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Abstract

Given a complete metric measure space whose measure is doubling and supports
an oo-Poincaré inequality, and a bounded domain €2 in such a space together with
a Lipschitz function f : 922 — R, we show the existence and uniqueness of an
oo-harmonic extension of f to Q2. To do so, we show that there is a metric that is
bi-Lipschitz equivalent to the original metric, such that with respect to this new metric
the metric space satisfies an co-weak Fubini property and that a function which is
oo-harmonic in the original metric must also be co-harmonic with respect to the new
metric. We also show that if the metric on the metric space satisfies an co-weak Fubini
property, then the notion of co-harmonic functions coincide with the notion of AMLEs
proposed by Aronsson. The notion of co-harmonicity is in general distinct from the
notion of strongly absolutely minimizing Lipschitz extensions found in Crandall et al.
(Calc Var Partial Differ Equ 13: 123-139, 2001), Juutinen (Ann Acad Sci Fenn Math
27(1):57-67, 2002), Juutinen and Shanmugalingam (Math Nachr 279(9-10):1083—
1098, 2006), but coincides when the metric space supports a p-Poincaré inequality
for some finite p > 1.
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1 Introduction

Since the pioneering work of Aronsson [2], the notions of absolute minimizing Lip-
schitz extensions (AMLEs) and oo-harmonic functions in Euclidean domains have
been extensively studied in connection with a variety of applications. We refer to the
survey [3] for general information on this subject. Recent applications of these notions
include image processing and inpainting or brain and surface warping. The articles [6]
and [29] give a good overview of such applications.

The idea behind AMLEs is simple. The Lipschitz constant of a Lipschitz function
f:Y —> Rforaset Y C R"”is denoted LIP(f, Y). Then we can construct at least
two Lipschitz extensions F : R” — R of f to R" with the same Lipschitz constant,
that is, LIP(f, Y) = LIP(F, R") as follows. We can set:

F(x) =sup{f(y) —LIP(f,Y)d(x,y) : y €Y}
for all x € R” or, we can set:
F(x) =inf{f(y) + LIP(f,Y)d(x,y) : y e Y}

for all x € R”". These two extensions were first studied by McShane [32]. Note
that the quantity LIP(F, R") does not care about the local behavior of F, only the
global behavior. Aronsson sought to take into account also the local behavior. More
precisely, given a domain €2 C R” and a Lipschitz function f on Y := 92, Aronsson
looked for a Lipschitz extension F : Q@ — R of f to Q such that in addition to
the above requirement that LIP( f, d2) = LIP(F, ), F also supports LIP(F, dV) =
LIP(F, V) forall subdomains V C €2.Functions F that satisfy this condition are called
absolutely minimizing Lipschitz extensions, or AMLEs for short. In [2], existence of
such a function was demonstrated using a variant of the Perron method. Note that such
F would equivalently satisfy the condition that whenever V C €2 is a subdomain and
Q. V — R such that ¢ = FondV,wemusthave LIP(F, V) < LIP(¢, V). Thus the
local nature of minimizing Lipschitz constant is established for AMLEs. It was also
shown in [2] and [24] that AMLEs F in Euclidean domains are oo-harmonic in the
sense that they satisfy Ay F' = 0, where

n
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In fact, a function on an Euclidean domain is an AMLE if and only if it is co-harmonic.
In the Euclidean setting, one can construct co-harmonic functions via p-harmonic
approximations, that is, p-harmonic functions in €2 that take on the value f on 92
approximate the co-harmonic functions as p — oo. While the definition of AMLEs
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Existence and uniqueness of co-harmonic functions. . . 883

requires only the metric d, the definition of co-harmonicity requires in addition the
knowledge of measure on the space as well (for the notion of weak partial derivatives).
The interested reader is referred to [3] for further information.

In applications to image processing, co-harmonic extensions are used for image
inpainting. In image inpainting an image with a patch of loss is corrected by “painting
in” the lost image. Usually it is preferable to make the extension of the image into the
lost patch as smooth as possible. For each 1 < p < oo the p-harmonic extension is
the extension F whose p-th energy J,(F) := fg IVF|P dL" is minimal amongst all
Sobolev functions with the same boundary (outside image) data. When p = 1, the
corresponding minimizer preserves edges found in the image (see for example [1]);
as p — o0, the corresponding processed image becomes smoother, with p = oo
corresponding to Lipschitz smoothness. See [34] for a survey on this subject. By the
local nature of J,, if F' minimizes the energy J,, then it does so locally as well.
This is not the case for p = oo. Thus in requiring minimization of oco-energy, we
require the minimizers to do so locally as well; this is in keeping with the behavior
of Euclidean solutions to the equation Asou = 0. In keeping with the nomenclature
that minimizers of J, are called p-harmonic, we call the global-local minimizers of
oo-energy oco-harmonic.

In the abstract setting of separable length spaces, the existence of AMLEs with given
Lipschitz boundary data was studied in [25] using Perron’s method. The existence
and uniqueness of AMLEs in general length spaces is obtained in [35] using random
games. Thanks to the development of a Sobolev theory in the setting of metric measure
spaces, the notion of p-harmonic function has been considered as well (see [7,23]).
In [26], for doubling metric measure spaces supporting a p-Poincaré inequality for
some finite p > 1, it was shown that the limit (as p — 00) of p-harmonic solutions to
the Dirichlet problem on the domain, with a given Lipschitz boundary data, yields a
so-called strongly absolutely minimizing Lipschitz extension. It was also shown there
that when X satisfies a “weak Fubini property” of exponent p, a function is an AMLE
if and only if it is a strongly absolutely minimizing Lipschitz extension. This latter
notion coincides with our notion of co-harmonic functions in the metric setting when
the metric space supports a p-Poincaré inequality for some finite p > 1. While strongly
absolutely minimizing Lipschitz extensions minimize (with respect to the L°°-norm),
both locally and globally, the local Lipschitz constant function Lip # associated with
the Lipschitz function u, the co-harmonic functions minimize the minimal co-weak
upper gradient of u (see Definition 2.5). It was shown in [12] that when the metric
space supports a p-Poincaré inequality for some finite p, the minimal p-weak upper
gradient of a Lipschitz function u agrees almost everywhere with Lip u. Since in our
setting the metric space may not support any p-Poincaré inequality for any finite
p > 1, the Euclidean notion of co-harmonicity is more naturally related to our notion
of minimizing co-weak upper gradients; hence this is the object we study in this paper.

In [20] it was shown that there are complete metric measure spaces whose measure
is doubling and supports an co-Poincaré inequality but not supporting any p-Poincaré
inequality for finite p > 1. The examples in [20] can still be addressed using the
techniques in [26] since the domain in consideration is a bounded domain, and the
failure of p-Poincaré inequality occurs only at large scales. However, the spherical-
ization of the examples in [20], using the procedure described in [31], also supports
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884 E. Durand-Cartagena et al.

an oco-Poincaré inequality but does not support any p-Poincaré inequality for finite p,
see [18,19], and the techniques of [26] fail for domains in this sphericalized space that
contain the image of infinity from the original space of [20].

In light of these examples we are interested in knowing whether, given a bounded
domain in a doubling metric measure space supporting an co-Poincaré inequality, and
given a Lipschitz function defined on the boundary of the domain, there is an oo-
harmonic function on the domain with the prescribed boundary data. Our main result
is the following:

Theorem 1.1 Let (X, d, ) be a complete metric measure space with i doubling and
supporting an oo-Poincaré inequality, and let Q@ C X be a bounded domain such that
X\ 2 has positive measure. Given a Lipschitz function f : 02 — R, there is a unique
Lipschitz function u : Q — R such that u = f on 32 and u is co-harmonic in Q.

The problem of existence of oco-harmonic functions is studied in Sect. 3, and the
corresponding result is given in Theorem 3.3. The standard technique of considering
p-harmonic extensions of the Lipschitz boundary data and letting p tend to co does
not work in our setting as in the absence of p-Poincaré inequality for finite p we do not
have control of the behavior of p-harmonic functions. Instead, we consider a different
minimization problem for each finite p, and the family of solutions to this problem is
shown to have the desirable limit as p — oo.

The question of uniqueness is related to the equivalence between AMLEs and oo-
harmonic functions. In [26], in order to obtain this equivalence, a p-weak Fubini
property with 1 < p < oo is needed for showing that one can neglect zero measure
sets when computing the Lipschitz constant of a function. In Sect. 4, we prove the
equivalence between AMLESs and co-harmonic functions under the weaker hypothesis
of co-weak Fubini property (see Definition 4.1). This is the content of the second main
result of this paper, Theorem 1.2 below.

Theorem 1.2 Let (X, d, jt) be a complete metric measure space with i doubling and
satisfying an oo-weak Fubini property. Consider a bounded domain Q C X such that
X\ has positive measure and a Lipschitz function f : 9Q2 — R. A Lipschitz function
u : Q — R is co-harmonic in Q if and only if it is an AMLE of f to Q.

In the Euclidean setting uniqueness of AMLEs for a given boundary data was
established via the tool of viscosity solutions in [24], and an alternate proof using
viscosity solutions and tug-of-war games was provided in [35]. A simpler proof of
this uniqueness is given in [4]. In the setting of Heisenberg groups, uniqueness was
demonstrated in [5]. Uniqueness for AMLEs in metric spaces that are length spaces
was established in [35, Theorem 1.4], see also [4]. In the Euclidean setting the notion
of AMLE:s coincide with the notion of co-harmonic functions, but in the metric setting
this is not the case.

Proposition 4.2 gives a simple metric characterization of co-weak Fubini property.
It shows that the link between co-weak Fubini property and the measure w is only
via p-null sets. Note that the hypotheses of Theorem 1.1 do not guarantee that the
space satisfies a weak Fubini property. Hence, to prove Theorem 1.1, we will show
that under the hypotheses of this theorem there is a bi-Lipschitz equivalent metric d
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on X such that (X, d, W) satisfies an oo-weak Fubini property, see Proposition 4.4.
We then show that a function that is co-harmonic with respect to the original metric
is also co-harmonic with respect to d, and as d does satisfy a weak Fubini property,
we then know that the function is an AMLE with respect to the metric d. Finally
invoking the uniqueness result of [4,35], we have uniqueness of functions that are co-
harmonic solutions with respect to the metric d and hence with respect to the original
metric d. Observe that Theorem 1.1 deals with co-harmonic functions; we do not
know uniqueness of AMLEs with respect to the original metric d as (X, d) need not
be a length space.

We also provide an example of a (length) space that does not satisfy any co-weak
Fubini property, and for which uniqueness of solutions to co-harmonic Dirichlet prob-
lem fails, see Example 4.12. Given the uniqueness of AMLEs, this example also shows
that there are co-harmonic functions that are not AMLEs when we do not have co-weak
Fubini property.

In the final section of this paper we study the issue of stability of oco-harmonic
functions, and show that uniform limits of oo-harmonic functions are co-harmonic.

2 Notation and definitions

In this paper we will assume that (X, d, i) is a complete metric measure space.
That is, (X, d) is a complete metric space equipped with a Borel measure @ which
is positive and finite on each ball. We also require that the measure p is doubling
on X, that is, there is a constant Cp > 1 such that whenever x € X and r > O,

w(B(x,2r)) < Cp u(B(x,r)).
Given a set A C X and a Lipschitz function u : A — R, we set for x € A,

Lipu(x) = limsup =4O g LP, A) = sup ) eI

XF#Yy—>X d(x,y) ’ X,yEA,XF#Y d(x,y)

We say that u is L-Lipschitzon A if LIP(u, A) < L. The class of all bounded Lipschitz
functions on X is denoted LIP®°(X). This class is equipped with the norm

lullLipoo(xy := sup |u(x)| + LIP(u, X).
xeX

We refer the reader to [21,23] for an exposition on path integrals in metric spaces. A
metric space (X, d) is alength space if for eachpairx, y € X,d(x, y) = inf), £(y), the
infimum being over curves with end points x, y. The metric space X is C-quasiconvex,
or quasiconvex for some C > 1, if for each pair x, y € X there is a curve y connecting
x and y with £(y) < Cd(x, y).

In the setting of non-smooth metric measure spaces, the role of derivatives is taken
on by the upper gradients (see [22]). Given a function u : X — R, we say that a
Borel-measurable function g : X — [0, oo] is an upper gradient of f if

u(y) — ()| < f ¢ ds 1
Y
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886 E. Durand-Cartagena et al.

whenever y is a non-constant compact rectifiable curve in X connecting the points x
and y, and that [, gds = oo if at least one of u(x), u(y) is not finite. We refer the
interested reader to [23,36] for more on the theory of upper gradients. Henceforth,
in this paper we will assume all rectifiable curves to be compact and non-constant;
for such curves y the arc-length integral | , 8 ds is independent of re-parametrization
of y. In places where we need the curves to be parametrized by arc-length, we will
explicitly state so.

Definition 2.1 Given a family I" of curves in X, set F (") to be the family of all Borel
measurable functions p : X — [0, oo] such that fy pds > 1 forall y € T'. We
define the co-modulus of " by

Modeo(I') = inf_ [[pllLeo(x),
peF ()

and for 1 < p < oo the p-modulus of T" is

Mod,(I') = inf /ppdu.
peF() Jx

In this paper we are only concerned with whether, given a family I' of curves in X,
we have Mod (I') is positive or zero; if it is positive, its precise value is not needed
here. In particular, we will use the following characterization.

Remark 2.2 Given a family I" of curves in X, we have Mod.(I") = 0 if and only if
there is a non-negative Borel function p that is zero a.e. in X such that f y P ds = o0
for each y € I', see [15, Lemma 5.7].

Definition 2.3 A non-negative Borel measurable function g on X is said to be a p-
weak upper gradient of a function u : X — R if the collection I" of all non-constant
rectifiable curves y in X for which the inequality (1) fails has zero p-modulus, see [28].

The Newton—SoEolev space N Lrxya < p < o00) is defined as follows. First
consider the class N7 (X) of all functions in L”(X) that have a p-weak upper gra-
dient in L?(X). For uy,uy € ]Vl”’(X) we say that uy; ~ wup if |luy — uzllLr(x) +
infyg [IgllLr(x) = 0, where the infimum is taken over all p-weak upper gradients g of
uy — uy. The relation ~ is an equivalence relation on the vector space N7 (X), and
we set N17(X) to be the collection of all equivalence classes of NP X). fACX
is a measurable set, we can consider A to be endowed with the metric d|4 and the
measure (|4, and consider the space N Lp (A).

From Remark 2.2 we have the following lemma.

Lemma 2.4 Letu € N“*°(X). Every oco-weak upper gradient g of u can be modified
on a set of measure zero so that the modification g is an upper gradient of u.

From [33, Lemma 4.1], we know that if g1, go are co-weak upper gradients of a
function u € N°(X), then g = min{gy, g2} is also an co-weak upper gradient of
u. In fact, we know from [33, Theorem 4.6] that for each u € N°°(X) there is an
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oo-weak upper gradient g, € L°(X) which is minimal in the sense that whenever
g € L®°(X) is an oo-weak upper gradient of u, we have that g, < g a.e. in X.
Furthermore, g, is unique up to sets of measure zero. By Lemma 2.4 we can also
assume that g, is an upper gradient of u.

We now define co-harmonic functions as follows. By a domain in a metric space
we mean a non-empty connected open subset.

Definition 2.5 Let X be a metric measure space, and 2 a bounded domain in X such
that X\ 2 has positive measure. We say that a function u : 2 — R is co-harmonic in
Q if it admits an extension, also denoted u, to X such that u € N'-*°(X) and whenever
V C Qisanopen setand v € N'>°(X) such that v = u on X\V, we have

lgullLooqvy = llgvlloe(v)- @)

Furthermore, we say that u € N!°(X) is co-harmonic in  with boundary data
f € NV°°(X) if u is co-harmonic in  and u = f on X\.

Remark 2.6 If N1:>°(X) = L*°(X), then for each x € X and r > 0 the function
XB(x.r) € L®(X) = N1 (X): so XB(x,r) 18 absolutely continuous on co-modulus
almost every curve in X. Hence the collection of all rectifiable curves that intersect
both B(x,r) and X \E(x, r) has zero oo-modulus. Recall that u is doubling and
supported on X; hence X is separable. As the collection of all non-constant compact
rectifiable curves in X is the union of the family I"(B(x;, r;)) of all rectifiable curves
in X intersecting both B(x;, r;) and X \B(x;,r ), with {x;}; a countable dense subset
of X and {r;}; is the set of positive rational numbers, we must have by the countable
subadditivity of modulus that the co-modulus of the collection of all non-constant
compact rectifiable curves is zero and zero is an oco-weak upper gradient of each
u € L®°(X). Thus the following three conditions are equivalent:

1. NL®(X) = L®(X);

2. With I'(X) the collection of all non-constant rectifiable curves in X,
Modoo (T'(X)) = 0;

3. For each u € L*°(X), g = 0 is an oo-weak upper gradient of u.

For X that supports any of the above three conditions, zero is an co-weak upper
gradient of each u € N"*°(X), and so each u € N1"*°(X) = L>(X) is co-harmonic,
and hence uniqueness of solutions to the Dirichlet problem for co-harmonic functions
fails here.

There are many metric measure spaces where the triviality N>>°(X) = L (X)
does not happen. For example, if X supports an oo-Poincaré inequality, then
N1 (x) # L%°(X), see [15,16]. Of such spaces, there is a collection of metric
spaces that do not support a p-Poincaré inequality for any finite p > 1, and in such
a setting the currently known approaches of constructing co-harmonic functions fail.
Thus in this paper we focus on giving a construction of co-harmonic functions that
does not rely on the existence of p-Poincaré inequality for any finite p > 1.

In the Euclidean setting, co-harmonic functions u are precisely those which satisfy
the equation Asou = 0, see for example [13] or [3, Theorem 4.13]. This notion
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depends intrinsically on the measure p as well as the metric d. The following related
notion, due to Aronsson [2] (see also [3]), relies only on the metric d. Under certain
conditions on the metric measure space X we show that both these notions coincide;
see also [26] for a discussion in the metric setting, where a stronger assumption on the
metric measure space was required. See the beginning of this section for the definition
of LIP(u, V).

Definition 2.7 Let (X, d) be a metric space, 2 a domain in X and f : 92 — R a
Lipschitz function. We say that a Lipschitz function u defined on the closure € is an
absolutely minimizing Lipschitz extension (AMLE for short) of f to Qif f = u on
9% and whenever V C Q is an open set and v : V — R is a Lipschitz function with
v =uondV, we have

LIP(u, V) < LIP(v, V).

If u is an N'-*°(2)-function that has a minimal co-weak upper gradient g, on Q
suchthat g, < La.e.in €2,and f is a Lipschitz function on X\ €2 such that L is an upper
gradient of f and u = f on 9€2, then u has an extension # = f to X\ such that the
extension g, of g, to X\ by the constant L is an co-weak upper gradient of i, see [7,
Proposition 2.39]. As a consequence, we see thatif u € N 1'(’O(ﬁ) has an co-weak
upper gradient thatis a.e. in @ bounded by L and u = f on <2, then u has an extension
i € N*®(X) to X that has an co-weak upper gradient dominated a.e. in X by L.

Lemma2.8 Let 2, G be two non-empty open subsets of X, G C Q with
dist(G, X\Q) > 0, and u € N"P(Q), f € NV®(X). Ifu = f on 3G, then the
function u given by

ulx) ifxeaG,
f&x) ifx e X\G

ux) =

bPx),

isin N,
Proof To prove the lemma, it suffices to show that & has a p-weak upper gradient
in L” (X). Note that, since f e N1 (X)), it has an upper gradient in L°°(X), and

loc

in particular in Lﬁ)C(X ). We set ug = u — f, and then it suffices to show that uy €

Nllo’f (X).Letg € Lﬁ)C(Q) be an upper gradient of # — f in 2, and let g be the zero
extension of g to X'\ 2. We wish to show that g is a p-weak upper gradient of u¢ in X.

Let y be a non-constant compact rectifiable curve in X, and let x, y denote the two
end points of y. It suffices to consider only y for which x € G and y € X\G. In this
case we have that ug(y) = 0. Then, with y : [a, b] — X and y(a) = x, there is some
to € (a, b] such that y((a, t9)) C G. Let fy be the largest such number in (a, b]. Note
that as y ¢ G, we must have y (t9) € G and ug(y (t9)) = u(y (t9)) — f(y(tp)) = 0.
From the facts that go o ¥ = g o y on [a, fy) and g is an upper gradient of u — f, we
can infer that

lo(x) — o] = [u(x) — () — W o)) — £y ()] < / ¢0ds.

14 |[a,t0]
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It now follows that g¢ is a p-weak upper gradient of u( and so ug € Nllo’cp (X). O

We next introduce the notion of p-Poincaré inequalities, which play a main role in
this paper.

Definition 2.9 Given 1 < p < oo, we say that a metric measure space X supports a p-
Poincaré inequality if there are positive constants C, A such that whenever B = B(x, r)
is aball in X and g is an upper gradient of u,

1/p
][|M_MB|dMECV (][ gpdu) ,
B AB

where the right-hand side of the above is replaced with Cr||g|| =@ ) when p = oo.
Here ug := u(B)™' [udp =: fyudu is the average of u on the ball B, and
AB := B(x, Ar).

By Holder’s inequality, we know that every metric measure space supporting a
p-Poincaré inequality for some 1 < p < 0o must necessarily support an co-Poincaré
inequality. The converse need not hold true, as demonstrated in [20].

The following geometric characterization of co-Poincaré inequality was established
in [16,17].

Theorem 2.10 ([17, Theorem 3.1]) Let (X, d, i) be a complete metric measure space
with  be doubling. Then the following are equivalent:

(1) X supports an co-Poincaré inequality.

(2) There exists a constant C > 1 such that if u € NV (X) with an co-weak
upper gradient g € L°°(X), then u is C||g| 1o x)-Lipschitz continuous on X.

(3) There is a constant C > 1 such that whenever N C X with (N) = 0 and
X,y € X with x # Yy, then there is a rectifiable curve y with end points x, y such
that £(y) < Cd(x, y) and H' (y 1 (N)) = 0.

Note that each of the criteria listed above imply that X is connected.

Example 2.11 Let (X, d, w) be the Sierpinski carpet equipped with the Euclidean met-
ric and the corresponding Hausdorff measure. Then X does not support an co-Poincaré
inequality (see [16, Example 4.14]). From the discussion in [8], we know the existence
ofaset N C [0, 1] such that, with the Hausdorff measure on X denoted by wu, the
“first coordinate projection” TTju of u to [0, 1] given by IT{u(A) = M(Hfl(A))
for Borel sets A C [0, 1] sees N as of measure zero but H! (ﬁ) = 1. Let
N = (nl—l(ﬁ) U n;l(ﬁ)). Here IT; and IT, are the first coordinate and the sec-
ond coordinate projection maps from X to the interval [0, 1]. Note that u(N) = O.
Given any non-constant curve y in X, by breaking the curve up into two sub-curves if
necessary, we can assume that its end points x, y satisfy (x1, x2) = x =y = (¥1, »2).
Then

HU (y 7 N)) = H (y N N) = max{H (TT; o y (y " (N))), H' (Tl 0 y (y T (N)))}
> max{|x; — yil, [x2 — y21} > 0.
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Hence Modyo (I' (X)) = 0 where I' (X) is the collection of all non-constant rectifiable
curves in the carpet X. By Remark 2.6, we obtain N-*°(X) = L*(X). Moreover, for
each distinct pair x, y € X and each rectifiable curve y connecting x to y we must
have that H'(y ~!(N)) > 0, with N independent of x, y. Therefore in some situations
where oco-Poincaré inequality fails, we might have a universal choice of null set N
(that is, independent of x, y) that violates the third condition of the above theorem.

We end this section with a technical lemma that will be needed in Sect. 3, showing a
locality property of minimal co-weak upper gradients of functions in N'1-°°(X). This
lemma follows from [7, Theorem 2.18], [33, Lemma 4.1] and Lemma 2.4.

Lemma 2.12 Let X be a metric measure space and E a measurable subset of X.
Suppose that u, v € N (X) are such that u = v on E. Then g, = g, a.e. on E.

3 Existence of co-harmonic functions

In this section we show the existence of an co-harmonic function on a domain 2 C X
with prescribed Lipschitz boundary data. To do so, we solve a variational (minimiza-
tion) problem corresponding to each exponent p > 1 and then let p — o0 to obtain
the solution. A similar technique was employed in [26] where the variational problem
was to minimize the L”-energy and obtain a p-harmonic function for each finite p;
however, without a p-Poincaré inequality for some finite value of p, we have no con-
trol over the behavior of p-harmonic functions, and hence the variational problem we
consider is different.

Standing assumptions Throughout this section we assume that (X, d, ) is a complete
metric measure space with ¢ doubling and supporting an co-Poincaré inequality. We
fix a bounded domain 2 C X and we assume that w(X\€2) > 0 in order to avoid
trivial statements.

Definition 3.1 Given L > 0, let N z’oo(X) be the collection of all functions u in

N1-%°(X) that have an upper gradient g with ||g|[zo~x) < L.Foru € NI{’OO(X) we
set Dy (u) to be the collection of all upper gradients g of u such that ||g ||z~ x) < L.

Let f : X — R with f € N*(X). In this section we establish the existence of
a function u € N'°°(X) that is co-harmonic in  with boundary data f. Since X
is complete and supports an co-Poincaré inequality, by Theorem 2.10 we know that
every function in Ni’OO(X) is C L-Lipschitzon X, soas N'*°(X) = [, - NIIA’OO(X),
f is Lipschitz. Let L > 0 such that Dy (f) # 9.

Definition 3.2 Fix 1 < p < oo. Foru € Nz’oo(X) we set

17 (u) :=/Qg5du=inf{/9gpdu : geDL(u)}, A3)

I =it {10 @) we NEX00: u= f on x\@}. @)
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Theﬂ’em 3.3 Given a Lipschitz function f : X — R, there is a Lipschitz function
¢ : 2 — Rsuch that ¢ = f on Q2 and ¢ is co-harmonic in Q.

If f:0Q2 — Risan L-Lipschitz function, then using the McShane extension
theorem [32] (see Sect. 1 of this paper), we can extend f to a bounded Lipschitz
function defined on X. Hence in the above theorem it suffices to prescribe f only on
d%2. The remainder of this section is devoted to the proof of this theorem. The proof
is divided into different steps:

Step 1 Fix L > 0 such that f is L-Lipschitz on X, and note that the constant function
g = L is an upper gradient of f. For every 1 < p < oo, we will show that there is a
Lipschitz solution u, of the variational problem defined in (4) such that u, = f on
X\ Q.

Note that JJIZ < If(f) < L?n(2) < 0o, and hence we can find a sequence {uy }x C
NLl’oo(X) such that ux = f on X\Q and limg I} (ux) = Jj’-’. Since each uy is CL-
Lipschitz, the family {u}, is equicontinuous on X, and since uy = f on X\ with
bounded, it follows that the family is also equibounded on X. Thus an invocation of the
Arzela-Ascoli theorem leads us to conclude that, passing to a subsequence if necessary,
there is a C L-Lipschitz function u, on X such that {uy}; — u, uniformly on X.

Lemma3.4 Foreach 1 < p < o0 we have that u), € Nz’oo(X), up, = f on X\,
and

Jf =10 (up) = /Q(gu,,)p dp. (&)

Proof Since {ur}x — u, uniformly on X, we only need to consider upper gradients
of u, now. By passing to a subsequence if needed, for each k we can find an upper
gradient g of uy such that gy < L a.e. on X and fQ g,f du < JJIf + 1/k.

Fix abounded domain 2 in X such that 2 € 2. Thus {gg } is abounded sequence
in L?(£2p). By the reflexivity of L? (£2¢), taking a further subsequence we may assume
that {gx}« is weakly convergent in L”(£2) to a non-negative Borel function g, €
L?(L20). By Mazur’s lemma, there is a convex combination subsequence {/y }; (with
hp = Ziv:(],? Ak, j&k) such that {Ar}x — gp bothin L”(£20) and pointwise outside a set
E C Qo with w(E) = 0. From [27, Lemma 3.1] we know that g, is a p-weak upper
gradient of u,, on €. Note that g, is defined only on €. On the other hand, since
up = f on o\, the extension of each uy by f to X\Qq is also in N 1-°°(X) with the
extension of g, by L to X\ Qg a p-weak upper gradient of #, on X, see Lemma 2.8.
Because each g, < L a.e.in X, we have that g, < L on X\(E'U Uk E}), where each
Ey = {gx > L}; and note that by assumption on g, we have w(Ey) = 0. However, we
do not know that g, is an upper gradient of u,. Thus we need to modify g, suitably
as follows.

Setting F = EU J, Ex,wehave u(F) = 0.Let I‘; denote the collection of all non-
constant rectifiable (arc-length parametrized) curves y in X such that H! ()/_l (F)) >
0. Then, by considering p = 0o - xr in Remark 2.2, we obtain that Modoo(F}') =0.
For rectifiable non-constant curves y in X that do not belong to F;f we know that
{hkoylk — gpovy H'-a.e. on the domain of y, and that a.e. there we also have each
hi < L and g, < L. Therefore by the Lebesgue dominated convergence theorem,
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limy fy hids = fy gp ds. Denoting the endpoints of ¥ by x, y, and noting that the

convex combination sequence vy = Ziv:(];c) Ak, juk, with N (k), Ax ; as in the choice
of hy, converges uniformly to u, as well on X, we have that

lup(x) —up(y)] = lim v (x) — v (Y] = h,?l/ hids = / gpds.
Y 14

Therefore g, is an co-weak upper gradient of u, (this is stronger than saying that g,
is a p-weak upper gradient of u ), with (1) being satisfied for all rectifiable curves in
X that are not in F;. Therefore g, := g, + ooxr is an upper gradient of u, on X

such that g, < L on X\F. Hence u, € NLI’OO(X), and by construction, u, = f on
X\Q. This also means that /; (1)) > Jf.

Finally, since hy — g, in L?(Q) we have that limg [, hy diw = [, §) d . By the
lower continuity of L”-norms, we deduce that

J,f’flf(up)S/?,’?duflim/ gl du < 5.
: Q kJo

Suppose now that g € Dy, (u). Then by the lattice property of co-weak upper gradients
(see [33, Lemma 4.1]) we have that min{g, g} is an co-weak upper gradient of u .
Hence by the minimality of [LP (up) we must have g, < g a.e.in €2, thatis, g, = gu,.
O

Now let U be a subdomain of €2, and consider the analogous variational problem
on U with boundary data u,. For u € Nz’OO(X) we set If’U(u) to be as in (3), with

2 replaced with U, and for functions w € N Loo( X)), we set

J£U:=inf{/g5du:ueNz’OO(X);uzwonaU}. 6)
’ U

The next Lemma shows that u, solves the minimization problem (6).

Lemma3.5 Letl < p <ocoandv € Ni’OO(X) such that v =up, on dU. Then

/(gup)”duif gy du.
U U

Proof Consider the Lipschitz function w = v - xy +u,, - xx\v. By Lemma 2.12, we

have g,y = gy a.e.on U and gy, = gy, a.e. on X\U. In particular w € Nz’oo(X), and
since w = f on X\€2,

/(gu,,)”dﬂ=l}? Slf(w)sfgidu=/ gé’deL/ (8u,)’ dp.
Q Q U Q\U
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Step 2 In this step we show that the function u, obtained in Step 1 is unique and
satisfies the comparison property. We start with the following lemma, which shows a
strong locality property for functions in N'1-%°(X).

The following lemma can be proven by showing with the aid of co-Poincaré inequal-
ity that such u is locally constant on €2, and then using the fact that €2 is connected.

Lemma3.6 Let u € N"*°(X) and suppose that g € L>(X) is an upper gradient of
u such that g = 0 a.e. in Q. Then u is constant on Q.

Next we show uniqueness of u .
Lemma3.7 Let 1 < p < oc. If v, is another minimizer of J%, then v, = u,,.

Proof The proof of this follows exactly as in [12, Theorem 7.14] (see [7, Theorem 7.2]
for a more detailed proof, considering the obstacle v = —oo there), upon noticing
that Dy (1) is a convex subset of L”(X) (since €2 is bounded, we may without loss of
generality assume that ;1 (X) < 00), and by the proof of Lemma 3.4, Dy (u) is closed
in L?(X) as well. Now invoking Lemma 3.6 we obtain the desired result. O

The next lemma yields the desired comparison theorem for functions u .

Lemma3.8 Let 1 < p < o0. Let f, F be two bounded functions in Ni’oo(X) such
that f < F on X\, and let up, U, be the two respective minimizers of J;’ and J{,’.
Thenu, < U, on Q. ‘

Proof Since both u,, and U, are Lipschitz continuous on X, and sinceu, = f < F =
Up on X\, it follows that W := {x € X : u,(x) > U,(x)} is an open subset of 2
with u, = U, on 0W. Suppose that W is non-empty (if W is empty, then the claim
of the lemma follows). Then u, = U, on dW and hence has a common L-Lipschitz
extension ¥ to X\ W. It follows from the local nature of the L”-norm that both u,
and U, solve the minimization problem Jq’; on W, and hence by Lemma 3.7 we must
have u, = U, in W, which contradicts the choice of W. Thus W must be empty. This
concludes the proof of the lemma. O

Step 3 In this step we fix a monotone increasing sequence {px}x with 1 < px < oo
and { py }x — 00, and for each k let u ,, be the function constructed in Step 1. Note that
{up, } is an equicontinuous and equibounded sequence of C L-Lipschitz functions on
X. So, by passing to a subsequence if necessary, and noting thateach u,, = f in X\ Q
with € compact, by the Arzela-Ascoli theorem we can assume that {u pr} converges
uniformly on X to a Lipschitz function ¢ on X, with ¢ = f on X\Q.

Lemma 3.9 The function ¢ is co-harmonic in Q.

Proof Foreach k € N, we will denote for simplicity by g the minimal co-weak upper
gradient g, ofu ,, . Now foreach fixedko € Nwehave that Jo g,fko dp < LPo (),

and s0 {gx}k>k, forms a bounded sequence in L% (£2). An appeal to reflexivity of
LP% (2) and to Mazur’s lemma gives us a convex combination subsequence of the
sequence {gx x>k, that converges both in L (2) and pointwise a.e. in € (and hence
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in X) to some non-negative Borel function py,. Since each gy < L a.e.in X, by a
repeat of the proof of Lemma 3.4 we see that a modification of py, on a set of measure
zero makes it an upper gradient of ¢ with pg, < L a.e.in X.

To check that ¢ is co-harmonic on €2, consider v € N 1,20 (X) such that v = f on
X\ and let g, be its minimal co-weak upper gradient. If | gy|lz~(q) > L then as
| ok Il Loo(2) < L, we have the comparison (2). Therefore, without loss of generality,
we assume that g, < L a.e. in Q. Since v = f on X\, we have by the pasting
lemma [7, Theorem 2.18] together with the lattice property that the extension of g,
by L to X\£2 is an co-weak upper gradient of v. Thus we have g, < L a.e. in X. That
is, gy € D (v).

For each k € N we know from Lemma 3.4 that

Ifk(upk)=/gg,’:k duifggf"dﬂ-

Therefore, using Holder’s inequality, for each ky € N and each k > k¢, we have that

e 1/ pigy » 1/pk 1/pk
<][ Odu> < (fg gk"du> < <]€2 ghx du) < llgvllzog)-

As pointed out above, pr, < L a.e. in X. An argument analogous to the one given
in the proof of Lemma 3.4 also tells us that py, is an co-weak upper gradient of ¢.
Therefore g, < pk, a.e. in X. Since py, is a weak limit of {g,, }x>k, in LPko (Q), it
follows by letting k — oo that

o 1/PA0 l/pko
(][ 0 du> <][ ,okoo d,u) < lIgvllz=(@)-

Now letting kg — oo we obtain

lgplloe) < llgullLe(n)- @)

We now need to prove the above inequality for every open subset V C 2 rather than
just ©, and for every v € N'*°(V) such that v = ¢ on X\V. To do so, consider
first a connected component U of V. Note that, because of the quasiconvexity of X,
each connected component of V is an open set. Furthermore, since 2 is connected
and U C £, it follows that dU is non-empty and we have v = ¢ on dU. Thus
the extension of v by ¢ to X\U is a test function for checking co-harmonicity of
¢ in U. Now for each k € N consider the problem of minimizing the functional
17 kU() considered in (6) over all u € N °°(X) for which u = ¢ on dU. As in
Lemma 3.4, for each k € N we obtain a minimizing function w,, € N °°(X) such
that ka = ka y (wp,). See (6) for the definition of Jq[:" As before, {wpk}k is an
equlcontmuous and equibounded sequence of Lipschitz functions on X. Then, there
is a subsequence {w, } that converges uniformly on X to some Lipschitz function v
(in the same manner that we have obtained ¢). Then as in (7), forevery u € N Loo(ryy
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such that u = ¢ on X\U, lIgy lz>~w) < llgullze). In particular,

gy llLew) < llgullLew)-

Since {up, }x converges uniformly to ¢ in X, for each & > 0 there is some k. € N such
that whenever k € N with k > k.,

Wy —E=@—€<lUp <@+e=wy +conX\U.

From Lemma 3.5 we know that u ,,, is a minimizer Jup sz .v-Now by Lemma 3.8, applied

to the pair of functions w,, — ¢ and u, on U, and again to the pair of functions u p,
and wy, +eonU,

Wy, —& S Up, < wp, +eonU.

Thus, letting k — oo, we obtain that ¢ — & < ¢ < ¢ + ¢ on V whenever ¢ > 0, that
is, ¥ = @ on U. Thus from Lemma 2.12 we have that g, = g, a.e. on U. Then

lgpllLew) = llgyllLew) < llgvllLew) < llgvllLoev).

To complete the proof, note that, since X is complete and p doubling, we have that
X is a proper metric space, that is, every closed ball in X is compact (see, e.g. pg.
102 in [23]). In particular X is separable, and the open set V has at most a countable
number of connected components. Then we obtain that ||gyllLov) < lIguvllLe(v) as
required. O

The above three steps together complete the proof of Theorem 3.3.

4 Coincidence of co-harmonicity and AMLEs under the assumption
of co-weak Fubini property

In this section we compare the notions of co-harmonicity and AMLE. We show that
if X satisfies an co-weak Fubini property, then the two notions coincide.

In [26] it was shown that if the metric measure space supports a p-Poincaré inequal-
ity for some finite p > 1 and satisfies a notion of weak Fubini property associated
with the index p, then a function is an AMLE if and only if it is co-harmonic. In our
paper we only require X to satisfy an co-weak Fubini property (see below). Note that
oo-weak Fubini property implies that X supports an co-Poincaré inequality. However,
the satisfaction of a weak Fubini property as in [26] does not imply the support of
a p-Poincaré inequality, but does imply the satisfaction of co-weak Fubini property,
which in turn implies the support of an co-Poincaré inequality. As described in Sect. 2,
there are metric measure spaces equipped with a doubling measure and supporting an
oo-Poincaré inequality, but supporting no p-Poincaré inequality, 1 < p < oco. Recall
the definition of Mod (I") of a family I' of curves from Definition 2.1.
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Definition 4.1 We say that (X, d, w) satisfies an co-weak Fubini property if there exist
constants C > 0 and tp > 0 such that, for every 0 < v < 719 and for every pair of
balls By, B, in X with dist(By, By) > t - max{diam(B;), diam(B,)}, we have that
Modeo (I'(B1, B2, 7)) > 0, where I'(B;, B>, T) denotes the family of all paths y from
By to By with £(y) < dist(By, By) + Cr.

Given a subset N of a metric measure space X, we say that a curve y is transversal
to N if H! (J/’1 (N)) = 0. The terminology of transversality is from [9—11]. The next
characterization of co-weak Fubini property will be useful to us.

Proposition 4.2 The space (X, d, i) satisfies an co-weak Fubini property if and only
if for every set N C X with u(N) = 0 and every ¢ > 0, for each pair of distinct points
x,y € X, there is a rectifiable curve y transversal to N, with end points x, y and such
that £(y) < d(x,y) + e. Moreover, if X satisfies an co-weak Fubini property, then X
supports an oo-Poincaré inequality.

Proof Note first that the support of co-Poincaré inequality is a consequence of co-
weak Fubini property, and this can be seen by following the proof of (b) = (f) given
in [17, Theorem 3.1.].

Suppose first that for every null set N C X and ¢ > 0, for each x, y € X there is
a transversal curve y with end points x, y and £(y) < d(x, y) + ¢. Let By, B be as
in Definition 4.1 with T = &. If, with C = 2, we have Mod, I'(B1, By, ¢) = 0, then
there is a non-negative Borel measurable function p such that p = 0 p-a.e. in X and
for all y € I'(By, B>, ¢) we have fy pds = oo (see Remark 2.2). Let N = {x € X :
p(x) > 0}. We choose x| € By and x € B; such that

d(x1, x2) < dist(By, By) + &.

Then by assumption of p we have u(N) = 0 and so there is a transversal curve gy
connecting x1 and x such that £(yp) < d(x1, x2)+¢. Butthen we have fVO pds =0 <
00, and £(yp) < dist(By, By)+2¢, which means that yy € I'(By, B2, €), contradicting
the choice of p. Thus we must have Mod, (I'(B1, B2, &)) > 0, that is, an co-weak
Fubini property is satisfied.

Conversely, suppose X satisfies an co-weak Fubini property. Let N C X with
w(N) = 0,¢ > 0, and x,y € X be two distinct points. Choose ¢ > 0 such
that t < min{e, 79, d(x, y)}/(10C). Let B;, By be the balls of radius 7, centered
at x and y respectively. These balls satisfy the hypotheses in Definition 4.1, and so
Mods I'(B1, B2, 7) > 0. Thus we can find x; € B, y; € B and a transversal
rectifiable curve y; with end points x;, y; such that £(y;) < dist(B;, B>) 4+ Cr.

By choosing 7 to be small enough, we can ensure that £(y;) < d(x,y) + 5.
Note that d(x, x;) < 7t and d(y, y;) < 7, and so by the co-Poincaré inequality (a
consequence of the oo-weak Fubini property as noted above), there exist curves S,
connecting x to x; and «; connecting y to y, such that £(8;) < Ct and ¢(a;) < Cr,
with H! (,3;1 (N) Ua;l (N)) = 0. The concatenation y = «a * y; * f; is a transversal
rectifiable curve connecting x to y with

) <d(x,y) +§ +2Ct.
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By choosing t small enough so that we also have 2Ct < &/2, we obtain the result. O

Now, we define a geodesic distance on the metric measure space by using the notion
of transversality for a given null set. This distance has been used in [9-11].

Definition 4.3 Let X be a metric measure space. For each null set N in X we define
Zz'\N (x,y) =inf{€(y) : y is a curve transversal to N and connecting x to y}.

It is easily seen that for null sets N C X, EN is an extended metric on X, in the
sense that ZI\N can possibly take infinite values (since the infimum of the empty set
is 00). Furthermore, if X supports an co-Poincaré inequality, then by Theorem 2.10
there exists C > 1 such that for each null set N C X,

d(x,y) <dy(x,y) < Cd(x,y). 8)

The next result shows that, if a metric measure space X supports an oo-Poincaré
inequality, then there is a bi-Lipschitz equivalent length metric on X that makes X
satisfy the oo-weak Fubini property. In the proof, we use some ideas from [10].

For x, y € X we set

Zi\(x, y) = sup{jN(x, y) : N null setin X}. )

Proposition 4.4 Ler (X, d, ) be a complete metric measure space with (1 doubling
and supporting an co-Poincaré inequality. Then the following properties are satisfied:

(a) There exists C > 1 such that d(x, y) < Zi\(x, y) < Cd(x, y) whenever x,y € X.

(b) disa length metric on X and (X, c/z'\, W) satisfies an co-weak Fubini property.

(c) (X,d, w) satisfies an co-weak Fubini property if and only if d = d.

(d) For every domain 2 in X, a function u on Q2 is co-harmonic in Q with respect to
d and W if and only if it is co-harmonic with respect to d and L.

Proof From the discussion preceding (8) we have that d is a metric on X and also
that (a) holds.
In order to complete the proof we will need several claims.

Claim 1. For every x, y € X and every ¢ > 0, there exists a null set E C X so that
d(x,y) = dg(x,y). Indeed, for each j € N there exists a null set £; C X such that

~ ~ 1
d(x7 Y) =< dEj(x’ Y) + 7
It suffices now to consider N := Ui‘;l E ;. Then for every j we have Zz’\Ej < Zz’\E and

SO

-~ 1

dx,y) <dp(x,y)+ = <d(x,y) + ;
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Letting j — oo, we obtain that d (x,y) = ZZ\E (x, y) as desired.
Our next Claim follows at once, taking into account that, since X is complete and
w is doubling, X is separable.

Claim 2. Fix a countable dense subset D of X. There exists a null set M C X such
that Zi\(p, q) = ZI\M(p, q) forevery p,q € D.

Indeed, fg{ every x, y € X, Claim 1 provides a null set Exy (depending on x and
y)such thatd(x, y) = dEw (x, y).If we choose M = UX yeD Eyy,thenfor p,qg € D

we have Zf(p q) = dqu(p q) < dM(p q) <d(p q), and so Claim 2 follows.

Now denote by ¢ and ? the corresponding length functionals associated to d and d,
respectively.

Claim 3. For every curve y in X transversal to the set M, we have that £(y) = Z(y)
In order to prove Claim 3, first note that, since d < d, we have £ < 0. Let y
[a,b] — X be transversal to M. To obtain the reverse inequality, fix ¢ > 0 and

choose a subdivision P = {a =1y <t} < --- < t, = b} of [a, b] such that

Uy) <Y dly i), y (@) +e.

i=1

Foreachi =1,2,...,n we 0bta1n an estimate of d| (v (t, 1), y(t;)) as follows. First
choose p;i,qi € D such that d(p,, y(ti—1)) < &/n and d(ql, y (%)) < €/n. Since X
supports an co-Poincaré inequality, by [17, Theorem 3.1] there exist a curve 8 from
pi to y(ti—1) and a curve « from y (¢;) to g;, both transversal to M, such that £(«) <
Cie/n and £(B) < Cie/n, with the constant C; depending only on the doubling
constant and the constants related to the Poincaré inequality. Then the concatenation
o=ox*x Y|y .5) xPisa curve connectlng pi and qi, transversal to M, and from
Claim 2 and the definition of dM we have d(p,, qi) = dM (pi, qgi) < £(o). Thus, for
eachi =1,2,...,n

d(y (ti-1), y(t;)) < 2e/n+d(pi, qi) < 2e/n + £(@) + £yl + £(B)
< 2[1 + C]]S/n + K(V'[Iifl,l,'])-

Summing up, we obtain that

n n
Uy)—e <Y dy @D, y(t)) <201+ Cile + Y €yl = 201+ Cile + £(y).
i=1 i=1

Letting ¢ — 07, we see that ?(y) < L(y).

Claim 4. For every x,y € X, every ¢ > 0 and every null set N C X, there exists a
curve y from x to y, transversal to M U N, such that 2()6, y) <L(y) < g(x, y) + €.

To see this, choose p,q € D such that Zf(p,x) < g1 and Zi\(q, y) < €1, where
€1 > 0 1is to be chosen below. As X supports an co-Poincaré inequality, we can find
as before a curve 8 from x to p and a curve « from g to y, both transversal to M U N,
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such that £(«) < Cie1 and £(B8) < Cie1. On the other hand, since p, g € D, from
Claim 2 above we have

d(p,q) =du(p,q) < dwon(p,q) <d(p, q).

Therefore, there exists a curve o from p to ¢, transversal to M U N, such that £(o) <
d(p, q) + €1. Consider then the concatenation y = « * o * 8, which is a curve from
x to y transversal to M U N, and satisfies

d(x,y) < y) = £(@) 4 £(0) + £(B) < 2C1e1 + £(o) < 2[1 + Ciley
+d(p, q) <202+ Ciley +d(x, y).

We can choose €1 = ¢/[4 4+ 2C1] to conclude the proof of Claim 4.

Note that, as a consequence, we have that disa length metric. Furthermore, using
Proposition 4.2 again, we obtain the second part of Claim (b) as well as the Claim (c).

We next prove Claim (d). First note that, by Claim 3, the arc-length parametrization
of every curve y in X transversal to the set M coincides for (X, d) and (X, d ). Now, if
we denote by F,J(,I the family of curves in X which are not transversal to M, we know
that Modoo(F;{,I) = 0 (because we can assume that M is a Borel set, and then see
that ooy is admissible for computing Modoo(F;(,I), see [15, Lemma 5.8]). Thus if
p : X — [0, oo] is a Borel function, the path integral fy p ds coincides for (X, d, u)

and (X, d, w) for Mod-almost every curve y. This means that given a function u on
X, a function g is an co-weak upper gradient of u with respect to d if and only if it
is an co-weak upper gradient of # with respect to d.In particular, the corresponding
Newton-Sobolev spaces coincide: NV (X, d, u) = NV>®(X, d, W) isometrically.
Now the result follows from the definition of co-harmonicity. O

The following example shows that Claim (b) of the above proposition is not true
without the hypothesis of co-Poincaré inequality.

Example 4.5 Without co-Poincaré inequality d may possibly take infinite values, and
in particular it may not be equivalent to d. The Sierpifiski carpet X from Example 2.11
does not support an co-Poincaré inequality and hence cannot satisfy any oco-weak
Fubini property. Since the length metric on this carpet is bi-Lipschitz equivalent to the
Euclidean metric, it follows that the above statement holds also when X is equipped
with the length metric. To see that d is not equivalent to d in this case, we consider
the set N constructed in Example 2.11. Observe that Zi\N (x,y) = 00, and so d is not
equivalent to d in X.

Lemma 4.6 Suppose that (X, d, ) is a complete metric measure space with . dou-
bling and satisfying an oo-weak Fubini property. Then for each u € LIP®(X) =
N1 (X),

LIP(u, X) = sup Lipu(x) = || Lipu|lpoox) = llgullLocx)- (10)

xeX
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Furthermore, if V. C X is a non-empty open set, then for eachu € N“°(V) (noting
that such functions are necessarily locally Lipschitz continuous in V),

sup Lipu(x) = || LipullLeo(vy = lIgullLoo(v)- (11)
xeV

Proof Note that as Lipu is an upper gradient of # and g, is the minimal co-weak
upper gradient of u, we have that g, < Lipu a.e. in X.

Let u € LIP*°(X), and define N = {x € X : Lipu(x) > ||Lipu|lr(x)}. Now,
fix x,y € X. Given ¢ > 0 take y in X connecting x and y that is transversal to N,
parametrized by the arc-length, such that £(y) < d(x, y) + €. Then

£(y)
[u(x) —u(y)| S/O Lipu(y (1))dt < || Lipullz0x)€(y)
< | Lipullz=x)ld(x, y) +¢€].

Now, let ¢ — 0 and then take the supremum over x, y € X to obtain LIP(u, X) <
| Lip ul oo (x)-

Replacing the role of Lip u in the above with g, and noting that the collection I" of
curves for which the function-upper gradient inequality does not hold has co-modulus
zero, there must be a set N C X with «£(N) = 0 such that for each y € I" we must
have H'!(y ~!(N)) > 0, which gives the last equality in the first claim.

Let V C X be open and non-empty set, and u € N"*°(V) with B(x,2r) C V
Fix r > O such that B(x,2r) C V,and 0 < ¢ < r/2. Letx € Vand N = {y €
B(x,r) : gu(y) > llgullLo(B(x,r)}- Then w(N) = 0. Note in the above inequality
that for each y € B(x, r/2) there is a rectifiable curve y with end points x, y such
that £(y) < d(x, y) + &, y is transversal to N, and

) —ul _ ) 0 oyds < L0

< < IgullL>(B(x,r))-
d(x,y) d(x,y) Jio,e d(x,y) cEEBE

By the choice of r and e, y C V. It follows that Lip u(x) < lim, o+ Igull Lo (B(x.r))-
From the previous inequality we also have that whenever V C X is a non-empty open
set, then

lgullzeo(vy < Il LipullLoc(v)y.
On the other hand, for each ¢ > 0 there exists zg € V such that
| Lip ull zoo(vy — & < Lipu(zo) < li%l+ lgullLoB oy < lgullLeoyy.
r—

Therefore || gy llzoe(vy = || Lip u|| zoo(v) for any non-empty open set V C X. O

Remark 4.7 A converse of the above lemma also holds. Suppose that LIP®(X) =
N1-2°(X) and that (10) holds for each u € N*°(X). Then X satisfies an co-weak
Fubini property. To see this, note that under the above hypotheses, by Theorem 2.10
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we know that X supports an co-Poincaré inequality. Fix a set N C X with w(N) =0
and consider Zl\N as in Definition 4.3. It follows from Theorem 2.10 that there is a
constant C > 1 with Zi\N(Z, w) < Cd(z,w) whenever z,w € X. We fix y € X,
R > 1, and consider the function

u(x):min{R,inf/[1+oo-XN]ds},
vy

where the infimum is over all rectifiable curves y connecting x to y. Note that u(x) <
Ei\N(x, y) foreachx € X,andsou € N'°(X).Furthermore, g = +o0oxy € L>®(X)
is an upper gradient of u, and so by the hypothesis we have LIP(u, X) = [Igu [l Lo (x) <
llgllzoo(x) = 1, thatis, u is 1-Lipschitz on X. Hence for each x € X and ¢ > 0 we can
find a curve y connecting x to y that is transversal to N and with £(y) < d(x, y) +¢.
Therefore, from Proposition 4.2, X satisfies an co-weak Fubini property.

Under the oo-weak Fubini property (which implies the co-Poincaré inequality), we
know that LIP®(X) = N'°(X), see Theorem 2.10. Hence the property of every
u € N(X) satisfying (10) characterizes complete metric measure spaces that
satisfy an oo-weak Fubini property. The property (10) is crucial in understanding
the connections between AMLEs and co-harmonic functions, see for example [26]
and [14].

Example 4.8 In this example we construct a metric measure space X C R? where
the measure is doubling and supports an co-Poincaré inequality, and a function u for
which

supLipu > || Lip ull o (x)-
X

We start with the interval [0, 1], and for each n € N we replace [1/(n + 1), 1/n] with
the union of the two line segments in R?, one joining (1/n,0) to P, € R? and the
other joining (1/(n + 1), 0) to P,, where P, is a point such that

[P — (1/n,0)| = |1 Py — (1/(n+ 1), 0)[| = 1/[n(n + 1)]
=1/ +1),0) = (1/n, 0)].

By doing this we obtain X, equipped with the restriction of the Euclidean metric from
R? to X, and with the measure 1« = . Consider the function u on X given by

ulx,y) =H X N{(s, 1) e R : s >x)).

Note that g, = 1 is a minimal co-weak upper gradient of u, and that for X > (x, y) #
(0, 0) we have Lipu(x, y) = 1. On the other hand,

2
070 - 1 ,O . oo: .
Lipu(0, 0) > lim sup u(©.0) — u{/n.0) = lim sup M = limsup2 = 2.

n— 00 1/” n— 00 1/”1 n— 00

It follows that supy Lipu > 2 > 1 = || Lipu|| 1 (x).
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Lemma 4.9 [26,Lemma5.4] If X is proper (that is, every closed ball in X is compact)
and is a length space, then whenever V. C X is a non-empty open set, we have

LIP(u, V) = max { LIP(u, dV), sup Lip u(z)}.

zeV
We are now ready to prove the first main theorem of this paper, Theorem 1.1.

Proof (Proof of Theorem 1.1) The existence of co-harmonic extensions is obtained in
Theorem 3.3. Recall that the notion of co-harmonicity yields the same class of func-
tions under each of the metrics d and 57, see Proposition 4.4 (d). By Proposition 4.4 (b)
we have that (X, 21?) is a length space, (X, Zf W) satisfies an co-weak Fubini property,
and the function u := ¢ given by Theorem 3.3 is co-harmonic in 2 for (X, d, n).
Also, since (X, ZZ\) is complete and u doubling, we have that (X, Zf) is a proper metric
space.

By Lemma 4.6 and by Lemma 4.9, if V C € is a non-empty open set and if
v:V — Rissuchthatv =uondV, then by (11),

LIP(u, V) = max | LIP(v, 8V), ||gu||mv>}

< max { LIP(v, V), ||gv||L°°(V)}

= max { LIP(v, 0V), sup Lip v(z)} = LIP(v, V).

zeV

Note that the above is with respect to the metric d. It follows that u is AMLE in Q for
(X, d). Finally, by [35, Theorem 1.4] AMLEs are unique; hence the uniqueness of u.
O

The proof of Theorem 1.1 also shows that, under the co-weak Fubini property,
every oo-harmonic function is an AMLE. The converse is also true, as the following
shows.

Theorem 4.10 Let X be a complete metric measure space with the measure ju be a
doubling measure satisfying an 0o-weak Fubini property. Let Q be a bounded domain
in X with 02 non-empty. If u : Q — R is an AMLE in 2, then u is co-harmonic in 2.

Proof Under the hypotheses of the theorem, we know that X is a proper length space.
The result [26, Proposition 4.1] together with [26, Proposition 5.8] shows that if X is
a proper length space, then AMLEs on a domain 2 C X are of strong-AMLE class.
The proof of [26, Proposition 5.8] would work even if their notion of weak Fubini
property is replaced with our weaker notion of co-weak Fubini property. The notion of
strong-AMLE of [26] agrees with our notion of co-harmonicity under our hypotheses
on X, see Lemma 4.6 above (more specifically, Eq. (11)). Therefore we know that
AMLE:s are co-harmonic. O

Combining Theorem 4.10 with Theorem 1.1 we have a proof of Theorem 1.2.
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Remark 4.11 If (X, d, n) is a complete metric measure space with ¢ a doubling mea-
sure supporting an co-Poincaré inequality one can also guarantee the existence of an
00- harmomc extension. Indeed, by Proposition 4.4(b), (X, Ei) is a length space and
(X, d, () satisfies an co-weak Fubini property. By [25] we can always find an AMLE
in (X, d ) and by Theorem 4.10 they are co-harmonic with respect to d and therefore
with respect to d.

In the absence of co-Poincaré inequality, an co-harmonic function need not be an
AMLE even if X is a geodesic space, as the next example shows.

Example 4.12 Asin Examples 4.5 and 2.11, consider the Sierpinski Carpet X endowed
with its length metric and the corresponding Hausdorff measure. Then X is a geodesic
space, but by Remark 2.6 every u € L°°(X) is co-harmonic, but if it is not Lipschitz
continuous on the carpet then it cannot be an AMLE.

The next example shows that co-weak Fubini property is crucial for Theorem 1.2.
This example can also be found in [35, Page 171], but for the reader’s convenience we
give the details here.

Example 4.13 Let X = {0} x [0, 00) U[0, 00) x {0} C R? be equipped with the metric
obtained as the restriction of the Euclidean metric on R2 to X, and with the measure
w=H"x. With @ = {0} x [0, 1) U[0, 1) x {0}, wesetu : X — R by

by if y =0,
ux,y) = .
—y ifx=0.

It is not difficult to see that u is co-harmonic on €2 (by noting for example that (X, d)
is isometric to R), but fails to be AMLE in 2. To see that u is not an AMLE, we argue
as follows. For 0 < ¢ < 1let V, = {0} x [0, &) U [0, 1) x {0}, note that

ue,0) —u(0,¢e) NG

LIP(u, Ve) >
8) ﬁg

whereas

1+e¢
1+ g2

Therefore u is not AMLE on Q with the boundary values u(1,0) = 1, u(0, 1) = —1
(observe that any AMLE of this boundary function must be linear on each arm of €2, and
symmetry considerations together with uniqueness of AMLEs would then tell us that
if such AMLE exists then it must be the above function u(x, y)). Note that (X, d, 1)
is Ahlfors 1-regular and supports an oo-Poincaré inequality, but does not satisfy any
oo-weak Fubini property. Here we have the existence of unique co-harmonic extension
but no AMLE extension.

LIP(u,0V,) = < /2 for sufficiently small ¢.
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5 Stability of co-harmonic functions

In this section we consider sequences of co-harmonic functions on a complete met-
ric measure space X equipped with a doubling measure supporting an oo-Poincaré
inequality. It is known that if X supports a p-Poincaré inequality for some 1 < p < oo,
then a locally uniformly bounded sequence of p-harmonic functions on a fixed domain
have a locally uniformly convergent subsequence that converges to a p-harmonic func-
tion on the domain. See [30,37]. This property is known as the stability property of
p-harmonic functions. This is in general not true for co-harmonic functions, given the
lack of Caccioppoli-type (or De Giorgi type) inequality that controls the local energy
of the oo-harmonic function in terms of its local bound. But we have the following
weaker stability.

Consider a sequence of co-harmonic functions, {u;};, of co-harmonic functions
on €2 such that each u; is L-Lipschitz continuous on X. Then by the Arzela-Ascoli
theorem, there is a subsequence, also denoted {u;};, and a Lipschitz function ug on
X such that u; — ug locally uniformly in X (and hence uniformly on the bounded
domain £2). We now show that i is co-harmonic in 2. To see this, fix & > 0 and note
that there is some N, € N such that wheneveri > N, wehave u; —¢ <ug < u; +¢
on 2. Let w be the unique co-harmonic function on €2 such that w = up on X\V, as
promised by Theorem 1.1. Given the uniqueness of co-harmonic solutions and given
Lemma 3.8, we have a comparison theorem for oco-harmonic functions as well in the
manner of Lemma 3.8. Therefore on 2 we have u; — & < wy < u; + ¢, and so

wy < ug+ 2 < wy + 4e.

As the above holds for all £ > 0, we see that ug = w on €2, that is, ug is co-harmonic
in Q. Thus we have the following proposition.

Proposition 5.1 If {u;}; is a bounded sequence of L-Lipschitz functions on X such
that each u; is co-harmonic in 2, then there is a subsequence that converges locally
uniformly in X to an L-Lipschitz function ug such that uq is co-harmonic in .

Example 5.2 Let © = (0, 1) x (0, 1) ¢ R? and for each k € N let F; be the sawtooth
function Fy : R — R given as the periodic extension of the function ¢y : [0, 2/k] —
R:

kt when ¢ € [0, 1/k],
Pr(t) =

—kt +2 whent € [1/k,2/k].
Then F is k-Lipschitz continuous and is bounded by 1, that is, Fy € N Loo(xy. Let
Jr: R2 - Rbe given by fix(x, y) = Fi(x), and let uj be the co-harmonic extension
of fi to Q. Then each uy is bounded by 1 on R2, but by Lemma 4.9, we know that
uy has no locally uniformly convergent subsequence that can converge to a Lipschitz
function on 2.

On the other hand, we have the following stability theorem.
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Theorem 5.3 For each k € N let fi € NV®(X) and let f € N“®(X) such that
fi = foin NL-2(X). Let uy be the co-harmonic extension of fr to Q. Then uy
converges locally uniformly in X to a function ug € NV (X) such that uq is the
oo-harmonic extension of fy to Q.

Proof Since fi — f in N1°°(X), there is some L > 0 such that each f; and fy is
L-Lipschitz on X, and f; converges uniformly to fy on X. By the above proposition,
we know that every subsequence of {uy}; has a further subsequence that converges
uniformly to the unigue function that is the co-harmonic extension of fj to 2. There-
fore the entire sequence {uy}; converges uniformly in X to a Lipschitz function ug
that is the co-harmonic extension of fj to 2. O
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