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Abstract— Our previous study has demonstrated the feasibil-
ity of employing non-hair-bearing electrodes to build a Steady-
state Visual Evoked Potential (SSVEP)-based Brain-Computer
Interface (BCI) system, relaxing technical barriers in prepa-
ration time and offering an ease-of-use apparatus. The signal
quality of the SSVEPs and the resultant performance of the
non-hair BCI, however, did not close upon those reported in the
state-of-the-art BCI studies based on the electroencephalogram
(EEG) measured from the occipital regions. Recently, advanced
decoding algorithms such as task-related component analysis
have made a breakthrough in enhancing the signal quality of the
occipital SSVEPs and the performance of SSVEP-based BCIs in
a well-controlled laboratory environment. However, it remains
unclear if the advanced decoding algorithms can extract high-
fidelity SSVEPs from the non-hair EEG and enhance the
practicality of non-hair BCIs in real-world environments. This
study aims to quantitatively evaluate whether, and if so, to what
extent the non-hair BCIs can leverage the state-of-art decoding
algorithms. Eleven healthy individuals participated in a 5-target
SSVEP BCI experiment. A high-density EEG cap recorded
SSVEPs from both hair-covered and non-hair-bearing regions.
By evaluating and demonstrating the accessibility of non-
hair-bearing behind-ear signals, our assessment characterized
constraints on data length, trial numbers, channels, and their
relationships with the decoding algorithms, providing practical
guidelines to optimize SSVEP-based BCI systems in real-life
applications.

I. INTRODUCTION

Steady-state visual evoked potentials (SSVEPs) are
elicited when an individual gazes at one or more rapid and
repetitive flickering visual stimulus [1], [2]. Tagging each
command with a coded visual stimulus, SSVEP-based brain-
computer interface (BCI) systems can translate users’ inten-
tion to communicate with others or manipulate peripheral
devices [3]. The low training time and high information
transfer rate (ITR) have made SSVEP-based BCI systems
gain more attention over other non-invasive BCI systems
[4]. While recent studies have made considerable progress in
improving BCI performance, SSVEP BCIs still face severe
challenges in translating the laboratory-oriented SSVEP-BCI
demonstrations to real-world environments.
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One of the obstacles of transitioning laboratory-oriented
SSVEP-BCI systems to real-world applications is a long
preparation time for scalp EEG recordings. In a common
setting, accessing the EEG from the hair-covered regions
requires skilled technicians to apply conduct gel and clean
the hair after an experiment, which may be time-consuming
and impractical in deploying SSVEP-based BCI paradigms
to real-world situations. More recently, studies have shown
that non-hair-bearing areas, such as the forehead and behind-
ear areas, can be an alternative for accessing SSVEPs [5],
[6]. Our previous study showed the SSVEPs obtained from
behind-ear areas could extract informative data using the
extended CCA decoding algorithm [7].

However, the online performance using non-hair-bearing
EEG might not be comparable with that using the hair-
covered occipital EEG [6]. This reveals another challenge,
which should be, but not yet, addressed, on the extent to
which the SSVEP-BCI performance is comparable between
a well-controlled laboratory and a real-world environment.

In a well-controlled laboratory, decoding algorithms, such
as task-related component analysis (TRCA) and canonical
correlation analysis (CCA), using individual calibration data
with spatial filtering techniques, have successfully demon-
strated the ability of improving the signal-to-noise ratio
(SNR) and ITR in a word-spelling task [8]–[10]. For exam-
ple, our recent study, which applied a TRCA algorithm to de-
code SSVEPs, achieved a world-record ITR of 325.33±38.17
bits/min (75 characters per minute) [10]. While studies using
advanced coding algorithms have made a breakthrough in the
SSVEP-BCI performances with the scalp EEG signals from
the hair-covered occipital regions, it is not fully investigated
whether, and if so, to what extent the advanced decoding
algorithms can extract high-fidelity SSVEPs from the non-
hair EEG and enhance the practicality of non-hair BCIs in
real-world environments.

To this end, we conducted an off-line SSVEP experiment
using a high-density (256-channel) EEG cap that covers re-
gions from both hair-covered occipital and non-hair-bearing
regions. This study aims to explore and evaluate SSVEP-
decoding performance using two spatial filtering techniques,
namely, TRCA and CCA, by analyzing EEG data from the
hair-covered and non-hair-bearing areas. By merging state-
of-art signal-processing algorithms and providing parametric
assessments on empirical data, this study may shed light
on developing and assessing the feasibility of SSVEP-based
non-hair-bearing BCI systems. Furthermore, to evaluate the
classification accuracy using TRCA- and CCA-based spatial
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filters, we applied parametric assessment over factors of
interests, including data length, the number of training trials
and channels. To the best of our knowledge, the performance
of TRCA- versus CCA-based spatial filtering algorithms ap-
plied to non-hair-bearing EEGs has never been systematically
assessed before. Of interest beyond the empirical functions
of parameterization, the findings of this study will provide
practical guidelines for developing real-world applications of
SSVEP-based BCIs.

II. METHOD

A. Experimental Procedure and EEG Data Description

Subjects were asked to fixate at the center of a 5 cm 5 cm
squared coded visual stimulus with their chin on a chin rest.
The distance of participants’ head to a 21-inch CRT monitor
was 35cm. The experiment was divided into 4 sessions, each
consisted of presenting 5 individual visual stimuli (9-13 Hz
in a random order) for 30 seconds, with participants taking a
short rest between each 30-sec trial and each session. Eleven
healthy male subjects, age 24.2±5.1 years old with normal or
corrected-to-normal vision, participated in this experiment.
All participants read and provided informed consent for the
study, which was approved by the University of California,
San Diego Institutional Review Board.

EEG data were recorded using a 256-channel AG/AgCl
cap (Biosemi, Inc.). Three extra electrodes were manually
placed behind the ear around 1 cm apart on each side. For
each 30-sec trial, 6 to 7 epochs were extracted according
to the event codes designed by the visual stimulus program
[11]. The data were re-referenced offline to the forehead
(electrode A3, roughly FPz in 10/20 system), with baseline
correction performed by subtracting the mean amplitude over
the 500 ms before epoch onset. All the epochs of individual
frequency were concatenated together to form a dataset for
further analysis. The evaluation of the accuracy and ITR
was done by leave-one-trial-out, i.e. one trial was used
as the testing data while others form the training dataset
for preparing individual templates (see below). Parametric
assessment of performance on various factors, including data
length, number of training trials, and number of channels,
was done by systematically reducing data length and ran-
domly removing trials and/or channels, and this procedure
was iterating through every subject independently. We used
a linear mixed-effect model to assess these factors and
their interactions that account for the performance using
the template-based decoding with TRCA- and CCA-based
spatial filters. Fixed effects included data length, number of
trials and channels and their interactions, and were factors
that were used in the assessment and random effects were
intercept of subjects; Wald confidence of intervals at an alpha
level of 0.05 was reported.

B. Target Identification algorithms

1) Framework of Template-Based Method: Training data
and single-trial testing data are denoted as χ ∈RN f×Nc×Ns×Nt

and X ∈ RNc×Ns , respectively. Here, N f is the number of
stimuli; Nc is the number of channels; Ns is the number of

sampling point, and Nt is the number of trials, respectively.
The goal of the target identification is to take an input X
and assign it to a target label Cn where n = 1,2, ...,N f . In
both methods, feature values for nth stimuli can be calculated
as the correlation coefficients between the test data and the
individual template signals χ̄ ∈RNc×Ns obtained by averaging
multiple training trials as feature values. The target class Cτ

can be identified by the following rule:

τ = argmax
n

ρn,n = 1,2, ...,N f

The discriminability of SSVEPs using the correlation fea-
tures can be enhanced by applying spatial filters to the test
data and individual templates.

2) Canonical Correlation Analysis: CCA is a statistical
method to measure the underlying correlation between two
sets of multidimensional variables. In the template-based
decoding with CCA, three spatial filters are obtained by
calculating CCAs between 1) test data X and individual
templates χ̄n, 2) test data X and computer-generated SSVEP
models Y, and 3) individual templates χ̄n and computer-
generated SSVEP models Y. The final feature value ρn can be
obtained by combining three correlation coefficients between
test data and individual templates after each spatial filter. The
detail of this method can be found in [8], [9].

3) Task-Related Component Analysis: TRCA is the
method that extracts task-related components efficiently by
finding a linear coefficient that maximizes their reproducibil-
ity during task periods [10]. The problem can be solved by
inter-trial covariance maximization. The covariance matrices
Ci, j between ith and jth trials of multichannel EEG data are
first calculated, and then all possible combinations of trials
are summed as S = ∑i ∑ j Ci, j . The optimal coefficient ŵ can
be obtained by maximizing wT Sw with a constraint based on
the variance of reconstructed signal to obtain a finite solution.
In SSVEP-based BCIs, the spatial filters based on TRCA
can be obtained using training data χ . In the test phase,
pre-obtained spatial filters are used to enhance SNR of test
data and individual templates, and the correlation coefficients
between them are calculated as final features.

III. RESULTS

We first demonstrated the classification performance and
ITR as functions of data length and recording regions for
the template-based decoding algorithms with spatial filtering,
compared with the standard CCA. At a general level, all
three classification algorithms performed better with data
from the hair-covered occipital regions than from non-hair-
bearing behind-ear regions. Notably, using two advanced
algorithms, CCA and TRCA, the classification performance
using the data from non-hair-bearing behind-ear regions was
comparable with that applying the standard CCA to the data
from the hair-covered occipital regions.

We then evaluate the performance as a function of data
length. Performance accuracy increased with data length (b
= 9.78%, t = 13.58, CI = [0.08, 0.11]), and ITR marginally
declined as data length increased (b = 0.89, t = 1.88, CI =
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Fig. 1. The average accuracy (left panel) and ITRs (right panel) over 24
trials with data length 1 to 4 seconds across 11 subjects. BE: recordings
from behind the ears; OC: recordings from the occipital regions.

[-0.04, 1.83]). We also verified that similar patterns over data
length held for both data from the hair-covered occipital (b
= 5.27%, t = 12.65, CI = [0.04, 0.06]) and non-hair-bearing
behind-the-ear regions (b = 8.97%, t = 22.04, CI = [0.08,
0.10]). On the one hand, performance was better using the
data from the hair-covered occipital regions than from the
non-hair regions behind the ears (b = 23.05%, t = 7.16, CI
= [0.17, 0.29]), especially with shorter data length (1s: b =
10.80%, t = 3.06, CI = [0.04, 0.18], 1.5s: b = 8.94%, t = 2.53,
CI = [0.02, 0.16]). On the other hand, these patterns showed
that the effect of data length was more drastic for data from
the non-hair regions behind the ear than for the hair-covered
occipital regions (b = 3.68%, t = 3.62, CI = [0.02, 0.06]).
Performance was marginally superior with TRCA to CCA (b
= 5.88%, t = 1.83, CI = [0, 0.12]), with no interaction with
data length (CI = [-0.04, 0]) or regions (CI = [-0.08, 0.10]).

Because characterizing factors that may optimize the clas-
sification performance for data from the non-hair regions
behind the ears was of particular importance in this study,
we further examined performance as functions of the number
of training trials, channels, and their interactions with data
length.

A. Performance vs. Number of Training Trials

Generally, performance increased with the number of
training trials. The average performance was relatively higher
with CCA than those with TRCA when the number of
training trials was limited (Figure 2(a), 2(d)). Additionally,
the effect of training trial number interacted with data length
for both TRCA- (b = 0.12%, t = 2.21, CI = [0, 0.002])
and CCA-based spatial filters (b = 0.10%, t = 2.23, CI
= [0, 0.002]) (Figure 2(c), 2(f)). Performance increased
more rapidly with the number of training trials for shorter
than for longer data length. The slope of performance with
data length, vice versa, was steeper when the number of
training trials was smaller than when it was larger. By visual
inspection of Figure 2(b) and 2(e), performance with CCA
appeared to be relatively invariant to the number of training
trials. However, once the number of training trials was large
enough, n>14 for example in Figure 2(c) and 2(f), TRCA
began to outperform CCA.
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Fig. 2. The performance of target identification as a function of data length,
number of training trials, and number of data channels, using TRCA (left
panel) and CCA algorithms (right panel).

B. Performance vs. Number of Channels

Likewise, performance increased with the number of chan-
nels. Although this function seemed held for both algorithms,
CCA showed a reliable increase in performance with channel
number (b = 0.33%, t = 2.06, CI = [0, 0.002]). Moreover,
CCA had better overall performance than TRCA when the
channel number was limited. Furthermore, this channel-
number effect interacted with data length for both TRCA (b
= 0.11%, t = 5.72, CI = [0, 0.002]) and CCA (b = 0.16%, t =
3.05, CI = [0, 0.003]). The improvement of performance due
to an increase in data length was more pronounced when the
number of channels was small compared with it was large.

C. Performance vs. Number of Training Trials and Channels
Interaction

When the number of training trials was small, an im-
provement of performance due to an increase of channel
number was minimal. As the training trial number increased,
an increase of channel number revealed the performance im-
provement. Critically, this interaction between the numbers
of trials and channels was more pronounced with TRCA (b
= 0.25%, t = 6.15, CI = [0.002, 0.003]) than with CCA
(b = 0.01%, t = 2.37, CI = [0, 0.002]). As a result, with
the number of channels increased, TRCA improved more
significantly than CCA when there were adequate amounts
of training trials.
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Fig. 3. Illustration of candidate algorithms that demonstrates relatively
better performance given constraints of data length, number of trials, and
channels. TRCA was highlighted in red and CCA was in blue.

IV. DISCUSSION

The goal of this study was to delineate the factors that
may optimize classification performance of SSVEPs for real-
life situations by (1) comparing performance between two
state-of-art decoding algorithms applied to non-hair regions
behind the ears and the hair-covered occipital regions, and (2)
evaluating parameters of data factors and their relationships
with empirical feasibility and accessibility of non-hair EEG
signals.

In answer to the first attempt, we provided empirical
comparisons of SSVEP-classification performance and ITRs
obtained from the hair-covered occipital and the non-hair
regions behind the ears, which were recorded from the same
subjects, simultaneously, under the same experimental sce-
narios. Not surprisingly, recording from the occipital regions
had overall better performance than that from behind-the-
ear regions. Nonetheless, average accuracy using 4-s-length
data achieved 81.36%±5.62%, which was comparable or
better than when using 1/1.5-s-length data recorded from the
occipital regions. The results showed similar patterns over
data length between two recording regions, although a drop-
off due to short data length was more for data obtained from
the behind-the-ear than from the occipital regions. These
observations were also true in comparisons between TRCA
and CCA-based spatial filters, i.e., TRCA was superior to
CCA for short data length.

Our second major contribution was characterizing factors
and their relationships with classification performance for
data from non-hair regions. The finding revealed relations
between the number of trials and channels in a practical
sense: the impact of the number of trials amplifies while data
length is short, and reversely, data length has a larger impact
when the number of trials is small. We also showed that
CCA is more robust to the number of trials compared with
TRCA; this makes CCA a better candidate when the available
trial number is limited. By contrast, when training trials
are adequate, TRCA seems to be benefited more with the
accessibility of channel numbers. These findings may direct
decisions while designing an SSVEP-based system according
to its accessibility to recording durations and computation
capacity on algorithms (see Figure 3 for a summary) given
its ease-of-use paradigm and recording convenience. In the
best scenarios, richness in data shall offer high classification
performance. However, the applications in real-life situations

almost always come together with constraints in recording
accessibility and feasibility. Our assessments in data length,
number of trials, channels, and their interactions provide
practical guidelines to optimize the system in real-life ap-
plications.

V. CONCLUSION

SSVEP-based BCI systems have gained increasing atten-
tion due to their high efficiency, short training time and high
ITR. As more and more studies make efforts in developing
advanced algorithms to improve the SNR and classification
accuracy, deploying SSVEP-based BCI applications to real-
world environments still face practical challenges, including
but not limited to long conductive contact, preparation time
and an ease-of-use paradigm. This study tested and evaluated
the possibility of combing the state-of-art decoding algo-
rithms and non-hair SSVEPs to real-word environments. The
results showed classification performance as a function of
factors within hostile conditions, such as short training time,
low channel selections, and short data length. This study
also provides tentative directions for developing a dynamic
learning model that compromises the training time, number
of channel selections, and advanced algorithms.
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