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Abstract
Prime endboundaries ∂P�of domains� are studied in the setting of complete doublingmetric
measure spaces supporting a p-Poincaré inequality. Notions of rectifiably (in)accessible-
and (in)finitely far away prime ends are introduced and employed in classification of prime
ends. We show that, for a given domain, the prime end capacity (defined by Estep and
Shanmugalingam in Potential Anal 42:335–363, 2015) of the collection of all rectifiably
inaccessible prime ends together will all non-singleton prime ends is zero. We show the
resolutivity of continuous functions on ∂P� which are Lipschitz continuous with respect to
the Mazurkiewicz metric when restricted to the collection ∂SP� of all accessible prime ends.
Furthermore, bounded perturbations of such functions in ∂P�\∂SP� yield the same Perron
solution. In the final part of the paper, we demonstrate the (resolutive) Kellogg property with
respect to the prime end boundary of bounded domains in the metric space. Notions given in
this paper are illustrated by a number of examples.
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1 Introduction

In the classical Dirichlet problem, given a differential operator L , one asks whether there is
a solution u to the equation Lu = 0 in � satisfying a prescribed boundary condition u = f
on ∂�. Here, for continuous functions f : ∂� → R we say that u = f on ∂� if for almost
every (in a capacitary sense) x ∈ ∂� we have

lim
��y→x

u(y) = f (x). (1.1)

This problem has been investigated for various types of PDEs and settings, including the
Laplace equation and its nonlinear counterpart, the p-Laplace equation. In this paper we
will focus on application to the p-harmonic equation, but the prime end boundary theory
is accessible for a wider class of PDEs. In the Euclidean setting of a domain � ⊂ R

n the
p-Laplace equation reads:

div(|∇u|p−2∇u) = 0,

where u belongs to the Sobolev spaceW 1,p
loc (�) and 1 < p < ∞. Moreover, for more general

functions f : � → R such that f ∈ W 1,p
loc (�) theDirichlet problem is understood in theweak

sense, i.e. u− f ∈ W 1,p
0 (�, R). However, the boundary value problem studiedwith respect to

the topological boundary of the domain is often too restrictive and the corresponding solution
does not fully capture the geometry of the domain. This is the case of the planar disc with a
radial line removed (the so-called slit disc), the topologists’ comb (and its higher dimensional
generalizations) and many other domains with nontrivial boundary, see [4,7]. For example,
in the case of the slit disc, every point of the slit (except for its tip) has prescribed a single
boundary value, even though it might be more desirable to have different prescribed behavior
of the solution when approaching the slit from above and from below. In this situation, it
would be more natural to associate two boundary points to each point on the slit. Boundaries
of such domains are described more effectively by other forms than just the topological
boundary. There are several notions of abstract boundaries, eg. the Martin, Royden, and
prime end boundaries. The prime end boundaries, as considered in [13], form the focus of
this paper.

A formulation of prime ends was initiated by Caratheódory in 1913 for simply-connected
planar domains in the setting of boundary extension of conformal mappings, see Sect. 2.2
below for more information and a brief historical account of prime ends. Caratheódory’s
construction of prime ends is not productive for multiply connected planar domains and for
more general domains in metric measure spaces. Here we study prime ends in the context of
bounded domains in complete metric measure spaces equipped with a doubling measure and
supporting a p-Poincaré inequality. This set of assumptions allows for a viable first order
Calculus, in particular various counterparts of the Sobolev spaces are available, see [17].
Furthermore, in this setting a variational analog of the p-Laplacian is available and the non-
linear potential theory for p-harmonic functions in metric measure spaces is well developed,
see [6,7,9].

Two of the cornerstones of the Perron method are (a) that every continuous boundary data
is resolutive and (b) theKellogg property. The Kellogg property is that there is a subset of the
topological boundary of the given domain, with zero p-capacity, such that (1.1) is satisfied
by each continuous data on the topological boundary ∂� outside of this subset; see [15,18]
for the Euclidean setting, and [8] for a proof of the Kellogg property in the metric setting.
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Thus p-capacitary almost every point on the boundary of the domain influences the behavior
of Perron solutions.

In the case of the double comb (see Example 2.15), the one-dimensional almost every point
in the interval [1/4, 3/4]× {0} will influence the behavior of the solution, and modifying the
boundary data on this subset of the (topological) boundary might result in a different Perron
solution. As a consequence of one of the main results of this paper, Theorem 3.3, we know
that for Perron solutions constructed using the prime end boundary instead of the topological
boundary, the subset [1/4, 3/4] × {0} will not affect the solution; this confirms the results
of [4]. In Theorem 3.3 we identify a subset of prime ends whose prime end capacity is zero
and do not influence the Perron solution.

It turns out that the key to understanding which prime ends are vital for the solvability
of the Dirichlet problem lies in accesibility of points in the prime end impressions through
rectifiable curves. This approach allows us to classify prime ends into four categories as:
(a) rectifiably accessible, (b) rectifiably inacessible, (c) infinitely far away, and (d) finitely
away. The first two categories of prime ends belong to the class ∂SP� of singleton prime ends,
and the latter two belong to the class of non-singleton prime ends. Similar classifications are
known in the theory of prime ends of Carathéodory in R

2, see [11, Chapter 9] and the prime
ends constructed by Näkki in R

n , see [24, Section 8]. The Kellogg property for the prime end
boundary of domains whose prime end boundary consists solely of singleton prime ends has
been studied in [5], where the property is verified for resolutive continuous functions on the
boundary, and such a property is called the resolutive Kellogg property in [5]. In this paper
we extend this property to domains whose prime end boundary might have more than just
singleton prime ends. The proof in [5] crucially uses the compactness of the singleton prime
end boundary of the domain, and if the domain has more than just singleton prime ends in its
prime end boundary, such compactness must fail. Hence we do not follow the method in [5]
but go back to the basics of the argument found in [8].

The organization of the paper is as follows. In Sect. 2.1 we recall some basic notions of
analysis on metric measure spaces. Section 2.2 is devoted to recalling the construction of
prime ends for domains in metric spaces. We define, and illustrate with examples, notions
of rectifiably (in)accessible prime ends, see Definition 2.10 and (in)finitely far away prime

ends, see Definition 2.12. The prime end capacityC
P
p and the Perron method are discussed in

Sect. 2.3,while inSect. 3we show that the non-singletonprimeends and (singleton) rectifiably
inaccessible prime ends, together, form a prime end capacity null set. This is the content of the
first principal result of this paper, Theorem3.3. These observations allowus to answer an open
question posed in [13], see Remark 3.4. In Sect. 4, using the results from Sect. 3, we prove the
secondprincipal result of this paper, Theorem4.1. There,we show the resolutivity of functions
defined on the prime end boundary ∂P� of the given domain�, which are Lipschitz continu-
ous with respect to theMazurkiewicz distance when restricted to the part of ∂P� consisting of
the rectifiably accessible prime ends only. This improves resolutivity results presented in [13],
see Remark 4.2 below for detailed discussion. See also Proposition 4.3 for further extension
of Theorem 4.1. Section 5 contains five examples illustrating the features of results obtained
in Sect. 4. We prove the (resolutive) Kellogg property in Sect. 6 by showing that there is a set

Irr(�) ⊂ ∂P� with C
P
p (Irr(�)) = 0 such that the Perron solution of every resolutive contin-

uous boundary data on ∂P� achieves the correct limiting behavior (1.1) in ∂P�\Irr(�), see
Theorem 6.5.
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2 Notation and preliminaries

In this section we provide descriptions of the basic notions used in the paper. We recommend
interested readers to look to the books [6,20] and the papers [1,4,5,7,13] for more information
pertaining to these notions.

2.1 Newton–Sobolev spaces

Let (X , d, μ) be a complete metric measure space equipped with a metric d and a doubling
measure μ. Recall that μ is doubling if μ is a Radon measure and there is some C ≥ 1 such
that whenever x ∈ X and r > 0, we have

0 < μ(B(x, 2r)) ≤ C μ(B(x, r)) < ∞,

where, B(x, r) = {y ∈ X : d(y, x) < r}. As μ is doubling and X is complete, necessarily
X is proper, i.e. closed and bounded subsets of X are compact. A curve in X is a continuous
mapping γ : [a, b] → X . The image of γ (locus/trajectory) is denoted by |γ | = γ ([a, b]).
The length of γ is denoted by �(γ ) and we say that γ is rectifiable if �(γ ) < ∞. Every
rectifiable curve admits the so-called arc-length parametrization, see e.g. [20, Section 5.1]
or [3, Section 4.2]. See [20, Section 5.1] for discussions related to integrals

∫
γ
g ds of Borel

functions g on X along rectifiable paths γ .
Next, we recall the basic notions in the theory of first order calculus in metric measure

spaces. We say that a nonnegative Borel function g on X is an upper gradient of a function
u : X → [−∞,∞], if for each nonconstant rectifiable curve γ : [0, �(γ )] → X we have

|u(x) − u(y)| ≤
∫

γ

g ds

where x and y are the two endpoints of γ . If at least one of |u(x)|, |u(y)| is infinite, then we
interpret the above inequality to mean that

∫
γ
g ds = ∞. Recall that a family of rectifiable

curves in X is of zero p-modulus if there is a non-negative Borel measurable function
g ∈ L p(X) such that

∫
γ
g ds = ∞ for each γ ∈ �. We say that g is a p-weak upper gradient

of u if the collection � of curves for which the above inequality fails is of p-modulus zero.
Upper gradients were introduced by Heinonen and Koskela in [19]. It is easy to notice

that if g is an upper gradient, then so is g + h for any nonnegative Borel function h on
X . The more handy unique gradient to work with is the so called minimal p-weak upper
gradient gu ∈ L p(X), which is the p-weak upper gradient with smallest L p-norm, see
e.g the discussion in [20].

The following version of Sobolev spaces on the metric space X will be considered in this
paper; see [6,20,25] for more on this space. For u : X → [−∞,∞] a measurable function,
set

‖u‖N1,p(X) :=
(∫

X
|u|p dμ + inf

g

∫

X
gp dμ

) 1
p

,

where the infimum is taken over all upper gradients g of u (or equivalently, over all p-weak
upper gradients g of u). With this notation we define the Newtonian space on X as follows:

N 1,p(X) = {u : ‖u‖N1,p(X) < ∞}/ ∼,

where functions u and v are equivalent, denoted u ∼ v, if ‖u − v‖N1,p(X) = 0.
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The Sobolev p-capacity of a set E ⊂ X is defined as follows:

Cp(E) := inf ‖u‖p
N1,p(X)

, (2.1)

where the infimum is taken over all functions u ∈ N 1,p(X) that have a representative, also
denoted u, such that u ≥ 1 on E (see e.g. [6, Chapter 1.4] and [20, Chapter 7.2] for definitions
and properties of the Sobolev capacity). This capacity measures the exceptionality of sets in
the potential theory related to Newtonian spaces and is a finer way to detect smallness of sets
than null μ-measure.

Definition 2.1 We say that X supports a p-Poincaré inequality if there exist constants C > 0
and λ ≥ 1 such that for all balls B ⊂ X and all u ∈ N 1,p(X),

∫

B
|u − uB | dμ ≤ C diam(B)

(∫

λB
gp
u dμ

) 1
p

,

where uB stands for the mean-value of u on B:

uB :=
∫

B
u dμ := 1

μ(B)

∫

B
u dμ.

Definition 2.2 Given a domain � in X we denote by N 1,p
0 (�) the space of Newtonian func-

tions with zero boundary data; these are functions f ∈ N 1,p(X) such that f (x) = 0 for
p-capacity almost every point x ∈ X\�.

In addition to the assumptions outlined at the beginning of this section, wewill also assume
in this paper that X supports the p-Poincaré inequality for a fixed 1 ≤ p < ∞ (see below).
This together with doubling measure μ implies that X is quasiconvex, meaning that there is
a constant Cq ≥ 1 such that for any points x, y ∈ X there is a rectifiable curve γ joining x
and y in X satisfying �(γ ) ≤ Cqd(x, y).

2.2 Prime ends inmetric spaces

We now turn our attention to the main object of our work, namely prime ends and the prime
end boundary.

The first theory of prime ends is due to Carathéodory, who formulated a definition of
prime ends from the point of view of conformal mappings in simply-connected planar
domains. Subsequently, the theory has extended to more general domains in the plane and in
higher dimensional Euclidean spaces, see for instance the works of Freudenthal, Kaufman,
Mazurkiewicz, and more recently Epstein and Näkki (for further discussion of the history of
prime ends and the literature, we refer to [1, Sections 1,3], see also [2] for an application of
the prime end theory in the setting of Heisenberg groups). Here we study prime ends in the
more general setting of metric spaces, see [1,12,13]. The notion of prime ends considered
here is from [13], and is a slight modification from that of [1]. First, we recall the notion of
the Mazurkiewicz distance.

Definition 2.3 Given a domain � ⊂ X , the Mazurkiewicz metric dM on � is given by

dM (x, y) = inf
E

diam(E)

for x, y ∈ �, where the infimum is over all connected compact subsets E ⊂ � containing x
and y.
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Furthermore, as � is connected, dM is a metric in � and for all x, y ∈ � it holds that

d(x, y) ≤ dM (x, y) ≤ diam(�) < ∞.

However, the expression dM (x, y)/d(x, y) is usually unbounded in�. For example, consider
the slit disc B((0, 0), 1)\((−1, 0]×{0}) ⊂ R

2 and a sequence of points xn = (− 1
2 , (−1)n/n)

for n = 2, 3, . . . approaching the slit (−1, 0]×{0} from the both sides of the slit. If d denotes
the Euclidean distance in R

2, then for all m, n ≥ 2 it holds that dM (xn, xm) > 1, while
d(xn, xm) can be arbitrarily close to zero.

We will assume throughout this paper that the measure on X is doubling and supports
a p-Poincaré inequality. It follows that X is quasiconvex, and so in � we know that both
dM and d are locally biLipschitz equivalent. Furthermore, as � is connected, dM is indeed a
metric on �.

Given two sets A, K ⊂ �, we set

dist(A, K ) := inf{d(x, y) : x ∈ A, y ∈ K },
distM(A, K ) := inf{dM (x, y) : x ∈ A, y ∈ K }.

Let � � X be a bounded domain in X , i.e. a bounded nonempty connected open subset
of X that is not the whole space X itself. A connected set E � � is called an acceptable set
if E ∩∂� 
= ∅. The completeness of X together with the boundedness and connectedness of
an acceptable set E implies that E is compact and connected, that is, E is a continuum. Note
that as X supports a doubling measure, the completeness of X results in closed and bounded
subsets of X being compact.

Definition 2.4 A sequence {Ek}∞k=1 of acceptable sets is called a chain if the following
conditions are satisfied for each k ∈ N:

(a) Ek+1 ⊂ Ek ,
(b) distM(� ∩ ∂Ek+1,� ∩ ∂Ek) > 0,
(c) The impression

⋂∞
k=1 Ek ⊂ ∂�.

Note that the impression is either a point or a continuum, since {Ek}∞k=1 is a decreasing
sequence of continua.

The above definition of a chain differs from the definition of prime ends in [1, Defini-
tion 4.2] only in that we require distM(� ∩ ∂Ek+1,� ∩ ∂Ek) > 0 in condition (b) rather
than that dist(� ∩ ∂Ek+1,� ∩ ∂Ek) > 0. However, we emphasize that such a modification
does not affect results from [1], see [13, Definition 2.3] and the discussion following it for
comparison between the above definition and [1, Definition 4.2]. In general, there are more
chains and ends in the sense of the above definition than in the sense of [1], and therefore a
priori a prime end in the setting of [1] need not be prime in our sense. We further note that
results in [1] employed below, which use the analog of condition (b) in Definition 2.4 for d
instead of distM are, in fact, based on the positivity of the Mazurkiewicz distance; hence the
results of [1] do apply here.

Definition 2.5 We say that a chain {Ek}∞k=1 divides the chain {Fk}∞k=1 if for each k ∈ N there
exists lk ∈ N such that Elk ⊂ Fk . We say that two chains are equivalent if they divide each
other. The collection of all chains that are equivalent to a given chain {Ek}∞k=1 is called an
end and is denoted [Ek]. The impression of an end [Ek], denoted I [Ek ], is defined as the
impression of any representative chain.

The impression of an end is independent of the choice of representative chain, see [1,
Section 4]. Note also that if a chain {Fk}∞k=1 divides {Ek}∞k=1, then it divides every chain
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equivalent to {Ek}∞k=1. Moreover, if {Fk}∞k=1 divides {Ek}∞k=1, then every chain equivalent to{Fk}∞k=1 also divides {Ek}∞k=1. Therefore, the relation of division extends in a natural way
from chains to ends, defining a partial order on ends.

Definition 2.6 We say that an end [Ek] is a prime end if it is not divisible by any other end.
The collection of all prime ends is called the prime end boundary and is denoted ∂P�. The
collection of all prime ends with singleton impressions is denoted ∂SP�.

Remark 2.7 It is not difficult to see that an end with a singleton impression is necessarily a
prime end. Moreover, if γ :[a, b] → � is a curve such that γ ([a, b)) ⊂ �, γ (b) ∈ ∂�, and
for each m ∈ N there exists tm ∈ (a, b) such that γ ((tm, b)) ⊂ Em , then [Em] is a singleton
prime end with impression {γ (b)}, see [1]. It was shown in [1, Theorem 9.6] that dM extends
as a metric to ∂SP� and that � ∪ ∂SP� is complete under this metric, but not necessarily
compact. Furthermore, � ∪ ∂SP� is compact with respect to dM if and only if ∂P� = ∂SP�,
or equivalently, � is finitely connected at the boundary.

In order to set up a viable topology on the prime ends closure �
P := � ∪ ∂P� let us

recall the following notion, cf. [1, Section 8]. We say that a sequence of points {xn}∞n=1 in
� converges to the prime end [Ek], and write xn → [Ek] as n → ∞, if for all k ∈ N there
exists nk ∈ N such that xn ∈ Ek whenever n ≥ nk . Next, we define the sequential topology

on �
P
.

Definition 2.8 Given a sequence {pk}k ∈ �
P
and [Ek] ∈ ∂P�, we say that limk pk = [Ek]

if the subsequence of {pk}k that is from � converges to [Ek] in the above sense, and for the
subsequence (if any) of prime ends, denoted without loss of generality by {[Fj,k]} j , we have
that for each k ∈ N there is some jk ∈ N such that whenever j ∈ N with j ≥ jk , the prime
end [Fj,k] satisfies the condition that for any/each respresentative chain {Fj,m}m we have
Fj,m ⊂ Ek for large enough m. It is possible for {pk}k to converge to two distinct prime

ends, see the discussion in [1]. This notion of convergence induces a topology on �
P
, called

the prime end topology of �
P
.

Such a topology satisfies the separation condition (T 1), but need not be, in general,

Hausdorff (T 2), see [1, Proposition 8.8, Example 8.9]. A basis for the topology on �
P
is

defined as follows. Given G ⊂ �, we let

GP := G ∪ {[Ek] ∈ ∂P� : there exists n ∈ N with En ⊂ G}.
Then, [1, Proposition 8.5] shows that the following collection of sets forms a basis for the

topology on �
P
:

{G,GP : G ⊂ � is open}.
In addition to our afore-mentioned assumptions on space X , in what follows we will also

require the domain� to satisfy the following assumption (cf. Assumption 4.7 in [13] and the
discussion therein):

Assumption 2.9 For every collection E of ends in � that is totally ordered by division (i.e.:
for x, y ∈ E we define that x ≤ y if and only if x divides y), there must exist an end [Fk]
such that [Fk] ≤ [En] for every [En] ∈ E .

In other words, we assume that the collection of all ends in� satisfies the hypotheses of the
Kuratowski–Zorn lemma. The above assumption is satisfied, for instance, if � is a simply-
connected bounded domain in R

2 or if either ∂SP� is compact (and hence ∂P� = ∂SP�), or
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� ∪ ∂P� is sequentially compact, see the details of discussion on pg. 346 in [13]. We do not
know of an example where this assumption fails. We employ this assumption when using
Theorems 2.23 and 2.24 (Theorems 7.7 and 7.8 in [13]) in Sect. 4. The proofs of these results
rely on the comparison principle ([13, Proposition 7.3]) and [13, Corollary 5.4], which in
turn depend on Assumption 2.9.While this assumption is essential for the many of the results
of this paper, some results do not need it; we therefore will explicitly point out which results
require the validity of this assumption.

We now classify prime ends according to whether they allow approach to the impression,
from inside the chain that makes up the end, along a rectifiable curve.

Definition 2.10 A prime end [Ek] ∈ ∂SP� is said to be rectifiably accessible if there is a
rectifiable curve γ : [0, 1] → X such that γ ([0, 1)) ⊂ �, {γ (1)} = I [Ek], and for each
k ∈ N there is some tk ∈ (0, 1) such that γ ((tk, 1)) ⊂ Ek . We say that [Ek] ∈ ∂SP�

is rectifiably inaccessible if it is not rectifiably accessible. The collection of all rectifiably
accessible prime ends of � will be denoted by ∂RSP�.

Example 2.11 (See Fig. 1) The following domain provides us with an example of a rectifiably
inaccessible singleton prime end. Consider the graph of the function f : [0, 1] → R given
by a “harmonically damped sawtooth”, that is,

f (x) =
⎧
⎨

⎩

2(n + 1)
[
x − 2n+1

2n(n+1)

]
if x ∈

[
2n+1

2n(n+1) ,
1
n

]
,

−2n
[
x − 2n+1

2n(n+1)

]
if x ∈

[
1

n+1 ,
2n+1

2n(n+1)

]

for each positive integer n. Let � ⊂ R
2 be obtained by

� :=
∞⋃

n=1

⋃

x∈
(

1
n+1 , 1n

]
{x} × ( f (x) − n−4, f (x) + n−4).

For this domain, the point (0, 0) is the impression of exactly one prime end from ∂SP�.
Indeed, a chain is given by a sequence of balls centered at point (0, 0) with shrinking radii,
intersected with �. Since the resulting end has the singleton impression {(0, 0)}, it is a prime
end, by Proposition 7.1 in [1]. Moreover, this prime end is rectifiably inaccessible, as each
curve in � with the end point (0, 0) should have length at least

∑∞
n=k

1
n = ∞, see Fig. 1.

Definition 2.12 Let x0 ∈ �. A prime end [Ek] ∈ ∂P�\∂SP� is said to be infinitely far away
if there is some x0 ∈ � such that whenever {x j } j is a sequence in � with x j → [Ek]
and γ j is a rectifiable curve in � connecting a point x0 ∈ � to x j , j ∈ N, we must have
lim j→∞ �(γ j ) = ∞. A prime end [Ek] ∈ ∂P�\∂SP� is said to be finitely away if it is not
infinitely far away.

Remark 2.13 Recall from the beginning of Sect. 2.1 that in this paper the measure μ on X is
doubling and supports a p-Poincaré inequality, and hence X is quasiconvex. Given this, we
know that a domain (open connected subset) in X is necessarily rectifiably connected–for
each pair of points x, y ∈ � there is a rectifiable curve in � with x and y as end points. Thus
the above classification of finitely away and infinitely far away prime ends does not depend
on the choice of x0.

Remark 2.14 If a sequence {x j } j of points in � converges to the prime end [Ek], then for
each k ∈ N there exists jk such that whenever j ≥ jk we must have x j ∈ Ek ; it then follows
that any curve γ connecting x0 to x j for such j must have its tail end contained in Ek .
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x

y

x

y

1

1
2

1
2

1
3

1
3

1
4

1
41

5

(0,0)

1

f(x)

Fig. 1 Example 2.11

x0

E1

E2

1
4

3
4I[Ek]

1
2

1
4

E2

E3

E4

1
4

1
2

3
4I[Ek]

Fig. 2 Example 2.15 (left), Example 2.16 (right)

Example 2.15 (Double equilateral comb, see Fig. 2 (left)) This example also appears as [1,
Example 5.4]. Let � ⊂ R

2 be the domain obtained from the unit square (0, 1) × (0, 1) by
removing the collection of segments

(
0, 3

4

] × { 1
2n } and [ 1

4 , 1
) × { 3

2n+2 } for n = 1, 2, . . ..
Define the acceptable sets

Ek = � ∩
((

1

4
− 1

2k+2 ,
3

4
+ 1

2k+2

)

×
(

0,
1

2k

))

for k = 1, 2, . . . .

Then [Ek] is a prime end with impression I [Ek ] = [ 1
4 ,

3
4

]×{0}. Let x0 ∈ � and without loss
of generality assume that x0 ∈ �\E1 as in Fig. 2 (left). If {x j } j is a sequence converging to the

123



T. Adamowicz, N. Shanmugalingam

prime end [Ek], then a curve joining x0 with any x j ∈ Ek has length at least 2k
( 3
4 − 1

4

) → ∞
for k → ∞, showing that [Ek] is infinitely far away.

Example 2.16 (See Fig. 2 (right)) An example of a finitely away prime end comes from the
following variant of the previous example. Let

� = (0, 1)2\
⋃

n∈N

[ 1
2 , 1

] × { 1
2n

} \
⋃

n∈N

[ 1
4 ,

3
4

] ×
{

1
2n+1

}
.

This domain has only one non-singleton prime end, namely the one corresponding to the
chain given by

Ek = � ∩ [ 1
2 − 1

2k ,
3
4 + 1

2k

] × (
0, 1

k

)
, k ≥ 2.

One verifies directly from Definition 2.4 that {Ek}∞k=2 is a chain and defines an end in �.
That this end is minimal (i.e. the prime end) can be seen, by the following reasoning. Every
other Ek , for k ≥ 3, has one vertical side of its boundary which touches a slit from one family
of slits, say

[ 1
2 , 1

] × { 1
2n

}
for n = 1, 2, . . . and another vertical side whose distance to the

appropriate slit from the other family (
[ 1
4 ,

3
4

]×
{

1
2n+1

}
for n = 1, 2, . . . ) approaches 0 when

k → ∞, see Fig. 2 (right). Therefore, gaps between the boundaries of Ek and corresponding
teeth of the comb close for increasing k. Hence, if [Fl ] is an end dividing [Ek], then the
connectedness of all acceptable sets Fl implies that every Fl ⊃ EK for K large enough, and
thus also Fl ⊃ Ek for k ≥ K (Definition 2.4(a)). Since this gives the equivalence of [Fl ] and
[Ek], the end [Ek] is, in fact, the prime end with impression I [Ek] = [ 12 , 3

4 ].
The prime end [Ek] is finitely away. To see this, note that every point p ∈ Ek , k ∈ N,

can be connected to the point, say, x0 = ( 18 ,
1
2 ) ∈ � by the concatenation of a horizontal

line segment from p = (x, y) to q = ( 18 , y) with a vertical line segment from q to x0. Such
curves have length at most 5

4 for k > 3.

2.3 Perron solution with respect to the prime end boundary

In this section we recall basic notions for the Perron method in metric measure spaces.
See [13, Section 7] for further details.

Let � ⊂ X be a domain in X . We say that a function u ∈ N 1,p(�) is p-harmonic if it is
a continuous minimizer of the p-Dirichlet energy, i.e. for all ϕ ∈ N 1,p

0 (�) we have
∫

ϕ 
=0
gp
u dμ ≤

∫

ϕ 
=0
gp
u+ϕ dμ.

Here, gu and gu+ϕ stand for the minimal p-weak upper gradients of u and u+ϕ, respectively.
Recall the notion of Sobolev p-capacity from (2.1). By modifying u on a set of Sobolev p-
capacity zero if necessary, we see that u is locally Hölder continuous in �, see e.g. the
discussion in [22, Section 5] and [6].

Recall thatwe require� to satisfyAssumption 2.9.Moreover,we assume thatCp(X\�) >

0. This latter assumption allows us to avoid trivial solutions to the p-Dirichlet problem, see
the discussion following in [13, Definition 3.5]. Indeed, if Cp(X\�) = 0, then N 1,p(�) =
N 1,p
0 (�) = N 1,p(X) and so for any f ∈ N 1,p(�) the constant function u = 0 would act

as a p-harmonic function in � with f − u ∈ N 1,p
0 (�), that is, the Dirichlet problem for

boundary data in N 1,p(X) has only trivial solutions.
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The following notion of capacity is a modification of the related notion of C p from [7,
Section 3], and was first formulated in [13, Definition 6.1]. Here we use the prime end
topology as in Definition 2.8.

Definition 2.17 (cf. Definition 6.1 in [13]) Let E ⊂ �
P
. We define prime end capacity of

set E as
C

P
p (E,�) = inf

u∈AE
‖u‖p

N1,p(�)
, (2.2)

where AE consists of all functions u ∈ N 1,p(�) satisfying the following two conditions:

(1) u ≥ 1 on E ∩ �,

(2) lim inf

��y�
P

→x

u(y) ≥ 1 for all x ∈ E ∩ ∂P�.

If the underlying domain � is fixed, we denote, for simplicity, C
P
p (E) := C

P
p (E,�).

By [13, Lemma 6.2] the prime end capacity defines an outer measure on �
P
. Moreover,

if X is doubling and supports a p-Poincaré inequality, then C
P
p is an outer capacity, see [13,

Proposition 6.3]. By an outer capacity we mean that for each E ⊂ �
P
,

C
P
p (E) = inf

E⊂U⊂�
P
C

P
p (U ),

where the infimum is over all open (in the prime end topology of �
P
) subsets U of �

P

containing E .

Definition 2.18 (cf. Definition 6.4 in [13]) Let E ⊂ �
P
. A function f : E → R is said

to be C
P
p -quasicontinuous if for every ε > 0 there exists an open set U ⊂ �

P
such that

C
P
p (U ) < ε and f |E\U is real-valued continuous.

Recall from [6,25] that a function f ∈ N 1,p(X) is Cp-quasicontinuous.

Definition 2.19 For f ∈ N 1,p(�) we set H� f to be the function in N 1,p(�) such that
f − H� f ∈ N 1,p

0 (�) and whenever ϕ ∈ N 1,p
0 (�) (see Definition 2.2), we have

∫

�∩{ϕ 
=0}
gp
H� f dμ ≤

∫

�∩{ϕ 
=0}
gp
ϕ+H� f dμ.

See [21, Theorem 3.2] for the existence and uniqueness of such a function H� f given f ,
where H� f is given as the solution of the obstacle problem K−∞, f (�).

Definition 2.20 (cf. Definition 7.1 in [13]) Let 1 < p < ∞. We say that a lower semicontin-
uous function u : � → (−∞,∞] such that u 
≡ ∞ on � is p-superharmonic if it satisfies
the following comparison principle: For every nonempty open set V � � and all Lipschitz
functions v on X , it holds that HV v ≤ u in V whenever v ≤ u on ∂V .

A function u is called p-subharmonic if −u is p-superharmonic.

For more information on p-super(sub)harmonic functions and p-harmonic extensions in
the metric setting we refer, for instance, to [7] and [6, Chapters 9,10].
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Now we are ready to describe the Perron method.

Definition 2.21 (cf. Definition 7.2 in [13]) Let f : ∂P� → R. The collection of all p-
superharmonic functions u on � bounded from below such that

lim inf

��y�
P

→[En ]
u(y) ≥ f ([En]), for all [En] ∈ ∂P�

is denoted by U f (�
P
). We define the upper Perron solution of f by

P
�

P f (x) := inf
u∈U f (�

P
)

u(x), x ∈ �.

Similarly, let L f (�
P
) be the set of all p-subharmonic functions u on � bounded above such

that

lim sup

��y�
P

→[En ]
u(y) ≤ f ([En]), for all [En] ∈ ∂P�.

We define the lower Perron solution of f by

P
�

P f (x) := sup
u∈L f (�

P
)

u(x), x ∈ �.

Note that P
�

P f = −P
�

P (− f ).

Definition 2.22 If f : ∂P� → R such that

P
�

P f = P
�

P f on �,

then we say that f is resolutive, and set P
�

P f := P
�

P f .

One of the results obtained for the Perronmethod in [13] is a comparison principle between
p-super- and p-subharmonic functions with respect to the prime end boundary. Among its
consequences we have that if f : ∂P� → R, then P

�
P ( f ) ≤ P

�
P ( f ) (recall that we assume

� to be bounded).
For the reader’s convenience we now recall the two resolutivity results of [13] needed in

our work, see Sect. 4 below for their application. We remark that Theorems 2.23 and 2.24
require Assumption 2.9 to hold.

Theorem 2.23 (Theorem 7.7 in [13]) Suppose that Assumption 2.9 holds for the domain �.

Let F : �
P → R be a C

P
p -quasicontinuous function such that F |� is in N 1,p(�). Then F

is resolutive and P
�

P F = H�F.

The following result shows the stability of the Perron solution under perturbations on a

set of C
P
p capacity zero.

Theorem 2.24 (Theorem 7.8 in [13]) Suppose that Assumption 2.9 holds for the domain

�. Let f : �
P → R be a C

P
p -quasicontinuous function such that f |� is in N 1,p(�). If

h : �
P → R is zero in � and is zero C

P
p quasi-everywhere in ∂P�, then f + h is resolutive

with respect to �
P
, and P

�
P ( f + h) = P

�
P f .

We now summarize the assumptions we make throughout the paper: we assume that X is
complete and that the measure μ on X is doubling and supports a p-Poincaré inequality (for
a fixed 1 < p < ∞). We also assume that � ⊂ X is a domain with μ(X\�) > 0 such that
� satisfies Assumption 2.9.
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3 The collection of all non-singleton prime ends is a prime end
capacitary null set

In light of Theorems 2.24, it is desirable to know which prime ends influence the Perron
solution. Given that the Newtonian Sobolev class N 1,p considered here is based on rectifiable
curves, it would be natural to know that the collection of all rectifiably inaccessible singleton
prime ends and the collection of all non-singleton prime ends do not play a role in determining
the Perron solutions. We will prove this natural claim in this section by showing that these

two classes of prime ends have C
P
p -capacity zero.

Lemma 3.1 Let C be the collection of all prime ends in � that are infinitely far away. Then

C
P
p (C) = 0.

Proof Fix x0 ∈ �, and for ε > 0 let uε be given by

uε(x) = min

{

1, ε inf
γx

�(γx )

}

,

where the infimum is taken over all rectifiable curves in � connecting x0 to x . Since X is
quasiconvex, connectedness of� is equivalent to its rectifiable connectedness. Note also that
uε is finite-valued in �.

By Definition 2.12, if {x j } j is a sequence in � converging to [Ek] ∈ C, then for curves γ j

connecting x0 to x j , it holds that lim j l(γ j ) = ∞. As a consequence,

lim
j→∞ uε(x j ) = 1,

and hence, uε satisfies condition (2) in Definition 2.17, and so is admissible for computing
the prime end capacity of C, provided uε ∈ N 1,p(�). Note that limε→0+ uε = 0 pointwise in
�, and 0 ≤ uε ≤ 1 on �. Therefore, the Lebesgue dominated convergence theorem implies
that uε → 0 in L p(�).

We now show that uε ∈ N 1,p(�) by proving that the function ρε = ε is an upper gradient
of uε. Let x, y ∈ � and γxy be a curve joining x and y in �, while γyx0 be a curve joining y
and x0 in �. Furthermore, without loss of generality, suppose that uε(x) > uε(y). Then, by
the definition of uε,

uε(x) ≤ ε�(γyx0 + γxy) =
∫

γyx0 + γxy

ε ds =
∫

γyx0

ε ds +
∫

γxy

ε ds,

as curve γyx0 + γxy is admissible for uε. As uε(y) < uε(x) ≤ 1, it follows that uε(y) 
= 1.
Therefore, by taking the infimum over all rectifiable curves γyx0 we arrive at

uε(x) ≤
∫

γxy

ε ds + uε(y).

As we assumed that uε(x) > uε(y), it follows that

|uε(x) − uε(y)| = uε(x) − uε(y) ≤
∫

γxy

ε ds.

Thus, ρε = ε satisfies the definition of an upper gradient of uε. Lemma A.2 in [1] allows us
to infer that uε is measurable in �. The conclusion of the lemma now follows from the fact
that
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lim
ε→0+ ‖uε‖N1,p(�) = 0.

��

In the next lemma we associate with every finitely away prime end in �
P
and with every

inaccessible singleton prime end in �
P
a curve β, such that its substantial part is contained

in ∂�. This result is then used to show Proposition 3.3, which deals with a claim analogous
to Lemma 3.1 for this class of prime ends.

Lemma 3.2 Let [Ek] be a finitely away prime end or a rectifiably inaccessible prime end, and
γ j be a sequence of rectifiable curves in � with end points x0, x j ∈ � such that x j → [Ek]
as j → ∞ and sup j �(γ j ) < ∞. Suppose that β : [0, L] → � is an arc-length parametrized

rectifiable curve such that γ j → β uniformly as j → ∞. Then H1(|β| ∩ ∂�) > 0 and for
each ε > 0 there exists jε ∈ N such that for j > jε, at least H1(|β| ∩ ∂�)/2 length of the
curve γ j is within a distance ε of X\�.

Since X is proper and each γ j is (under its arc-length parametrization) 1-Lipschitz, an
application of the Arzela–Ascoli theorem tells us that after passing to a subsequence if
necessary, we do always have a curve β in � such that γ j converges uniformly to β.

Proof Note that x0 is one end point of β. Let x∞ be the other end point of β. Then as
x j → [Ek], it follows that x∞ ∈ I [Ek]. Let L := sup j �(γ j ). We may assume that each γ j

is arc-length parametrized and then extended by constant to [�(γ j ), L], so γ j : [0, L] → �

is 1-Lipschitz. We can then represent β by the parametrization β : [0, L] → � given by
β(t) = lim j→∞ γ j (t).

Suppose thatH1(|β| ∩ ∂�) = 0. Then we can find a sequence tm ∈ [0, L], with β(tm) →
I ([Ek]) and tm increasing strictly monotonically as m → ∞, such that β(tm) ∈ �. We can
also choose t1 so that β([0, t1]) ⊂ �. We can furthermore ensure by Remark 2.14 that for
each m ∈ N the points β(tm) lie in Em+1 and β|[tm ,tm+1] ⊂ Em+1. The latter is thanks to
knowing that �(β) < ∞ and there is a fixed positive dM -distance between � ∩ ∂Em and
� ∩ ∂Em+1. Let

rm = (4C)−m−1 min
{
dist(β(tm), ∂Em), dist(β(tm+1), ∂Em+1), 1

}
.

Here C is the quasiconvexity constant of X . Since γ j → β uniformly, there is a sufficiently
large j such that the segment βm := γ j |[tm ,tm+1] of γ j satisfies

�(βm) ≤ [1 + 2−m]|tm+1 − tm |,
and

d(β(tm), βm(tm)) < rm, d(β(tm+1), βm(tm+1)) < rm .

By choosing j to be large enough, we can also ensure that βm is contained in Em−1. Next,
by the quasiconvexity of X , we can find C-quasiconvex curves αm, α̂m with end points
β(tm), βm(tm) and end points β(tm+1), βm(tm+1), respectively. Then

�(αm) + �(̂αm) ≤ 4−m,

with αm ⊂ Em and α̂m ⊂ Em+1.
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Now the concatenated curve � : [0, �(�)] → X given by

� = β|[0,t1] +
∑

m

[αm + βm + α̂m]

is a rectifiable curve with

�(�) ≤ �(β) +
∑

m

(

4−m + �(βm |[tm ,tm+1])
)

≤ 3L + 1 < ∞.

Moreover, �([0, �(�)) ⊂ �, �(�(�)) = x∞, and for each m a tail end of � lies in Em . More
precisely, there is some sm such that�((sm, �(�))) ⊂ Em . This makes x∞ accessible through
the end [Ek] (see also Remark 2.7), which makes [Ek] an accessible prime end, violating the
assumption that it is either a non-singleton prime end (that is finitely away) or an inaccessible
prime end, and so it must be that H1(|β| ∩ ∂�) > 0.

Note that in the above proof, we only needed a sequence tm , m ∈ N, with tm → L as
m → ∞, such that β(tm) ∈ � ∩ Em in order to gain a contradiction. Thus the above proof
gives us a stronger conclusion; namely, there is some s ∈ (0, �(β)) such that β|[s,�(β)] ⊂ ∂�.
Now the uniform convergence of γ j to β yields the verity of the final claim of the lemma. ��

The following is the first main result of this paper.

Theorem 3.3 Let F be the collection of all non-singleton prime ends of � together with all

singleton prime ends that are rectifiably inaccessible. Then C
P
p (F) = 0.

Observe that we do not need to know the validity of Assumption 2.9 for the above theorem.

Proof By Lemma 3.1 we know that the collection of all prime ends that are infinitely far

away has C
P
p -capacity zero. Thus it suffices to focus on the subcollection of all finitely away

prime ends together with rectifiably inaccessible singleton prime ends.
For each η > 0 we set �η := {x ∈ � : dist(x, X\�) < η}. Then as � is bounded,

limη→0+ μ(�η) = 0. Thus, for each positive integer nwecanfindηn > 0 such thatμ(�ηn ) <

2−np . From now on let us fix such a sequence (ηn).
Fix ε > 0 and for each positive integer n set ρn := n χ�ηn

. With this choice of ρn , let wn

be a function on � given by

wn(x) = min

{

1, inf
γ

∫

γ

(
1

n
+

∞∑

j=n

ρ j

)

ds

}

,

where the infimum is over all rectifiable curves γ connecting x to x0 in �. Note that by the
same reasoning as in the proof of Lemma 3.1, we have that gn := 1

n + ∑∞
j=n ρ j is an upper

gradient of wn , and that

(∫

�

gp
n dμ

)1/p

≤ μ(�)
1
p

n
+

∞∑

j=n

jμ(�η j )
1/p ≤ μ(�)

1
p

n
+

∞∑

j=n

2− j j → 0, as n → ∞.

(3.1)

We claim that wn is admissible for computing C
P
p (F). To see this, suppose this is not the

case. Then there is some [Em] ∈ F , ε > 0, and a sequence xl ∈ � with xl → [Em] but
supl wn(xl) ≤ 1− ε. Then for each j there is a curve γl with end points x0 and xl such that

�(γl)/n ≤ 1 − ε and
∫

γl

∞∑

j=n

ρ j ds < 1 − ε.
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In this case we have that �(γl) ≤ n(1− ε), and hence, by passing to a further subsequence if
necessary (and invoking the Arzela–Ascoli theorem), we have γlk → β uniformly for some
rectifiable curve β in �, and hence by Lemma 3.2, there is some L > 0 and some m0 ∈ N

such that whenever k ≥ m0 we have H1(|γlk | ∩ �ηnL
) ≥ nL L where nL is the smallest

positive integer that is not smaller than max{1/L, n+1}. It then follows that, with the choice
of k0 = max{n + 1,m0 + 1},

1 − ε ≥
∫

γlk0

∞∑

j=n

ρ j ds ≥
∫

γlk0

ρnL ds ≥ 1,

which is not possible. It follows thatwn is admissible. The definition ofwn together with (3.1)
allow us to conclude that wn ∈ N 1,p(�) for each n ∈ N and that limn ‖wn‖N1,p(�) = 0.
In addition from the above argument, we have wn ∈ AF for each n ∈ N. Indeed, to see
this it only remains to show that limn

∫
�

w
p
n dμ = 0. This would follow from the Lebesgue

dominated convergence theorem if we know that wn → 0 pointwise in �. For each n ∈ N

setUn to be the collection of all points x ∈ � for which there is a curve γ connecting x to x0
with γ ⊂ �\�ηn and �(γ ) <

√
n. It is not difficult to see that

⋃
n Un = �,Un ⊂ Un+1, and

wn ≤ 1/
√
n on Un with wn ≤ 1 on �\Un . It follows that wn → 0 pointwise in �. Hence,

C
P
p (F) = 0 and the proof of the proposition is completed. ��

Remark 3.4 In [13, Remark 8.4(b)] the following question was posed: Are there bounded
domains for which

C
P
p (∂P�\∂SP�) > 0 ?

The results of this section give the negative answer to this question. Indeed, by Theorem 3.3

we have that the collection of all non-singleton prime ends ∂P�\∂SP� hasC
P
p -capacity zero.

4 Resolutivity of functions that are dM-Lipschitz outsideF
The following is the second main result of the paper.

Theorem 4.1 Let (X , d, μ) be a complete metric measure space equipped with a doubling
measure μ supporting a p-Poincaré inequality and � ⊂ X be a bounded domain satisfying
Assumption 2.9 and such that Cp(X\�) > 0. Let f : ∂P� → R such that its restriction to
∂RSP�, the collection of all rectifiably accessible prime ends of �, is Lipschitz continuous
with respect to the Mazurkiewicz metric dM. Then f is resolutive and P

�
P f = H� f .

Furthermore, if f1, f2 are such functions with f1 = f2 on ∂RSP�, then P
�

P f1 = P
�

P f2
on �.

Since the closure of ∂RSP� under the Mazurkiewicz metric is ∂SP�, we know that if
f1 = f2 on ∂RSP�, then the continuous extensions of f1 and f2 to ∂SP� also satisfy this
equality.

Proof Recall from the discussion following Definition 2.3 that the Mazurkiewicz metric dM
extends to a metric, also denoted dM , to � ∪ ∂SP�. Therefore by the McShane extension
theorem, see [23] and [16, Chapter 6], f |∂RSP� has a Lipschitz extension, denoted F , to
� ∪ ∂SP�. Moreover, the Lipschitz constants of f |∂RSP� and F are the same.

From [20, Lemma 6.2.6] it follows that

LipM F(x) = lim sup
y→x

|F(y) − F(x)|
dM (y, x)
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is a bounded upper gradient of F in � with respect to the metric dM , and hence by [7,
Proposition 5.3] we know that F |� ∈ N 1,p(�).

We extend F by f to ∂P�\∂SP�. Observe that by the discussion following Definition 2.10
and by Definition 2.12, every prime end in ∂P� falls into one of the classes described by

these definitions. Therefore, Theorem 3.3 implies that F isC
P
p -quasicontinuous on�∪∂P�.

Hence, by Theorem 2.23 we know that F |∂P� = f is resolutive, and that P
�

P f = HF . This
proves the first assertion of the theorem.

Let f1 and f2 be as in assumptions of the theorem and define h := f2 − f1. Then h equals

zero C
P
p quasi-everywhere on ∂P�, again by Lemma 3.1 and Proposition 3.3. Applying

Theorem 2.24 with f := f1 and h = [ f2 − f1]χ∂P� we get the desired conclusion and the
proof of the theorem is completed. ��
Remark 4.2 Let us compare Theorem 4.1 to results in [13]. In [13, Theorem 7.7] (see

Theorem 2.23 above), a corresponding function f is defined on the whole �
P
, is C

P
p -

quasicontinuous and is assumed to belong to N 1,p(�). Here, we require f to be merely
defined on ∂P�, but then also to be Lipschitz continuous on ∂RSP� with respect to the
Mazurkiewicz metric dM . See [7] for more on this metric and its relation to ∂SP�. Thus the
advantage in the above theorem is that we do not a priori have to verify whether the function

is a quasicontinuous function on �
P
, but the disadvantage is that we need f to be Lipschitz

on ∂RSP� with respect to dM , not merely C
P
p -quasicontinuous. The examples in the next

section illustrate the strength and limitations of these results.

In light of the above remark, the following proposition is a strengthening of Theorem 4.1.
Its proof is similar to the latter part of the proof of Theorem 4.1, and hence is omitted here.

Proposition 4.3 In the setting of Theorem 4.1, if F : �∪∂RSP� → R is C
P
p -quasicontinuous

and F |� ∈ N 1,p(�), then F is resolutive.

Recall thatF denotes the collection of all non-singleton prime ends of a domain� together
with all singleton prime ends of� that are rectifiably inaccessible, that is,F = ∂P�\∂RSP�.

The following observation is a consequence of Proposition 4.3. The proof is the same as
that of [13, Corollary 7.9] and, thus is omitted.

Corollary 4.4 In the setting of Theorem 4.1, let F : � ∪ ∂RSP� → R be a bounded C
P
p (�)-

quasicontinuous and F |� ∈ N 1,p(�). Moreover, let u be a bounded p-harmonic function

on �. If E ⊂ ∂P� is such that C
P
p (E) = 0 and, for all x ∈ ∂P�\(E ∪ F),

lim

��y�
P

→x

u(y) = F(x),

then u = P
�

P F.

5 Examples

Some examples related to the Dirichlet problem for the prime end boundary can be found
in [4,7,13]. The examples we provide here are geared more towards illustrating the properties
of results from the previous sections.
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Example 5.1 In Example 2.15, consider the function f : ∂� → R given by f (x, 0) =
f (x, 1) = 0 = f (0, y) = f (1, y) for x, y ∈ [0, 1], and for n ∈ N:

f (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4x when 0 ≤ x ≤ 1
4 , y = 1

2n ,

1 when 1
4 ≤ x ≤ 3

4 , y = 1
2n ,

−1 when 1
4 ≤ x ≤ 3

4 , y = 3
2n+2 ,

4(x − 1) when 3
4 ≤ x ≤ 1, y = 3

2n+2 .

There is a natural pull-back f0 of f to ∂P� by setting f0([Ek]) = f ((x, y)) if I ([Ek]) =
{(x, y)}, and by setting f0([Fk]) = 0 where [Fk] is the prime end with the non-singleton

impression. It is easy to see that f0 is C
P
p -quasicontinuous on ∂P� as it is continuous on

∂SP�, but neither Theorem 4.1 nor [13, Theorem 7.7] tells us that f0 is resolutive. Note
that f0 is not continuous on ∂P� as it fails to have a continuous extension to ∂P�\∂SP�.
On the other hand, if f1(x, y) = √

y f (x, y) for (x, y) ∈ ∂� and f0 is constructed in a
corresponding manner from f1, then it is clear that such f0 is continuous on ∂P�, and again
f0 is not known to be resolutive. Both constructions of f0 do not give functions that are
Lipschitz (with respect to dM ) on ∂SP�.

Example 5.2 We modify Example 2.15 as follows. Let α > 0 and

X = {(x, y, z) ∈ R
3 : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, |z| ≤ yα},

equipped with the 3-dimensional Lebesgue measure and the Euclidean metric. It can be seen
that the measure on this space is doubling and supports a 1-Poincaré inequality. Let � be
obtained by removing

⋃

n∈N

([
0, 3

4

] × {2−n} ∪ [ 1
4 , 1

] × {3 · 2−n−2}) × [−1, 1]

from

{(x, y, z) ∈ R
3 : x, y ∈ (0, 1), |z| < yα}.

Suppose that α > p − 1. Then an extension F of the function given in Example 5.1, by
F(x, y, z) = f (x, y), yields a function on ∂P� that is easily seen to have an extension to

� such that this extension is C
P
p -quasicontinuous on �

P
and the restriction of the extension

belongs to N 1,p(�). Thus Proposition 4.3 now tells us that F is resolutive, even though it is
not continuous on the boundary of �.

Example 5.3 Perhaps one of the important applications of Theorem 3.3 is that we obtain a

handy, geometric, way of verifying which prime ends form a set of C
P
p -capacity zero. For

instance, consider the Euclidean planar domain � in Example 2.16. Since the prime end

[Ek], with impression I [Ek] = [ 12 , 3
4 ] × {0}, is finitely away, it holds that C

P
p ({[Ek]}) = 0.

Moreover, there is no prime end associated with points in [( 14 , 1
2 ) ∪ ( 34 , 1)] × {0}. (However,

there is an end [Fn] with impression [ 14 , 1
2 ] × {0} given e.g. by a chain with acceptable sets

Fn := � ∩ [ 14 − 1
2n , 1

2 + 1
2n ] × (0, 1

n ) for n = 3, 4, . . .). The remaining prime end boundary
consists of singleton prime ends only (in fact all of them are rectifiably accessible). Therefore,
Theorem 4.1 allows us to conclude that any function on ∂P� Lipschitz continuous on ∂SP�

with respect to the Mazurkiewicz distance dM is resolutive. Furthermore, one can perturb
the boundary data at a point [Ek] ∈ ∂P�\∂SP� and that data is resolutive as well. Note that
Cp(I ([Ek ])) > 0, and so the now-classical theory of Perron solutions from [9] does not yield
such perturbation result.
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1
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(32 , 0)

Fig. 3 Example 5.5

Example 5.4 The domain in Example 2.11 above has exactly one rectifiably inaccessible
(singleton) prime end [Ek] with impression {(0, 0)}, and thus, Proposition 3.3 gives us that

C
P
p ({[Ek]}) = 0. The remaining prime ends are rectifiably accessible. Therefore, a boundary

data f : ∂P� → R can be perturbed at [Ek] freely, remaining resolutive, provided Lipschitz
continuity of f |∂RSP� with respect to the Mazurkiewicz distance. Observe that for p > 2 it
holds that the Sobolev capacity Cp({(0, 0)}) > 0, and so the resolutivity cannot be inferred
from [9]. However, see [7, Example 10.1] for a similar discussion in the context of the Perron
method with respect to the Mazurkiewicz boundary.

The following is an example of a domain with infinitely many rectifiably inaccessible
prime ends.

Example 5.5 Consider � = (0, 3
2 ) × (0, 1) with the tunnel S1 removed from �, see S1 in

Fig. 3. The height and width of the double-slit tunnel are both equal to 1
2 . Following the idea

of Example 2.11, the n-th horizontal sides of S1 to be of length 1
n for n = 4, . . ., while the

length of the n-th vertical sides is 1
2n for n ≥ 2. The separation between the two sinuous

curves that form S1 narrows as n increases (see Fig. 3). The limiting point, denoted x1, forms
the impression of three singleton prime ends. Since any curve approaching x1 from inside the
tunnel S1 is of length at least

∑∞
n=4

1
n = ∞, this prime end is rectifiably inaccessible. The

other two singleton prime ends with the same impression {x1}, namely defined by two curves
approaching x1 from the left- and right-hand sides of S1, respectively. Existence of such prime
ends is guaranteed e.g. by Lemma 7.7. in [1]. Next, we scale the dimensions of S1 by 1

2 and
shift it to the right in a distance 1

8 obtaining new tunnel, denoted S2, and the corresponding
impression {x2} gives a rectifiably inaccessible prime end.We repeat this procedure, obtaining
a family Sn for n ∈ N with 2−(n+2) the distance between Sn and Sn+1. Moreover, associated
with {Sn} is a sequence of points {xn}∞n=1 such that xn → ( 32 , 0) for n → ∞. Each of xn is
an impression of a rectifiably inaccessible prime end. By Proposition 3.3 the collection of

rectifiably inaccessible prime ends of the domain �\ ⋃∞
n=1 Sn , has C

P
p -capacity zero.
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6 The Kellogg property

The aim in this section is to prove a variant of the Kellogg property for the Perron solutions
P

�
P f . Note that every continuous function on ∂� is resolutive for the classical Perron

solution as considered in [9], and the corresponding Kellogg property is proved there. Since
we do not know that every continuous function on ∂P� is resolutive, in this paper we only
consider continuous data f on ∂P� that are resolutive, see Definition 6.4 below. See [5]
for similar restrictions for domains whose prime end boundary consists only of singleton
prime ends. Since the method of [5] rests crucially on the compactness of ∂SP�, and such a
compactness property is unavailable in our, more general, setting, our proof of the Kellogg
property is different than the one in [5], and is more in the spirit of [8].

Definition 6.1 A function u ∈ N 1,p(W ) for some non-empty open set W ⊂ X is a p-
superminimizer in W if whenever 0 ≤ ϕ ∈ N 1,p

0 (W ), we have
∫

W∩{ϕ 
=0}
gp
u dμ ≤

∫

W∩{ϕ 
=0}
gp
u+ϕ dμ.

Here N 1,p
0 (W ) consists of functions f ∈ N 1,p(X) forwhich f = 0Cp-almost everywhere

in X\W , see Definition 2.2.

Lemma 6.2 ([8, Lemma 3.10]) Let B ⊂ X be a ball and let u ∈ N 1,p(B) be a p-
superminimizer in B with 0 ≤ u ≤ 1. Then there exists a representative of u that is lower
semicontinuous at every point of B.

See Definition 2.19 for the definition of H� f for functions f ∈ N 1,p(�).

Lemma 6.3 Let � ⊂ X be a domain satisfying Assumption 2.9, B ⊂ X a ball with center in

∂�, and W be a given connected component of B∩�. Suppose that F : �
P → R is Lipschitz

quasicontinuous on � ∪ ∂SP� with respect to the Mazurkiewicz metric and F([Ek]) = 1
whenever [Ek] ∈ ∂SP� such that there is some k0 ∈ N with Ek ⊂ W for k ≥ k0. Suppose
in addition that F satisfies 0 ≤ F ≤ 1 and is such that F |� ∈ N 1,p(�). Define a function
� : B → R as follows:

�(x) =
{
H�F(x), x ∈ B ∩ W ,

1, x ∈ B\W .
(6.1)

Then � ∈ N 1,p(B) and is a p-superminimizer in B.

Proof We first show that � ∈ N 1,p(B). Since 0 ≤ � ≤ 1, it suffices to show that �

has a p-weak upper gradient in L p(B). As F is L-Lipschitz on � ∪ ∂SP� with respect to
the Mazurkiewicz metric dM for some L > 0, the constant function g = L is an upper
gradient of F on � ∪ ∂SP� when considered with respect to the metric dM . Then g is
an upper gradient, also with respect to the original metric d , for F on �. Furthermore, if
γ : [a, b] → B ∩ W with γ lying entirely in � or entirely in B ∩ ∂W , then the pair F, g
satisfies the upper gradient gradient inequality along γ . If γ lies partially in � and intersects
B ∩ ∂W , then by splitting it into two parts if necessary we may assume that γ (a) ∈ W ,
and set t0 := sup{t ∈ [a, b] : γ ([a, t]) ⊂ W }. Note then that γ (t0) ∈ B ∩ ∂W ⊂ ∂� but
γ ([a, t0)) ⊂ W ⊂ �. Therefore there is some singleton prime end [Ek] ∈ ∂P� such that
Ek ⊂ W for each k ∈ N and I ([Ek]) = {γ (t0)}, and so limt→t−0

F(γ (t)) = 1 = �(γ (t0)),
and the pair F, g satisfies the upper gradient inequality on γ |[a,t] for each t < t0. It follows
now that
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|F(γ (a)) − 1| ≤
∫

γ |[a,t0]
g ds.

It follows that the extension of F |W by 1 to B\W has gχW as an upper gradient in B. Note
that the zero extension of F − H�F from � to X , denoted h, is in N 1,p

0 (�); let gh ∈ L p(X)

be an upper gradient of h (in X ). Then by the above argument, the function gh + g χW is an
upper gradient of � in B, that is, � ∈ N 1,p(B).

The rest of the proof follows the steps of the corresponding proof of [8, Lemma 3.11].
By Theorem 2.23 we get that F is resolutive and P

�
P F = H�F . The comparison principle

allows us to infer that 0 ≤ H�F ≤ 1. Let ϕ ∈ N 1,p
0 (B ∩ W ) be nonnegative. Our goal is to

show that ∫

B∩{suppϕ 
=0}
gp
� ≤

∫

B∩{suppϕ 
=0}
gp
�+ϕ. (6.2)

Since � ≤ 1 in W , then we may assume that � + ϕ ≤ 1, as otherwise one can replace test
function ϕ bymin{ϕ, 1−�} and decrease the right-hand side of (6.2). Hence, ϕ ≡ 0 in B\W
and thusϕ ∈ N 1,p

0 (B∩�). As H�F is a p-minimizer in B∩� ϕ ∈ N 1,p
0 (B∩�) ⊂ N 1,p

0 (�),
it follows that

∫

B∩{suppϕ 
=0}
gp
� =

∫

B∩�∩{suppϕ 
=0}
gp
H�F

≤
∫

B∩�∩{suppϕ 
=0}
gp
H�F+ϕ

=
∫

B∩{suppϕ 
=0}
gp
�+ϕ.

Thus � is a p-superminimizer in B. ��
Definition 6.4 We say that a point [Ek] ∈ ∂P� is resolutively regular if whenever ϕ ∈
C(∂P�) is resolutive, we have

lim
��y→[Ek ]

P
�

Pϕ = ϕ([Ek]).

We say that [Ek] is resolutively irregular if it is not resolutively regular. Let Irr(�) denote
the collection of all resolutively irregular points in ∂P�.

Theorem 6.5 (The Kellogg property for prime end boundary) Let � ⊂ X be a bounded

domain satisfying Assumption 2.9. Then C
P
p (Irr(�)) = 0.

Before the proof of the theorem, let us discuss some auxiliary definitions and results. For a
set A ⊂ �we define Pr(A) as the subset of ∂P� consisting of prime ends whose impressions
belong to A:

Pr(A) := {[Em] ∈ ∂P� : I [Em] ⊂ A}.
Proof The proof follows the steps of the corresponding proof of Theorem 3.9 in [8]. However,
the setting of prime end boundary requires several modifications of the original argument.

The compactness of ∂� allows us to find a finite covering of it by balls Bj,k :=
B(x j,k, 2− j ) for j = 1, 2, . . . and 1 ≤ k ≤ N j , with x j,k ∈ ∂�. Note that 2B(x j,k, 2− j )∩�

has at most countably many connectedness components which we index with l = 1, 2, . . .
and denote by Bl

j,k .
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We introduce the functions ϕl
j,k : X → R by

ϕl
j,k(y) = min{1, 2 j dist(y, X\2B(x j,k, 2

− j ))}χ
Bl
j,k

(y).

It is easy to see that 0 ≤ ϕl
j,k ≤ 1 and that every ϕl

j,k is Lipschitz continuous on �, and
hence is Lipschitz continuous on � also with respect to the Mazurkiewicz metric dM . We

extend ϕl
j,k to functions on �

P
as follows:

̂ϕl
j,k(y) =

⎧
⎪⎨

⎪⎩

ϕl
j,k(y) if y ∈ �,

inf z∈I [y] ϕl
j,k(z) if y = [En] ∈ ∂P� with En ⊂ Bl

j,k for large enough n,

0 otherwise.

Observe that these functions satisfy the following properties:

(i) ̂ϕl
j,k is Lipschitz continuouswith respect to dM on�∪∂SP�. Indeed, sincewe know that

ϕl
j,k = ̂ϕl

j,k is Lipschitz on � with respect to the metric dM , it has a unique Lipschitz

(with respect to dM ) extension to � ∪ ∂SP�, and aŝϕl
j,k is continuous on � ∪ ∂SP�, it

follows that it is Lipschitz on that set with respect to dM .

(ii) ̂ϕl
j,k |� = ϕl

j,k |� ∈ N 1,p(�).

(iii) functionŝϕl
j,k are C

P
p -quasicontinuous on �

P
. This follows immediately from part (i)

above and Theorem 3.3.
(iv) If [Em] ∈ ∂SP� with Em ⊂ Bl

j,k for large m ∈ N, then̂ϕl
j,k([Em]) = ϕl

j,k(x) where{x} = I ([Em]).
The above properties allow us to employ Theorem 2.23 and conclude that ̂ϕl

j,k is C
P
p -

quasicontinuous and is resolutive with

P
�

P
̂ϕl

j,k = H�
̂ϕl

j,k = H�ϕl
j,k .

Set

I j,k,l =
{

[Em] ∈ ∂SP� ∩ Pr(Bj,k ∩ Bl
j,k) : lim inf

��y→[Em ] H�ϕl
j,k(y) < ̂ϕl

j,k([Em]) = 1

}

.

Note that I j,k,l ⊂ Irr(�). Moreover, by Lemma 6.3 applied to B = Bj,k , component

W = Bl
j,k and F = ̂ϕl

j,k we get �, a p-superminimizer on Bl
j,k such that � = H�ϕl

j,k

on Bj,k ∩ Bl
j,k and � ≡ 1 on Bj,k\Bl

j,k . Therefore, the assertion of Lemma 6.2 together
with [13, Lemma 6.11] allows us to infer that

0 ≤ C
P
p (I j,k,l) ≤ Cp(P

−1(I j,k,l)) = 0, (6.3)

where

P−1(I j,k,l) = {x ∈ ∂� : {x} = I ([Em]) for some [Em] ∈ I j,k,l}.
Let f ∈ C(∂P�) and let [Em] ∈ ∂SP� for which

lim

��y�
P

→[Em ]
P

�
P f (y) 
= f ([Em]).
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We should interpret the above statement to mean that either the limit on the left-hand side
does not exist, or, if it exists, fails to equal the value on the right-hand side. Let x0 = I ([Em]).
By adding a constant to f , and by scaling f if necessary, we may assume that f ≥ 0 on
∂P�, f ([Em]) > 1 and that

lim inf

��y�
P

→[Em ]
P

�
P f (y) < 1.

As f is continuous on ∂P�, there is some open setU ⊂ �
P
with [Em] ∈ U such that f > 1

on ∂P� ∩U . For each j ∈ N there is some k j such that x0 ∈ Bj,k j .
As [Em] ∈ ∂SP�, we have limm→∞ diam(Em) = 0. Thus Em ⊂ Bj,k j for sufficiently

largem ∈ N, and as Em is connected and x0 ∈ ∂Em ∩ ∂�, it follows that there is some l with
x0 ∈ Bj,k j ∩ ∂Bl

j,k j
and for sufficiently large m ∈ N we have Em ⊂ Bl

j,k j
⊂ U . It follows

that ̂ϕl
j,k j

([Em]) = 1 and ̂ϕl
j,k j

≤ f on ∂P�. It follows that

H�
̂ϕl
j,k j

= P
�

P
̂ϕl
j,k j

≤ P
�

P f

on �. It follows that

lim inf

��y�
P

→[Em ]
P

�
P
̂ϕl
j,k j

(y) ≤ lim inf

��y�
P

→[Em ]
P

�
P f (y) < 1,

That is, [Em] ∈ I j,k j ,l . Thus the collection of all [Em] ∈ ∂SP� for which

lim

��y�
P

→[Em ]
P

�
P f (y) 
= f ([Em])

is a subset of
⋃

j∈N
⋃

k
⋃

l I j,k,l , and this holds true for each resolutive f ∈ C(∂P�). Hence
Irr(�) ∩ ∂SP� ⊂ ⋃

j∈N
⋃

k
⋃

l I j,k,l , and so by (6.3), Theorem 3.3, and by the countable

subadditivity of C
P
p the desired conclusion follows. ��
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