1-Lipschitz on X . Hence for each x ∈ X and ε > 0 we can
find a curve γ connecting x to y that is transversal to N and with �(γ ) ≤ d(x, y) + ε.
Therefore, from Proposition 4.2, X satisfies an ∞-weak Fubini property.

Under the∞-weak Fubini property (which implies the∞-Poincaré inequality), we
know that LIP∞(X) = N 1,∞(X), see Theorem 2.10. Hence the property of every
u ∈ N 1,∞(X) satisfying (10) characterizes complete metric measure spaces that
satisfy an ∞-weak Fubini property. The property (10) is crucial in understanding
the connections between AMLEs and ∞-harmonic functions, see for example [26]
and [14].

Example 4.8 In this example we construct a metric measure space X ⊂ R
2 where

the measure is doubling and supports an ∞-Poincaré inequality, and a function u for
which

sup
X

Lip u > ‖Lip u‖L∞(X).

We start with the interval [0, 1], and for each n ∈ N we replace [1/(n + 1), 1/n] with
the union of the two line segments in R

2, one joining (1/n, 0) to Pn ∈ R
2 and the

other joining (1/(n + 1), 0) to Pn , where Pn is a point such that

‖Pn − (1/n, 0)‖ = ‖Pn − (1/(n + 1), 0)‖ = 1/[n(n + 1)]
= ‖(1/(n + 1), 0) − (1/n, 0)‖.

By doing this we obtain X , equipped with the restriction of the Euclidean metric from
R
2 to X , and with the measure μ = H1. Consider the function u on X given by

u(x, y) = H1(X ∩ {(s, t) ∈ R
2 : s ≥ x}).

Note that gu = 1 is a minimal ∞-weak upper gradient of u, and that for X � (x, y) 	=
(0, 0) we have Lip u(x, y) = 1. On the other hand,

Lip u(0, 0) ≥ lim sup
n→∞

u(0, 0) − u(1/n, 0)

1/n
= lim sup

n→∞

∑∞
k=n

2
k(k+1)

1/n
= lim sup

n→∞
2 = 2.

It follows that supX Lip u ≥ 2 > 1 = ‖Lip u‖L∞(X).
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Lemma 4.9 [26, Lemma 5.4] If X is proper (that is, every closed ball in X is compact)
and is a length space, then whenever V ⊂ X is a non-empty open set, we have

LIP(u, V ) = max

{
LIP(u, ∂V ), sup

z∈V
Lip u(z)

}
.

We are now ready to prove the first main theorem of this paper, Theorem 1.1.

Proof (Proof of Theorem 1.1) The existence of ∞-harmonic extensions is obtained in
Theorem 3.3. Recall that the notion of ∞-harmonicity yields the same class of func-
tions under each of the metrics d and d̂, see Proposition 4.4 (d). By Proposition 4.4 (b)
we have that (X , d̂) is a length space, (X , d̂, μ) satisfies an ∞-weak Fubini property,
and the function u := ϕ given by Theorem 3.3 is ∞-harmonic in � for (X , d̂, μ).
Also, since (X , d̂) is complete and μ doubling, we have that (X , d̂) is a proper metric
space.

By Lemma 4.6 and by Lemma 4.9, if V ⊂ � is a non-empty open set and if
v : V → R is such that v = u on ∂V , then by (11),

LIP(u, V ) = max

{
LIP(v, ∂V ), ‖gu‖L∞(V )

}

≤ max

{
LIP(v, ∂V ), ‖gv‖L∞(V )

}

= max

{
LIP(v, ∂V ), sup

z∈V
Lip v(z)

}
= LIP(v, V ).

Note that the above is with respect to the metric d̂. It follows that u is AMLE in � for
(X , d̂). Finally, by [35, Theorem 1.4] AMLEs are unique; hence the uniqueness of u.

��
The proof of Theorem 1.1 also shows that, under the ∞-weak Fubini property,

every ∞-harmonic function is an AMLE. The converse is also true, as the following
shows.

Theorem 4.10 Let X be a complete metric measure space with the measure μ be a
doubling measure satisfying an ∞-weak Fubini property. Let � be a bounded domain
in X with ∂� non-empty. If u : � → R is an AMLE in �, then u is ∞-harmonic in �.

Proof Under the hypotheses of the theorem, we know that X is a proper length space.
The result [26, Proposition 4.1] together with [26, Proposition 5.8] shows that if X is
a proper length space, then AMLEs on a domain � ⊂ X are of strong-AMLE class.
The proof of [26, Proposition 5.8] would work even if their notion of weak Fubini
property is replaced with our weaker notion of∞-weak Fubini property. The notion of
strong-AMLE of [26] agrees with our notion of ∞-harmonicity under our hypotheses
on X , see Lemma 4.6 above (more specifically, Eq. (11)). Therefore we know that
AMLEs are ∞-harmonic. ��

Combining Theorem 4.10 with Theorem 1.1 we have a proof of Theorem 1.2.
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Remark 4.11 If (X , d, μ) is a complete metric measure space with μ a doubling mea-
sure supporting an ∞-Poincaré inequality one can also guarantee the existence of an
∞-harmonic extension. Indeed, by Proposition 4.4(b), (X , d̂) is a length space and
(X , d̂, μ) satisfies an ∞-weak Fubini property. By [25] we can always find an AMLE
in (X , d̂) and by Theorem 4.10 they are ∞-harmonic with respect to d̂ and therefore
with respect to d.

In the absence of ∞-Poincaré inequality, an ∞-harmonic function need not be an
AMLE even if X is a geodesic space, as the next example shows.

Example 4.12 As in Examples 4.5 and 2.11, consider the Sierpiński Carpet X endowed
with its length metric and the corresponding Hausdorff measure. Then X is a geodesic
space, but by Remark 2.6 every u ∈ L∞(X) is ∞-harmonic, but if it is not Lipschitz
continuous on the carpet then it cannot be an AMLE.

The next example shows that ∞-weak Fubini property is crucial for Theorem 1.2.
This example can also be found in [35, Page 171], but for the reader’s convenience we
give the details here.

Example 4.13 Let X = {0}×[0,∞)∪[0,∞)×{0} ⊂ R
2 be equipped with the metric

obtained as the restriction of the Euclidean metric on R
2 to X , and with the measure

μ = H1|X . With � = {0} × [0, 1) ∪ [0, 1) × {0}, we set u : X → R by

u(x, y) =
{

x if y = 0,

−y if x = 0.

It is not difficult to see that u is ∞-harmonic on � (by noting for example that (X , d̂)

is isometric to R), but fails to be AMLE in �. To see that u is not an AMLE, we argue
as follows. For 0 < ε < 1 let Vε = {0} × [0, ε) ∪ [0, 1) × {0}, note that

LIP(u, Vε) ≥ u(ε, 0) − u(0, ε)√
2 ε

= √
2,

whereas

LIP(u, ∂Vε) = 1 + ε√
1 + ε2

<
√
2 for sufficiently small ε.

Therefore u is not AMLE on � with the boundary values u(1, 0) = 1, u(0, 1) = −1
(observe that anyAMLEof this boundary functionmust be linear on each armof�, and
symmetry considerations together with uniqueness of AMLEs would then tell us that
if such AMLE exists then it must be the above function u(x, y)). Note that (X , d, μ)

is Ahlfors 1-regular and supports an ∞-Poincaré inequality, but does not satisfy any
∞-weak Fubini property. Herewe have the existence of unique∞-harmonic extension
but no AMLE extension.
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5 Stability of∞-harmonic functions

In this section we consider sequences of ∞-harmonic functions on a complete met-
ric measure space X equipped with a doubling measure supporting an ∞-Poincaré
inequality. It is known that if X supports a p-Poincaré inequality for some 1 < p < ∞,
then a locally uniformly bounded sequence of p-harmonic functions on a fixed domain
have a locally uniformly convergent subsequence that converges to a p-harmonic func-
tion on the domain. See [30,37]. This property is known as the stability property of
p-harmonic functions. This is in general not true for∞-harmonic functions, given the
lack of Caccioppoli-type (or De Giorgi type) inequality that controls the local energy
of the ∞-harmonic function in terms of its local bound. But we have the following
weaker stability.

Consider a sequence of ∞-harmonic functions, {ui }i , of ∞-harmonic functions
on � such that each ui is L-Lipschitz continuous on X . Then by the Arzela-Ascoli
theorem, there is a subsequence, also denoted {ui }i , and a Lipschitz function u0 on
X such that ui → u0 locally uniformly in X (and hence uniformly on the bounded
domain �). We now show that u0 is ∞-harmonic in �. To see this, fix ε > 0 and note
that there is some Nε ∈ N such that whenever i ≥ Nε, we have ui − ε ≤ u0 ≤ ui + ε

on �. Let w be the unique ∞-harmonic function on � such that w = u0 on X\V , as
promised by Theorem 1.1. Given the uniqueness of ∞-harmonic solutions and given
Lemma 3.8, we have a comparison theorem for ∞-harmonic functions as well in the
manner of Lemma 3.8. Therefore on � we have ui − ε ≤ wV ≤ ui + ε, and so

wV ≤ u0 + 2ε ≤ wV + 4ε.

As the above holds for all ε > 0, we see that u0 = w on �, that is, u0 is ∞-harmonic
in �. Thus we have the following proposition.

Proposition 5.1 If {ui }i is a bounded sequence of L-Lipschitz functions on X such
that each ui is ∞-harmonic in �, then there is a subsequence that converges locally
uniformly in X to an L-Lipschitz function u0 such that u0 is ∞-harmonic in �.

Example 5.2 Let � = (0, 1) × (0, 1) ⊂ R
2 and for each k ∈ N let Fk be the sawtooth

function Fk : R → R given as the periodic extension of the function ϕk : [0, 2/k] →
R:

ϕk(t) =
{

kt when t ∈ [0, 1/k],
−kt + 2 when t ∈ [1/k, 2/k].

Then Fk is k-Lipschitz continuous and is bounded by 1, that is, Fk ∈ N 1,∞(X). Let
fk : R2 → R be given by fk(x, y) = Fk(x), and let uk be the ∞-harmonic extension
of fk to �. Then each uk is bounded by 1 on R

2, but by Lemma 4.9, we know that
uk has no locally uniformly convergent subsequence that can converge to a Lipschitz
function on �.

On the other hand, we have the following stability theorem.

123

Author's personal copy



Existence and uniqueness of∞-harmonic functions. . . 905

Theorem 5.3 For each k ∈ N let fk ∈ N 1,∞(X) and let f ∈ N 1,∞(X) such that
fk → f0 in N 1,∞(X). Let uk be the ∞-harmonic extension of fk to �. Then uk

converges locally uniformly in X to a function u0 ∈ N 1,∞(X) such that u0 is the
∞-harmonic extension of f0 to �.

Proof Since fk → f in N 1,∞(X), there is some L > 0 such that each fk and f0 is
L-Lipschitz on X , and fk converges uniformly to f0 on X . By the above proposition,
we know that every subsequence of {uk}k has a further subsequence that converges
uniformly to the unique function that is the ∞-harmonic extension of f0 to �. There-
fore the entire sequence {uk}k converges uniformly in X to a Lipschitz function u0
that is the ∞-harmonic extension of f0 to �. ��
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