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ABSTRACT
High-dimension-low-sample size statistical analysis is important in a wide range of applications. In such
situations, the highly appealing discriminationmethod, support vectormachine, can be improved to allevi-
ate data piling at the margin. This leads naturally to the development of distance weighted discrimination
(DWD), which can be modeled as a second-order cone programming problem and solved by interior-point
methods when the scale (in sample size and feature dimension) of the data is moderate. Here, we design
a scalable and robust algorithm for solving large-scale generalized DWD problems. Numerical experiments
on real datasets from the UCI repository demonstrate that our algorithm is highly efficient in solving large-
scale problems, and sometimes even more efficient than the highly optimized LIBLINEAR and LIBSVM for
solving the corresponding SVM problems. Supplementary material for this article is available online.

1. Introduction

We consider the problem of finding a (kernelized) linear clas-
sifier for a training dataset {(xi, yi)}ni=1 with xi ∈ R

d and the
class label yi ∈ {−1, 1} for all i = 1, . . . , n. Here n is the sam-
ple size (the number of data vectors available) and d is the fea-
ture dimension. By far, the most popular and successful method
for getting a good linear classifier from the training data is the
support vector machine (SVM), originally proposed by Vapnik
(1995). Indeed, it has been demonstrated in Fernández-Delgado
et al. (2014) that the kernel SVM is one of the best performers in
the pool of 179 commonly used classifiers. Despite its success, it
has been observed in Marron, Todd, and Ahn (2007) that SVM
may suffer from a “data-piling” problem in the high-dimension-
low-sample size (HDLSS) setting (where the sample size n is
smaller than the feature dimension d). The authors proposed a
new linear classifier, called “distance weighted discrimination”
(DWD), as a superior alternative to the SVM.DWDhas become
a workhorse method for a number of statistical tasks, including
data visualization (Marron and Alonso 2014), hypothesis test-
ing linked with visualization in very high dimensions (Wei et al.
2016), and adjustment for data biases and heterogeneity (Benito
et al. 2004; Liu et al. 2009).

It is well known that there is a strong need for efficient
HDLSS methods for the settings where d is large, say in the
order of 104–105, especially in the area of genetic molecular
measurements (usually having a small sample size, where many
gene level features have been measured), chemometrics (typi-
cally a small sample of high-dimensional spectra), and medical
image analysis (a small sample of 3-d shapes represented by
high-dimensional vectors). On the other hand, given the advent
of a huge volume of data collectible through various sources,
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especially from the Internet, it is also important for us to
consider the case where the sample size n is large, while the
feature dimension may be moderate. Thus in this article, we are
interested in the problem of finding a linear classifier through
DWD for data instances where n and/or d are large.

In Marron, Todd, and Ahn (2007), DWD is formulated
as a second-order cone programming (SOCP) problem, and
the resulting model is solved by using a primal-dual interior-
point method for SOCP problems implemented in the software
SDPT3 (Toh, Todd, and Tutuncu 1999). However, the IPM-
based solver employed for DWD in Marron, Todd, and Ahn
(2007) is computationally very expensive for solving problems
where n or d is large, thus making it impractical for large-scale
problems. A recent approach to overcome such a computational
bottleneck has appeared in Wang and Zou (2015), where the
authors proposed a novel reformulation of the primal DWD
model, which consists of minimizing a highly nonlinear con-
vex objective function subject to a ball constraint. The result-
ing problem is solved via its dual and an MM (minimization-
majorization) algorithm is designed to compute the Lagrangian
dual function for each given dual multiplier. The algorithm
appears to be quite promising in theory for solving large-scale
DWD problems. However, the current numerical experiments
and implementation of the proposed algorithm in Wang and
Zou (2015) are preliminary and limited to small-scale data
instances, and it appears that substantial work must be done to
make it efficient for large-scale instances. Hence, it is premature
to compare our proposed algorithm with the one in Wang and
Zou (2015).

The main contribution of this article is to design a new
method for solving large-scale DWD problems, where we
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target to solve a problem with the sample size n ≈ 104–106
and/or the dimension d ≈ 104–105. Our method is a conver-
gent three-block semiproximal alternating direction method of
multipliers (ADMM), which is designed based on the recent
advances in research on convergent multi-block ADMM-type
methods (Sun, Toh, andYang 2015; Li, Sun, andToh 2016; Chen,
Sun, and Toh 2017) for solving convex composite quadratic
conic programming problems.

The classical ADMM is initially proposed for solving a two-
block convex optimization problem with a collection of cou-
pling linear constraints. Over the years, there have been many
variations of ADMM proposed and applied to a great variety
of optimization problems. A natural modification is to extend
the original ADMM from two-block to multi-block settings.
However, in Chen et al. (2016), it was shown that the directly
extended ADMM may not be convergent. Thus, it is necessary
to make some modifications to the directly extended ADMM
to get a convergent algorithm. In Sun, Toh, and Yang (2015),
the authors proposed a semiproximal ADMM for solving a con-
vex conic programming problem with three blocks of variables
and four types of constraints. The algorithm is a convergent
modification of the ADMMwith an additional inexpensive step
in each iteration. In Li, Sun, and Toh (2016), the authors pro-
posed a Schur complement-based (SCB) convergent semiproxi-
mal ADMM for solving a multi-block linearly constrained con-
vex programming problem whose objective function is the sum
of two proper closed convex functions plus an arbitrary num-
ber of convex quadratic or linear functions. One of the key con-
tributions in Li, Sun, and Toh (2016) is the discovery of the
Schur complement-based decomposition method, which allows
themulti-block subproblems to be solved efficientlywhile ensur-
ing the convergence of the algorithm. More recently, Li, Sun,
and Toh (2015) generalized the SCB decomposition method
in Li, Sun, and Toh (2016) to the inexact symmetric Gauss–
Seidel decompositionmethod, which provides an elegant frame-
work and simpler derivation. Based on this previous research,
in Chen, Sun, and Toh (2017), the authors proposed an inex-
act symmetric Gauss–Seidel-based multi-block semiproximal
ADMM for solving a class of high-dimensional convex compos-
ite conic optimization problems, which has been demonstrated
to have much better performance than the possibly noncon-
vergent directly extended ADMM in solving high-dimensional
convex quadratic semidefinite programming problems.

Inspired by the above works, we propose a convergent three-
block semiproximal ADMM, which is a modification of the
inexact sGS-ADMM algorithm designed in Chen, Sun, and Toh
(2017) to solve the DWDmodel. The first contribution wemake
is in reformulating the primal formulation of the generalized
DWDmodel (using the terminology fromWang and Zou 2015)
and adapting the powerful inexact sGS-ADMM framework
for solving the reformulated problem. This is in contrast to
numerous SVM algorithms that are primarily designed for
solving the dual formulation of the SVM model. The second
contribution wemake is in designing highly efficient techniques
to solve the subproblems in each of the inexact sGS-ADMM
iterations. If n or d is moderate, then the complexity at each
iteration is O(nd) + O(n2) or O(nd) + O(d2), respectively. If
both n and d are large, then we employ the conjugate gradient
iterativemethod for solving the large linear systems of equations

involved. We also devise various strategies to speed up the prac-
tical performance of the sGS-ADMMalgorithm in solving large-
scale instances (with the largest instance having n = 256,000
and d ≈ 3 × 106) of DWD problems with real datasets from the
UCI machine learning repository (Lichman 2013). We should
emphasize that the key in achieving high efficiency in our algo-
rithm depends very much on the intricate numerical techniques
and sophisticated implementation we have developed.

Finally, we conduct extensive numerical experiments to eval-
uate the performance of our proposed algorithm against a few
other alternatives. Relative to the primal-dual interior-point
method used in Marron, Todd, and Ahn (2007), our algorithm
is vastly superior in terms of computational time and mem-
ory usage in solving large-scale problems, where our algorithm
can be a few thousands times faster. By exploiting all the highly
efficient numerical techniques we have developed in the imple-
mentation of the sGS-ADMM algorithm for solving the gener-
alized DWD problem, we can also get an efficient implemen-
tation of the possibly nonconvergent directly extended ADMM
for solving the same problem. On the tested problems, our
algorithm generally requires fewer iterations compared to the
directly extended ADMM even when the latter is convergent.
On quite a few instances, the directly extended ADMM actu-
ally requires manymore iterations than our proposed algorithm
to solve the problems. We also compare the efficiency of our
algorithm in solving the generalized DWD problem against the
highly optimized LIBLINEAR (Fan et al. 2008) and LIBSVM
(Chang and Lin 2011) in solving the corresponding dual SVM
problem. Surprisingly, our algorithm can even be more efficient
than LIBSVM in solving large-scale problems even though the
DWDmodel is more complex, and on some instances, our algo-
rithm is 50–100 times faster. Our DWD model is also able to
produce the best test (or generalization) errors compared to LIB-
LINEAR and LIBSVM among the tested instances.

The remaining parts of this article are organized as follows.
In Section 2, we present the DWD formulation in full detail. In
Section 3, we propose our inexact sGS-based ADMM method
for solving large-scale DWD problems. We also discuss some
essential computational techniques used in our implementation.
We report our numerical results in Section 4. We will also com-
pare the performance of our algorithm to other solvers on the
same datasets in this particular section. Finally, we conclude the
article in Section 5.

Notation. We denote the two-norm of a vector x by ‖x‖, and
the Frobenius norm of a matrixM by ‖M‖F . The inner product
of two vectors x, y is denoted by 〈x, y〉. If S is a symmetric pos-
itive semidefinite matrix, then we denote the weighted norm of
a vector x with the weight matrix S by ‖x‖S :=

√〈x, Sx〉.

2. Generalized DistanceWeighted Discrimination

This section gives details on the optimization problems under-
lying the distance weighted discrimination. Let (xi, yi), i =
1, . . . , n, be the training data where xi ∈ R

d is the feature vec-
tor and yi ∈ {+1,−1} is its corresponding class label. We let
X ∈ R

d×n be the matrix whose columns are the xi’s, and y =
[y1, . . . , yn]T . In linear discrimination, we attempt to separate
the vectors in the two classes by a hyperplane H = {x ∈ R

d |
wTx + β = 0}, where w ∈ R

d is the unit normal and |β| is its
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distance to the origin. Given a point z ∈ R
d , the signed distance

between z and the hyperplaneH is given bywTz + β . For binary
classification where the label yi ∈ {−1, 1}, we want

yi
(
β + xTi w

) ≥ 1 − ξi ∀ i = 1, . . . , n,

where we have added a slack variable ξ ≥ 0 to allow the possi-
bility that the positive and negative data points may not be sep-
arated cleanly by the hyperplane. In matrix-vector notation, we
need

r := ZTw + βy + ξ ≥ 1, (1)

where Z = Xdiag(y) and 1 ∈ R
n is the vector of ones.

In SVM, w and β are chosen by maximizing the minimum
residual, that is,

max{δ −C〈1, ξ 〉 | ZTw + βy + ξ ≥ δ1, ξ ≥ 0, wTw ≤ 1},
(2)

whereC > 0 is a tuning parameter to control the level of penal-
ization on ξ . For the DWD approach introduced in Marron,
Todd, and Ahn (2007),w and β are chosen instead by minimiz-
ing the sum of reciprocals of the ri’s, that is,

min

{ n∑
i=1

1
ri

+C〈1, ξ 〉 | r = ZTw + βy + ξ,

r > 0, ξ ≥ 0, wTw ≤ 1, w ∈ R
d

}
. (3)

Detailed discussions on the connections between the DWD
model (3) and the SVM model (2) can be found in Marron,
Todd, and Ahn (2007). The DWD optimization problem (3) is
shown to be equivalent to a second-order cone programming
problem in Marron, Todd, and Ahn (2007) and hence it can be
solved by interior-point methods such as those implemented in
the solver SDPT3 (Toh, Todd, and Tutuncu 1999).

Here, we design an algorithm that is capable of solving large-
scale generalized DWD problems of the following form:

min

{
�(r, ξ ) :=

n∑
i=1

θq(ri) +C〈e, ξ 〉 | ZTw + βy + ξ − r = 0,

‖w‖ ≤ 1, ξ ≥ 0

}
, (4)

where e ∈ R
n is a given positive vector such that ‖e‖∞ = 1 (the

last condition is for the purpose of normalization). The expo-
nent q can be any given positive number, though the values of
most interest are likely to be q = 0.5, 1, 2, 4, and θq(ri) is the
function defined by

θq(t ) = 1
tq

if t > 0, and θq(t ) = ∞ if t ≤ 0.

Observe that in addition to allowing for a general exponent q in
(4), we also allow for a nonuniform weight ei > 0 in the penalty
term for each ξi. By a simple change of variables and modifi-
cation of the data vector y, (4) can also include the case where
the terms in

∑n
i=1

1
rqi
are weighted nonuniformly. For brevity, we

omit the details.

Proposition 1. Let κ = q+1
q q

1
q+1 . The dual of problem (4) is given

as follows:

− min
α

{
	(α) := ‖Zα‖ − κ

n∑
i=1

α
q

q+1
i | 0 ≤ α ≤ Ce, 〈y, α〉 = 0

}
.

(5)

Proof. Consider the Lagrangian function associated with (4):

L(r,w, β, ξ ;α, η, λ)

= ∑n
i=1θq(ri) +C〈e, ξ 〉 − 〈α,ZTw + βy + ξ − r〉

+ λ

2
(‖w‖2 − 1) − 〈η, ξ 〉

= ∑n
i=1θq(ri) + 〈r, α〉 + 〈ξ,Ce − α − η〉 − β〈y, α〉

− 〈w,Zα〉 + λ

2
(〈w,w〉 − 1),

where r ∈ R
n, w ∈ R

d , β ∈ R, ξ ∈ R
n, α ∈ R

n, λ, η ≥ 0. Now

inf
ri

{θq(ri) + αiri} =
{

κ α
q

q+1
i if αi ≥ 0

−∞ if αi < 0

inf
w

{−〈Zα,w〉 + λ

2
‖w‖2} =

⎧⎨⎩
− 1

2λ‖Zα‖2 if λ > 0
0 if λ = 0, Zα = 0
−∞ if λ = 0, Zα �= 0

inf
ξ

{〈ξ,Ce − α − η〉} =
{
0 ifCe − α − η = 0
−∞ otherwise ,

inf
β

{−β〈y, α〉} =
{
0 if 〈y, α〉 = 0
−∞ otherwise .

Let FD = {α ∈ R
n | 0 ≤ α ≤ Ce, 〈y, α〉 = 0}. Hence,

min
r,w,β,ξ

L(r,w, β, ξ ;α, η, λ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κ
∑n

i=1 α
q

q+1
i if λ > 0, α ∈ FD,

− 1
2λ‖Zα‖2 − λ

2 ,

κ
∑n

i=1 α
q

q+1
i , if λ = 0, Zα = 0, α ∈ FD,

−∞, if λ = 0, Zα �= 0, α ∈ FD, or α �∈ FD.

Now for α ∈ FD, we have

max
λ≥0,η≥0

{ min
r,w,β,ξ

L(r,w, β, ξ ;α, η, λ)} = κ

n∑
i=1

α
q

q+1
i − ‖Zα‖.

From here, we get the required dual problem. �

It is straightforward to show that the feasible regions of (4)
and (5) both have nonempty interiors. Thus, optimal solutions
for both problems exist and they satisfy the following KKT
(Karush–Kuhn–Tucker) optimality conditions:

ZTw + βy + ξ − r = 0, 〈y, α〉 = 0,
r > 0, α > 0, α ≤ Ce, ξ ≥ 0, 〈Ce − α, ξ 〉 = 0,
αi = q

rq+1
i

, i = 1, . . . , n, either w = Zα
‖Zα‖ , or

Zα = 0, ‖w‖2 ≤ 1.

(6)

Let (r∗, ξ ∗,w∗, β∗) and α∗ be an optimal solution of (4) and
(5), respectively. Next we analyze some properties of the optimal
solution. In particular, we show that the optimal solution α∗ is
bounded away from 0.
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Proposition 2. There exists a positive δ such that α∗
i ≥ δ ∀ i =

1, . . . , n.

Proof. For convenience, let FP = {(r, ξ ,w, β) | ZTw + βy +
ξ − r = 0, ‖w‖ ≤ 1, ξ ≥ 0} be the feasible region of (4). Since
(1, 1, 0, 0) ∈ FP, we have that

Ceminξ
∗
i ≤ C〈e, ξ ∗〉 ≤ �(r∗, ξ ∗,w∗, β∗) ≤ �(1, 1, 0, 0)

= n +C
∑n

i=1ei ∀ i = 1, . . . , n,

where emin = min1≤i≤n{ei}. Hence, we have 0 ≤ ξ ∗ ≤ �1, where
� := n+C

∑n
i=1 ei

Cemin
.

Next, we establish a bound for |β∗|. Suppose β∗ > 0. Con-
sider an index i such that yi = −1. Then 0 < β∗ = ZT

i w∗ +
ξ ∗
i − r∗i ≤ ‖Zi‖‖w∗‖ + ξ ∗

i ≤ K + �, where Zi denotes the ith
column of Z, K = max1≤ j≤n{‖Zj‖}. On the other hand, if β∗ <

0, then we consider an index k such that yk = 1, and 0 < −β∗ =
ZT
k w∗ + ξ ∗

k − r∗k ≤ K + �. To summarize, we have that |β∗| ≤
K + �.

Now we can establish an upper bound for r∗. For any i =
1, . . . , n, we have that

r∗i = ZT
i w∗ +β∗yi + ξ ∗

i ≤ ‖Zi‖‖w∗‖ + |β∗| + ξ ∗
i ≤ 2(K + �).

From here, we get α∗
i = q

(r∗i )q+1 ≥ δ := q
(2K+2�)q+1 ∀ i =

1, . . . , n. This completes the proof of the proposition. �

3. An Inexact SGS-Based ADMM for Large-Scale DWD
Problems

We can rewrite the model (4) as

min

{ n∑
i=1

θq(ri) +C〈e, ξ 〉 + δB(w) + δRn+ (ξ ) | ZTw + βy

+ ξ − r = 0, w ∈ R
d, r, ξ ∈ R

n

}
,

where B = {w ∈ R
d | ‖w‖ ≤ 1}. Here, both δB(w) and δRn+ (ξ )

are infinity indicator functions. In general, an infinity indicator
function over a set C is defined by

δC (x) :=
{
0, if x ∈ C;
+∞, otherwise.

The model above is a convex minimization problem with
three nonlinear blocks. By introducing an auxiliary variable u =
w, we can reformulate it as

min
n∑

i=1

θq(ri) +C〈e, ξ 〉 + δB(u) + δRn+ (ξ )

s.t. ZTw + βy + ξ − r = 0 (7)
D(w − u) = 0, w, u ∈ R

d, β ∈ R, r, ξ ∈ R
n,

where D ∈ R
d×d is a given positive scalar multiple of the iden-

tity matrix, which is introduced for the purpose of scaling the
variables.

For a given parameter σ > 0, the augmented Lagrangian
function associated with (7) is given by

Lσ (r,w, β, ξ, u;α, ρ)

=
n∑

i=1

θq(ri) +C〈e, ξ 〉 + δB(u) + δRn+ (ξ )

+σ

2
‖ZTw + βy + ξ − r − σ−1α‖2

+ σ

2
‖D(w − u) − σ−1ρ‖2 − 1

2σ
‖α‖2 − 1

2σ
‖ρ‖2.

The algorithm that we will design later is based on recent
progress in algorithms for solvingmulti-block convex conic pro-
gramming. In particular, our algorithm is designed based on the
inexact ADMM algorithm in Chen, Sun, and Toh (2017) and
we made essential use of the inexact symmetric Gauss–Seidel
decomposition theorem in Li, Sun, and Toh (2016) to solve the
subproblems arising in each iteration of the algorithm.

We can view (7) as a linearly constrained nonsmooth convex
programming problem with three blocks of variables grouped
as (w, β), r, (u, ξ ). The template for our inexact sGS-based
ADMM is described next. Note that the subproblems need
not be solved exactly as long as they satisfy some prescribed
accuracy.

Algorithm 1. An inexact sGS-ADMM for solving (7).
Let {εk} be a summable sequence of nonnegative nonincreas-

ing numbers. Given an initial iterate (r0,w0, β0, ξ 0, u0) in the
feasible region of (7), and (α0, ρ0) in the dual feasible region of
(7), choose a d × d symmetric positive semidefinite matrix T ,
and perform the following steps in each iteration.
Step 1a. Compute

(w̄k+1, β̄k+1) ≈ argminw,β

{
Lσ (rk,w, β, ξ k, uk;αk, ρk)

+ σ

2
‖w − wk‖2T

}
.

In particular, (w̄k+1, β̄k+1) is an approximate solu-
tion to the following (d + 1) × (d + 1) linear sys-
tem of equations:[

ZZT + D2 + T Zy
(Zy)T yT y

]
︸ ︷︷ ︸

A

[
w

β

]
= h̄k

:=
[

−Z(ξ k − rk − σ−1αk) + D2uk + D(σ−1ρk) + T wk

−yT (ξ k − rk − σ−1αk)

]
.

(8)

We require the residual of the approximate solution
(w̄k+1, β̄k+1) to satisfy

‖h̄k − A[w̄k+1; β̄k+1]‖ ≤ εk. (9)

Step 1b. Compute rk+1 ≈ argminr∈Rn Lσ (r, w̄k+1, β̄k+1, ξ k,

uk;αk, ρk). Specifically, by observing that the objec-
tive function in this subproblem is actually separa-
ble in ri for i = 1, . . . , n, we can compute rk+1

i as
follows:
rk+1
i ≈ argmin

ri

{
θq(ri) + σ

2
∥∥ri − cki

∥∥2}
= argmin

ri>0

{
1
rqi

+ σ

2
∥∥ri − cki

∥∥2} ∀ i = 1, . . . , n,

(10)
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where ck = ZT w̄k+1 + yβ̄k+1 + ξ k − σ−1αk. The
details on how the above one-dimensional problems
are solved will be given later. The solution rk+1

i is
deemed to be sufficiently accurate if∣∣∣∣∣− q(

rk+1
i

)q+1 + σ
(
rk+1
i − cki

)∣∣∣∣∣ ≤ εk/
√
n ∀ i = 1, . . . , n.

Step 1c. Compute

(wk+1, βk+1) ≈ argminw,β

{
Lσ

(
rk+1,w, β, ξ k, uk;

αk, ρk)+ σ

2
‖w − wk‖2T

}
,

which amounts to solving the linear system of equa-
tions (8) but with rk in the right-hand side vector h̄k
replaced by rk+1. Let hk be the new right-hand side
vector. We require the approximate solution to sat-
isfy the accuracy condition that

‖hk − A[wk+1;βk+1]‖ ≤ 5εk.

Observe that the accuracy requirement here is more
relaxed than that stated in (9) of Step 1a. The rea-
son for doing so is that one may hope to use the
solution (w̄k+1, β̄k+1) computed in Step 1a as an
approximate solution for the current subproblem.
If (w̄k+1, β̄k+1) indeed satisfies the above accuracy
condition, then one can simply set (wk+1, βk+1) =
(w̄k+1, β̄k+1) and the cost of solving this new sub-
problem can be saved.

Step 2. Compute (uk+1, ξ k+1) = argminu,ξ Lσ (rk+1,wk+1,

βk+1, ξ , u;αk, ρk). By observing that the objective
function is actually separable in u and ξ , we can
compute uk+1 and ξ k+1 separately as follows:

uk+1 = argmin
{
δB(u) + σ

2
‖D(u − gk)‖2

}
=
{
gk if ‖gk‖ ≤ 1
gk/‖gk‖ otherwise ,

ξ k+1 = �R
n+ (rk+1 − ZTwk+1 − yβk+1

+σ−1αk − σ−1Ce),

where gk = wk+1 − σ−1D−1ρk, and�R
n+ (·) denotes

the projection onto Rn
+.

Step 3. Compute

αk+1 = αk − τσ (ZTwk+1 + yβk+1 + ξ k+1 − rk+1),

ρk+1 = ρk − τσD(wk+1 − uk+1),

where τ ∈ (0, (1 + √
5)/2) is the steplength, which

is typically chosen to be 1.618.
In our implementation of Algorithm 1, we choose the

summable sequence {εk}k≥0 to be εk = c/(k + 1)1.5 where c is
a constant that is inversely proportional to ‖Z‖F . Next we dis-
cuss the computational cost of Algorithm 1. As we shall see later,
the most computationally intensive steps in each iteration of
the above algorithm are in solving the linear systems of equa-
tions of the form (8) in Steps 1a and 1c. The detailed analysis
of their computational costs will be presented in Section 3.3. All
the other steps can be done in at most O(n) or O(d) arithmetic

operations, together with the computation of ZTwk+1, which
costs 2dn operations if we do not take advantage of any possi-
ble sparsity in Z.

3.1. Convergence Results

Wehave the following convergence theorem for the inexact sGS-
ADMM, established by Chen, Sun, and Toh (2017, Theorem 1).
This theorem guarantees the convergence of our algorithm to
optimality, as a merit over the possibly nonconvergent directly
extended semiproximal ADMM.

Theorem 1. Suppose that the system (6) has at least one solu-
tion. Let {(rk,wk, βk, ξ k, uk;αk, ρk)} be the sequence generated
by the inexact sGS-ADMM in Algorithm 1. Then the sequence
{(rk,wk, βk, ξ k, uk)} converges to an optimal solution of prob-
lem (7) and the sequence {(αk, ρk)} converges to an optimal
solution to the dual of problem (7).

Proof. To apply the convergence result in Chen, Sun, and Toh
(2017), we need to express (7) as follows:

min
{
p(r) + f (r,w, β) + q(ξ , u) + g(ξ , u) | A∗

1r + A∗
2[w;β]

+B∗[ξ ; u] = 0
}
, (11)

where

p(r) =
n∑

i=1

θq(ri),

f (r,w, β) ≡ 0,
q(ξ , u) = δB(u) +C〈e, ξ 〉 + δRn+ (ξ ),

g(ξ , u) ≡ 0,

A∗
1 =

(−I
0

)
, A∗

2 =
(
ZT y
D 0

)
, B∗ =

(
I 0
0 −D

)
.

Next we need to consider the following matrices:(
A1
A2

) (
A∗
1, A∗

2
)+

⎛⎝ 0 0 0
0 T 0
0 0 0

⎞⎠
=
(

I [−ZT ,−y]
[ − ZT ,−y]T M

)
, BB∗ =

(
I 0
0 D2

)
,

where

M =
(
ZZT + D2 + T Zy

(Zy)T yTy

)
� 0.

One can show thatM is positive definite by using the Schur com-
plement lemma. With the conditions that M � 0 and BB∗ � 0,
the conditions in Proposition 4.2 of Chen, Sun, and Toh (2017)
are satisfied, and hence the convergence of Algorithm 1 follows
by using Theorem 1 in Chen, Sun, and Toh (2017). �

Wenote here that the convergence analysis in Chen, Sun, and
Toh (2017) is highly nontrivial. But it is motivated by the proof
for the simpler case of an exact semiproximal ADMM that is
available in Appendix B of the article by Fazel et al. (2013). In
that article, one can see that the convergence proof is based on
the descent property of a certain function, while the augmented
Lagrangian function itself does not have such a descent property.
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3.2. Numerical Computation of the Subproblem (10) in
Step 1b

In the presentation of Algorithm 1, we have described how the
subproblem in each step can be solved except for the subproblem
(10) in Step 1b. Now we discuss how it can be solved. Observe
that for each i, we need to solve a one-dimensional problem of
the form

min
{
ϕ(s) := 1

sq
+ σ

2
(s − a)2 | s > 0

}
, (12)

where a is given. It is easy to see that ϕ(·) is a convex function
and it has a unique minimizer in the domain (0,∞). The opti-
mality condition for (12) is given by

s − a = qσ−1

sq+1 ,

where the unique minimizer s∗ is determined by the intersec-
tion of the line s �→ s − a and the curve s �→ qσ−1

sq+1 for s > 0. We
propose to use Newton’s method to find the minimizer, and the
template is given as follows. Given an initial iterate s0, perform
the following iterations:

sk+1 = sk − ϕ′(sk)/ϕ′′(sk) = sk

(
q(q + 2)σ−1 + asq+1

k

q(q + 1)σ−1 + sq+2
k

)
,

k = 0, 1, . . .

Sinceϕ′′(s∗) > 0,Newton’smethodwould have a local quadratic
convergence rate, and we would expect it to converge in a small
number of iterations, say less than 20, if a good initial point s0 is
given. In solving the subproblem (10) in Step 1b, we always use
the previous solution rki as the initial point to warm-start New-
ton’s method. If a good initial point is not available, one can use
the bisection technique to find one. In our tests, this technique
was however never used.

Observe that the computational cost for solving the sub-
problem (10) in Step 1b is O(n) if Newton’s method converges
within a fixed number of iterations (say 20) for all i = 1, . . . , n.
Indeed, in our experiments, the average number of Newton iter-
ations required to solve (12) for each of the instances is less
than 10.

3.3. Efficient Techniques to Solve the Linear System (8)

Observe that in each iteration of Algorithm 1, we need to solve a
(d + 1) × (d + 1) linear system of Equation (8) with the same
coefficient matrix A. For large-scale problems where n and/or d
are large, this step would constitute the most expensive part of
the algorithm. To solve such a linear system efficiently, we design
different techniques to solve it, depending on the dimensions n
and d. We consider the following cases.

... The CaseWhere d � n and d is Moderate
This is the most straightforward case where we set T = 0, and
we solve (8) by computing theCholesky factorization of the coef-
ficient matrix A. The cost of computing A is 2nd2 arithmetic
operations. Assuming that A is stored, then we can compute its
Cholesky factorization at the cost of O(d3) operations, which
needs only to be performed once at the very beginning of Algo-
rithm 1. After that, whenever we need to solve the linear system

(8), we compute the right-hand-side vector at the cost of 2nd
operations and solve two (d + 1) × (d + 1) triangular systems
of linear equations at the cost of 2d2 operations.

... The CaseWhere n � d and n is Moderate
In this case, we also set T = 0. But solving the large (d + 1) ×
(d + 1) system of linear equations (8) requires more thought.
To avoid inverting the high-dimensional matrix A directly, we
make use of the Sherman–Morrison–Woodbury formula to get
A−1 by inverting a much smaller (n + 1) × (n + 1) matrix as
shown in the following proposition.

Proposition 3. The coefficient matrix A can be rewritten as fol-
lows:

A = D̂ +UEUT , U =
[
Z 0
yT ‖y‖

]
, E = diag(In,−1),

(13)

where D̂ = diag(D, ‖y‖2). It holds that
A−1 = D̂−1 − D̂−1UH−1UTD̂−1, (14)

where

H = E−1 +UTD̂−1U =
[
In + ZTD−1Z + yyT/‖y‖2 y/‖y‖

yT/‖y‖ 0

]
.

(15)

Proof. It is easy to verify that (13) holds and we omit the details.
To get (14), we only need to apply the Sherman–Morrison–
Woodbury formula in Golub and Loan (1996, p. 50) to (13) and
perform some simplifications. �

Note that in making use of (14) to compute A−1h̄k, we need
to find H−1. A rather cost effective way to do so is to express H
as follows and use the Sherman–Morrison–Woodbury formula
to find its inverse:

H = J + ȳȳT , J = diag(In + ZTD−1Z, −1), ȳ = [y/‖y‖; 1].

With the above expression for H , we have that

H−1 = J−1 − 1
1 + ȳT J−1ȳ

(J−1ȳ)(J−1ȳ)T .

Thus to solve (8), we first compute the n × n matrix In +
ZTD−1Z in (15) at the cost of 2dn2 operations. Then we com-
pute its Cholesky factorization at the cost of O(n3) operations.
(Observe that even though we are solving a (d + 1) × (d + 1)
linear system of equations for which d � n, we only need to
compute the Cholesky factorization of a much smaller n × n
matrix.) Also, we need to compute J−1ȳ at the cost of O(n2)
operations by using the previously computed Cholesky factor-
ization. These computations only need to be performed once at
the beginning of Algorithm 1. After that, whenever we need to
solve a linear system of the form (8), we can compute h̄k at the
cost of 2nd operations, and then make use of (14) to get A−1h̄k
by solving two n × n triangular systems of linear equations at
the cost of 2n2 operations, and performing two matrix-vector
multiplications involving Z and ZT at a total cost of 4nd opera-
tions. To summarize, given theCholesky factorization of the first
diagonal block ofH , the cost of solving (8) via (14) is 6nd + 2n2
operations.
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... The CaseWhere d and n are Both Large
The purpose of introducing the proximal term 1

2‖w − wk‖2T in
Steps 1a and 1c is tomake the computation of the solutions of the
subproblems easier. However, one should note that adding the
proximal term typically will make the algorithm converge more
slowly, and the deterioration will become worse for larger ‖T ‖.
Thus in practice, one would need to strike a balance between
choosing a symmetric positive semidefinite matrix T to make
the computation easier while not slowing down the algorithm
by too much.

In our implementation, we first attempt to solve the subprob-
lem in Step 1a (similarly for 1c) without adding a proximal term
by setting T = 0. In particular, we solve the linear system (8)
by using a preconditioned symmetric quasi-minimal residual
(PSQMR) iterative solver (Freund 1997) when both n and d are
large. Basically, it is a variant of the Krylov subspace method
similar to the idea in GMRES (Saad 2003). For more details on
the PSQMR algorithm, the reader is referred to the Appendix. In
each step of the PSQMR solver, the main cost is in performing
the matrix-vector multiplication with the coefficient matrix A,
which costs 4nd arithmetic operations. As the number of steps
taken by an iterative solver to solve (8) to the required accuracy
(9) is dependent on the conditioning of A, in the event that the
solver requires more than 50 steps to solve (8), we would switch
to adding a suitable nonzero proximal term T to make the sub-
problem in Step 1a easier to solve.

The most common and natural choice of T to make the sub-
problem in Step 1a easy to solve is to set T = λmaxI − ZZT ,
where λmax denotes the largest eigenvalue of ZZT . In this case,
the corresponding linear system (8) is very easy to solve. More
precisely, for the linear system in (8), we can first compute β̄k+1

via the Schur complement equation in a single variable followed
by computing w̄k as follows:(

yTy − (Zy)T (λmaxI + D)−1(Zy)
)
β

= h̄kd+1 − (Zy)T (λmaxI + D)−1h̄k1:d,

w̄k+1 = (λmaxI + D)−1(h̄k1:d − (Zy)β̄k+1), (16)

where h̄k1:d denotes the vector extracted from the first d compo-
nents of h̄k. In our implementation, we pick a T , which is less
conservative than the above natural choice as follows. Suppose
we have computed the first � largest eigenvalues of ZZT such
that λ1 ≥ · · · ≥ λ�−1 > λ�, and their corresponding orthonor-
mal set of eigenvectors, v1, . . . , v�. We pick T to be

T = λ�I +∑�−1
i=1 (λi − λ�)viv

T
i − ZZT , (17)

which can be proved to be positive semidefinite by using the
spectral decomposition of ZZT . In practice, one would typically
pick � to be a small integer, say 10, and compute the first � largest
eigenvalues and their corresponding eigenvectors via variants of
the Lanczos method. The most expensive step in each iteration
of the Lanczos method is a matrix-vector multiplication, which
requiresO(d2) operations. In general, the cost of computing the
first few largest eigenvalues of ZZT is much cheaper than that
of computing the full eigenvalue decomposition. In MATLAB,
such a computation can be done by using the routine eigs.
To solve (8), we need the inverse of ZZT + D + T . Fortunately,

when D = μId , it can easily be inverted with

(ZZT + D + T )−1 = (μ + λ�)
−1Id +∑�−1

i=1 ((μ + λi)
−1

− (μ + λ�)
−1)viv

T
i .

One can then compute β̄k and w̄k as in (16) with (λmaxI + D)−1

replaced by the above inverse.

4. Experiments

In this section, we test the performance of our inexact sGS-
ADMM method on several publicly available datasets. The
numerical results presented in the subsequent subsections
are obtained from a computer with processor specifications:
Intel(R) Xeon(R) CPU E5-2670 @ 2.5GHz (2 processors) and
64GB of RAM, running on a 64-bitWindowsOperating System.

4.1. Tuning the Penalty Parameter

In the DWD model (7), we see that it is important to make a
suitable choice of the penalty parameter C. In Marron, Todd,
and Ahn (2007), it was noted that a reasonable choice for the
penalty parameter when the exponent q = 1 is a large constant
divided by the square of a typical distance between the xi’s, where
the typical distance, dist, is defined as the median of the pair-
wise Euclidean distances between classes.We found out that in a
more general case,C should be inversely proportional to distq+1.
On the other hand, we observed that a good choice of C also
depends on the sample size n and the dimension of features d.
In our numerical experiments, we empirically set the value of

C to be 10q+1 max
{
1, 10q−1 log(n)max{1000,d} 1

3

distq+1

}
, where log(·) is the

natural logarithm.

4.2. Scaling of Data

A technique that is very important in implementing ADMM-
based methods in practice to achieve fast convergence is the
data scaling technique. Empirically, we have observed that it is
good to scale the matrix Z in (7) so that the magnitude of all
the blocks in the equality constraint would be roughly the same.
Here, we choose the scaling factor to be Zscale = √‖X‖F , where
‖ · ‖F is the Frobenius norm. Hence, the optimization model in
(7) becomes

min
∑n

i=1
1
rqi

+C〈e, ξ 〉 + δB̃(ũ) + δRn+ (ξ )

s.t. Z̃T w̃ + βy + ξ − r = 0, r > 0,
D(w̃ − ũ) = 0, w̃, ũ ∈ R

d, r, ξ ∈ R
n,

(18)

where Z̃ = Z
Zscale

, w̃ = Zscalew, ũ = Zscaleu, and B̃ = {w̃ ∈
R

d | ‖w̃‖ ≤ Zscale}. Therefore, if we have computed
an optimal solution (r∗, w̃∗, β∗, ξ ∗, ũ∗) of (18), then
(r∗,Z−1

scalew̃
∗, β∗, ξ ∗,Z−1

scaleũ
∗) would be an optimal solution

of (7).
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4.3. Stopping Condition for Inexact sGS-ADMM

We measure the accuracy of an approximate optimal solution
(r,w, β, ξ, u, α, ρ) for (18) based on the KKT optimality con-
ditions (6) by defining the following relative residuals:

ηC1 = |yTα|
1+C , ηC2 = |ξT (Ce−α)|

1+C , ηC3 = ‖α−s‖2
1+C with si = q

rq+1
i

,

ηP1 = ‖Z̃T w̃+βy+ξ−r‖
1+C , ηP2 = ‖D(w̃−ũ)‖

1+C , ηP3 = max{‖w̃‖−Zscale,0}
1+C ,

ηD1 = ‖min{0,α}‖
1+C , ηD2 = ‖max{0,α−Ce}‖

1+C ,

where Zscale is a scaling factor, which has been discussed in the
last subsection. Additionally, we calculate the relative duality gap
by

ηgap :=
|objprimal − objdual|

1 + |objprimal| + |objdual|
,

where objprimal = ∑n
i=1

1
rqi

+C〈e, ξ 〉, objdual = κ
∑n

i=1 α
q

q+1
i −

Zscale‖Z̃α‖, with κ = q+1
q q

1
q+1 . We should emphasize that

although for machine learning problems, a high accuracy solu-
tion is usually not required, it is important however to use the
KKT optimality conditions as the stopping criterion to find a
moderately accurate solution to design a robust solver.

We terminate the solver when max{ηP, ηD} < 10−5,
min{ηC, ηgap} <

√
10−5, and max{ηC, ηgap} < 0.05. Here,

ηC = max{ηC1 , ηC2 , ηC3}, ηP = max{ηP1, ηP2 , ηP3}, and ηD =
max{ηD1, ηD2}. Furthermore, the maximum number of itera-
tions is set to be 2000.

4.4. Adjustment of Lagrangian Parameter σ

Based upon some preliminary experiments, we set our initial
Lagrangian parameter σ to be σ0 = min{10C, n}q, where q is the
exponent in (7), and adapt the following strategy to update σ to
improve the convergence speed of the algorithm in practice:
Step 1. Set χ = ηP

ηD
, where ηP and ηD are defined in Section 4.3;

Step 2. If χ > θ , set σk+1 = ζσk; elseif 1
χ

> θ , set σk+1 = 1
ζ
σk.

Here, we empirically set θ to be 5 and ζ to be 1.1. Never-
theless, if we have either ηP � ηD or ηD � ηP, then we would
increase ζ accordingly, say 2.2 if max{χ, 1

χ
} > 500 or 1.65 if

max{χ, 1
χ
} > 50.

4.5. Performance of the sGS-ADMMonUCI Datasets

In this subsection, we test our algorithm on instances from the
UCI data repository (Lichman 2013). The datasets we have cho-
sen here are all classification problems with two classes. How-
ever, the size for each class may not be balanced. To tackle the
case of uneven class proportions, we use the weighted DWD
model discussed by Qiao et al. (2010). Specifically, we consider
the model (4) using e = 1 and the term

∑n
i=1 1/r

q
i is replaced by∑n

i=1 τ
q
i /rqi , with the weights τi given as

τi =
{ τ−

max{τ+,τ−} if yi = +1
τ+

max{τ+,τ−} if yi = −1
,

where τ± = (|n±|K−1)
1

1+q . Here, n± is the number of data points
with class label±1, respectively, andK := n/log(n) is a normal-
izing factor.

Table 1 presents the number of iterations and runtime
required, as well as training error produced when we perform
our inexact sGS-ADMM algorithm to solve 16 datasets. Here,
the running time is the total time spent in reading the train-
ing data and in solving the DWD model. The timing for get-
ting the best penalty parameter C is excluded. The results are
generated using the exponent q = 1. In the table, “psqmr” is
the iteration count for the preconditioned symmetric quasi-
minimal residual method for solving the linear system (8). A
“0” for “psqmr” means that we are using a direct solver as men-
tioned in Sections 3.3.1 and 3.3.2. Under the column “dou-
ble” in Table 1, we also record the number of iterations for
which the extra Step 1c is executed to ensure the convergence of
Algorithm 1.

Denote the index set S = {i | yi[sgn(β + xTi w)] ≤ 0, i =
1, . . . , n} for which the data instances are categorized wrongly,
where sgn(x) is the sign function. The training and testing errors
are both defined by |S|

n × 100%, where |S| is the cardinality of the
set S.

Our algorithm is capable of solving all the datasets, even
when the size of the data matrix is huge. In addition, for data
with unbalanced class size, such as w7a and w8a, our algorithm
is able to produce a classifier with small training error.

Table . The performance of our inexact sGS-ADMMmethod on the UCI datasets.

Data n d C Iter Time (s) psqmr|double Train-error (%)

aa ,  .e+   . | .
aa ,  .e+   . | .
covtype ,  .e+   . | .
gisette   .e+   . |  .
gisette-scale   .e+   . | .
ijcnn ,  .e+   . | .
mushrooms   .e+   . |  .
real-sim ,  .e+   . | .
wa ,  .e+   . | .
wa ,  .e+   . | .
rcv ,  .e+   . |  .
leu   .e+   . | .
prostate   .e+   . |  .
farm-ads   .e+   . |  .
dorothea   .e+   . |  .
url-svm ,  .e+   . | .
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4.6. Comparisonwith Other Solvers

In this subsection, we compare our inexact sGS-ADMMmethod
for solving (4) via (7) with the primal-dual interior-point
method implemented by Toh, Todd, and Tutuncu (1999) and
used by Marron, Todd, and Ahn (2007). We also compare
our method with the directly extended (semiproximal) ADMM
(using the aggressive step-length 1.618) even though the latter’s
convergence is not guaranteed. Note that the directly extended
ADMM we have implemented here follows exactly the same
design used for sGS-ADMM, except that we switch off the addi-
tional Step 1c in the Algorithm 1.We should emphasize that our
directly extended ADMM is not a simple adaption of the classi-
cal ADMM, but instead incorporates all the sophisticated tech-
niques we have developed for sGS-ADMM.

Wewill report our computational results for twodifferent val-
ues of the exponent, q = 1 and q = 2, in Tables 2 and 3, respec-
tively.

Table 2 reports the runtime, number of iterations required as
well as the training error of three different solvers for solving the
UCI datasets. We can observe that the interior point method is
almost always the slowest to achieve optimality compared to the
other two solvers, despite requiring the least number of itera-
tions, especially when the sample size n is large. The inefficiency
of the interior-point method is caused by its need to solve an
n × n linear system of equations in each iteration, which could
be very expensive if n is large. In addition, it cannot solve the
DWD problem where n is huge due to the excessive computer
memory needed to store the large n × nmatrix.

On the other hand, our inexact sGS-ADMM method out-
performs the directly extended (semiproximal) ADMM for 9
out of 16 cases in terms of runtime. For the other cases, we are
only slower by a relatively small margin. Furthermore, when our
algorithm outperforms the directly extended ADMM, it often
shortens the runtime by a large margin. In terms of number of
iterations, for 14 out of 16 cases, the directly extended ADMM
requires at least the same number of iterations as our inexact
sGS-ADMMmethod. We can say that our algorithm is remark-
ably efficient and it further possesses a convergence guarantee.
In contrast, the directly extended ADMM is not guaranteed to

converge although it is also very efficient when it does converge.
We can observe that the directly extended ADMM sometimes
would takemanymore iterations to solve a problemcompared to
our inexact sGS-ADMM, especially for the instances in Table 3,
possibly because the lack of a convergence guarantee makes it
difficult for the method to find a sufficiently accurate approxi-
mate optimal solution.

To summarize, our inexact sGS-ADMM method is an effi-
cient yet convergent algorithm for solving the primal form of the
DWDmodel. It is also able to solve large-scale problems, which
cannot be handled by the interior point method.

Table 3 reports the runtime, number of iterations required as
well as the training error of three different solvers for solving the
UCI datasets for the case when q = 2. Again, we can see that the
interior point method is almost always the slowest to converge
to optimality.

Our sGS-ADMM algorithm outperforms the directly
extended ADMM algorithm in 12 out of 16 datasets in terms
of runtime. In terms of the number of iterations, it has the
best performance among almost all the datasets. On the other
hand, for eight datasets, the number of iterations required by
the directly extended ADMM hits the maximum iterations
allowed, probably implying nonconvergence of the method.
For the interior point method, it takes an even longer time to
solve the problems compared to the case when q = 1. This is
due to an increase in the number of constraints generated in
the second-order cone programming formulation of the DWD
model with q = 2.

The numerical result we obtained in this case is consistent
with the one we obtained for the case q = 1. This further shows
the merit of our algorithm in a more general setting. We could
also expect the similar result when the exponent is 4 or 8.

4.7. Comparisonwith LIBSVMand LIBLINEAR

In this subsection, we will compare the performance of our
DWD model to the state-of-the-art model support vector
machine (SVM). We apply our sGS-ADMM algorithm as the
DWD model and use LIBSVM in Chang and Lin (2011) as

Table . Comparisonbetween theperformanceof our inexact sGS-ADMM,directly extendedADMM“directADMM,”and the interior pointmethod “IPM”on theUCI datasets.
A “*”next to the error in the table means that the problem set cannot be solved properly by the respective solver; “-”means the algorithm cannot solve the dataset due to
insufficient computer memory.

exponent q = 1 sGS-ADMM directADMM IPM

Data n d C Time (s) Iter Error (%) Time (s) Iter Error (%) Time (s) Iter Error (%)

aa ,  .e+  .  . .  . .  .
aa ,  .e+  .  . .  . .  .
covtype ,  .e+  .  . .  . — — —
gisette   .e+  .  . .  . .  .*
gisette-scale   .e+  .  . .  . .  .*
ijcnn ,  .e+  .  . .  . .  .
mushrooms   .e+  .  . .  . .  .
real-sim , , .e+  .  . .  . — — —
wa ,  .e+  .  . .  . .  .
wa ,  .e+  .  . .  . — — —
rcv , , .e+  .  . .  . .  .
leu   .e+  .  . .  . .  .
prostate   .e+  .  . .  . .  .
farm-ads  , .e+  .  . .  . .  .
dorothea  , .e+  .  . .  . .  .
url-svm , , .e+  .  . .  . — — —
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Table . Same as Table  but for q = 2.

Exponent q = 2 sGS-ADMM directADMM IPM

Data n d C Time (s) Iter Error (%) Time (s) Iter Error (%) Time (s) Iter Error (%)

aa ,  .e+  .  . .  . .  .
aa ,  .e+  .  . .  . .  .
covtype ,  .e+  .  . .  . — — —
gisette   .e+  .  . .  . .  .
gisette-scale   .e+  .  . .  . .  .
ijcnn ,  .e+  .  . .  . .  .
mushrooms   .e+  .  . .  . .  .
real-sim , , .e+  .  . .  . — — —
wa ,  .e+  .  . .  . .  .
wa ,  .e+  .  . .  . — — —
rcv , , .e+  .  . .  . .  .*
leu   .e+  .  . .  . .  .
prostate   .e+  .  . .  . .  .
farm-ads  , .e+  .  . .  . .  .
dorothea  , .e+  .  . .  . .  .
url-svm , , .e+  .  . .  . — — —

well as LIBLINEAR in Fan et al. (2008) to implement the SVM
model. LIBSVM is a general solver for solving SVM models
with different kernels; while LIBLINEAR is a solver highly spe-
cialized in solving SVM with linear kernels. LIBLINEAR is a
fast linear classifier; in particular, we would apply it to the dual
of L2-regularized L1-loss support vector classification problem.
We would like to emphasize that the solution given by LIBSVM
using linear kernel and that given by LIBLINEAR is not exactly
the same. This may be due to the reason that LIBLINEAR has
internally preprocessed the data and assumes that there is no
bias term in the model.

The parameters used in LIBSVM are chosen to be the same
as in Ito, Takeda, and Toh (2015), whereas for LIBLINEAR, we
make use of the default parameterC = 1 for all the datasets.

Table 4 shows the runtime and number of iterations needed
for solving the binary classification problem via the DWD and
SVMmodels, respectively, on the UCI datasets. It also gives the
training and testing classification error produced by the three
algorithms. Note that the training time excludes the time for
computing the best penalty parameterC. The stopping tolerance
for all algorithms is set to be 10−5. For LIBLINEAR, we observed

that the default maximum number of iteration is breached for
many datasets. Thus, we increase the maximum number of iter-
ation from the default 1000 to 20,000.

In terms of runtime, LIBLINEAR is almost always the
fastest to solve the problem, except for the two largest datasets
(rcv1,url-svm) for which our algorithm is about two to three
times faster. Note that the maximum iteration is reached for
these two datasets. On the other hand, LIBSVM is almost always
the slowest solver. It may only be faster than sGS-ADMM for
small datasests (three cases). Our algorithm can be 50–100 times
faster than LIBSVMwhen solving large data instances. Further-
more, LIBSVM may have the risk of not being able to handle
extremely large-scaled datasets. For example, it cannot solve the
biggest dataset (url-svm) within 24 hr.

In terms of training and testing error, we may observe from
the table that the DWD and SVM models produced compa-
rable training classification errors, although there are some
discrepancies due to the differences in the models and penalty
parameters used. On the other hand, the testing errors vary
across different solvers. For most datasets, the DWD model
(solved by sGS-ADMM) produced smaller (sometimes much

Table . Comparison between the performance of our inexact sGS-ADMM on DWD model with LIBLINEAR and LIBSVM on SVM model. ntest is the size of testing sample,
Errtr is the percentage of training error, while Errtest is that of the testing error. “-”means the result cannot be obtainedwithin  hr, and “/”means test sets are not available.

DWD via sGS-ADMM SVM via LIBLINEAR SVM via LIBSVM

Data n d ntest Time Iter Errtr Errtest Time Iter Errtr Errtest Time Iter Errtr Errtest

aa ,   .  . . . , . . . , . .
aa ,  , .  . . .  . . . , . .
covtype ,  / .  . / . , . / . , . /
gisette    .  . . .  . . . , . .
gisette-scale    .  . . .  . . . , . .
ijcnn ,  , .  . . . , . . . , . .
mushrooms   / .  . / .  . / .  . /
real-sim , , / .  . / .  . / . , . /
wa ,  , .  . . .  . . . , . .
wa ,  , .  . . . , . . . , . .
rcv , , , .  . . . , . . . , . .
leu    .  . . .  . . .  . .
prostate   / .  . / .  . / .  . /
farm-ads  , / .  . / .  . / . , . /
dorothea  ,  .  . . .  . . .  . .
url-svm , , / .  . / . , . / — — — —
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smaller) testing errors than the other algorithms (eight cases);
whereas the SVM model (solved by LIBLINEAR) produced
the worst testing errors among all algorithms (five cases). The
discrepancy between the testing errors given by LIBSVM and
LIBLINEAR may be due to the different treatment of the bias
term in-built into the algorithms.

It is reasonable to claim that our algorithm is more efficient
than the extremely fast solver LIBLINEAR in solving large data
instances even though our algorithm is designed for the more
complex DWD model compared to the simpler SVM model.
Moreover, our algorithm for solving the DWD model is able
to produce testing errors, which are generally better than those
produced by LIBLINEAR for solving the SVMmodel.

5. Conclusion

In this article, by making use of the recent advances in ADMM
from the work in Sun, Toh, and Yang (2015), Li, Sun, and
Toh (2016), and Chen, Sun, and Toh (2017), we proposed a
convergent three-block inexact symmetric Gauss-Seidel-based
semiproximal ADMM algorithm for solving large-scale DWD
problems. We applied the algorithm successfully to the primal
formulation of the DWD model and designed highly efficient
routines to solve the subproblems arising in each of the inex-
act sGS-ADMM iterations. Numerical experiments for the cases
when the exponent equals to 1 and 2 demonstrated that our
algorithm is capable of solving large-scale problems, even when
the sample size and/or the feature dimension is huge. In addi-
tion, it is also highly efficient while guaranteeing the conver-
gence to optimality. As a conclusion, we have designed an effi-
cientmethod for solving the binary classificationmodel through
DWD.

Appendix: The PSQMR Algorithm

PSQMR algorithm: In the following we shall present a brief version of the
PSQMR method to solve the linear system Ax = b. The following is a
simplified algorithm without preconditioner.
Given initial iterate x0, define each of the following: r0 = b− Ax0; q0 =
r0; τ0 = ‖q0‖; θ0 = 0; d0 = 0.
Then for each iteration k until convergent condition is met, compute

rk = rk−1 − rTk−1rk−1

qTk−1Aqk
Aqk

θk = ‖rk‖
τk−1

ck = 1√
1 + θ2

k

τk = τk−1θkck

dk = c2kθ
2
k−1dk−1 + c2k

rTk−1rk−1

qTk−1Aqk
Aqk

xk = xk−1 + dk

qk = rk + rTk rk
rTk−1rk−1

qk−1.

The final xk obtained is an approximated solution to the linear system.

Supplementary Materials

Matlab package: MATLAB-package containing codes to perform the sGS-
ADMM algorithm for the DWD model described in the article. The
package also contains datasets used for experiment purpose in the
article. It could be downloaded from http://www.math.nus.edu.sg/∼
mattohkc/DWDLarge.zip or accessed on the publisher’s website.

R package: R-package containing codes to perform the sGS-ADMM algo-
rithm for the DWDmodel described in the article. It would be available
at CRAN.
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