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Abstract—In September of 2017, the island of Puerto Rico
(PR) was devastated by a category 5 hurricane, Hurricane Maria.
The island experienced complete blackout, and full restoration
of the electrical system took nearly 11 months to complete.
Therefore, it is of high interest to re-develop the infrastructure
at the generation, transmission, and distribution levels so that
it is hurricane-resilient. This paper describes the methodologies
behind developing a more resilient electric infrastructure using a
co-optimized expansion planning (CEP) software. First, a model
of the PR electric power system was developed to perform long-
term CEP studies. The CEP tool developed seeks the minimum
total cost of the PR system in a 2018-2038 planning horizon
while exploring various levels of expansion investment options.
The CEP also models the system under extreme events (i.e.
hurricanes) to allow for data-driven resilience enhancement
decisions. Second, the paper summarizes infrastructure visions
that contain resilience investment options; the visions differ
in terms of invested amounts of distributed generation and
centralized resource. Lastly, key findings from these visions are
reported and the CEP model performance is discussed.

Index Terms—resilience, expansion planning, hurricane events,
distributed generation, optimization

I. INTRODUCTION

The electric infrastructure on the island of PR is in need of
transformation in order to withstand powerful hurricanes and
avoid the devastation that the island experienced from Maria
[1]. This work is intended to provide possible solutions to
transform the electric infrastructure of PR to be more resilient,
economic, and sustainable. Resilience is a widely used term
that can take on different meaning and can be confused with
the term reliability. Several definitions of resilience have been
proposed in [2]-[6]. In our work, we define it as the ability
to minimize loss of electric energy services following extreme
events; the objective of the work reported in this paper is to
identify low-cost portfolios of infrastructure investments that
provide high resilience to hurricane events in Puerto Rico. This
work was completed in conjunction with a report regarding the
social context of increasing PR infrastructure’s integrity [7].

To meet the energy needs of the island, PR relies heavily
on imported fossil fuels. The existing generation in PR nears a
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total of 6 GW in installed capacity. The transmission network
consists of 2,478 miles of lines at the 230 kV, 115 kV, and
38 kV voltage levels [8]-[10]. In this study, the PR system
was modeled with 102 transmission buses, of which 75 were
load buses. At each load bus, a three-segment distribution
feeder was represented resulting in 225 distribution buses and
segments.

In this work, a highly vetted CEP model is being used
to conduct a multi-year simulation on the infrastructure of
PR. The objective of the CEP model is to minimize the
total costs, including investment and operational costs, of the
system subject to network and operational constraints. The
model used in this study was adapted from previous work
completed for larger systems in the continental United States
[11]. The conventional CEP models simulate the operational
and investment decisions over N years based on forecast
data (e.g., fuel prices, investment costs, load growth, and
wind/solar performance). The model developed for PR utilizes
the functionality of the conventional CEP with the addition of
providing the system the ability to enhance the resilience with
respect to hurricane impacts.

II. DATABASE DEVELOPMENT

Hourly load profiles were developed utilizing publicly avail-
able data from PREPA [8]. Overall, the island of PR does not
see much seasonal variation in load due to a steady climate.
This load data was used to develop load blocks to construct
characteristic operating conditions for both hurricane and non-
hurricane years. The system load is based on a power flow
snapshot of the system from 2014. Due to the decreasing
population in PR, annual load growth was assumed to be zero.
Unit heat rates and projected fuel prices through 2038 for the
island’s thermal unit fleet were adapted from [12], and used by
the CEP model to make retirements and investment decisions.

Line terrain multipliers were used to scale line cost; four
terrain types were assumed: urban, farmland, mountainous,
and suburban, with their respective cost multipliers as 1.59,
1, 2.25, and 1.27 [13]. Expansion costs of each line were
calculated as a function of line distance and voltage level; per
unit line costs in $/MW-mile, were estimated from previous
studies [11]. To capture technology development over time,



the maturation of capital expense (CAPEX) of each candidate
technology was taken into account according to the NREL
Annual Technology Baseline [14].

To model the performance of solar and wind technologies,
capacity factors were developed using sources [15], [16], and
[17]. This allowed for solar and wind profiles to be constructed
for every hour within a year and for every bus location. The
wind profiles were modeled to be at a hub-height of 100m.
Solar profiles were calculated for large-scale ground mounted
plants and for rooftop installation.

ITI. MODELING APPROACH
A. Baseline CEP Modeling Features

To model the distribution system while maintaining com-
putational tractability, a 3-segment feeder is represented at
each load bus of the PR system. This is an important aspect
for PR due to the attractive features of distributed energy
resources (DER). This modeling feature has been adapted from
[18]. Figure 1 illustrates the 3-segment feeder that is used to
represent the distribution system at all 75 specified load buses.
The load allocation among distribution buses is indicated in
Figure 1 and is assumed to be 1/2, 1/3, and 1/6 ,respectively,
of the load level at the transmission bus.
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Fig. 1: 3-segment distribution feeder placed at load buses
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Figure 1 also displays the candidate technologies available
for investment and the location in the system they can be built.
Table 1 provides the maximum investable capacity at each bus
and the maximum annual investable capacity for the entire
system for each technology. These investment caps were put
into place to provide a realistic build-out plan by respecting
limitations on funding, resources and labor.

Regulation and contingency reserve requirements are also
accounted for in the model. A regulation up and down and a
contingency reserve requirement are enforced system-wide at
levels of 10% and 5% of load, respectively. Only thermal units
with ramping capability are assumed to contribute towards
meeting the operating reserves requirements. Each unit is
modeled using its ramp rate, in %MW/minutes, where %MW
represents the power output to which the unit can increase or
decrease in one minute (regulation reserve) and 10 minutes
(contingency reserve). All thermal generators are subject to
maintaining a minimum production level [12]. The minimum

Table 1: Generation candidates’ investment caps

Investment Capacity Candidate Max. Annual
Candidates Credit Capacity Invested
(MW per bus) | Capacity
MW)
NGCC 1.00 500 500
NGCT 1.00 500 500
Utility PV 0.40 100 1000
Commercial 0.40 50 500
Rooftop PV
Distributed 0.40 20 500
Rooftop PV
100m Wind 0.15 100 1000
Micro-Turbine 1.00 1.00 50
Distributed 0.94 1.00 50
Storage
Energy 1.00 2% of peak at | 10% of system
Efficiency bus peak

production levels and reserve requirements are not enforced in
hurricane years.

A system wide planning reserve margin (PRM) of 40%
was implemented, which means that loads during the peak
times are modeled at 1.4 times the actual load. This PRM
is common when modeling isolated systems such as in PR
due to the lack of interconnection with other systems [19].
In order to satisfy the PRM constraint, capacity credits for
generation technologies were assigned. Table 1 identifies the
assigned capacity credits for each generating resource. The
operating reserve requirement constraints are not imposed
during the peak load block of non-hurricane years to avoid
double counting of capacity needs. The PRM plays a vital role
in the investment decision-making process especially when the
system is exposed to hurricane conditions.

Under normal operating conditions, DC power flow mod-
eling is used in computing the power flow of transmission
lines and distribution segments. This is appropriate so that
the system performs within its physical limitations. During
hurricane conditions, DC power flow modeling is not used
due to the difficulty of getting it to solve when so many
lines are outaged. These outages are a result of the line flows
being de-rated (See Section III-E). Thus, for hurricane years
the transportation model is used for all resilience candidate
circuits [20]. Line losses are also modeled for both the DC
power flow and the transportation model using a linear loss
approach as described in source [21]. Transmission lines and
distribution segments are modeled with an efficiency of 97%
and 95% respectively.

A discount factor of 5.7% is used. End-effects are rep-
resented by assuming an additional 20 years of operation
beyond the 2018-2038 planning horizon. This assumes that
the next 20 years of operation will be identical to the last
year of the planning horizon. By implementing the end-effects
modeling the investments made in the last few years of the
horizon will account for the future operation of the system.
Figure 2 displays a high level view of the CEP model’s
objective function and constraints that were developed for the
PR system.
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Fig. 2: High-level view of CEP model

B. Hurricane Modeling

The major contribution of this work is to model the electric
system subject to a hurricane condition, evaluate the effect
of that hurricane condition, and then use that information to
identify balanced portfolios of generation, transmission, and
distribution investment decisions [22]—-[24]. Within the CEP
formulation, each year is denoted as either a year with or with-
out a hurricane occurrence. Both types of years are composed
of load blocks that characterize that year’s operating condition.
For a hurricane year, five hurricane periods (HP) have been
developed with each HP being divided into hurricane blocks
(HB). Table 2 provides a breakdown of each HP that makes up
a hurricane year. The HPs are constructed in increasing order
of amount of time they span with respect to a hurricane event.
For instance, HP #1 has a duration of 24 hours and represents
the day that the hurricane event occurs. A total of 4 HB’s
comprise each HP based on time of day. The breakdown of
time of day for each HB is: 11PM - 6AM, 7AM - 1PM, 2PM
- 6PM, and 7PM - 10PM. Thus each hurricane year consists
of 20 operating conditions.

Table 2: Breakdown of hurricane periods

Hurricane Period | Time within year Corresponding Event
1 0-23 Hurricane occurring
2 24-192 Week after hurricane
3 193-912 Month after hurricane
4 913-4512 5 months after hurricane
5 4513-8760 Remaining 6 months

Non-hurricane years, on the other hand, are modeled to
represent normal operating conditions for the system. There
are nine load blocks developed to capture the normal operating
conditions. The blocks correspond to the two seasons in PR
(rainy and dry) and the time of day. Table 3 provides the
breakdown of each load block for a non-hurricane year. Non-
hurricane years may or may not be investment years. If not,
then a non-hurricane year is represented as an operating year
in which case it computes the operational costs of that year
without allowing investment.

Figure 3 shows the decision horizon modeled in our work,
illustrating the timing of six hurricane years and five non-
hurricane investment years. The remaining years of the horizon

Table 3: Breakdown of non-hurricane blocks

Hurricane Block | Season | Time of Day | # of hours

1 Rainy 11pm-6am 1712
2 Rainy 7am-1pm 1498
3 Rainy 2pm-6pm 1498
4 Rainy Tpm-10pm 1070
5 Dry 11pm-6am 1208
6 Dry 7am-1pm 1057
7 Dry 2pm-6pm 755
8 Dry 7pm-10pm 604
9 Peak - 40

Fig. 3: Timing of hurricane (yellow) and non-hurricane (blue)
investment years within the planning horizon

are operational years. Each hurricane year represents a Maria-
strength hurricane event but with its own unique path. The first
hurricane year models the actual path of Maria, as indicated
by the bold line in Figure 5(a); the remaining hurricane years
model paths that vary geographically across the island. These
historical paths are modeled after hurricanes Irene (2011),
Hortense (1996), Hugo (1989), and two unnamed hurricanes
(1852 & 1899) [25]. Modeling different paths in this way
biases resilience investments towards those regions that are
most effective in minimizing costs for a variety of possible
hurricane paths.

C. Resilience Modeling - Circuits

To include investment decisions that enhance resilience,
three resilience levels have been developed for circuits and
vulnerable resources (See Section III-D), defined as standard
resilience, semi-resilience, and full-resilience, defined to have
increasing resilience and increasing cost. The cost multipliers
for the standard, semi, and full resilient levels of circuit [,
denoted as RC'M; ., are 1, 1.5, and 2, respectively.

Figure 4 displays the fragility curves used for representing
wind speed influence on the performance of overhead trans-
mission lines and distribution segments [22], [26]. Here, per-
formance is quantified as the component k’s failure probability
Faily. To distinguish the performance of higher resilient levels
from the standard level, the fragility curves of the semi and full
resilient levels were shifted to the right by 20 mph and 40 mph,
respectively. This models that higher resilient levels are able
to withstand higher wind speeds before performance degrades.
We capture an average performance degradation by de-rating
circuit capacity. Performance of the different resilience levels
also has a temporal component reflected by the de-rating
duration, as indicated by Table 4 which shows the de-rating
duration is shorter for components at a higher resilience level.
Components may only operate in a de-rated state during a
hurricane year; components operate in a fully functional state
during non-hurricane years.



Table 4: Performance status of each resilience level

Hurricane Period | Standard Semi Full
1 De-Rated | De-Rated | De-Rated
2 De-Rated | De-Rated Normal
3 De-Rated | De-Rated Normal
4 De-Rated Normal Normal
5 Normal Normal Normal

-

io

Failure Probability
[ v B o o e B e e I S e )

- e s e ¥

50 100 150 200

(= ER IS - S

Wind Speed (mph)

o= Standard Resilience = = Semni-Resilience == == »Full-Resilience

Fig. 4: Fragility curves of transmission lines/distribution seg-
ments and their resilient levels

Each circuit’s average performance during a hurricane
event, as quantified by failure probability and de-rating du-
ration, depends on its resilience level, its location relative
to the hurricane event, and the path and severity of the
hurricane event. Because of the uncertainty associated with
hurricane event path and severity, we adapted the approach
of [26] in developing a Monte Carlo Simulation (MCS) to
populate a look-up table of failure probabilities and de-rating
durations for each of the three resilience levels associated
with each circuit. The MCS is done previous to solving the
CEP model of Figure 2; the CEP then uses the look-up table
during hurricane years in selecting resilience levels for each
component, to achieve its objective which is to minimize
investment, operational, and load shedding cost. The MCS
accounts for both spatial and temporal wind speed variation of
a hurricane event. To accomplish this, the island was divided
into seven meteorological regions as shown in Figure 5(a),
and, for a specified hurricane event (in terms of path and
severity), each region is associated with a 24-hour wind profile.
In Figure 5(a), the regions and the hurricane path correspond
to Hurricane Maria [27], and the wind speed time-series was
obtained from a wind sensor that survived Hurricane Maria
[17]. Wind profiles for each region were scaled from that
data based on the regions proximity to Maria’s path. Five
other Maria-strength hurricane events were obtained by simply
shifting the path. Using the wind speeds in Figure 5(b) and the
fragility curves, failure probabilities of circuits as a function
of time were developed for each resilience level and used as
input data for the MCS.

D. Resilience Modeling - Wind and Solar Resources

To differentiate between the resilience levels for wind and
solar resource candidates, a set of hurricane path bus multipli-
ers (HPBM’s) were developed. During hurricane conditions,
the HPBM’s, having value 0-1.0, multiply the capacity factor
of the resource and thus de-rate the performance of the

Fig. 5: (a) Meteorological regions for hurricane modeling in
PR (b) 24-hour wind profile for each region corresponding to
Hurricane Maria

resources. The HPBM’s are developed for a specified bus and
hurricane event based on the wind or solar resource resilience
level, the proximity of the bus to the hurricane path, and the
severity of the hurricane event. Table 5 summarizes HPBM’s
for the actual Maria hurricane event.

Table 5: HPBM'’s by region and resilience levels

Meteorological region | Standard | Semi | Full
1 0.1 0.15 0.2
2 0.05 0.075 | 0.1
3 0.1 0.15 0.2
4 0.25 0375 | 05
5 0.45 0.675 | 0.9
6 0.65 0.975 | 1.00
7 0.85 1.00 1.00

E. Resilience Modeling - System Level

To model the resilience investment options for a circuit
within the CEP model of Figure 2, the binary variable,B; .,
is introduced to represent the status of circuit [ at resilience
level r during hurricane year h. Equation 1 is imposed within
the CEP to de-rate the circuit, i.e., to reduce the thermal limits
TL; utilizing the failure probabilities (Fail; p, ,) developed
in the MCS. The power flow of the circuit, PF, is affected as
a result. These constraints are deployed for all eligible circuits
! in hurricane years h for all resilience levels, r, and select
hurricane blocks pj,.

—(1 = Failypp, ) * TLy % Biyp < PFyp

1
S (1 — Faill,h,p;l) * TLl * Blthl,T, h ( )

To limit each circuit to only one resilience level, the
following constraint is enforced:

Y Birn <1 Vih @
T

With each hurricane year, invested resilience level (RL; ;)
is tracked for the next hurricane year to allow for resilience
upgrades. The model does not allow for backwards resilience
investments (i.e. a line cannot be upgraded to full resilience in
one year (h') and then to standard resilience in a subsequent
year (h)). This is accomplished by requiring the resilience cost
for each line [ in each year h’' to not exceed the subsequent
year. Using the resilience cost multiplier RCM; , as a proxy
for resilience cost, this constraint is imposed via (3) and (4).



RLyjp =Y RCMy, Bipp Vi,h 3)

RL;p > RLyy, VI, h,h' where h' > h 4)

For each enhanced circuit, the cost to increase to the
resilience level of the last hurricane year is then used in the
objective function. This cost is estimated to be the cost of
building the line to its existing capacity scaled by its resilience
cost multiplier RC'M; .. This estimate is an upper bound to
the resilience enhancement cost; estimates may be improved
via assessment of individual circuits. To reduce computational
time, select circuits were chosen to be resilience enhancement
candidates based on a ranking of their standard resilience
failure probabilities from the MCS. From that ranking, the
top 50% of transmission lines and top 33% of distribution seg-
ments were chosen to be the candidates circuits for resilience
enhancement characteristic to each hurricane event.

To model the performance of wind and solar resources
during hurricane conditions, the HPBM at bus b, resilience
level 7, year h are used to scale the capacity factors C'F), j, ¢
and the capacity Cy j, for technology g during select hurricane
blocks pj, according to

Pgeng pp,, < Cyn*CFypp, * HPBMy 1 Ng, 7, h,p'n (5)

In our model, during the hurricane years, the system seeks
to supply the load in the most economical way while encoun-
tering the hurricane conditions. A value of lost load (VOLL) of
$31,897/ MW-hr was chosen for this study [28]. This mixed
integer linear program was written in GAMS, and CPLEX
version 12.8 was used as the solver. An optimality gap of
0.1% was enforced for all simulations.

IV. INFRASTRUCTURE VISIONS AND RESULTS

Five infrastructure visions were developed to achieve unique
resilience and expansion investment objectives. For each vi-
sion, the amount of investments made in centralized and
decentralized generation (DG) vary. Table 6 summarizes the
resource investment allocations for each vision, where in each
case, the total amount of invested resource capacity is limited
to 5 GW. Distributed storage and energy efficiency were
constrained by the limits in Table 1 as well as the 5 GW
cap.

Table 6: Investment matrix (% of invested capacity)

Investment Feature

[VI[ V2 V3] Va ] V5|

Natural Gas CC/CT/MT | 30 25 10 5 0
Utility PV 35 25 20 5 0
Commercial Rooftop PV 0 15 30 | 40 | 40
Distributed Rooftop PV 0 10 30 | 45 60
100m Wind 35 25 10 5 0

Table 7 provides a breakdown of what technologies were
invested for each infrastructure vision. A generating unit is
retired if, in any year, the unit is not dispatched. Retirement
costs were included into the model using data from [29].

Table 8 provides a breakdown of the costs associated with
each vision. Operational costs include costs associated with

Table 7: Resource capacity investments and retirements

[ Invested Capacity MW) [ V1 | V2 [ V3 [ V4 | V5 |
100m Wind 1233 | 1139 | 456 230 -
NGCC 1367 | 1139 | 456 230 -
Utility PV 1595 | 1139 | 913 230 -
Commercial Rooftop PV - 683 1369 | 1837 | 2000
Distributed Rooftop PV - 455 1369 | 2067 | 2545
Energy Efficiency - 303 297 259 303
Distributed Storage - 142 140 148 152

[ Total Invested Capacity | 4195 | 5000 | 5000 | 5000 | 5000

[ 3729 | 4140 | 3747 | 3147 | 3124

[ Total Fossil Retirements

fixed operation and maintenance (OM), variable OM, fuel
consumption, line losses, and regulation/reserve costs. Figure
6 displays solutions in the space of load shedding cost (a
measure of resilience) and total investment cost.

Table 8: Summary of costs for each vision

[ COST ($B) [ Vi1 [ V2 [ V3 [ V4 [ V5 ]
LINES
Resilience 9.24 9.22 9.49 9.48 9.43
Expansion 0.0008 | 0.00003 0 0 0.0007
Generation 2.87 5.22 8.04 9.16 9.25
Operational 39.60 36.53 39.68 40.61 40.73
Retirements 0.811 0.847 0.811 0.754 0.706
Load Shedding | 784.44 632.45 57871 | 582.57 | 693.52
Costs
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Fig. 6: Plot of load shed costs versus total investment costs
for visions 1 through 5 (V1-V5)
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Fig. 7: Capacity investments for Vision 3

Vision 3 results in the lowest load shedding cost, indicating
its particular combination of distributed and centralized invest-
ments are optimal. That is, the resilience worsens if distributed
investment is decreased (in V1 and V2) or if centralized
investment is decreased (in V4 or V5). Thus, we might say
that V3 is an investment portfolio where distributed and
centralized investments play just the right roles. Refining the
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Fig. 8: Resilience investments for Vision 3

curve displayed in Figure 6 with more intermediate visions to
find better investment combinations is considered future work.
Figure 7, illustrates the capacity investments and existing
resources that were not retired in Vision 3. Here, the model
chose to build the resources close to the load centers, in the
northeast region of the island. Figure 8 provides a visualization
of where resilience upgrades were chosen to occur. Semi and
full resilience investments tend to be made outside of the major
load centers resulting in an apparent trade-off between capacity
investments and resilience investments.

V. CONCLUSION

A CEP model was constructed to identify least-cost in-
vestments at the generation, transmission, and distribution
levels of the PR system to increase the resilience. Multiple
infrastructure visions were developed and tested to quantify the
total cost of a hurricane resilient infrastructure at increasing
penetration levels of DG. Hurricane conditions were effec-
tively implemented to produce an environment for the model
to seek resilient enhancements. It was found that investments
in DG technologies increased the system’s resilience as vision
3 points out. However, visions 4 and 5 show that focusing
investments primarily in DG compared to centralized resources
result in higher costs and less resilience under hurricane
conditions.
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