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Abstract

Nonparametric regression is a standard statistical tool with increased importance
in the Big Data era. Boundary points pose additional difficulties but local polynomial
regression can be used to alleviate them. Local linear regression, for example, is easy
to implement and performs quite well both at interior as well as boundary points.
Estimating the conditional distribution function and/or the quantile function at a given
regressor point is immediate via standard kernel methods but problems ensue if local
linear methods are to be used. In particular, the distribution function estimator is not
guaranteed to be monotone increasing, and the quantile curves can “cross”. In the
paper at hand, a simple method of correcting the local linear distribution estimator for
monotonicity is proposed, and its good performance is demonstrated via simulations
and real data examples.
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1 Introduction

Nonparametric regression via kernel smoothing is a standard statistical tool with increased
importance in the Big Data era; see e.g. (Wand & Jones, 1994), (Yu & Jones, 1998), (Yu,
Lu, & Stander, 2003), (Koenker, 2005) or (Schucany, 2004) for reviews. The fundamental
nonparametric regression problem is estimating the regression function u(z) = E(Y|X = x)
from data (Y7, 21),..., (Yy, z,) under the sole assumption that the function p(-) belongs to
some smoothness class, e.g., that it possesses a certain number of continuous derivatives.
Here, Y; is the real-valued response associated with the regressor X taking a value of z;.
Either by design or via the conditioning, the regressor values x1,...,z, are treated as
nonrandom. For simplicity of exposition, we will assume that the regressor X is univariate
but extension to the multivariate case is straightforward.

A common approach to nonparametric regression starts with assuming that the data
were generated by an additive model such as

Y = p(x;) +o(x)e; for i=1,2,....n (1)

where the errors ¢; are assumed to be independent, identically distributed (i.i.d.) with mean
zero and variance one, and o(-) is another unknown function.

Nevertheless, standard kernel smoothing methods are applicable in a Model-Free context
as well, i.e., without assuming an equation such as (1). An important example is the
Nadaraya-Watson kernel estimator defined as
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Estimator fi(x) enjoys favorable properties such as consistency and asymptotic normality

fi(z) (2)

under standard regularity conditions in a Model-Free context, e.g. assuming the pairs
(Y1, X1),..., (Y, X,,) are i.i.d. (Li & Racine, 2007).

The rationale behind the Nadaraya-Watson estimator (2) is approximating the unknown
function u(x) by a constant over a window of “width” b; this is made clearer if a rectangular
function is chosen as the kernel K, e.g. letting K(x) = 1{|z| < 1/2} where 14 is the
indicator of set A, in which case fi(x) is just the average of the Y’s whose x value fell in
the window. Going from a local constant to a local linear approximation for u(z), i.e., a
first-order Taylor expansion, motivates the local linear estimator

. Yo wiY;
pth(x) = 7273 " (3)
i=1 Wi



where

N =
w; = Ki,:c <1 - B(.’L‘ — .TL)) and B = nyzl {Q’x(m — :El) . (4)
Zizl Kl,m(x - xi)2

If the design points x; are (approximately) uniformly distributed over an interval [a1, as],
then g/l (z) is typically indistinguishable from the Nadaraya-Watson estimator fi(x) when
7 is in the ‘interior’, i.e., when z € [a1 + b/2, a2 — b/2]. The local linear estimator il (x)
offers an advantage when the design points x; are non-uniformly distributed, e.g., when
there are gaps in the design points, and/or when x is a boundary point, i.e., when x = a5
or x = a (plus or minus b/2); see (Fan & Gijbels, 1996) for details.

Instead of focusing on the conditional moment p(x) = E(Y|X = z), one may consider
estimating the conditional distribution F(y) = P(Y < y|X = z) at some fixed point y.
Note that F,(y) = E(W|X = z) where W = 1{Y < y}. Hence, estimating Fy(y) can be
easily done via local constant or local linear estimation of the conditional mean from the
new dataset (Wi, 1) ..., (Wy,zy,) where W; = 1{Y; < y}. To elaborate, the local constant
and the local linear estimators of F,(y) are respectively given by
> wil{Y; <y}

, and FM(y) = m (5)
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where the local linear weights w; are given by eq. (4).
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Viewed as a function of y, F} (y) is a well-defined distribution function; however, being
a local constant estimator, it often has poor performance at boundary points. As already
discussed, FxLL (y) has better performance at boundary points. Unfortunately, F:CLL (y) is
neither guaranteed to be in [0, 1] nor is it guaranteed to be nondecreasing as a function of
y; this is due to some of the weights w; potentially being negative.

The problem with non-monotonicity of F:ELL (y) and the associated quantile curves po-
tentially “crossing” is well-known; see (Hall, Wolff, & Yao, 1999) for the former issue, and
(Yu & Jones, 1998) for the latter, as well as the reviews on quantile regression by (Yu et
al., 2003) and (Koenker, 2005). In the next section, a simple method of correcting the
local linear distribution estimator for monotonicity is proposed; its good performance is
demonstrated via simulations and real data examples in Section 3. It should be noted here
that while the paper at hand focuses on the monotonicity correction for local linear esti-
mators of the conditional distribution, the monotonicity correction idea can equally be be
applied to other distribution estimators constructed via different nonparametric methods,
e.g. wavelets.



2 Local Linear Estimation of smooth conditional distribu-
tions

2.1 Some issues with current methods

The good performance of local constant and local linear estimators (5) hinges on F,(-) being
smooth, e.g. continuous, as a function of x. In all that follows, we will further assume that
F,(y) is also continuous in y for all x. Since the estimators (5) are discontinuous (step
functions) in y, it is customary to smooth them, i.e., define
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where A(y) is some smooth distribution function which is strictly increasing with density
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AMy) > 0, ie, A(y) = [? _A(s)ds. Here again the local linear weights w; are given by
eq. (4), and hg > 0 is a secondary bandwidth whose choice is not as important as the choice
of b; see Section 2.5 for some concrete suggestions on picking b and hg in practice.

Under standard conditions, both estimators appearing in eq. (6) are asymptotically
consistent, and preferable to the respective estimators appearing in eq. (5), i.e., replacing
1{Y; < y} by A(y,:;/j) is advantageous; see Ch. 6 of (Li & Racine, 2007). Furthermore,
as discussed in the Introduction, we expect that F.*(y) would be a better estimator than

F,(y) when z is a boundary point and/or the design is not uniform, while F*(y) and F,(y)
would be practically equivalent when x is an interior point and the design is (approximately)
uniform. Hence, all in all, F.'*(y) would be preferable to I, (y) as an estimator of Fj(y) for
any fixed y. The problem again is that F:“*(y) is not guaranteed to be a proper distribution
viewed as a function of y by analogy to FLL(y).

There have been several proposals in the literature to address this issue. An interesting
one is the adjusted Nadaraya-Watson estimator of (Hall et al., 1999) that is a linear function
of the Y’s with weights being selected by an appropriate optimization procedure. The
adjusted Nadaraya-Watson estimator is much like a local linear estimator in that it has
reduced bias (by an order of magnitude) compared to the regular Nadaraya-Watson local
constant estimator. Unfortunately, the adjusted Nadaraya-Watson estimator does not work
well when x is a boundary point as the required optimization procedure typically does not
admit a solution.

Noting that the problems with FXF(y) and FFE(y) arise due to potentially negative
weights w; computed by eq. (4), Hansen proposed a straightforward adjustment to the
local linear estimator that maintains its favorable asymptotic properties (Hansen, 2004) .
The local linear versions of Fx(y) and Fj(y) adjusted via Hansen’s proposal are given as



follows:
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Essentially, Hansen’s proposal replaces negative weights by zeros, and then renormalizes
the nonzero weights. The problem here is that if = is on the boundary, negative weights are
crucially needed in order to ensure an extrapolation takes place with minimal bias; this is

further elaborated upon in the following subsection.

2.2 Extrapolation vs. interpolation

In order to illustrate the need for negative weights consider the simple case of n = 2, i.e., two
data points (Y1, x1) and (Y2, x2). The question is to predict a future response Y3 associated
with a regressor value of x3; assuming finite second moments, the Lo—optimal predictor of
Y3 is p(x3) where p(x) = E(Y|X = x) as before.

If x5 is an interior point as depicted in Figure 1, the problem is one of interpolation.
If x3 is a boundary point, and in particular if x5 is outside the convex hull of the design
points as in Figure 2, the problem is one of extrapolation. Let i (z) denote the local
linear estimator of u(z) as before. With n = 2, i”*(x) reduces to just finding the line that

passes through the two data points (Y1, z1) and (Ya,2). In other words, 2" (z) reduces
To—T
To—T

where 1 < x < xo for interior points and zr; < xo < x for boundary points. Note that

to a convex combination of Y7 and Ys, i.e., g (2) = w, Y7 + (1 — w,)Ys where w, =

wy € [0,1] if z is an interior point, whereas w, ¢ [0, 1] if = is outside the convex hull of the
design points. Hence, negative weights are a sine qua non for effective linear extrapolation.

For example, assume we are in the setup of Figure 2 where x1 < x2 < x3. In this
case, wy, is negative. Hansen’s proposal (Hansen, 2004) would replace w,, by zero and
renormalize the coefficients, leading to ™" (x3) = Ya; it is apparent that this does not
give the desired linear extrapolation effect.

To generalize the above setup, suppose that now n is an arbitrary even number, and Y;
represents the average of n/2 responses associated with regressor value z; for i = 1 or 2.
Thus, we have a bona fide n—dimensional scatterplot that is supported on two design points.
Interestingly, the formula for '’ (z) is exactly as given above, and so is the argument
requiring negative weights for linear extrapolation. Of course, we cannot expect a general
scatterplot to be supported on just two design points. Nonetheless, in a nonparametric
situation one performs a linear regression locally, i.e., using a local subset of the data.



Figure 1: Interpolation: prediction of Y3 when x3 is an interior point; }73 is a convex
combination of Y7 and Y5 with nonnegative weights.

Figure 2: Extrapolation: prediction of Y3 when z3 is outside the convex hull of the design
points; Y3 is a linear combination of ¥; and Ys with one positive and one negative weight.

Typically, there is a scarcity of design points near the boundary, and the general situation
is qualitatively similar to the case of two design points.



2.3 Monotone Local Linear Distribution Estimation

The estimator FXL(y) from eq. (5) is discontinuous as a function of y therefore we will
focus our attention on FX%(y) described in eq. (6) from here on. It seems that with this
double-smoothed estimator FXF(y) we can “have our cake and eat it too”, i.e., modify it
towards monotonicity while retaining (some of) the negative weights that are helpful in the
extrapolation problem as discussed in the last subsection. We are thus led to define a new
estimator denoted by FFEM(y) which is a monotone version of FL'(y); we will refer to
FEEM (y) as the Monotone Local Linear Distribution Estimator.

One way to define FXIM(y) is as follows.

Algorithm 1.

1. Compute FLL(y), and denote | = lim,,_, o FLL(y).
2. Define a function G1(y) = FF(y) — L.

3. Define a second function G with the property that Ga(y+¢€) = max (G1(y + €), G1(y))
for all y and all € > 0.

4. Define FFEM(y) = Go(y)/L where L = limy_,oc Ga(y).

The above algorithm could be approximately implemented in practice by selecting a small
enough e > 0, dividing the range of the y variable using a grid of size ¢, and running step 3
of Algorithm 1 sequentially. To elaborate, one would compute G5 at grid point j + 1 from
the values of G at previous, i.e., smaller, grid points.

A different—albeit equivalent—way of constructing the estimator FXEM (y) is by first

constructing its associated density function denoted by fEFEM(y) which will be called the

Monotone Local Linear Density Estimator. The alternative algorithm goes as follows.

Algorithm 2.

1. Recall that the derivative of F;/*(y) with respect to y is given by

Y,
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where A(y) is the derivative of A(y).

2. Define a nonnegative version of fXl(y) as fXE+(y) = max(fE5(y), 0).



3. To make the above a proper density function, renormalize it to area one, i.e., let

*LLM(y) Z“LJF (Z/) (9)
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4. Finally, define FLEM (y) = [Y_ fLEM (5)ds

To implement the above one would again need to divide the range of the y variable using a
grid of size € in order to construct the maximum function in step 2 of Algorithm 2. The same
grid can by used to provide Riemann-sum approximations to the two integrals appearing
in steps 3 and 4. All in all, the implementation of Algorithm 1 is a bit easier, and will be
employed in the sequel.

2.4 Standard Error of the Monotone Local Linear Estimator

Under standard conditions, the local linear estimator vnbELL(y) is asymptotically normal
with a variance Va?y that depends on the design; for details, see Ch. 6 of (Li & Racine, 2007).
In addition, the bias of vVnbF.EE (y) is asymptotically vanishing if b = o(n'/). Hence, letting
b ~ n® for some a € (0,1/5), FEL*(y) will be consistent for F,(y), and approximate 95%
confidence intervals for F(y) can be constructed as FXF(y) 4 1.96 Vﬁby

The consistency of FX*(.) towards F,(-) implies that the monotonicity corrections de-

scribed in the previous subsection will be asymptotically negligible. To see why, fix a point
x of interest, and assume that Fj(y) is absolutely continuous with density f.(y) that is
strictly positive over its support. The consistency of fX%(y) to a positive target implies that
TEL(y) will eventually become (and stay) positive as n increases. Hence, the monotonicity
correction eventually vanishes, and F/7M (y) is asymptotically equivalent to F.1F(y).

Regardless, it is not advisable to use the aforementioned asymptotic distribution and
variance of F.X*(y) to approximate those of FXEM (y) for practical work since, in finite sam-
ples, ELEM (1) and FEE(y) can be quite different. Our recommendation is to use some form
of bootstrap in order to approximate the distribution and/or standard error of F’f’:]\'{(y)
directly. In particular, the Model-Free bootstrap (Politis, 2015) in its many forms is im-
mediately applicable in the present context. For instance, the “Limit Model-Free” (LMF)
bootstrap would go as follows:

LMF Bootstrap Algorithm
1. Generate Uy, ..., U, i.i.d. Uniform(0,1).

2. Define Y;* = G 1(U;) for i = 1,...,n where G () is the quantile inverse of FLLM (+),
ie, Gzl(u) = inf{y : EFM(y) > u}.



3. For the points = and y of interest, construct the pseudo-statistic FZXM*(y) which
is computed by applying estimator FLXM(y) to the bootstrap dataset (Y7*,z1) ...,
(Y, zn).

F M (y)

in a histogram that will serve as an approximation of the distribution of FXEM (y). In

4. Repeat steps 1-3 a large number (say B) times. Plot the B pseudo-replicates

addition, the sample variance of the B pseudo-replicates F’xLLM*(y) is the bootstrap

estimator of the variance of FLLM(y).

Our focus is on point estimation of F,(y) so we will not elaborate further on the construction

of interval estimates.

2.5 Bandwidth Choice

There are two bandwidths, b and hg, required to construct estimator FLEM(y) and its
relatives [ (y) and FEEH (). We will now focus on choice of the bandwidth b which is the
most crucial of the two, and is often picked via leave-one-out cross-validation.

In the paper at hand we are mostly concerned with estimation and prediction at bound-
ary points. Since often boundary problems present their own peculiarities, we are strongly
recommending carrying out the cross-validation procedure ‘locally’, i.e., over a neighbor-
hood of the point of interest. One needs, however, to ensure that there are enough points
nearby to perform the leave-one-out experiment. Hence, our concrete recommendation goes

as follows.

e Choose a positive integer m which can be fixed number or it can be a small fraction
of the sample size at hand.

e Then, identify m among the regression points (Y1,x1), ..., (Y,,x,) with the property
that their respective x;’s are the m closest neighbors of the point z under considera-
tion.

e Denote this set of m points by (Y1), 74(1)),- -, (Y,

4(m)> Tg(m)) Where the function g(-)

gives the index numbers of the selected points.

e For £k = 1,...,m, compute f/g(k) which is the Lo-optimal predictor of Y using
leave-one-out data. In other words, Y, is the mean, i.e., center of location, of one
of the aforementioned distribution estimators based on the delete-one dataset, i.e.
pretending that Yy, is unavailable.

e Thus, for a range of values of bandwidth b, we can calculate the following:



m

Err =Y Yy — You)*- (10)
k=1
e Finally, the optimal bandwidth is given by the value of b that minimizes Err over the
range of bandwidths considered.

Coming back to the problem of selecting hg, define h = b/n and recall that in an
analogous regression problem the optimal rates hg ~ n~%/% and h ~ n=/5 were suggested
in connection with the nonnegative kernel K; see (Li & Racine, 2007). As in (Politis, 2013),
this leads to the practical recommendation of letting hg = h?. We will adopt the same rule-
of-thumb here as well, namely let hg = b?/n? where b has been chosen previously via local
cross-validation. Note that the initial choice of hy (before performing the cross-validation
to determine the optimal bandwidth b) can be set by a plug-in rule as available in standard
statistical software such as R.

3 Numerical work: simulations and real data

The performance of the three distribution estimators Fj(y), FXEH (y) or FEEM (y) described
above are empirically compared using both simulated and real-life datasets according to the
following metrics.

1. Divergence between the local distribution F,(-) estimated by all three methods and
the corresponding local (empirical) distribution calculated from the actual data; this
is determined using the mean value of the Kolmogorov-Smirnov (KS) test statistic.
The measurement is performed on simulated datasets where multiple realizations of
data at both boundary and internal points are available. Therefore the empirical
distribution at any point can be calculated and compared versus the estimated values.
Our notation is KS-LC, KS-LLH and KS-LLM for the distribution estimators
Fy(y), FELH (y) or EEFM (y) respectively.

2. Comparison of estimated quantiles of F () at specified points using all three methods
versus the corresponding empirical values calculated using simulated datasets.

3. Point prediction performance as indicated by bias and Mean Squared Error (MSE)
on simulated and real-life datasets using all three methods. The MSE values of point
prediction are denoted as MSE-LC, MSE-LLH and MSE-LLM for the distri-
bution estimators F,(y), FLX(y) or FEEM (y) respectively; the corresponding bias
values are denoted Bias-LC, Bias-LLH and Bias-LLM. For comparison purposes
the point-prediction performance is also measured using the local linear conditional
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moment estimator as given by equations 3 and 4. In this case bias and MSE are
indicated as Bias-LL and MSE-LL respectively.

On simulated datasets the performance metrics for all three distribution estimators
are calculated both at boundary and internal points to illustrate how performance varies
between Fy(y), FEEH (y) and FEEM(y) in the two cases.

3.1 Simulation: Additive model with i.i.d Gaussian errors

Data Y; for i« = 1,...,1001 were simulated as per model (1) by setting p(z;) = sin(z;),
o(xz;) = 7 and the errors ¢; as i.i.d. N(0,1). Sample size n was set to 1001. A total of 500
such realizations were generated for this study.

Results for the mean-value of the Kolmogorov-Smirnov test statistic between the LC,
LLH and LLM estimated distributions and empirical distribution calculated using available
values of the simulated data are given in Tables 1, 2, 3 and 4 for boundary point n = 1001
and internal point n = 200 for values of 7 = 0.1 and 0.3 over a range of bandwidths, i.e., b
taking values 10, 20, . .., 140.

Point prediction performance values are provided for the same cases in Tables 5, 6, 7
and 8.

Estimates of the a—quantile at specific values of « are calculated using all three distri-
bution estimators and compared with corresponding quantiles calculated from the available
data. Plots for selected quantile values (v = 0.1 and « = 0.9) are shown in Figures 3, 4, 5
and 6 for both 1 and 2-sided cases (7 = 0.3). Note that the 'true’ quantile lines showed in
the plots are values calculated from the available data at n = 1001 and n = 200 over 500
realizations for the case of boundary and internal points respectively. The bandwidths used
for estimating the quantiles for LC, LLH and LLM are based on bandwidth values where
the best performance for these estimators was obtained using the Kolmogorov-Smirnov test
(refer Tables 3 and 4).

Note that the point n = 1001 is excluded from the data used for LC, LLH and LLM
estimation at the boundary point. Similarly the point n = 200 is excluded for the case of
estimation at the internal point.

From results on these iid regression datasets it can be seen that for boundary value
estimation the estimator based on FXLM (y) has superior performance as compared to both
F,(y) and FFEH(y). The improvement is seen over a wide range of selected bandwidths
using both the mean values of the Kolmogorov-Smirnov test statistic (Tables 1 and 3) and
mean-square error of point prediction (Tables 5 and 7). Moreover the overall best perfor-
mance over the selected bandwidth range from 10, ..., 140 is obtained using the Monotone
Local Linear Estimator FXM (y). In addition it can be seen from the plots of the estimated
quantiles at @« = 0.1 and o = 0.9 in the boundary case that the center of the estimated
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Table 1: Mean values of KS test statistic over i.i.d. data at boundary point (n = 1001, 7 =
0.1)

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.23508 | 0.252884 | 0.275132
20 0.241992 | 0.233996 | 0.23606
30 0.2767 | 0.232064 | 0.218948
40 0.31528 | 0.240476 | 0.20744
50 0.349924 | 0.2554 0.2009
60 0.38438 | 0.273648 | 0.204404
70 0.418316 | 0.288032 | 0.21502
80 0.448772 | 0.307672 | 0.231588
90 0.474796 | 0.326224 | 0.253472
100 0.502768 | 0.342884 | 0.275936
110 0.5264 | 0.360888 | 0.2993
120 0.54664 | 0.37786 | 0.320348
130 0.56692 | 0.393392 | 0.34248
140 0.58646 | 0.407108 | 0.359404

quantile distribution for LLM is aligned more closely to the ’true’ quantile value calculated
from the simulated data as shown by the dotted line (Figures 3 and 4).

For the case of estimation at internal points no appreciable differences in performance
are noticeable between the 3 estimators using both the mean values of the Kolmogorov-
Smirnov test statistic (Tables 2 and 4) and also using mean-square error of point prediction
(Tables 6 and 8). Similar trends are noticeable in the quantile plots where the estimated
quantiles using LC, LLH and LLM nearly overlap for the internal case (Figures 5 and 6).

It can also be seen from Tables 5, 6, 7 and 8 that across the range of bandwidths
considered there is negligible loss in best point prediction performance of LLM versus that
of LL.

12



Table 2: Mean values of KS test statistic over i.i.d. data at internal point (n = 200, 7 = 0.1)

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.212296 | 0.213792 | 0.213712
20 0.201892 | 0.203264 | 0.203704
30 0.197736 | 0.198904 | 0.197828
40 0.19782 | 0.197296 | 0.196772
50 0.19606 0.1949 0.19684
60 0.200164 | 0.198304 | 0.198556
70 0.202644 | 0.201472 | 0.202208
80 0.206016 | 0.20534 | 0.207628
90 0.21412 | 0.212608 | 0.21422
100 0.220084 | 0.221096 | 0.2204
110 0.23078 | 0.23064 | 0.231744
120 0.240556 | 0.238724 | 0.240032
130 0.250116 | 0.250692 | 0.250972
140 0.260864 | 0.260696 | 0.259292

Table 3: Mean values of KS test statistic over 1.i.d. data

0.3)

at boundary point (n = 1001, 7 =

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.207104 | 0.303696 | 0.352912
20 0.148964 | 0.210324 | 0.250856
30 0.125284 | 0.171268 | 0.2058
40 0.112412 | 0.15016 | 0.182176
50 0.107232 | 0.136612 | 0.16702
60 0.107764 | 0.127176 | 0.154944
70 0.111144 | 0.121408 | 0.145624
80 0.119836 | 0.115008 | 0.136968
90 0.126996 | 0.110716 | 0.128792
100 0.137376 | 0.108468 | 0.121452
110 0.14676 | 0.105504 | 0.1165
120 0.157364 | 0.107432 | 0.111452
130 0.165528 | 0.108692 | 0.107532
140 0.175852 | 0.110228 | 0.103772

13



Table 4: Mean values of KS test statistic over i.i.d. data at internal point (n = 200, 7 = 0.3)

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.152968 | 0.15334 | 0.152252
20 0.119528 | 0.117216 | 0.118916
30 0.103412 | 0.104188 | 0.104388
40 0.097028 | 0.097544 | 0.097348
50 0.0897 | 0.089944 | 0.090576
60 0.0868 | 0.086116 | 0.087244
70 0.083068 | 0.083164 | 0.084304
80 0.082208 | 0.081544 | 0.081452
90 0.080592 | 0.081848 | 0.081572
100 0.07958 | 0.08006 | 0.078328
110 0.080208 | 0.080568 | 0.079604
120 0.08194 | 0.08094 | 0.082332
130 0.082628 | 0.08288 | 0.082256
140 0.084188 | 0.08518 | 0.086076

Table 5: Point Prediction for Boundary Value over i.i.d. data (n = 1001,7 = 0.1)

Ban | BiasLC | MSE-LC | Bias-LLH | MSE-LLH | BiasLLM | MSE-LLM | BiasLL | MSE-LL

10 | -0.01887676 | 0.01265856 | -0.0087034 | 0.01453471 | 0.0004694887 | 0.01667712 | 0.00279478 | 0.01713243
20 | -0.03782673 | 0.01261435 | -0.01818502 | 0.0126929 | 0.0005444976 | 0.01323652 | 0.003247646 | 0.01340418
30 | -0.05753609 | 0.01418224 | -0.02725602 | 0.01232877 | -0.001022256 | 0.01200918 | 0.0039133 | 0.01219628
40 | -0.07724901 | 0.01672728 | -0.03718728 | 0.01250729 | -0.005397138 | 0.01148354 | 0.00354838 | 0.01167496
50 | -0.09692561 | 0.0200906 | -0.04758345 | 0.01327841 | -0.01222596 | 0.01130622 | 0.002834568 | 0.01139095
60 | -0.116533 | 0.02423279 | -0.05831195 | 0.01431087 | -0.02106315 | 0.01142789 | 0.002008806 | 0.01120327
70 | -0.1359991 | 0.02011512 | -0.06918129 | 0.0156254 | -0.03138586 | 0.01185914 | 0.001102312 | 0.01106821
80 | -0.1555938 | 0.03480583 | -0.08021998 | 0.01722284 | -0.04274234 | 0.01263368 | 8.912064e-05 | 0.01096947
90 | -0.1752324 | 0.04128715 | -0.09144259 | 0.01910772 | -0.05473059 | 0.01375585 | -0.001070282 | 0.01089842
100 | -0.1947342 | 0.04848954 | -0.1027918 | 0.02127558 | -0.0670785 | 0.01521865 | -0.002416635 | 0.01084951
110 | -0.2145001 | 0.05656322 | -0.1142845 | 0.02374615 | -0.07967838 | 0.01704094 | -0.003988081 | 0.01081946
120 | -0.2343967 | 0.06548142 | -0.1250372 | 0.02651703 | -0.09236019 | 0.01919461 | -0.005818943 | 0.01080699
130 | -0.2543523 | 0.07522460 | -0.1377167 | 0.02060364 | -0.1050934 | 0.02168698 | -0.007939144 | 0.01081259
140 | -0.2740635 | 0.08563245 | -0.1496325 | 0.03301117 | -0.1178388 | 0.02451228 | -0.01037417 | 0.01083832
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Table 6: Point Prediction for Internal Value over i.i.d. data (n = 200,7 = 0.1)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
10 0.005693694 | 0.01026982 | 0.005815108 | 0.01027252 | 0.005811741 0.01027231 | 0.005672309 | 0.01027341
20 0.004548762 | 0.009868812 | 0.004644668 | 0.009871222 | 0.004640743 | 0.009871005 | 0.004547984 | 0.009883257
30 0.003077572 | 0.009736622 | 0.003193559 | 0.009739295 | 0.003189924 | 0.009738919 | 0.003108078 | 0.009754927
40 0.001168265 | 0.009684642 | 0.001329604 | 0.009685997 | 0.001325573 | 0.009685696 | 0.001205735 | 0.009703492
50  -0.001163283 | 0.009671566 | -0.0009392514 | 0.009670138 | -0.0009440976 | 0.009670008 | -0.001162398 | 0.009689214
60  -0.003874557 | 0.009682447 | -0.00359328 | 0.009680945 | -0.003598744 | 0.009680969 | -0.003997042 0.009703
70 -0.006944759 | 0.009723612 | -0.006615935 | 0.009717111 | -0.006621406 | 0.009717225 | -0.007307346 | 0.009745675
80  -0.01035534 | 0.009789969 | -0.009987875 | 0.009781065 | -0.009992804 | 0.009781194 | -0.01109961 | 0.009822695
90  -0.01407319 | 0.009888265 | -0.01368629 | 0.009877023 | -0.01369037 | 0.009877157 | -0.01537421 | 0.009942768
100 -0.01808254 | 0.01002258 -0.01768867 0.01001026 -0.01769184 0.01001041 | -0.02012788 | 0.01011708
110 -0.02234318 | 0.01020278 -0.02197526 0.01018668 -0.02197765 0.01018686 | -0.02535515 | 0.01035866
120 -0.02686568 | 0.01042781 -0.02652964 0.01041258 -0.02653147 0.0104128 -0.03104801 0.0106819
130 -0.03163397 | 0.01071166 -0.03133849 0.01069454 -0.03133999 0.01069479 | -0.03719388 | 0.01110199
140 -0.03662567 | 0.01105637 -0.03639079 0.01103926 -0.03639212 0.01103955 | -0.04377252 0.0116341

Table 7: Point Prediction for Boundary Value over i.i.d. data (n = 1001, 7 = 0.3)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM | MSE-LLM | Bias-LL MSE-LL
10 0.04888178 | 0.301925 | 0.07073083 | 0.3540897  0.07920865 | 0.384878 | 0.0808868 | 0.4035579
20 0.02525561 | 0.2802656 | 0.05074344 | 0.3037839 0.06735271 | 0.3233827 | 0.07335949 | 0.3276234
30 0.00374298 | 0.2731737 0.038811 0.2892723  0.06222332 | 0.3013529 | 0.07053577 | 0.3027942
40 -0.01695169 | 0.270537 | 0.02715055 | 0.2805281 0.05849931 | 0.2922475 | 0.06822172 | 0.293552
50  -0.03718522 | 0.2696291 | 0.01614152 | 0.2761872 0.05612087 | 0.2867147 | 0.06656515 | 0.2892179
60  -0.05753523 | 0.2699832 | 0.005048478 | 0.2739688 0.05384922 | 0.2829767 | 0.0649322 | 0.2860192
70 -0.07760465 | 0.271603 | -0.005574987 | 0.2723361  0.0513094 | 0.2798923 | 0.06320544 | 0.2830793
80  -0.09765073 | 0.2742877 | -0.01633413 | 0.271128  0.04834131 | 0.2770397 | 0.06143642 | 0.2803242
90  -0.1176859 | 0.2780296 | -0.02722356 | 0.2704552 0.04514186 | 0.2748099 | 0.05960562 | 0.2778554
100~ -0.1373472 | 0.2827116 | -0.0383895 | 0.2701542 0.04137961 | 0.2727937 | 0.05763437 | 0.2757286
110 -0.1572939 | 0.2883236 | -0.04971082 | 0.2703248 0.03701344 | 0.2709994 | 0.05544761 | 0.2739321
120 -0.1769863 | 0.294608 -0.0611495 | 0.2709176  0.03212707 | 0.2695289 | 0.0530012 | 0.2724221
130 -0.1965911 | 0.3018083 | -0.07255455 | 0.2717088 0.02680826 | 0.2683285 | 0.05027668 | 0.2711495
140~ -0.2158054 | 0.3097015 | -0.08401642 | 0.2728317 0.02098977 | 0.2673724 | 0.04726651 | 0.2700701
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Table 8: Point Prediction for Internal Value over i.i.d. data (n = 200,7 = 0.3)
Ban  BiasLC | MSE-LC  BiasLLH | MSE-LLH | BiasLLM MSE-LLM  BiasLL | MSE-LL
10 0.009184716 | 0.2520511  0.01220923 | 0.2521932 | 0.01220434  0.2521952  0.007409901 | 0.2516582
20 0.01372525 | 0.2431836  0.01526585 | 0.2435718 | 0.01526117  0.2435718  0.01263826 | 0.2426903
30 00148307 | 0.2398743 0.01582708 | 0.2401292 | 0.01582349  0.2401341  0.01395436 | 0.2395701
40 00135934 | 02331523  0.01432564 | 0.2382680 | 0.01432314  0.2382728  0.01288775 | 0.2379284
50 001125721 | 0.236852  0.011912 | 0.2369737 | 0.01190766  0.2369759  0.01078182 | 0.2367428
60 0.008293956 | 0.2359636  0.008883749 | 0.2359976 | 0.008879099  0.2360007  0.007971824 | 0.2358225
70 0.004809638 | 0.2352631 0.005346559 | 0.2352719 | 0.005342764  0.235277  0.004580992 | 0.235121
80 0.0009735356 | 0.2347759  0.001361408 | 0.2347516 | 0.001357999  0.2347585 0.0006901448 | 0.2346118
90 -0.003467449 | 0.234453 -0.003042608 | 0.2344041 | -0.003046705 0.2344117  -0.00365963 | 0.2342717
100 -0.008232451 | 0.2342181 -0.007859816 | 0.2342051 | -0.007864671 0.2342125 -0.008456445 | 0.2340811
110 -0.01347908 | 0.2341583 -0.01309377 | 0.2341384 | -0.01309954  0.234145  -0.01370081 | 0.2340256
120 -0.01912791 | 0.2342317 -0.01874779 | 0.2341051 | -0.01875384  0.2342009  -0.01939379 | 0.2340969
130 -0.02516629 | 0.2344631  -0.0248178 | 0.2343727 | -0.02482374  0.234378 _ -0.02553028 | 0.2342027
140 -0.0316367 | 0.2347946  -0.0312908 | 0.2346738 | -0.03120606  0.2346788  -0.03209508 | 0.2346152

Quantile(0.1) of LC, LLH and LLM (one-sided)
True Quantile shown as dotted line
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Figure 3: Estimated versus true quantile values (aw = 0.1) for 1-sided estimation, i.i.d. errors
(r=0.3)
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Figure 4: Estimated versus true quantile values (o = 0.9) for 1-sided estimation, i.i.d. errors
(r=0.3)
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Figure 5: Estimated versus true quantile values (a = 0.1) for 2-sided estimation, i.i.d. errors
(r=0.3)

3.2 Simulation: Additive model with heteroskedastic errors

DataY; fori =1,...,1001 were simulated as per model (1) with p(z;) = sin(x;), o(x;) = Ta;
where x; = % and the errors ¢; as i.i.d. %X% — 1. Sample size n was set to 1001. A total of
500 such realizations were generated for this study.

Results for the mean-value of the Kolmogorov-Smirnov test statistic between the LC,
LLH and LLM estimated distributions and empirical distribution calculated using available
values of the simulated data are given in Tables 9, 10, 11 and 12 for boundary point n = 1001
and internal point n = 200 for values of 7 = 0.1 and 0.3 over a range of bandwidths:
10,20, ..., 140.

Point prediction performance values are provided for the same cases in Tables 13, 14,
15 and 16.

Note that the point n = 1001 is excluded from the data used for LC, LLH and LLM
estimation at the boundary point. Similarly the point n = 200 is excluded for the case of
estimation at the internal point.

From results on these heteroskedastic regression datasets it can be seen that for bound-
ary value estimation the estimator based on FXIM (y) has superior performance as compared
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Figure 6: Estimated versus true quantile values (a = 0.9) for 2-sided estimation, i.i.d. errors
(r=0.3)

to both F,(y) and FFEH (y). The improvement is seen over a wide range of selected band-
widths using both the mean values of the Kolmogorov-Smirnov test statistic (Tables 9 and
11) and mean-square error of point prediction (Tables 13 and 15). Moreover the overall
best performance over the selected bandwidth range from 10, ..., 140 is obtained using the
FEM (y).

For the case of estimation at internal points no appreciable differences in performance are

Monotone Local Linear Estimator

noticeable between the 3 estimators using both the mean values of the Kolmogorov-Smirnov
test statistic (Tables 10 and 12) and also using mean-square error of point prediction (Tables
14 and 16).

It can also be seen from Tables 13, 14, 15 and 16 that—across the range of bandwidths
considered—there is negligible loss in best point prediction performance of LLM versus that
of LL. This finding is unexpected since it has been widely believed that the LL. method gives
optimal point estimators and/or predictors. It appears that the monotonicity correction
does not hurt the resulting point estimators/predictors which is encouraging.
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Table 9: Mean values of KS test statistic over heteroskedastic data at boundary point
(n =1001,7 =0.1)

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.361228 | 0.3619 | 0.368288
20 0.39358 0.3606 | 0.336436
30 0.43216 | 0.371372 | 0.326076
40 0.470316 | 0.388952 | 0.325116
50 0.506436 | 0.408316 | 0.335152
60 0.53998 | 0.42548 | 0.350864
70 0.572256 | 0.44356 | 0.371324
80 0.599836 | 0.462808 | 0.393896
90 0.6269 0.47816 | 0.415468
100 0.651132 | 0.499376 | 0.44184
110 0.670604 | 0.516304 | 0.462756
120 0.69 0.529796 | 0.485004
130 0.706968 | 0.545344 | 0.505352
140 0.72394 | 0.562432 | 0.5257

3.3 Real-life example: Wage dataset

The Wage dataset from the ISLR package (James, Witten, Hastie, & Tibshirani, 2013) was
selected as a real-life example to demonstrate the differences in estimated local densities
estimated using the LC, LLH and LLM methods. The full dataset has 3000 points and
has been constructed from the Current Population Survey (CPS) data for year 2011. Point
Prediction is used as the criterion for demonstrating performance differences between the
three distribution estimators. This dataset is an example of regression data distributed
non-uniformly and hence the local linear estimator (LL) based on equations 3 and 4 is
expected to give the best performance in such cases. However our study involves using point-
prediction using the three distribution estimators Fy(y), FLX (y) or EEXLM(y). Among
these 3 estimators LLM gives the best point prediction performance and we show that
using this estimator causes negligible loss in performance compared to using LL.

From the plot of the dataset in Figure 7 with superimposed smoother (obtained using
loess fitting from the R package lattice) it can be noted that the regression function is
sloping upwards at the left boundary whereas it flattens out at the right boundary. Hence,
at the right boundary, local constant methods suffice and should be practically equivalent to
local linear methods. The left boundary is more interesting, and this is where our numerical
work will focus. To carry this out, we created a second version of the data where logwage
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Table 10: Mean values of KS test statistic over heteroskedastic data at internal point
(n=200,7=0.1)

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.459776 | 0.461528 | 0.461176
20 0.461872 | 0.462716 | 0.4603
30 0.46576 | 0.467308 | 0.464956
40 0.468904 | 0.471824 | 0.470172
50 0.47436 | 0.475916 | 0.474864
60 0.482716 | 0.482476 | 0.47912
70 0.488952 | 0.488444 | 0.486656
80 0.495916 | 0.495736 | 0.495056
90 0.503672 | 0.503052 | 0.502708
100 0.5105 | 0.513116 | 0.51026
110 0.519052 | 0.518104 | 0.518928
120 0.528456 | 0.528444 | 0.527104
130 0.537336 | 0.536916 | 0.535632
140 0.545264 | 0.545496 | 0.543776

Table 11: Mean values of KS test statistic over heteroskedastic data at boundary point
(n=1001,7 = 0.3)

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.208708 | 0.28022 | 0.323664
20 0.176304 | 0.210876 | 0.241228
30 0.178416 | 0.189656 | 0.206996
40 0.189136 | 0.17842 | 0.186628
50 0.204484 | 0.175508 | 0.173096
60 0.220652 | 0.177144 | 0.163916
70 0.240692 | 0.181092 | 0.158476
80 0.25784 | 0.186648 | 0.15736
90 0.277888 | 0.191396 | 0.156008
100 0.295264 | 0.20092 | 0.159028
110 0.312968 | 0.20922 | 0.163296
120 0.330008 | 0.216464 | 0.167872
130 0.345432 | 0.22344 | 0.17522
140 0.36082 | 0.234392 | 0.181376
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Table 12: Mean values of KS test statistic over heteroskedastic data at internal point
(n =200,7 =0.3)

Bandwidth | KS-LC | KS-LLH | KS-LLM
10 0.3289 | 0.329088 | 0.329112
20 0.327172 | 0.326072 | 0.3268
30 0.327236 | 0.32788 0.3275
40 0.331784 | 0.3309 0.33186
50 0.337856 | 0.337888 | 0.337692
60 0.343504 | 0.344328 | 0.343368
70 0.350048 | 0.351444 | 0.349592
80 0.3588 | 0.359188 | 0.358944
90 0.36826 | 0.368708 | 0.368008
100 0.378308 | 0.376472 | 0.377692
110 0.386636 | 0.3864 | 0.388256
120 0.39642 | 0.395744 | 0.39754
130 0.4055 | 0.408072 | 0.40714
140 0.418516 | 0.4171 0.41794

Table 13: Point Prediction for Boundary Value over heteroskedastic data (n = 1001, 7 = 0.1)
Ban | BiassLC | MSELC | BiasLLH | MSE-LLH | BiasLLM MSE-LLM | BiasLL MSE-LL
10 | -0.01646515 | 0.0110308 | -0.008415339 | 0.01301928 | 0.003362834 0.01521503 | 0.002122231 | 0.01532911
20 | -0.03418985 | 0.01113183 | -0.01803682 | 0.01111592 | 0.001465109 0.01164382 | 0.003045892 | 0.01196587
30 | -0.05291763 | 0.01251871 | -0.02791687 | 0.0110065 | -0.001493594 0.01066538 | 0.003162759 | 0.01102039
40 | -0.07217657 | 0.01484132 | -0.03844108 | 0.01144334 | -0.007355843 0.01025364 | 0.003252626 | 0.01051494
50 | -0.09186859 | 0.0180368 | -0.0493472 | 0.01222871 | -0.01604004  0.01020275 | 0.003291589 | 0.01020678
60 | -0.1116673 | 0.02205503 | -0.06052473 | 0.01337097 | -0.0266163  0.0105145 | 0.003183081 | 0.01002049
70 | -0.1312554 | 0.02681084 | -0.07204081 | 0.01484635 | -0.03845618 0.01120131 | 0.002843088 | 0.009915576
80 | -0.1512692 | 0.03246252 | -0.08373385 | 0.01662921 | -0.05099656  0.01226805 | 0.002239256 | 0.009858149
90 | -0.1714417 | 0.03806746 | -0.09557852 | 0.01872622 | -0.06394962  0.01372077 | 0.00136753 | 0.009824624
100 | -0.1916003 | 0.04627765 | -0.1075785 | 0.02114855 | -0.07708492  0.01554708 | 0.0002256174 | 0.009802568
110 | -0.2119687 | 0.05448537 | -0.1197012 | 0.02380638 | -0.00028337  0.01774215 | -0.001196002 | 0.009787441
120 | -0.2326798 | 0.06368262 | -0.1320067 | 0.02699023 | -0.1035047  0.0202021 | -0.002912961 | 0.009779257
130 | -0.2535364 | 0.07381161 | -0.1444581 | 0.03043434 | -0.1167033  0.02319127 | -0.004943721 | 0.009780505
140 | -0.2740579 | 0.08462823 | -0.1570383 | 0.03422073 | -0.1299138  0.02644559 | -0.007307095 | 0.009795173
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Table 14: Point Prediction for Internal Value over heteroskedastic data (n = 200,7 = 0.1)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
10 -0.00078446 | 0.0004397085 | -0.001282314 | 0.0004403816 | -0.001281847 | 0.0004403461 | -0.001460641 | 0.0004417506
20 -0.001122367 | 0.0004306633 | -0.001431476 | 0.0004311207 | -0.001431238 | 0.0004311334 | -0.001977922 | 0.0004335427
30 -0.002288569 | 0.0004309951 | -0.002426097 | 0.0004313394 | -0.002424798 | 0.0004313337 | -0.003182182 | 0.0004360195
40  -0.00405804 | 0.0004390668 | -0.004017686 | 0.0004388123 | -0.004015654 | 0.0004387818 | -0.004960882 | 0.0004476175
50  -0.006300199 | 0.0004597561 | -0.006090049 | 0.0004573097 | -0.006086971 | 0.0004572689 | -0.007269184 | 0.0004732545
60  -0.008952297 | 0.0004986956 | -0.00857106 | 0.0004917471 | -0.008566653 | 0.0004916759 | -0.01008903 | 0.0005201175
70 -0.01195461 | 0.0005599192 | -0.0114063 | 0.0005469568 | -0.01140055 | 0.0005468245 | -0.01341156 | 0.0005966537
80  -0.01524307 | 0.000648231 | -0.01455151 | 0.0006275842 | -0.01454456 | 0.0006273696 | -0.01723004 | 0.000712577
90 -0.0188042 | 0.0007686332 | -0.0179713 | 0.0007381116 | -0.01796344 | 0.0007378019 | -0.02153766 | 0.0008788525
100 -0.02260511 | 0.0009254938 | -0.02163909 | 0.0008829351 | -0.02163065 | 0.000882528 | -0.02632699 0.00110763
110 -0.02662906 | 0.001123084 | -0.02553604 | 0.001066478 | -0.02552742 | 0.001065985 | -0.03158974 | 0.001412141
120 -0.03085926 | 0.001365925 | -0.02964955 | 0.001293297 | -0.02964117 0.00129274 -0.03731584 | 0.001806523
130 -0.03531386 | 0.001660546 | -0.03397167 | 0.001568158 | -0.03396393 0.00156757 -0.0434914 0.002305438
140 -0.03995794 | 0.002010171 -0.0384976 0.001896071 | -0.03849081 0.00189549 -0.05009551 | 0.002923419

Table 15: Point Prediction for Boundary Value over heteroskedastic data (n = 1001, 7 = 0.3)

Ban Bias-LC MSE-LC Bias-LLH | MSE-LLH Bias-LLM MSE-LLM  Bias-LL MSE-LL
0 | -0.01641585 | 0.273216 | -0.01371259 | 0.3278422 | 0.01500573 0.3662851  0.01063269 | 0.3832281
20 | -0.02085331 | 0.2520507 | -0.0253276 | 0.274159 | 0.002731055 0.2896534 0.01538866 | 0.2991516
30 | -0.02981426 | 0.2462187 | -0.03060796 | 0.2589025 | 0.003270715  0.2685365  0.0163369 | 0.2755266
40 | -0.04068759 | 0.2442488 | -0.03742699 | 0.2526514 | 0.002433103  0.2586642  0.01748551 | 0.2629147
50 | -0.05443176 | 0.2442541 | -0.04586018 | 0.2488821 | 0.0005299281 0.2526573  0.01882287 | 0.2552529
60 | -0.06977487 | 0.245767 | -0.05475483 | 0.2474683 | -0.001728694  0.248843 0.0199724 | 0.2506579
70 | -0.08589639 | 0.2481108 | -0.06470145 | 0.2471712 | -0.005360827  0.2463975 0.02061821 | 0.2481124
80 | -0.1036357 0.25121 | -0.07550857 | 0.2474051 | -0.01066184  0.2448518  0.02070028 | 0.2467569
90 | -0.1221155 | 0.2551902 | -0.08684923 | 0.2482818 | -0.01739231  0.2440367  0.02029725 | 0.2459808

100 | -0.1410488 | 0.2599296 | -0.09877418 | 0.2499431 | -0.02522804  0.2438554  0.01949336 | 0.2454429

110 | -0.1599352 | 0.2653016 | -0.1111362 | 0.252298 | -0.03400529  0.2440469  0.0183332 | 0.2449864

120 | -0.1798873 | 0.2718873 | -0.1241105 | 0.2552008 | -0.04372748  0.2444396 0.01682687 | 0.2445524

130 | -0.2001088 | 0.2793124 | -0.1376482 | 0.2586551 | -0.05435831  0.2450597  0.01496614 | 0.2441256

140 | -0.2196351 | 0.2872558 | -0.1514669 | 0.2625969 | -0.06555938  0.2460242  0.01273652 | 0.2437067
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Table 16: Point Prediction for Internal Value over heteroskedastic data (n = 200,7 = 0.3)
Ban | BiasLC | MSE-LC | Bias-LLH MSE-LLH BiasLLM | MSE-LLM | BiasLL | MSE-LL
10 | -0.005989017 | 0.01091506 | -0.009105295 0.01090718 -0.009100397 | 0.01090687 | -0.006151798 | 0.01102828
20 | -0.004317512 | 0.01067232 | -0.006852094 0.01066366 -0.006845515 | 0.01066378 | -0.005549238 | 0.01077156
30 | -0.004591794 | 0.01059617 | -0.006678386  0.0105944 -0.006665835 | 0.01059435 | -0.006333703 | 0.01068745
40 | -0.005937551 | 0.01054613 | -0.007674744 0.01055486 -0.007656429 | 0.01055456 | -0.00795147 | 0.01063841
50 | -0.007974463 | 0.01051967 | -0.009442124 0.01053534 -0.009416436 | 0.01053501 | -0.01019012 | 0.01061418
60 | -0.01058953 | 0.01053145 | -0.01180495  0.01054554 -0.01176999 | 0.01054509 | -0.01297439 | 0.01062656
70 | -0.01373489 | 0.01057533 | -0.01467215 0.01059193 -0.01462675 | 0.01059104 | -0.01627809 | 0.01068457
80 | -0.01725266 | 0.01066128 | -0.01798338 0.01067947 -0.01792693 | 0.01067781 | -0.02008891 | 0.01079614
90 | -0.02118215 | 0.0107964 | -0.02169107 0.01081295 -0.02162338 | 0.01081019 | -0.0243973 | 0.01096978
100 | -0.02546816 | 0.01098609 | -0.02575577 0.01099723 -0.02567729 | 0.01099311 | -0.0291937 | 0.01121525
110 | -0.03007643 | 0.01123397 | -0.0301445 0.01123745 -0.03005627 | 0.01123178 | -0.03446792 | 0.01154379
120 | -0.03496193 | 0.01154587 | -0.03483024 0.01153901 -0.03473374 | 0.01153169 | -0.04020819 | 0.01196797
130 | -0.04015664 | 0.01193249 | -0.03979071 0.01190758 -0.03968792 | 0.01189862 | -0.04639914 | 0.0125013
140 | -0.04561132 | 0.01240015 | -0.04500812 0.01234911 -0.04490124 | 0.01233864 | -0.05301874 | 0.01315745

Table 17: Point Prediction for ISLR Wage Dataset

Method Bias MSE
LC | 0.0004954944 | 0.08236025
LLH | -0.001962329 | 0.0808793
LLM | -6.005305e-05 | 0.08044857
LL | 0.0002608775 | 0.08055141

is tabulated versus decreasing age and performed point prediction over the last 231 values
of this backward dataset, i.e., the first 231 values of the original. Since this is a regression
dataset with non-uniformly distributed design points we determine bandwidths for LC,
LLH and LLM using the 2-sided predictive cross-validation procedure outlined in Section
2.5. We predict the value of logwage at i and compare it with the known value at that
point where ¢ = 2770,...,3000 to determine the MSE of point prediction. Plots of the
conditional density function estimated using the three model-free methods LC, LLH and
LLM at a selected point are shown in Figure 8 along with that of LL as reference.

Point prediction results for all three methods over data points 2770, ..., 3000 (logwage
versus decreasing age) are given in Table 17. It can be seen from this table that LLM has
the best point prediction performance and this closely matches that of LL. As in the case
of simulated data, this is an unexpected and encouraging result indicating that the LLM
distribution may be an all-around favorable estimator both in terms of its quantiles as well
as its center of location used for point estimation and prediction purposes.
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Figure 7: Plot of logwage versus age from Wage dataset (ISLR package)
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Figure 8: Plot of estimated conditional density function using LC, LLH, LLM and LL
methods on ISLR dataset

4 Conclusions

Improved estimation of conditional distributions at boundary points is possible via local
linear smoothing and other methods that, however, do not guarantee that the resulting
estimator is a proper distribution function. In the paper at hand we propose a simple
monotonicity correction procedure that is immediately applicable, easy to implement, and
performs well with simulated and real data.

To elaborate, it has been shown using boundary points on simulated datasets that the
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LLM distribution estimator outperforms that of LLH and LC as seen by the values of
the Kolmogorov-Smirnov test statistic, accuracy of estimated quantiles, and also by its
performance in point prediction—the latter finding being entirely unexpected. In contrast,
for internal points on these datasets there seem to be no significant differences between the
3 estimators using these performance metrics.

In addition, among all three methods over a wide range of selected bandwidths the
overall best performance is obtained using Monotone Local Linear Estimation. As can
be seen from the point prediction tables, the predictor based on FLEM(y) has lower bias
compared to F(y) and EXUH (y); this is consistent with the discussion in Section 2, i.e.
that FXEM (y) has improved performance because of reduced bias in extrapolation for the
boundary case. No such differences in bias are noticed for the case of internal points.

As in the case of simulated data, in the real data example as well the point prediction
performance of LLM closely matches in performance to that of LL which implies that
the LLM distribution estimator can be used for all practical applications, including point

prediction.
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