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Abstract— Non-brain contributions to electroencephalo-
graphic (EEG) signals, often referred to as artifacts, can
hamper the analysis of scalp EEG recordings. This is especially
true when artifacts have large amplitudes (e.g., movement
artifacts), or occur continuously (like eye-movement artifacts).
Offline automated pipelines can detect and reduce artifact in
EEG data, but no good solution exists for online processing of
EEG data in near real time. Here, we propose the combined
use of online artifact subspace reconstruction (ASR) to remove
large amplitude transients, and online recursive independent
component analysis (ORICA) combined with an independent
component (IC) classifier to compute, classify, and remove
artifact ICs. We demonstrate the efficacy of the proposed
pipeline using 2 EEG recordings containing series of (1) move-
ment and muscle artifacts, and (2) cued blinks and saccades.
This pipeline is freely available in the Real-time EEG Source-
mapping Toolbox (REST) for MATLAB (The Mathworks, Inc.).

I. INTRODUCTION

Brain computer interface (BCI) and other real-time EEG
applications often suffer when artifacts (unwanted signals
included in a recording) are present [1] [2]. In electroen-
cephalographic (EEG) recordings, typical examples include
perturbations induced by the retinal electrical dipoles during
eye movements, high-frequency signals from scalp muscle
activity, and large signal spikes and shifts from electrode
impedance changes during subject movements (Figure 2).
While the definition of ’artifact’ is largely context dependent,
artifacts are typically detrimental to signal analyses as the
amplitudes of these artifacts can easily eclipse the brain-
generated EEG activity.

Previous methods for cleaning EEG data have taken sev-
eral approaches: spectral-intensity thresholds [3], filtering
based on simultaneous electrooculographic (EOG) record-
ings [4], complexly stacked wavelets, blind source separa-
tion (BSS), and wavelet-based classifiers [5]. Each method
comes with its own assumptions and may therefore fail in
some situations. For example, none of the above-mentioned
methods support real-time processing with the exception
of EOG filtering – and that requires a dedicated EOG
recording in addition to the EEG electrode montage. To
the authors’ knowledge, no existing EEG artifact cleaning
method effectively cleans the data in near real time without a
need for recording EOG or other artifact reference channels.
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Independent component analysis (ICA) has been widely
used for separating spatially stereotyped artifacts such as
saccades and eye-blink activities from EEG data [6]. Online
recursive ICA (ORICA) [7] has successfully converted the
computationally-expensive ICA algorithm into incremental,
recursive update rules that enable online, near real-time ICA
decomposition [8]. However, ICA decomposition is sensi-
tive to unique, large-amplitude artifacts which can severely
degrade the returned independent components (IC) and ICA-
based methods typically require visual inspection to manu-
ally identify the artifact-related ICs.

This study proposes to apply artifact subspace reconstruc-
tion (ASR) [9], an automated, near real-time-capable algo-
rithm, prior to ORICA. We demonstrate that ASR can effec-
tively remove transient, large-amplitude artifacts from EEG
data and thus stabilize the ICA decomposition and improve
artifact separation. Next, we implement a real-time capable
IC classifier, here EyeCatch [10], to automate recognition
and removal of artifact-related ICs. The full online, real-time,
automatic artifact rejection (AR) pipeline, featuring ASR,
ORICA, and EyeCatch, is available in the open-source Real-
time EEG Source-mapping Toolbox (REST) [11] illustrated
in Figure 1B. REST can be downloaded from the url:
https://github.com/goodshawn12/REST.

II. MATERIALS AND METHODS

A. Review of methods

ASR is an automated, variance-based EEG cleaning al-
gorithm. It uses a short initial recording of artifact-free
EEG data from which it learns a statistical model of the
EEG data. Then for each incoming data window, ASR
applies a principal component analysis (PCA) like linear
transformation to the data using a transform matrix learned
from the initial calibration data. If any principal component
(PC) of the new data window is much larger than in the
calibration data, that PC is removed from the window. An
inverse transform then projects the data window back into
the original channel coordinates.

ORICA consists of 2 stages. The first, online whitening,
can be thought of as an online, recursive form of PCA. This
is done to facilitate learning in the subsequent stage – online
recursive ICA. This optimizes the same objective as offline
Infomax ICA. Finally, the ICA solution from the second
stage is projected to the nearest orthogonal matrix which
further facilitates model convergence.

EyeCatch classifies ICs as either eye movement-related or
not by first calculating the maximum correlation value of
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Fig. 1. (A) An overview of the REST data-cleaning pipeline combining ASR, ORICA and an IC classifier. (B) The REST graphic user interface during a
period containing repeated eye movements. In the lower left, two eye-related components have been found and removed by EyeCatch. In the upper right,
the reconstructed channel signals are shown in color against uncleaned (gray) data traces in which the eye-movement artifacts are still visible.

each IC scalp map to thousands of IC scalp maps in the
method’s library which account for eye-movement activities.
An IC scalp map represents the relative contributions of
a given IC to the scalp channels. Any IC for which the
maximum correlation value, called the similarity score, is
greater than a preset threshold is marked for removal. REST
uses a modified version of EyeCatch that is computationally
lighter and has a lower rejection threshold to support its use
in a real-time setting.

B. Experimental design

To evaluate the proposed AR pipeline in REST, we first
collected an eyes-closed EEG dataset in which a healthy
subject performed a series of cued artifact-inducing actions
comprising jaw clenching, scalp electrode tapping, head
turning, and jumping. The subject rested for 2 minutes before
performing each type of action for 10 seconds, with 5-second
inter-action intervals. Our goal was to evaluate the effects
of the concomitant artifacts on ORICA convergence and to
determine whether the proposed pipeline could mitigate those
effects.

Next, we recorded 2 minutes during which the subject
blinked at 1-sec intervals, followed by 2 minutes in which
the subject performed lateral eye-movements using voluntary
saccades at 1-sec intervals. Before and after each artifact
period the subject rested with eyes closed for 2 minutes.
We wanted to characterize the performance of the pro-
posed pipeline in automatically identifying and rejecting
eye-related ICs, thus clean the recording of eye-movement
artifacts.

C. Dataset recording and analysis

The EEG data was recorded using a Cognionics Quick30
headset with a 500-Hz sampling rate using dry electrodes for
which electrode impedances are in the range of hundreds of

Ohms. Electrode P07 was excluded from the analysis because
of a known cap hardware issue.

We processed both datasets using REST in a simulated
real-time setting by rebroadcasting the data through the lab-
streaming-layer [12]. REST applied the proposed pipeline
consisting of common-average re-referencing, FIR bandpass-
filtering (1-50 Hz), ASR, ORICA, IC classification and
rejection using EyeCatch, and channel data reconstruction.
This pipeline is shown in Fig. 1A. We processed the data
from the first experiment, both with and without ASR; we
processed the second dataset both with and without applying
ORICA and EyeCatch.

To quantify the results of this analysis, we calculated
the signal-to-noise ratio (SNR) after applying each different
pipeline (e.g. with or without ASR). For zero-mean signals,
SNR is the ratio of signal variance to noise variance, σ2

s/σ
2
a.

As we cannot claim to know those values exactly, we approx-
imated the SNR by dividing the average channel variance
during the rest periods, σ2

s , by the average channel variance
during artifact periods, σ2

n. In reality, σ2
n ≈ (σs+σa)

2 since
it reflects variability in the summed artifact and brain EEG
activity. Therefore this SNR approximation is conservative
and forms a lower bound on true SNR.

We computed the correlations of scalp maps from the
ORICA decomposition to those from the offline Infomax
ICA decomposition of the same data. We used offline In-
fomax ICA applied to the common-average referenced and
FIR bandpass-filtered data with artifact periods manually
removed as a gold-standard solution to compare against. Ex-
cluding the artifacts, these recordings are relatively stationary
and so the offline solution is effectively the best-case solution
possible for ORICA.

Finally, to get a sense of how ORICA learns under these
different conditions, we also look at the dynamics of the
non-stationary index (NSI) which quantifies the magnitude
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Fig. 2. Examples of common EEG artifacts. From top to bottom and left
to right: electrode tapping, jaw clenching, head shaking, jumping, blinking,
and eye movements. The blue traces are cleaned with an FIR bandpass
filter, while the red traces are further processed with ASR and ICA-based
cleaning using ORICA and EyeCatch. Artifact onset times are indicated by
black dotted lines.

of the ORICA gradient over time [8]. When data is very
improbable under the current ORICA model, e.g. during
transient artifacts, the NSI will have a large value relative
to baseline.

III. RESULTS AND DISCUSSION

TABLE I
SNR AT DISTINCT STAGES OF PROCESSING.

Artifact FIR ASR ASR-ICA ICA
Electrode Tap 0.174 1.09 1.05 0.176
Jaw Clench 0.586 0.723 0.693 0.580
Head Shake 3.78e-5 0.349 0.339 3.78e-5

Jump 1.05e-4 0.529 0.511 1.05e-4
Blink 0.465 0.465 0.791 -

Saccade 0.4979 0.810 1.01 -

A. Motion and muscle artifacts

ASR successfully removed a significant portion of the
artifact-induced signal features in the first experiment. As
shown in the top four frames of Fig. 2, while not all of
the artifact signals were removed by ASR, the exceptionally
strong artifact periods were consistently reprojected to a
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Fig. 3. The two top images indicate how well, at different times during the
transient artifact recording, the ORICA decomposition results match results
of an offline Infomax ICA decomposition of the whole dataset. The top plot
shows results of applying ASR before ORICA while the middle one does
not use ASR. Example scalp maps for selected rows are shown, matched by
border color to arrows pointing to the corresponding row in the plots. The
bottom plot traces the non-stationary index values throughout the recording,
both with and without use of ASR. In the top plots, artifact onsets are shown
as black dashed lines while in the bottom plot they are shown as red lines.

more normal range for brain-dominated EEG. This effect can
also be seen in Table I by the consistent rise in approximate
SNR in the ASR and ASR-ICA columns as compared
to the other two, which forgo ASR. Furthermore, Fig. 3
indicates that ASR stabilized the ORICA decomposition in
the presence of large-amplitude artifacts. This is indicated
by the lower correlation values following the artifact events
when ASR was omitted. In such cases, the ORICA model
rapidly changed to try to better fit the artifact activity. When
ASR preprocessing was added, there was little change in the
ORICA model before and after artifact occurrences, demon-
strating increased robustness to non-brain EEG ’noise.’ This
is particularly evident after subject jumps. Without ASR
preprocessing, the entire model was lost after the jumps, i.e.,
not a single IC from the ORICA decomposition correlated
highly with any ICs in the offline Infomax ICA solution.
This is pivotal because, even though the ICA portion of
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Fig. 4. The above traces show how the eye-related independent components
(IC) learned by ORICA were rated by EyeCatch. The threshold for removal,
0.86, is indicated as a red dashed line. The period where the subject was
blinking is indicated by the blue shaded region while the period where
the subject looked back and forth is indicated by the green shaded region.
The subject kept his eyes closed during all other time periods (white
background). The blink IC was found and removed quickly during blinking
while the saccade IC did not remain suprathreshold during lateral eye-
movement.

the pipeline was not used in this experiment, typical EEG
recording will have both eye movement-related artifacts as
well as body motion artifacts. If the ORICA decomposition
is lost every time a body motion artifact occurs (as it does
without ASR preprocessing), then any eye movement-related
ICs may not be found and could not then be cleanly removed
from the data.

For transient artifacts, Table I shows the addition of ICA-
based cleaning produced a minute decrease in SNR; likely
because there were no stereotyped artifacts for ORICA to
learn and remove. All ICA-based cleaning could do is find
occasional false-positives, which in this case increased the
power of the signal negligibly. The NSI traces in the bottom
panel of Fig. 3 show that ORICA follows the same general
learning patterns with and without ASR, but exhibits more
extreme NSI values without ASR preprocessing, as ORICA
may be more directly exposed to effects of high-amplitude
artifacts. It is worth noting that ORICA was able to find many
brain-related ICs including those shown in the bottom-right
of Fig. 3. This suggests possible further uses of REST beyond
data cleaning, in particular as a tool for real-time monitoring
and source analysis, given the added robustness provided by
ASR.

B. Eye-induced artifacts

For the eye movement-related artifacts in the second
experiment, Table I indicates ASR had a negligible effect on
eye-blink artifacts and a more significant effect on saccade
artifacts. However, SNRs during both types of eye activity
were further improved by the addition of ICA-based clean-
ing. The speed with which ORICA found the eye movement-
related ICs is shown in Fig. 4. Once the subject opened

his eyes and began blinking, it took ORICA twenty-six
seconds to converge well enough on the blink-related IC for
EyeCatch to remove it. Even after two more minutes of eyes-
closed resting, the maximum blink IC scalp map correlation
remained near the EyeCatch threshold level and subsequently
increased again when the subject reopened his eyes. How-
ever, the saccade-related IC EyeCatch score fluctuated across
the rejection threshold as the subject performed lateral eye-
movements resulting in incomplete saccade artifact rejection.
It appears the altered version of EyeCatch used here was
not ideal, as the changes seem to have introduced some
instability in the correlations found, though no better option
is currently available.

IV. CONCLUSION

We have introduced a new pipeline for real-time EEG
artifact removal that combines the use of ASR, ORICA,
and an IC classifier (here EyeCatch) using the Real-time
EEG Source-mapping Toolbox (REST). We studied how the
pipeline performed in the presence of six different types of
artifacts common in EEG recordings and found it removed
the majority of the artifact-induced signal features. We also
compared the performance of the pipeline with and without
an initial application of ASR and found that the presence
of ASR stabilized the ORICA decomposition, which is
desirable for cleaning the data of eye movement-related
artifact. The pipeline is available as part of REST, which
is freely available at the url: https://github.com/
goodshawn12/REST
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