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Precision measurements of the inverse-square law via experiments on short-range gravity provide
sensitive tests of Lorentz symmetry. A combined analysis of data from experiments at the Huazhong
University of Science and Technology and Indiana University sets simultaneous limits on all 22 coefficients
for Lorentz violation correcting the Newton force law as the inverse sixth power of distance. Results are

consistent with no effect at the level of 10712 m*.
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Lorentz symmetry, the idea that physical laws are
unchanged under rotations and boosts, is built into both
general relativity (GR) and the standard model. Although
GR provides an impressive description of a wide variety of
gravitational phenomena, the successful merger of gravi-
tation and quantum physics may involve a modification of
its foundational principles. This could produce observable
deviations from Lorentz symmetry, emerging from a
unified theory such as strings [1].

Since no compelling evidence for Lorentz violation (LV)
currently exists, model-independent searches for LV in
gravity play an essential role in testing the foundations of
GR. A powerful model-independent approach to describing
possible low-energy signals of LV is effective field theory
[2], which is widely adopted for experimental analyses
studying Lorentz symmetry [3,4]. In the pure-gravity limit,
this approach uses a Lagrange density containing the usual
Einstein-Hilbert term and a series of all observer-scalar
terms involving coefficients contracted with gravitational-
field LV operators of increasing mass dimension d.

Precision experiments testing the inverse-square law at
short range provide crucial and specific probes of gravita-
tional properties [5], including tests of Lorentz symmetry in
gravity at submillimeter distances [6-8]. Applying the
techniques of effective field theory in this context shows
that LV operators can lead to direction-dependent corrections
to the Newton force that fall as inverse square, inverse fourth,
inverse sixth, and higher powers of distance [9-11]. A
complete classification of possible effects is known [12],
but no specific predictions exist for their sizes. Moreover,
many of these corrections are experimentally unexplored,
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with even comparatively strong “countershaded” LV cou-
plings remaining untested to date [13]. Model-independent
experimental analyses without preconceived sensitivity
expectations are thus vital in investigating this foundational
property of GR.

In the present work, we perform a combined analysis of
data from short-range experiments at the Huazhong
University of Science and Technology (HUST) and
Indiana University (IU) to complete a model-independent
search for LV effects involving operators of mass dimension
d = 8, which produce a direction-dependent force inversely
proportional to the sixth power of distance. Our results are
consistent with no effects at the level of 107> m* for all 22
independent coefficients for LV appearing in the Newton
limit, thereby excluding a short-range LV gravitational force
down to a distance scale of less than a millimeter.

For d = 8, the LV modification to the Newton potential
between two test masses m; and m, is given in spherical
polar coordinates by [11]

N mpm N(8)lab
Viv(#) = =Gy Y 0.0k, (1)
jm

in the laboratory frame. Here, the vector 7 =7 — 7, =
(rcos¢sin®, rsingsind, rcos @) separates m; and ms,
j =4 or 6, and m is an integer in the range —j < m < j.

The LV effects are controlled by the coefficients k;]”(ls)lab,

which are complex numbers with dimensions of length to
the fourth power.

The explicit form of the coefficients k?ln(ls)lab is frame
dependent, so experimental results must be reported in a
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specified frame. In Cartesian inertial frames in the vicinity
of Earth, the coefficients can be taken as constant [14]. The
canonical frame used in the literature to present results is
the Sun-centered frame with right-handed Cartesian coor-
dinates (7, X, Y, Z) chosen such that T is zero at the 2000
vernal equinox, the X axis points from Earth’s position at
T =0 to the Sun, and the Z axis is parallel to Earth’s
rotation axis [15]. Earth-based laboratories are noninertial
due to Earth’s rotation, so the laboratory-frame coefficients

k?,,(lg)]ab acquire dependence on sidereal time [16]. In

standard laboratory Cartesian coordinates with the x axis
pointing to the south, the y axis to the east, and the z axis to
the local zenith, the laboratory-frame coefficients k?n(f)lab
can be expressed in terms of time-independent coefficients

k?n(lg) in the Sun-centered frame by the relation [11]

K0 = D emeled, L (ks ()
where Earth’s boost is treated as negligible. In this expres-
sion, wg ~27/(23 h 56 min) is Earth’s sidereal frequency
and T'qy = T — T is the local laboratory sidereal time, which
differs from 7 by a longitude-dependent offset [17]:
Ty~ —3.2 h for HUST, and T, ~ 10.2 h for IU. Also, y is

the laboratory colatitude, and d;(qun' are the little Wigner
matrices [18]. The primary goal of the experimental analysis

is to measure the coefficients k%g) in the Sun-centered frame.

The inverse-fifth corrections to the Newton potential
imply that experiments testing gravity at short range have
excellent sensitivity to LV effects. For d = 8, the index m’
in Eq. (2) takes integer values in the range —6 < m’ < 6, so
the potential includes components up to the sixth harmonic
of wg and can be expressed as a Fourier series in 7,

R Gmym
Viv(F) = - ré 2(

6
co+ Z ¢ cos(mwgTg)

+ S sin(ma)@T@)). (3)

The 13 Fourier amplitudes in this expression are

functions of the 22 independent coefficients k?ngs)

Sun-centered frame.

Numerical methods can be used to calculate the gravita-
tional LV interaction between finite test masses. Most
inverse-square law tests use masses with planar geometry
[19,20]. In addition to suppressing the Newton background, a
planar geometry tends to average and suppress the angular
oscillations of the LV signal [7,21,22], thereby necessitating
careful integration of the forces associated with Eq. (1). For
practical applications, it can thus be convenient to calculate
using a local Cartesian coordinate system. The spherical
harmonics in Eq. (1) can be expanded in symmetric trace-free
tensors cf,,{ > according to [23]

in the

Yin(0.¢) = cjit npy(x. 3. 2), (4)
where
Pt 1
n<,>(x,y,z) :mal;. (5)

In this expression, 0; represents akl...akj, and c<J>n<J>

involves a summation over all j pairs of repeated indices.
)

The tensor ¢, is given by

Applying these results, the 13 amplitudes in the Fourier
series (3) can be expressed in terms of Cartesian coordinates
) in the Sun-centered frame. These
expressions are given in Table I. The first part of this table

displays the 13 amplitudes in terms of the coefficients kJNW(lS)
and 22 independent functions a;(7. ), j = 1. ...,22, of the
test mass geometry and the colatitude y. The complex-

conjugation relation k?,flg)* = (—l)mk?z(_gi) [24] is used to

and the coefficients ijyflg

express the kﬁ,(lg) in terms of their real and imaginary parts.
The functions a; (7, y) are specified in the second part of the
table, using the notation

Y

~ X Z . ~
X=—-cosy+-siny, y=
r r r

. Z:—{sin)(—l-icosx. (7)
r r

With these results, it is straightforward to obtain an analytical
expression for the LV force between a point and finite
rectangular plate. We note that the LV force between a point
and an infinite plate vanishes, as in the d = 6 case [7,22]. For
two finite rectangular plates, we need merely perform a triple
integration to obtain the LV force or torque.

In general, measurements of the 13 Fourier amplitudes in
a single experiment constitute independent signals but are
insufficient to constrain simultaneously the 22 independent
coefficients k?f,(f). However, two distinct data sets can
achieve complete coverage. Indeed, this is true for LV
force corrections proportional to r2~¢, for which the
number of coefficients is 4d —10 and the maximum
number of signals from any one experiment is 2d — 3. In
the present case with d = 8, all 22 coefficients could in
principle be measured independently using two data sets
with distinct harmonics from the HUST-2015 experiment
or using two data sets from the IU-2002 and IU-2012
experiments. Here, to maximize the sensitivity to the

coefficients k%g), we perform a combined analysis of these
four data sets.

Details of the HUST-2015 experiment are provided in
Ref. [19]. A brief summary is provided here. A bilaterally
symmetric [/-shaped pendulum is suspended near an
attractor disk with eightfold symmetry. Two planar tung-

sten test masses of thickness ~200 ym, together with two
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TABLE I. Expressions for the Fourier amplitudes in Eq. (3).
Quantity Expression
‘o Ullkfo(8> + 2k60(8>
¢y azRek,, N 4 aﬂmkﬂs)
+asRekyy” + aglmkhy”
5 aReky®) — agImiy®)
+a6Rek62 - aSImkgz(g)
Cy a7Rek44 + aglmk
+a9Rek64( ) + aypImkg, N(®)
S4 ocSRekEf8> — a7Imkyy NE)
+a10Rek24( - Otglmk64<8>
Ce a“Rek?é(s) + alzlmkﬁé )
S6 alzRekgé(s) - alllmkgés)
C a13Rek4N1(8) + 014Imk211(8)
+aysReky Y + ajglmip”
S1 aReky P — a3 Imk} P
+a]6Rekg1(8) - a15Imklgl(8>
3 a,7Rek?3(8) + alglmkN(g)
+a]9Rek63( ) 4+ azolmkN<8)
53 algRek43 - al7Imk43
+a20Rekg3( - alglmkN(8>
Cs aZIRekgs(S) + azzlmkﬁs( )
Ss azzRekgs(s) - aZIImkEIS(S)
a (3/16+/7)(3 — 3022 + 352%)
a —L\/(13/m)(5 - 1052% + 315z* — 2312°)
a; + iay —QW(XJriy)z(l -772%)
as + iag L/(1365/7)(x + i¥)*(1 — 1822 + 33z%)
a7 + iag 3\/(35/27) (% + iy)*
ag + iayy =2/ (91/2m)(x + iy)*(1 - 1122)
ap +iap /(3003 /7)(x + iy)°
a3 + iagy -3/(5/m)(x - i9)23 - 72%)
as + iagg £/ (273/27)(x — iy)z(5 — 3022 + 33z%)
a7 + iagg 3/(35/7)(x — iy)*z
ayg + iay —L/(1365/7)(% — i9)*2(3 — 1122)
ay + iay 2 ,/(1001/7)(x - i¥)°z

additional tungsten plates slightly offset to compensate the
Newton torque from r~2 interactions, are mounted on either
end of the pendulum facing the attractor. The attractor
consists of eight similar tungsten source plates alternating
with eight compensation plates. The centers of the attractor
and pendulum are aligned and the gap between the test and
source plates is maintained at 295 uym. The pendulum twist
is controlled by a feedback system, with differential
voltages applied to two capacitive actuators on the pen-
dulum. In the presence of a non-Newton interaction,
rotating the attractor produces a torque. The attractor
rotates at frequency f, = 27/(3846.12 s), so the nominal
signal torque oscillates at 8 ) and is well separated from the
drive frequency, effectively suppressing vibrational back-
grounds. The experiment is designed to produce approxi-
mate null measurements by double compensating for both
the test and source masses.

For a Yukawa-type interaction, the torque is maximal
when the source and test masses are face to face and is
minimal when they are offset. However, the LV interaction
averages to zero for symmetric configurations [7,22], so
significant contributions appear at the higher harmonics
16fg, 24f,, .... For the d = 6 case studied earlier [8], in
which the LV signal varies as r~* and is well nulled by the
compensation scheme, the 16f, signal exceeds the §f, one
by an order of magnitude and only the 16f, data were used
for the analysis. In contrast, the d = 8 interaction of interest
here varies as r~° and is less well nulled, so the 8f, and
16f contribute about equally. The d = 8 signals at higher
harmonics are comparable, but they are swamped by
higher-level noise in the data [19], so we use only the
8fy and 16f, components in the present analysis.

The LV signal torque in the HUST-2015 experiment can
be expressed as

6
1y = Co + Z C,cos(mwgTg) + S, sin(mwgTg). (8)

m=1

where the Fourier amplitudes C,,, S,, can be obtained by
integration of the amplitudes c,,, s,, appearing in Eq. (3)
and Table 1. This effectively replaces the functions a;(7, )
with transfer coefficients A i defined as

A; = Gpips // =

in analogy with Eq. (25) of Ref. [21] for the d = 6 case. For
example, integrating the first row of Table I via this

2 gy 1dv,, (9)

procedure yields Cy = A k40( )+ AszNO(8). The integration
(9) computes the change in torque on the pendulum as the
source and compensation plates on the attractor are swept
across the faces of the test and compensation plates on the
pendulum, obtaining the LV torques 7pyg and 7py ¢ at
the 8f, and 16f, response frequencies of the pendulum.
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TABLE II.  Transfer coefficients A; for HUST-2015, TU-2002,
and [U-2012 experiments. Errors are lo.

HUST 8f, HUST 16f, 1U-2012 TU-2002
Coefficient  (£0.01, 107 Nm/m*) (107 N/m*)
Ay —-0.08 -0.11 92 + 269 8+ 15
A, 0.03 0.14 75+160 41+10
A3 -0.22 0.35 -924+289 5419
Ay 0.00 0.00 26 +£264 21+24
As 0.22 0.13 -75+180 16 +24
Ag 0.00 0.00 —191+239 -74+13
Aq -0.11 -0.10 —290 + 275 4425
Ag 0.00 0.00 13+168 2419
Ao 0.31 0.10 642 £512 —48 +28
Ajg 0.00 0.00 -92+139 -36+ 14
A 0.09 -0.02 574255 11+23
Apa 0.00 0.00 =70 £+ 256 6+13
A3 -0.12 0.38 -35+301 24+21
Ajg 0.00 0.00 132+203 15+12
Ajs 0.10 0.30 178 £319 14 +21
Aig 0.00 0.00 70 £ 149 27 +20
Ay -0.20 0.30 237+352 6+14
Ajg 0.00 0.00 —145 £ 269 3422
Ajg 0.31 -0.13 —496 £332 —12+ 15
Ay 0.00 0.00 52+302 —18 + 38
Aoy 0.21 —-0.02 —1274+140 -5+£17
Ay 0.00 0.00 307 £451 52+11

The numerical results for the transfer coefficients A; for
both frequencies are listed in the second and third columns
of Table II. The uncertainty on all A; is 107 Nm/m®.
In the IU-2002 and IU-2012 experiments, the test masses
consist of two planar tungsten oscillators of approximate
thickness 250 um, separated by a gap of about 80 ym and
with a stiff conducting shield between them to suppress
backgrounds. A schematic is given in Fig. 1 of Ref. [6],
while details of the IU-2002 geometry are given in
Refs. [25,26] and of the 1U-2012 geometry in Ref. [6].
The active “source” mass drives the force-sensitive “detec-
tor” mass at a resonance near 1 kHz. At this frequency, a
simple passive isolation system with high bending stiffness
can be used for vibration isolation. The oscillations of the
detector mass are detected using capacitive transducers
coupled to a differential amplifier [27]. The signal is passed
to a lock-in amplifier referenced by the waveform driving
the source mass, and the output is taken as the raw
experimental data [6]. Comparison with the detector
thermal noise permits these data to be converted to force
readings. Details of the IU-2002 calibration are given in
Refs. [25,26] and of the TU-2012 calibration in Refs. [6,27].
Following Ref. [6], the theoretical LV force for the IU
experiments is evaluated by Monte Carlo integration of the
z component of the force from the potential (1), incorpo-
rating the test-mass curvatures and mode shapes. The
results can be expressed as a Fourier series in the local
sidereal time T'g, analogous to Eq. (8). The Fourier force

amplitudes are linear combinations of the k;i,(lg), weighted

by a corresponding transfer coefficient A; as in Eq. (9). The
numerical values of the A; for the IU-2002 and IU-2012
experiments are shown in the fourth and fifth columns of
Table II. Systematic errors associated with the positions and
dimensions of the test masses are established by calculating
the mean and standard deviation of a population of Fourier
amplitudes generated with a spread of geometries based on
the metrology errors [6,25]. Many A; values in all columns
of Table II are dominated by the error. For the IU experi-
ments, the error is particularly sensitive to the longitudinal
position of the detector mass relative to the source mass.

For the HUST-2015 experiment, extraction of the LV
signal from the data proceeds as described in Ref. [8]. The
data rate is much faster than the attractor modulation
frequency, so data are partitioned into bins corresponding
to the modulation period AT = 3846.12 s. The LV torque
signals 71 v ,(T'g) With n = 8 and 16 are extracted by fitting
the measured torque 7°(7T'g) in each bin to

™(Tg) = Z tva(Te) cos2anfoTe + ¢,).  (10)
n=_8,16

where ¢, is set by operation of the experiment. The values
of 71y, (T ) are taken to be approximately constant in each
bin, since wgpAT <1 and any sidereal variation within
each bin is negligible. Data for the torque 7y g are plotted
in the upper panel of Fig. 1 as a function of time. Each point
shows the mean measurement in the modulation period
without errors, which are dominated by statistical fluctua-
tions. The Fourier spectrum for these data is displayed in
the lower panel of Fig. 1. The corresponding plots for the
torque 7,y 16 appear in Fig. 1 of Ref. [8].

The Fourier amplitudes C,,, S,, are obtained by a
subsequent fit of the 71y ,(7) data to Eq. (8), including a
small correction for averaging over AT [8]. The results are
shown in the second and third columns of Table IIL
A residual Newton torque is subtracted from the
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FIG. 1. HUST-2015 data at 8 and Fourier transform.
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TABLEIIL.  Fourier amplitudes (25, units 107'¢ N'm for HUST ~ TABLEIV. Independent coefficient values (25, units 103 m*)
and 1071 N for IU). obtained by combining HUST and IU data.
Mode HUST-8f, HUST-16f, 1U-2012 1U-2002 Coefficient Measurement
Co 0.08 £0.10 —0.20+2.40 0+£136 2+411 kfo(g) —6.4 +50.9
C, 0.00 £0.08 —0.01 +£0.08 47 £166 —53 +556 N(S) 17455
S, 0064008 -0.08+008 —192+187 -51+176  Reky Y
2
Cy 0.00 £ 0.08 0.04 £0.08 —42+156 25+448 Imk4Nl(8) 09+£58
S 0.01 £0.08 -0.03+0.08 —-58+192 83 +237 NE) 0.0+39
Cs  0.04+008 —004+008 —41+179 61+306  Reky Y+
Se 0.00 £ 0.08 0.02 £0.08 91+ 146 52 +£241 Ik ®) 09+4.0
C —0.03 +0.08 0.00 +0.08 —-108 £193 304130 42
S, 0.03+0.08  0.00+0.08 34161 —192+449  Reky” 43473
C; 000+008 001+008 —173+145 215+180 | N 24473
S5 0.03 £0.08 —-0.06+0.08 223 £207 -56+390 43
Cs 0024008 —0.03+008 142+181 —98+201  Rekj,” —28+145
S; 008008 0054008 1324165 -190£290 | ) 204 144
o _ _ _ ) 5.1+ 100.9
time-independent amplitude C,,. The error on this amplitude 60
is dominated by the uncertainties on the calculated Newton Rekgl(s) —24+59
torque [19], which in turn arise primarily from uncertainties ImeN®) —12+64
in the dimensions and positions of the test masses. The ;1<8> 19455
Newton torque and its error are considerably larger for the ~ Rekg, ' '
16f, component, which is less well nulled by the compen- Imk?z(g) 1.7+£6.2
sation scheme. The sidereal-harmonic amplitudes in Table I1I N(8) 47468
. .. . L Rek, ’ ’
are dominated by the statistical uncertainty, which is at the 63
same level for each harmonic. Imkgg(s) 0.6+7.9
For the 1U-2002 a_nd IU_—2012 _expen'ments, the acquired Rekl\j(s) —09+68
force data are described in detail in Ref. [6]. The corre- 64
sponding Fourier amplitudes up to the sixth harmonic of the Imk?}g) —-09+6.7
sidereal frequency wg, are listed in Table III. Uncertainties ReiN®) 12+78
are dominated by the statistical errors in the data. Errors 65
also include contributions from the calibration [6,25] and Imk?s(g) 3.7+7.1
from corrections due to discontinuities in the time-series RekN®) 574 14.4
data [6], the latter of which include here contributions 16\168
from the 5wg and 6wg terms and hence display slight Imkéé( ) 09+ 14.2

differences relative to the amplitudes reported in Ref. [8].
Note that a few modes at 2wg and 3wg seem to reveal
potential resolved signals, but these subsequently become
swamped by geometrical uncertainties of the transfer
coefficients during the analysis and hence yield final

N(8 . .
measurements of k jni ) consistent with zero.

With the results in Table III in hand, the joint analysis
proceeds as described in Refs. [6] and [8]. A global
probability distribution P(f|k) is formed using the 52
Fourier amplitudes f; in Table III and their errors. Each
measured amplitude is assigned a Gaussian distribution p;
that is a function of the 22 independent kﬁflg) and has mean

u; and standard deviation o;. The product of the individual
p; defines the global distribution,

P(f|k):Poexp< Z(f’ i) ) (11)

where Py is an arbitrary normalization. The predicted signal
u; for the ith amplitude is given by the appropriate Fourier

component for the HUST or IU experiments, with the
function a; replaced by the associated integrated transfer

coefficient A; in Table II. The variance o7 incorporates all
statistical and calibration errors. Following standard pro-
cedure [28] to account for the metrology errors on the y;,

the global distribution is replaced with the expression

P/(Fll) = / P(Flk.x)x(x)dx. (12)

where x represents the set of geometry variables and z(x) is
their prior probability density function. For simplicity, for
each geometry parameter x, z(x) is taken to be a uniform
distribution centered at the measured x with a width of
twice the error Ax, so that the integral (12) reduces to an
average over x. Independent measurements of each com-

N(8)
ponent &,

are then obtained by integrating P'(f|k) over

all other components. The result is a distribution for the
chosen component with a single mean and standard
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deviation, which constitute the estimated component meas-
urement and its error.

Table IV displays the final results obtained from this joint
HUST-1U analysis for the 22 independent coefficients ij,,(l8>
for LV in the Sun-centered frame. The results are consistent
with no LV force varying according to the inverse sixth
power, at the level of 10~'> m*. These measurements are the
first of their kind, and they set a benchmark excluding short-
range LV gravitational forces down to a distance scale of
below a millimeter. They thereby enhance the scope of recent
constraints on LV operators in pure gravity with d =4
[9,29-47] d =5 [48,49], d = 6 [6-8,11,39,42,48], d =7
[48], d = 8 [39], and d = 10 [50].
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