

Nonparametric estimation of the conditional distribution at regression boundary points

Srinjoy Das

Department of Electrical
and Computer Engineering
University of California—San Diego
La Jolla, CA 92093, USA
email: s2das@ucsd.edu

Dimitris N. Politis

Department of Mathematics
University of California—San Diego
La Jolla, CA 92093-0112, USA
email: dpolitis@ucsd.edu

Abstract

Nonparametric regression is a standard statistical tool with increased importance in the Big Data era. Boundary points pose additional difficulties but local polynomial regression can be used to alleviate them. Local linear regression, for example, is easy to implement and performs quite well both at interior as well as boundary points. Estimating the conditional distribution function and/or the quantile function at a given regressor point is immediate via standard kernel methods but problems ensue if local linear methods are to be used. In particular, the distribution function estimator is not guaranteed to be monotone increasing, and the quantile curves can “cross”. In the paper at hand, a simple method of correcting the local linear distribution estimator for monotonicity is proposed, and its good performance is demonstrated via simulations and real data examples.

Keywords: Model-Free prediction, local linear regression, kernel smoothing, local polynomial fitting, point prediction.

1 Introduction

Nonparametric regression via kernel smoothing is a standard statistical tool with increased importance in the Big Data era; see e.g. (Wand & Jones, 1994), (Yu & Jones, 1998), (Yu, Lu, & Stander, 2003), (Koenker, 2005) or (Schucany, 2004) for reviews. The fundamental nonparametric regression problem is estimating the regression function $\mu(x) = E(Y|X = x)$ from data $(Y_1, x_1), \dots, (Y_n, x_n)$ under the sole assumption that the function $\mu(\cdot)$ belongs to some smoothness class, e.g., that it possesses a certain number of continuous derivatives. Here, Y_i is the real-valued response associated with the regressor X taking a value of x_i . Either by design or via the conditioning, the regressor values x_1, \dots, x_n are treated as nonrandom. For simplicity of exposition, we will assume that the regressor X is univariate but extension to the multivariate case is straightforward.

A common approach to nonparametric regression starts with assuming that the data were generated by an additive model such as

$$Y_i = \mu(x_i) + \sigma(x_i)\epsilon_i \quad \text{for } i = 1, 2, \dots, n \quad (1)$$

where the errors ϵ_i are assumed to be independent, identically distributed (i.i.d.) with mean zero and variance one, and $\sigma(\cdot)$ is another unknown function.

Nevertheless, standard kernel smoothing methods are applicable in a Model-Free context as well, i.e., without assuming an equation such as (1). An important example is the Nadaraya-Watson kernel estimator defined as

$$\hat{\mu}(x) = \frac{\sum_{i=1}^n \tilde{K}_{i,x} Y_i}{\sum_{i=1}^n \tilde{K}_{i,x}} \quad (2)$$

where $b > 0$ is the bandwidth, $K(x)$ is a nonnegative kernel function satisfying $\int K(x)dx = 1$, and

$$\tilde{K}_{i,x} = \frac{1}{b} K\left(\frac{x - x_i}{b}\right).$$

Estimator $\hat{\mu}(x)$ enjoys favorable properties such as consistency and asymptotic normality under standard regularity conditions in a Model-Free context, e.g. assuming the pairs $(Y_1, X_1), \dots, (Y_n, X_n)$ are i.i.d. (Li & Racine, 2007).

The rationale behind the Nadaraya-Watson estimator (2) is approximating the unknown function $\mu(x)$ by a constant over a window of “width” b ; this is made clearer if a rectangular function is chosen as the kernel K , e.g. letting $K(x) = \mathbf{1}\{|x| < 1/2\}$ where $\mathbf{1}_A$ is the indicator of set A , in which case $\hat{\mu}(x)$ is just the average of the Y ’s whose x value fell in the window. Going from a local constant to a local linear approximation for $\mu(x)$, i.e., a first-order Taylor expansion, motivates the local linear estimator

$$\hat{\mu}^{LL}(x) = \frac{\sum_{i=1}^n w_i Y_i}{\sum_{i=1}^n w_i} \quad (3)$$

where

$$w_i = \tilde{K}_{i,x} \left(1 - \hat{\beta}(x - x_i)\right) \quad \text{and} \quad \hat{\beta} = \frac{\sum_{i=1}^n \tilde{K}_{i,x}(x - x_i)}{\sum_{i=1}^n \tilde{K}_{i,x}(x - x_i)^2}. \quad (4)$$

If the design points x_j are (approximately) uniformly distributed over an interval $[a_1, a_2]$, then $\hat{\mu}^{LL}(x)$ is typically indistinguishable from the Nadaraya-Watson estimator $\hat{\mu}(x)$ when x is in the ‘interior’, i.e., when $x \in [a_1 + b/2, a_2 - b/2]$. The local linear estimator $\hat{\mu}^{LL}(x)$ offers an advantage when the design points x_j are non-uniformly distributed, e.g., when there are gaps in the design points, and/or when x is a *boundary* point, i.e., when $x = a_1$ or $x = a_2$ (plus or minus $b/2$); see (Fan & Gijbels, 1996) for details.

Instead of focusing on the conditional moment $\mu(x) = E(Y|X = x)$, one may consider estimating the conditional distribution $F_x(y) = P(Y \leq y|X = x)$ at some fixed point y . Note that $F_x(y) = E(W|X = x)$ where $W = \mathbf{1}\{Y \leq y\}$. Hence, estimating $F_x(y)$ can be easily done via local constant or local linear estimation of the conditional mean from the new dataset $(W_1, x_1), \dots, (W_n, x_n)$ where $W_i = \mathbf{1}\{Y_i \leq y\}$. To elaborate, the local constant and the local linear estimators of $F_x(y)$ are respectively given by

$$\hat{F}_x(y) = \frac{\sum_{i=1}^n \tilde{K}_{i,x} \mathbf{1}\{Y_i \leq y\}}{\sum_{i=1}^n \tilde{K}_{i,x}}, \quad \text{and} \quad \hat{F}_x^{LL}(y) = \frac{\sum_{j=1}^n w_j \mathbf{1}\{Y_j \leq y\}}{\sum_{j=1}^n w_j} \quad (5)$$

where the local linear weights w_j are given by eq. (4).

Viewed as a function of y , $\hat{F}_x(y)$ is a well-defined distribution function; however, being a local constant estimator, it often has poor performance at boundary points. As already discussed, $\hat{F}_x^{LL}(y)$ has better performance at boundary points. Unfortunately, $\hat{F}_x^{LL}(y)$ is neither guaranteed to be in $[0, 1]$ nor is it guaranteed to be nondecreasing as a function of y ; this is due to some of the weights w_j potentially being negative.

The problem with non-monotonicity of $\hat{F}_x^{LL}(y)$ and the associated quantile curves potentially ‘crossing’ is well-known; see (Hall, Wolff, & Yao, 1999) for the former issue, and (Yu & Jones, 1998) for the latter, as well as the reviews on quantile regression by (Yu et al., 2003) and (Koenker, 2005). In the next section, a simple method of correcting the local linear distribution estimator for monotonicity is proposed; its good performance is demonstrated via simulations and real data examples in Section 3. It should be noted here that while the paper at hand focuses on the monotonicity correction for local linear estimators of the conditional distribution, the monotonicity correction idea can equally be applied to other distribution estimators constructed via different nonparametric methods, e.g. wavelets.

2 Local Linear Estimation of smooth conditional distributions

2.1 Some issues with current methods

The good performance of local constant and local linear estimators (5) hinges on $F_x(\cdot)$ being smooth, e.g. continuous, as a function of x . In all that follows, we will further assume that $F_x(y)$ is also continuous in y for all x . Since the estimators (5) are discontinuous (step functions) in y , it is customary to smooth them, i.e., define

$$\bar{F}_x(y) = \frac{\sum_{i=1}^n \tilde{K}_{i,x} \Lambda(\frac{y-Y_i}{h_0})}{\sum_{i=1}^n \tilde{K}_{i,x}}, \quad \text{and} \quad \bar{F}_x^{LL}(y) = \frac{\sum_{j=1}^n w_j \Lambda(\frac{y-Y_j}{h_0})}{\sum_{j=1}^n w_j} \quad (6)$$

where $\Lambda(y)$ is some smooth distribution function which is strictly increasing with density $\lambda(y) > 0$, i.e., $\Lambda(y) = \int_{-\infty}^y \lambda(s)ds$. Here again the local linear weights w_j are given by eq. (4), and $h_0 > 0$ is a secondary bandwidth whose choice is not as important as the choice of b ; see Section 2.5 for some concrete suggestions on picking b and h_0 in practice.

Under standard conditions, both estimators appearing in eq. (6) are asymptotically consistent, and preferable to the respective estimators appearing in eq. (5), i.e., replacing $\mathbf{1}\{Y_j \leq y\}$ by $\Lambda(\frac{y-Y_j}{h_0})$ is advantageous; see Ch. 6 of (Li & Racine, 2007). Furthermore, as discussed in the Introduction, we expect that $\bar{F}_x^{LL}(y)$ would be a better estimator than $\bar{F}_x(y)$ when x is a boundary point and/or the design is not uniform, while $\bar{F}_x^{LL}(y)$ and $\bar{F}_x(y)$ would be practically equivalent when x is an interior point and the design is (approximately) uniform. Hence, all in all, $\bar{F}_x^{LL}(y)$ would be preferable to $\bar{F}_x(y)$ as an estimator of $F_x(y)$ for any fixed y . The problem again is that $\bar{F}_x^{LL}(y)$ is not guaranteed to be a proper distribution viewed as a function of y by analogy to $\hat{F}_x^{LL}(y)$.

There have been several proposals in the literature to address this issue. An interesting one is the adjusted Nadaraya-Watson estimator of (Hall et al., 1999) that is a linear function of the Y 's with weights being selected by an appropriate optimization procedure. The adjusted Nadaraya-Watson estimator is much like a local linear estimator in that it has reduced bias (by an order of magnitude) compared to the regular Nadaraya-Watson local constant estimator. Unfortunately, the adjusted Nadaraya-Watson estimator does not work well when x is a boundary point as the required optimization procedure typically does not admit a solution.

Noting that the problems with $\bar{F}_x^{LL}(y)$ and $\hat{F}_x^{LL}(y)$ arise due to potentially negative weights w_j computed by eq. (4), Hansen proposed a straightforward adjustment to the local linear estimator that maintains its favorable asymptotic properties (Hansen, 2004) . The local linear versions of $\hat{F}_x(y)$ and $\bar{F}_x(y)$ adjusted via Hansen's proposal are given as

follows:

$$\hat{F}_x^{LLH}(y) = \frac{\sum_{i=1}^n w_i^\diamond \mathbf{1}(Y_i \leq y)}{\sum_{i=1}^n w_i^\diamond} \quad \text{and} \quad \bar{F}_{x_m}^{LLH}(y) = \frac{\sum_{i=1}^n w_i^\diamond \Lambda(\frac{y-Y_i}{h_0})}{\sum_{i=1}^n w_i^\diamond} \quad (7)$$

where

$$w_i^\diamond = \begin{cases} 0 & \text{when } \hat{\beta}(x - x_i) > 1 \\ \tilde{K}_{i,x} (1 - \hat{\beta}(x - x_i)) & \text{when } \hat{\beta}(x - x_i) \leq 1. \end{cases} \quad (8)$$

Essentially, Hansen's proposal replaces negative weights by zeros, and then renormalizes the nonzero weights. The problem here is that if x is on the boundary, negative weights are crucially needed in order to ensure an extrapolation takes place with minimal bias; this is further elaborated upon in the following subsection.

2.2 Extrapolation vs. interpolation

In order to illustrate the need for negative weights consider the simple case of $n = 2$, i.e., two data points (Y_1, x_1) and (Y_2, x_2) . The question is to predict a future response Y_3 associated with a regressor value of x_3 ; assuming finite second moments, the L_2 -optimal predictor of Y_3 is $\mu(x_3)$ where $\mu(x) = E(Y|X = x)$ as before.

If x_3 is an interior point as depicted in Figure 1, the problem is one of *interpolation*. If x_3 is a boundary point, and in particular if x_3 is outside the convex hull of the design points as in Figure 2, the problem is one of *extrapolation*. Let $\hat{\mu}^{LL}(x)$ denote the local linear estimator of $\mu(x)$ as before. With $n = 2$, $\hat{\mu}^{LL}(x)$ reduces to just finding the line that passes through the two data points (Y_1, x_1) and (Y_2, x_2) . In other words, $\hat{\mu}^{LL}(x)$ reduces to a convex combination of Y_1 and Y_2 , i.e., $\hat{\mu}^{LL}(x) = \omega_x Y_1 + (1 - \omega_x) Y_2$ where $\omega_x = \frac{x_2 - x}{x_2 - x_1}$ where $x_1 < x < x_2$ for interior points and $x_1 < x_2 < x$ for boundary points. Note that $\omega_x \in [0, 1]$ if x is an interior point, whereas $\omega_x \notin [0, 1]$ if x is outside the convex hull of the design points. Hence, negative weights are a *sine qua non* for effective linear extrapolation.

For example, assume we are in the setup of Figure 2 where $x_1 < x_2 < x_3$. In this case, ω_{x_3} is negative. Hansen's proposal (Hansen, 2004) would replace ω_{x_3} by zero and renormalize the coefficients, leading to $\hat{\mu}^{LLH}(x_3) = Y_2$; it is apparent that this does not give the desired linear extrapolation effect.

To generalize the above setup, suppose that now n is an arbitrary even number, and Y_i represents the average of $n/2$ responses associated with regressor value x_i for $i = 1$ or 2 . Thus, we have a *bona fide* n -dimensional scatterplot that is supported on two design points. Interestingly, the formula for $\hat{\mu}^{LL}(x)$ is exactly as given above, and so is the argument requiring negative weights for linear extrapolation. Of course, we cannot expect a general scatterplot to be supported on just two design points. Nonetheless, in a nonparametric situation one performs a linear regression *locally*, i.e., using a local subset of the data.

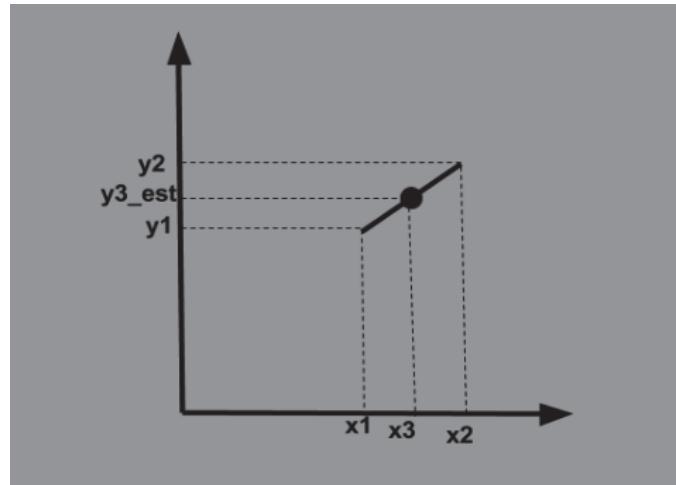


Figure 1: Interpolation: prediction of Y_3 when x_3 is an interior point; \hat{Y}_3 is a convex combination of Y_1 and Y_2 with nonnegative weights.

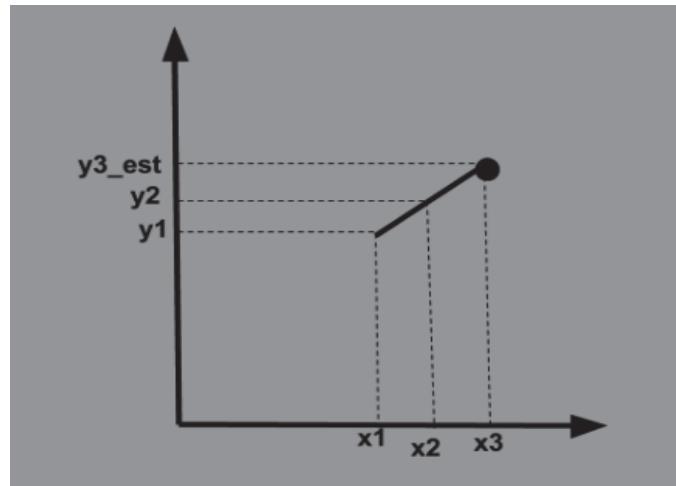


Figure 2: Extrapolation: prediction of Y_3 when x_3 is outside the convex hull of the design points; \hat{Y}_3 is a linear combination of Y_1 and Y_2 with one positive and one negative weight.

Typically, there is a scarcity of design points near the boundary, and the general situation is qualitatively similar to the case of two design points.

2.3 Monotone Local Linear Distribution Estimation

The estimator $\hat{F}_x^{LL}(y)$ from eq. (5) is discontinuous as a function of y therefore we will focus our attention on $\bar{F}_x^{LL}(y)$ described in eq. (6) from here on. It seems that with this double-smoothed estimator $\bar{F}_x^{LL}(y)$ we can “have our cake and eat it too”, i.e., modify it towards monotonicity while retaining (some of) the negative weights that are helpful in the extrapolation problem as discussed in the last subsection. We are thus led to define a new estimator denoted by $\bar{F}_x^{LLM}(y)$ which is a monotone version of $\bar{F}_x^{LL}(y)$; we will refer to $\bar{F}_x^{LLM}(y)$ as the *Monotone Local Linear Distribution Estimator*.

One way to define $\bar{F}_x^{LLM}(y)$ is as follows.

Algorithm 1.

1. Compute $\bar{F}_x^{LL}(y)$, and denote $l = \lim_{y \rightarrow -\infty} \bar{F}_x^{LL}(y)$.
2. Define a function $G_1(y) = \bar{F}_x^{LL}(y) - l$.
3. Define a second function G_2 with the property that $G_2(y + \epsilon) = \max(G_1(y + \epsilon), G_1(y))$ for all y and all $\epsilon > 0$.
4. Define $\bar{F}_x^{LLM}(y) = G_2(y)/L$ where $L = \lim_{y \rightarrow \infty} G_2(y)$.

The above algorithm could be approximately implemented in practice by selecting a small enough $\epsilon > 0$, dividing the range of the y variable using a grid of size ϵ , and running step 3 of Algorithm 1 sequentially. To elaborate, one would compute G_2 at grid point $j + 1$ from the values of G_1 at previous, i.e., smaller, grid points.

A different—albeit equivalent—way of constructing the estimator $\bar{F}_x^{LLM}(y)$ is by first constructing its associated density function denoted by $\bar{f}_x^{LLM}(y)$ which will be called the *Monotone Local Linear Density Estimator*. The alternative algorithm goes as follows.

Algorithm 2.

1. Recall that the derivative of $\bar{F}_x^{LL}(y)$ with respect to y is given by

$$\bar{f}_x^{LL}(y) = \frac{\frac{1}{h_0} \sum_{j=1}^n w_j \lambda(\frac{y - Y_j}{h_0})}{\sum_{j=1}^n w_j}$$

where $\lambda(y)$ is the derivative of $\Lambda(y)$.

2. Define a nonnegative version of $\bar{f}_x^{LL}(y)$ as $\bar{f}_x^{LL+}(y) = \max(\bar{f}_x^{LL}(y), 0)$.

3. To make the above a proper density function, renormalize it to area one, i.e., let

$$\bar{f}_x^{LLM}(y) = \frac{\bar{f}_x^{LL+}(y)}{\int_{-\infty}^{\infty} \bar{f}_x^{LL+}(s) ds}. \quad (9)$$

4. Finally, define $\bar{F}_x^{LLM}(y) = \int_{-\infty}^y \bar{f}_x^{LLM}(s) ds$.

To implement the above one would again need to divide the range of the y variable using a grid of size ϵ in order to construct the maximum function in step 2 of Algorithm 2. The same grid can be used to provide Riemann-sum approximations to the two integrals appearing in steps 3 and 4. All in all, the implementation of Algorithm 1 is a bit easier, and will be employed in the sequel.

2.4 Standard Error of the Monotone Local Linear Estimator

Under standard conditions, the local linear estimator $\sqrt{nb}\bar{F}_x^{LL}(y)$ is asymptotically normal with a variance $V_{x,y}^2$ that depends on the design; for details, see Ch. 6 of (Li & Racine, 2007). In addition, the bias of $\sqrt{nb}\bar{F}_x^{LL}(y)$ is asymptotically vanishing if $b = o(n^{1/5})$. Hence, letting $b \sim n^\alpha$ for some $\alpha \in (0, 1/5)$, $\bar{F}_x^{LL}(y)$ will be consistent for $F_x(y)$, and approximate 95% confidence intervals for $F_x(y)$ can be constructed as $\bar{F}_x^{LL}(y) \pm 1.96 \frac{V_{x,y}}{nb}$.

The consistency of $\bar{F}_x^{LL}(\cdot)$ towards $F_x(\cdot)$ implies that the monotonicity corrections described in the previous subsection will be asymptotically negligible. To see why, fix a point x of interest, and assume that $F_x(y)$ is absolutely continuous with density $f_x(y)$ that is strictly positive over its support. The consistency of $\bar{f}_x^{LL}(y)$ to a positive target implies that $\bar{f}_x^{LL}(y)$ will eventually become (and stay) positive as n increases. Hence, the monotonicity correction eventually vanishes, and $\bar{F}_x^{LLM}(y)$ is asymptotically equivalent to $\bar{F}_x^{LL}(y)$.

Regardless, it is not advisable to use the aforementioned asymptotic distribution and variance of $\bar{F}_x^{LL}(y)$ to approximate those of $\bar{F}_x^{LLM}(y)$ for practical work since, in finite samples, $\bar{F}_x^{LLM}(y)$ and $\bar{F}_x^{LL}(y)$ can be quite different. Our recommendation is to use some form of bootstrap in order to approximate the distribution and/or standard error of $\bar{F}_x^{LLM}(y)$ directly. In particular, the Model-Free bootstrap (Politis, 2015) in its many forms is immediately applicable in the present context. For instance, the “Limit Model-Free” (LMF) bootstrap would go as follows:

LMF Bootstrap Algorithm

1. Generate U_1, \dots, U_n i.i.d. Uniform(0,1).
2. Define $Y_i^* = G_{x_i}^{-1}(U_i)$ for $i = 1, \dots, n$ where $G_{x_i}^{-1}(\cdot)$ is the quantile inverse of $\bar{F}_{x_i}^{LLM}(\cdot)$, i.e., $G_{x_i}^{-1}(u) = \inf\{y : \bar{F}_{x_i}^{LLM}(y) \geq u\}$.

3. For the points x and y of interest, construct the pseudo-statistic $\bar{F}_x^{LLM*}(y)$ which is computed by applying estimator $\bar{F}_x^{LLM}(y)$ to the bootstrap dataset $(Y_1^*, x_1), \dots, (Y_n^*, x_n)$.
4. Repeat steps 1–3 a large number (say B) times. Plot the B pseudo-replicates $\bar{F}_x^{LLM*}(y)$ in a histogram that will serve as an approximation of the distribution of $\bar{F}_x^{LLM}(y)$. In addition, the sample variance of the B pseudo-replicates $\bar{F}_x^{LLM*}(y)$ is the bootstrap estimator of the variance of $\bar{F}_x^{LLM}(y)$.

Our focus is on point estimation of $F_x(y)$ so we will not elaborate further on the construction of interval estimates.

2.5 Bandwidth Choice

There are two bandwidths, b and h_0 , required to construct estimator $\bar{F}_x^{LLM}(y)$ and its relatives $\bar{F}_x(y)$ and $\bar{F}_x^{LLH}(y)$. We will now focus on choice of the bandwidth b which is the most crucial of the two, and is often picked via leave-one-out cross-validation.

In the paper at hand we are mostly concerned with estimation and prediction at boundary points. Since often boundary problems present their own peculiarities, we are strongly recommending carrying out the cross-validation procedure ‘locally’, i.e., over a neighborhood of the point of interest. One needs, however, to ensure that there are enough points nearby to perform the leave-one-out experiment. Hence, our concrete recommendation goes as follows.

- Choose a positive integer m which can be fixed number or it can be a small fraction of the sample size at hand.
- Then, identify m among the regression points $(Y_1, x_1), \dots, (Y_n, x_n)$ with the property that their respective x_i ’s are the m closest neighbors of the point x under consideration.
- Denote this set of m points by $(Y_{g(1)}, x_{g(1)}), \dots, (Y_{g(m)}, x_{g(m)})$ where the function $g(\cdot)$ gives the index numbers of the selected points.
- For $k = 1, \dots, m$, compute $\hat{Y}_{g(k)}$ which is the L_2 -optimal predictor of $Y_{g(k)}$ using leave-one-out data. In other words, $\hat{Y}_{g(k)}$ is the mean, i.e., center of location, of one of the aforementioned distribution estimators based on the delete-one dataset, i.e. pretending that $Y_{g(k)}$ is unavailable.
- Thus, for a range of values of bandwidth b , we can calculate the following:

$$Err = \sum_{k=1}^m (\hat{Y}_{g(k)} - Y_{g(k)})^2. \quad (10)$$

- Finally, the optimal bandwidth is given by the value of b that minimizes Err over the range of bandwidths considered.

Coming back to the problem of selecting h_0 , define $h = b/n$ and recall that in an analogous regression problem the optimal rates $h_0 \sim n^{-2/5}$ and $h \sim n^{-1/5}$ were suggested in connection with the nonnegative kernel K ; see (Li & Racine, 2007). As in (Politis, 2013), this leads to the practical recommendation of letting $h_0 = h^2$. We will adopt the same rule-of-thumb here as well, namely let $h_0 = b^2/n^2$ where b has been chosen previously via local cross-validation. Note that the initial choice of h_0 (before performing the cross-validation to determine the optimal bandwidth b) can be set by a plug-in rule as available in standard statistical software such as R.

3 Numerical work: simulations and real data

The performance of the three distribution estimators $\bar{F}_x(y)$, $\bar{F}_x^{LLH}(y)$ or $\bar{F}_x^{LLM}(y)$ described above are empirically compared using both simulated and real-life datasets according to the following metrics.

1. Divergence between the local distribution $\bar{F}_x(\cdot)$ estimated by all three methods and the corresponding local (empirical) distribution calculated from the actual data; this is determined using the mean value of the Kolmogorov-Smirnov (KS) test statistic. The measurement is performed on simulated datasets where multiple realizations of data at both boundary and internal points are available. Therefore the empirical distribution at any point can be calculated and compared versus the estimated values. Our notation is **KS-LC**, **KS-LLH** and **KS-LLM** for the distribution estimators $\bar{F}_x(y)$, $\bar{F}_x^{LLH}(y)$ or $\bar{F}_x^{LLM}(y)$ respectively.
2. Comparison of estimated quantiles of $F_x(\cdot)$ at specified points using all three methods versus the corresponding empirical values calculated using simulated datasets.
3. Point prediction performance as indicated by bias and Mean Squared Error (MSE) on simulated and real-life datasets using all three methods. The MSE values of point prediction are denoted as **MSE-LC**, **MSE-LLH** and **MSE-LLM** for the distribution estimators $\bar{F}_x(y)$, $\bar{F}_x^{LLH}(y)$ or $\bar{F}_x^{LLM}(y)$ respectively; the corresponding bias values are denoted **Bias-LC**, **Bias-LLH** and **Bias-LLM**. For comparison purposes the point-prediction performance is also measured using the local linear conditional

moment estimator as given by equations 3 and 4. In this case bias and MSE are indicated as **Bias-LL** and **MSE-LL** respectively.

On simulated datasets the performance metrics for all three distribution estimators are calculated both at boundary and internal points to illustrate how performance varies between $\bar{F}_x(y)$, $\bar{F}_x^{LLH}(y)$ and $\bar{F}_x^{LLM}(y)$ in the two cases.

3.1 Simulation: Additive model with i.i.d Gaussian errors

Data Y_i for $i = 1, \dots, 1001$ were simulated as per model (1) by setting $\mu(x_i) = \sin(x_i)$, $\sigma(x_i) = \tau$ and the errors ϵ_i as i.i.d. $N(0, 1)$. Sample size n was set to 1001. A total of 500 such realizations were generated for this study.

Results for the mean-value of the Kolmogorov-Smirnov test statistic between the LC, LLH and LLM estimated distributions and empirical distribution calculated using available values of the simulated data are given in Tables 1, 2, 3 and 4 for boundary point $n = 1001$ and internal point $n = 200$ for values of $\tau = 0.1$ and 0.3 over a range of bandwidths, i.e., b taking values $10, 20, \dots, 140$.

Point prediction performance values are provided for the same cases in Tables 5, 6, 7 and 8.

Estimates of the α -quantile at specific values of α are calculated using all three distribution estimators and compared with corresponding quantiles calculated from the available data. Plots for selected quantile values ($\alpha = 0.1$ and $\alpha = 0.9$) are shown in Figures 3, 4, 5 and 6 for both 1 and 2-sided cases ($\tau = 0.3$). Note that the 'true' quantile lines showed in the plots are values calculated from the available data at $n = 1001$ and $n = 200$ over 500 realizations for the case of boundary and internal points respectively. The bandwidths used for estimating the quantiles for LC, LLH and LLM are based on bandwidth values where the best performance for these estimators was obtained using the Kolmogorov-Smirnov test (refer Tables 3 and 4).

Note that the point $n = 1001$ is excluded from the data used for LC, LLH and LLM estimation at the boundary point. Similarly the point $n = 200$ is excluded for the case of estimation at the internal point.

From results on these iid regression datasets it can be seen that for boundary value estimation the estimator based on $\bar{F}_x^{LLM}(y)$ has superior performance as compared to both $\bar{F}_x(y)$ and $\bar{F}_x^{LLH}(y)$. The improvement is seen over a wide range of selected bandwidths using both the mean values of the Kolmogorov-Smirnov test statistic (Tables 1 and 3) and mean-square error of point prediction (Tables 5 and 7). Moreover the overall best performance over the selected bandwidth range from $10, \dots, 140$ is obtained using the Monotone Local Linear Estimator $\bar{F}_x^{LLM}(y)$. In addition it can be seen from the plots of the estimated quantiles at $\alpha = 0.1$ and $\alpha = 0.9$ in the boundary case that the center of the estimated

Table 1: Mean values of KS test statistic over i.i.d. data at boundary point ($n = 1001, \tau = 0.1$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.23508	0.252884	0.275132
20	0.241992	0.233996	0.23606
30	0.2767	0.232064	0.218948
40	0.31528	0.240476	0.20744
50	0.349924	0.2554	0.2009
60	0.38438	0.273648	0.204404
70	0.418316	0.288032	0.21502
80	0.448772	0.307672	0.231588
90	0.474796	0.326224	0.253472
100	0.502768	0.342884	0.275936
110	0.5264	0.360888	0.2993
120	0.54664	0.37786	0.320348
130	0.56692	0.393392	0.34248
140	0.58646	0.407108	0.359404

quantile distribution for LLM is aligned more closely to the 'true' quantile value calculated from the simulated data as shown by the dotted line (Figures 3 and 4).

For the case of estimation at internal points no appreciable differences in performance are noticeable between the 3 estimators using both the mean values of the Kolmogorov-Smirnov test statistic (Tables 2 and 4) and also using mean-square error of point prediction (Tables 6 and 8). Similar trends are noticeable in the quantile plots where the estimated quantiles using LC, LLH and LLM nearly overlap for the internal case (Figures 5 and 6).

It can also be seen from Tables 5, 6, 7 and 8 that across the range of bandwidths considered there is negligible loss in best point prediction performance of LLM versus that of LL.

Table 2: Mean values of KS test statistic over i.i.d. data at internal point ($n = 200, \tau = 0.1$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.212296	0.213792	0.213712
20	0.201892	0.203264	0.203704
30	0.197736	0.198904	0.197828
40	0.19782	0.197296	0.196772
50	0.19606	0.1949	0.19684
60	0.200164	0.198304	0.198556
70	0.202644	0.201472	0.202208
80	0.206016	0.20534	0.207628
90	0.21412	0.212608	0.21422
100	0.220084	0.221096	0.2204
110	0.23078	0.23064	0.231744
120	0.240556	0.238724	0.240032
130	0.250116	0.250692	0.250972
140	0.260864	0.260696	0.259292

Table 3: Mean values of KS test statistic over i.i.d. data at boundary point ($n = 1001, \tau = 0.3$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.207104	0.303696	0.352912
20	0.148964	0.210324	0.250856
30	0.125284	0.171268	0.2058
40	0.112412	0.15016	0.182176
50	0.107232	0.136612	0.16702
60	0.107764	0.127176	0.154944
70	0.111144	0.121408	0.145624
80	0.119836	0.115008	0.136968
90	0.126996	0.110716	0.128792
100	0.137376	0.108468	0.121452
110	0.14676	0.105504	0.1165
120	0.157364	0.107432	0.111452
130	0.165528	0.108692	0.107532
140	0.175852	0.110228	0.103772

Table 4: Mean values of KS test statistic over i.i.d. data at internal point ($n = 200, \tau = 0.3$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.152968	0.15334	0.152252
20	0.119528	0.117216	0.118916
30	0.103412	0.104188	0.104388
40	0.097028	0.097544	0.097348
50	0.0897	0.089944	0.090576
60	0.0868	0.086116	0.087244
70	0.083068	0.083164	0.084304
80	0.082208	0.081544	0.081452
90	0.080592	0.081848	0.081572
100	0.07958	0.08006	0.078328
110	0.080208	0.080568	0.079604
120	0.08194	0.08094	0.082332
130	0.082628	0.08288	0.082256
140	0.084188	0.08518	0.086076

Table 5: Point Prediction for Boundary Value over i.i.d. data ($n = 1001, \tau = 0.1$)

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
10	-0.01887676	0.01265856	-0.0087034	0.01453471	0.0004694887	0.01667712	0.00279478	0.01713243
20	-0.03782673	0.01261435	-0.01818502	0.0126929	0.0005444976	0.01323652	0.003247646	0.01340418
30	-0.05753609	0.01418224	-0.02725602	0.01232877	-0.001022256	0.01200918	0.0039133	0.01219628
40	-0.07724901	0.01672728	-0.03718728	0.01259729	-0.005397138	0.01148354	0.00354838	0.01167496
50	-0.09692561	0.0200906	-0.04758345	0.01327841	-0.01222596	0.01130622	0.002834568	0.01139095
60	-0.116533	0.02423279	-0.05831195	0.01431087	-0.02106315	0.01142789	0.002008806	0.01120327
70	-0.1359991	0.02911512	-0.06918129	0.0156254	-0.03138586	0.01185914	0.001102312	0.01106821
80	-0.1555938	0.03480583	-0.08021998	0.01722284	-0.04274234	0.01263368	8.912064e-05	0.01096947
90	-0.1752324	0.04128715	-0.09144259	0.01910772	-0.05473059	0.01375585	-0.001070282	0.01089842
100	-0.1947342	0.04848954	-0.1027918	0.02127558	-0.0670785	0.01521865	-0.002416635	0.01084951
110	-0.2145001	0.05656322	-0.1142845	0.02374615	-0.07967838	0.01704094	-0.003988081	0.01081946
120	-0.2343967	0.06548142	-0.1259372	0.02651703	-0.09236019	0.01919461	-0.005818943	0.01080699
130	-0.2543523	0.07522469	-0.1377167	0.02960364	-0.1050934	0.02168698	-0.007939144	0.01081259
140	-0.2740635	0.08563245	-0.1496325	0.03301117	-0.1178388	0.02451228	-0.01037417	0.01083832

Table 6: Point Prediction for Internal Value over i.i.d. data ($n = 200, \tau = 0.1$)

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
10	0.005693694	0.01026982	0.005815108	0.01027252	0.005811741	0.01027231	0.005672309	0.01027341
20	0.004548762	0.009868812	0.004644668	0.009871222	0.004640743	0.009871005	0.004547984	0.009883257
30	0.003077572	0.009736622	0.003193559	0.009739295	0.003189924	0.009738919	0.003108078	0.009754927
40	0.001168265	0.009684642	0.001329604	0.009685997	0.001325573	0.009685696	0.001205735	0.009703492
50	-0.001163283	0.009671566	-0.0009392514	0.009670138	-0.0009440976	0.009670008	-0.001162398	0.009689214
60	-0.003874557	0.009682447	-0.00359328	0.009680945	-0.003598744	0.009680969	-0.003997042	0.009703
70	-0.006944759	0.009723612	-0.006615935	0.009717111	-0.006621406	0.009717225	-0.007307346	0.009745675
80	-0.01035534	0.009789969	-0.009987875	0.009781065	-0.009992804	0.009781194	-0.01109961	0.009822695
90	-0.01407319	0.009888265	-0.01368629	0.009877023	-0.01369037	0.009877157	-0.01537421	0.009942768
100	-0.01808254	0.01002258	-0.01768867	0.01001026	-0.01769184	0.01001041	-0.02012788	0.01011708
110	-0.02234318	0.01020278	-0.02197526	0.01018668	-0.02197765	0.01018686	-0.02535515	0.01035866
120	-0.02686568	0.01042781	-0.02652964	0.01041258	-0.02653147	0.0104128	-0.03104801	0.0106819
130	-0.03163397	0.01071166	-0.03133849	0.01069454	-0.03133999	0.01069479	-0.03719388	0.01110199
140	-0.03662567	0.01105637	-0.03639079	0.01103926	-0.03639212	0.01103955	-0.04377252	0.0116341

 Table 7: Point Prediction for Boundary Value over i.i.d. data ($n = 1001, \tau = 0.3$)

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
10	0.04888178	0.301925	0.07073083	0.3540897	0.07920865	0.384878	0.0808868	0.4035579
20	0.02525561	0.2802656	0.05074344	0.3037839	0.06735271	0.3233827	0.07335949	0.3276234
30	0.00374298	0.2731737	0.038811	0.2892723	0.06222332	0.3013529	0.07053577	0.3027942
40	-0.01695169	0.270537	0.02715055	0.2805281	0.05849931	0.2922475	0.06822172	0.293552
50	-0.03718522	0.2696291	0.01614152	0.2761872	0.05612087	0.2867147	0.06656515	0.2892179
60	-0.05753523	0.2699832	0.005048478	0.2739688	0.05384922	0.2829767	0.0649322	0.2860192
70	-0.07760465	0.271603	-0.005574987	0.2723361	0.0513094	0.2798923	0.06320544	0.2830793
80	-0.09765073	0.2742877	-0.01633413	0.271128	0.04834131	0.2770397	0.06143642	0.2803242
90	-0.1176859	0.2780296	-0.02722356	0.2704552	0.04514186	0.2748099	0.05960562	0.2778554
100	-0.1373472	0.2827116	-0.0383895	0.2701542	0.04137961	0.2727937	0.05763437	0.2757286
110	-0.1572939	0.2883236	-0.04971082	0.2703248	0.03701344	0.2709994	0.05544761	0.2739321
120	-0.1769863	0.294608	-0.0611495	0.2709176	0.03212707	0.2695289	0.0530012	0.2724221
130	-0.1965911	0.3018083	-0.07255455	0.2717088	0.02680826	0.2683285	0.05027668	0.2711495
140	-0.2158054	0.3097015	-0.08401642	0.2728317	0.02098977	0.2673724	0.04726651	0.2700701

Table 8: Point Prediction for Internal Value over i.i.d. data ($n = 200, \tau = 0.3$)

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
10	0.009184716	0.2520511	0.01220923	0.2521932	0.01220434	0.2521952	0.007409901	0.2516582
20	0.01372525	0.2431836	0.01526585	0.2435718	0.01526117	0.2435718	0.01263826	0.2426903
30	0.0148307	0.2398743	0.01582708	0.2401292	0.01582349	0.2401341	0.01395436	0.2395701
40	0.0135934	0.2381523	0.01432564	0.2382689	0.01432314	0.2382728	0.01288775	0.2379284
50	0.01125721	0.236852	0.011912	0.2369737	0.01190766	0.2369759	0.01078182	0.2367428
60	0.008293956	0.2359636	0.008883749	0.2359976	0.008879099	0.2360007	0.007971824	0.2358225
70	0.004809638	0.2352631	0.005346559	0.2352719	0.005342764	0.235277	0.004580992	0.235121
80	0.0009735356	0.2347759	0.001361408	0.2347516	0.001357999	0.2347585	0.0006901448	0.2346118
90	-0.003467449	0.234453	-0.003042608	0.2344041	-0.003046705	0.2344117	-0.00365963	0.2342717
100	-0.008232451	0.2342181	-0.007859816	0.2342051	-0.007864671	0.2342125	-0.008456445	0.2340811
110	-0.01347908	0.2341583	-0.01309377	0.2341384	-0.01309954	0.234145	-0.01370081	0.2340256
120	-0.01912791	0.2342317	-0.01874779	0.2341951	-0.01875384	0.2342009	-0.01939379	0.2340969
130	-0.02516629	0.2344631	-0.0248178	0.2343727	-0.02482374	0.234378	-0.02553028	0.2342927
140	-0.0316367	0.2347946	-0.0312908	0.2346738	-0.03129606	0.2346788	-0.03209508	0.2346152

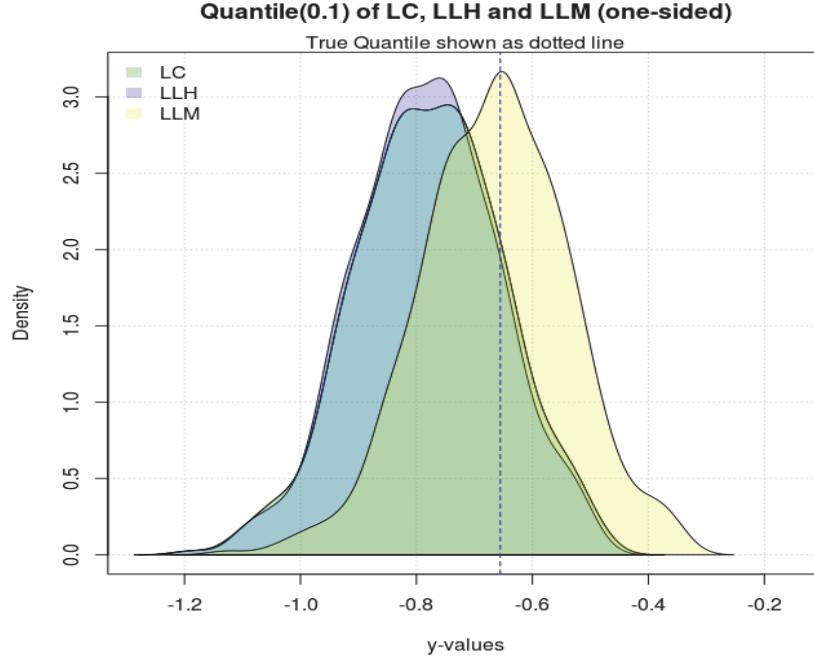


Figure 3: Estimated versus true quantile values ($\alpha = 0.1$) for 1-sided estimation, i.i.d. errors ($\tau = 0.3$)

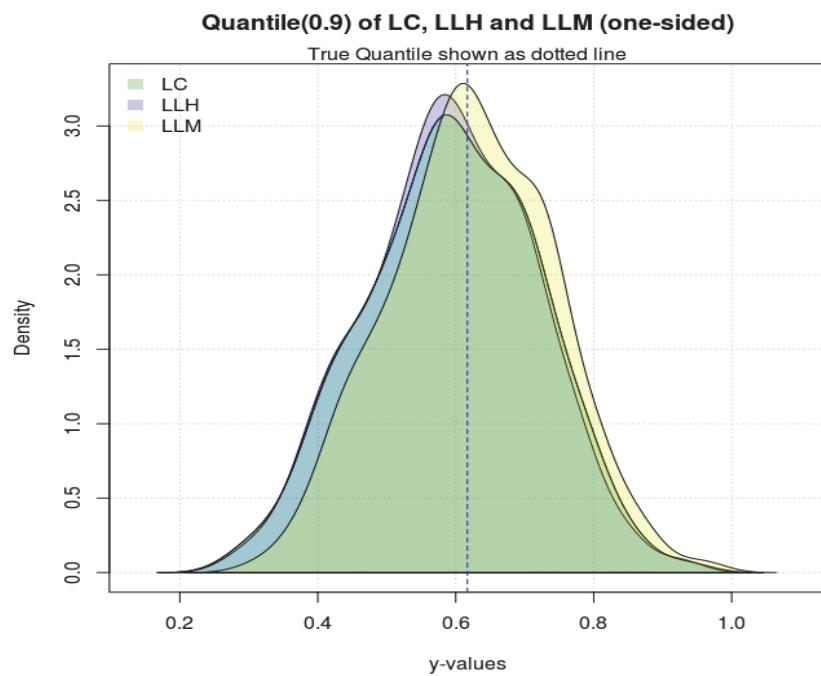


Figure 4: Estimated versus true quantile values ($\alpha = 0.9$) for 1-sided estimation, i.i.d. errors ($\tau = 0.3$)

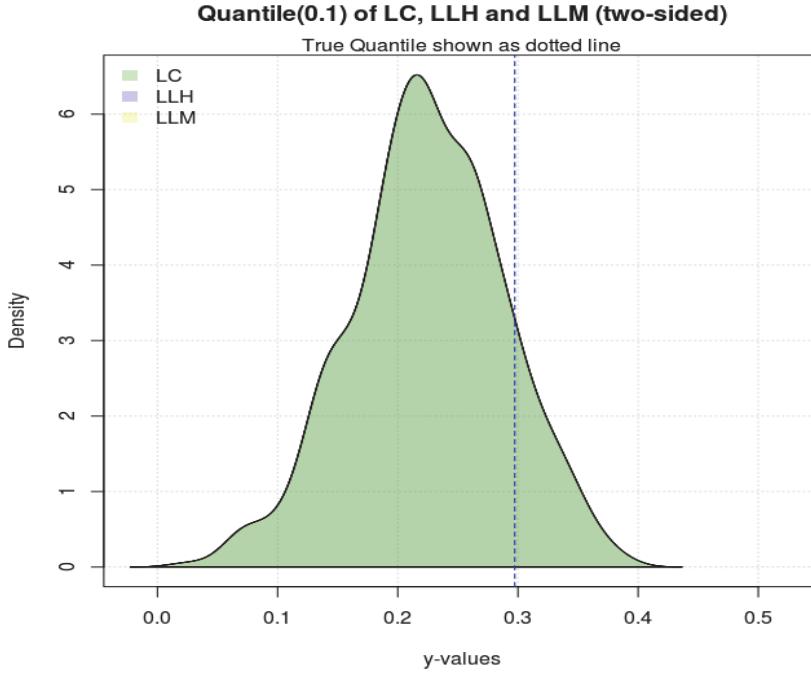


Figure 5: Estimated versus true quantile values ($\alpha = 0.1$) for 2-sided estimation, i.i.d. errors ($\tau = 0.3$)

3.2 Simulation: Additive model with heteroskedastic errors

Data Y_i for $i = 1, \dots, 1001$ were simulated as per model (1) with $\mu(x_i) = \sin(x_i)$, $\sigma(x_i) = \tau x_i$ where $x_i = \frac{i}{n}$ and the errors ϵ_i as i.i.d. $\frac{1}{2}\chi_2^2 - 1$. Sample size n was set to 1001. A total of 500 such realizations were generated for this study.

Results for the mean-value of the Kolmogorov-Smirnov test statistic between the LC, LLH and LLM estimated distributions and empirical distribution calculated using available values of the simulated data are given in Tables 9, 10, 11 and 12 for boundary point $n = 1001$ and internal point $n = 200$ for values of $\tau = 0.1$ and 0.3 over a range of bandwidths: 10, 20, \dots , 140.

Point prediction performance values are provided for the same cases in Tables 13, 14, 15 and 16.

Note that the point $n = 1001$ is excluded from the data used for LC, LLH and LLM estimation at the boundary point. Similarly the point $n = 200$ is excluded for the case of estimation at the internal point.

From results on these heteroskedastic regression datasets it can be seen that for boundary value estimation the estimator based on $\bar{F}_x^{LLM}(y)$ has superior performance as compared

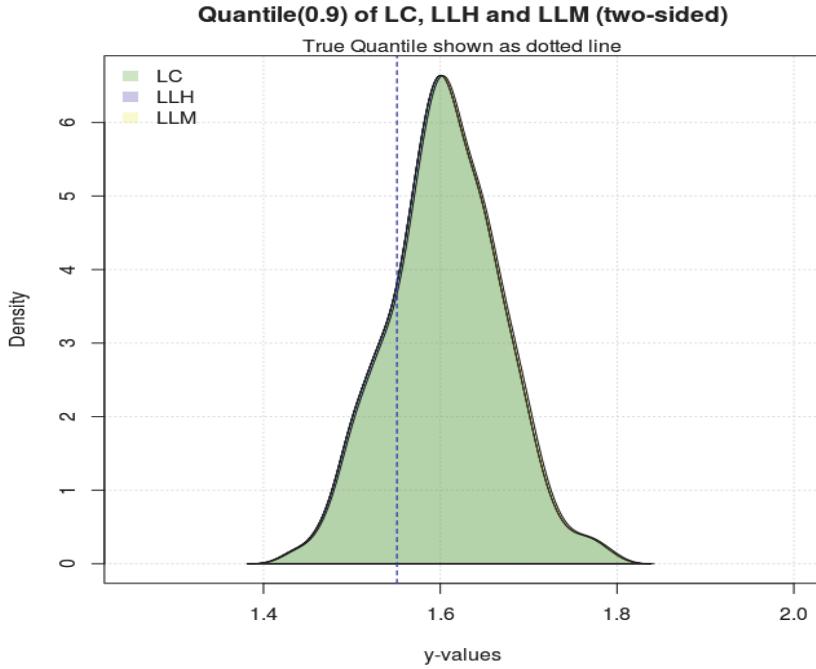


Figure 6: Estimated versus true quantile values ($\alpha = 0.9$) for 2-sided estimation, i.i.d. errors ($\tau = 0.3$)

to both $\bar{F}_x(y)$ and $\bar{F}_x^{LLH}(y)$. The improvement is seen over a wide range of selected bandwidths using both the mean values of the Kolmogorov-Smirnov test statistic (Tables 9 and 11) and mean-square error of point prediction (Tables 13 and 15). Moreover the overall best performance over the selected bandwidth range from 10, ..., 140 is obtained using the Monotone Local Linear Estimator $\bar{F}_x^{LLM}(y)$.

For the case of estimation at internal points no appreciable differences in performance are noticeable between the 3 estimators using both the mean values of the Kolmogorov-Smirnov test statistic (Tables 10 and 12) and also using mean-square error of point prediction (Tables 14 and 16).

It can also be seen from Tables 13, 14, 15 and 16 that—across the range of bandwidths considered—there is negligible loss in best point prediction performance of LLM versus that of LL. This finding is unexpected since it has been widely believed that the LL method gives optimal point estimators and/or predictors. It appears that the monotonicity correction does not hurt the resulting point estimators/predictors which is encouraging.

Table 9: Mean values of KS test statistic over heteroskedastic data at boundary point ($n = 1001, \tau = 0.1$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.361228	0.3619	0.368288
20	0.39358	0.3606	0.336436
30	0.43216	0.371372	0.326076
40	0.470316	0.388952	0.325116
50	0.506436	0.408316	0.335152
60	0.53998	0.42548	0.350864
70	0.572256	0.44356	0.371324
80	0.599836	0.462808	0.393896
90	0.6269	0.47816	0.415468
100	0.651132	0.499376	0.44184
110	0.670604	0.516304	0.462756
120	0.69	0.529796	0.485004
130	0.706968	0.545344	0.505352
140	0.72394	0.562432	0.5257

3.3 Real-life example: Wage dataset

The `Wage` dataset from the `ISLR` package (James, Witten, Hastie, & Tibshirani, 2013) was selected as a real-life example to demonstrate the differences in estimated local densities estimated using the LC, LLH and LLM methods. The full dataset has 3000 points and has been constructed from the Current Population Survey (CPS) data for year 2011. Point Prediction is used as the criterion for demonstrating performance differences between the three distribution estimators. This dataset is an example of regression data distributed non-uniformly and hence the local linear estimator (LL) based on equations 3 and 4 is expected to give the best performance in such cases. However our study involves using point-prediction using the three distribution estimators $\bar{F}_x(y)$, $\bar{F}_x^{LLH}(y)$ or $\bar{F}_x^{LLM}(y)$. Among these 3 estimators LLM gives the best point prediction performance and we show that using this estimator causes negligible loss in performance compared to using LL.

From the plot of the dataset in Figure 7 with superimposed smoother (obtained using `loess` fitting from the R package `lattice`) it can be noted that the regression function is sloping upwards at the left boundary whereas it flattens out at the right boundary. Hence, at the right boundary, local constant methods suffice and should be practically equivalent to local linear methods. The left boundary is more interesting, and this is where our numerical work will focus. To carry this out, we created a second version of the data where logwage

Table 10: Mean values of KS test statistic over heteroskedastic data at internal point ($n = 200, \tau = 0.1$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.459776	0.461528	0.461176
20	0.461872	0.462716	0.4603
30	0.46576	0.467308	0.464956
40	0.468904	0.471824	0.470172
50	0.47436	0.475916	0.474864
60	0.482716	0.482476	0.47912
70	0.488952	0.488444	0.486656
80	0.495916	0.495736	0.495056
90	0.503672	0.503052	0.502708
100	0.5105	0.513116	0.51026
110	0.519052	0.518104	0.518928
120	0.528456	0.528444	0.527104
130	0.537336	0.536916	0.535632
140	0.545264	0.545496	0.543776

Table 11: Mean values of KS test statistic over heteroskedastic data at boundary point ($n = 1001, \tau = 0.3$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.208708	0.28022	0.323664
20	0.176304	0.210876	0.241228
30	0.178416	0.189656	0.206996
40	0.189136	0.17842	0.186628
50	0.204484	0.175508	0.173096
60	0.220652	0.177144	0.163916
70	0.240692	0.181092	0.158476
80	0.25784	0.186648	0.15736
90	0.277888	0.191396	0.156008
100	0.295264	0.20092	0.159028
110	0.312968	0.20922	0.163296
120	0.330008	0.216464	0.167872
130	0.345432	0.22344	0.17522
140	0.36082	0.234392	0.181376

Table 12: Mean values of KS test statistic over heteroskedastic data at internal point ($n = 200, \tau = 0.3$)

Bandwidth	KS-LC	KS-LLH	KS-LLM
10	0.3289	0.329088	0.329112
20	0.327172	0.326072	0.3268
30	0.327236	0.32788	0.3275
40	0.331784	0.3309	0.33186
50	0.337856	0.337888	0.337692
60	0.343504	0.344328	0.343368
70	0.350048	0.351444	0.349592
80	0.3588	0.359188	0.358944
90	0.36826	0.368708	0.368008
100	0.378308	0.376472	0.377692
110	0.386636	0.3864	0.388256
120	0.39642	0.395744	0.39754
130	0.4055	0.408072	0.40714
140	0.418516	0.4171	0.41794

Table 13: Point Prediction for Boundary Value over heteroskedastic data ($n = 1001, \tau = 0.1$)

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
10	-0.01646515	0.0110308	-0.008415339	0.01301928	0.003362834	0.01521503	0.002122231	0.01532911
20	-0.03418985	0.01113183	-0.01803682	0.01111592	0.001465109	0.01164382	0.003045892	0.01196587
30	-0.05291763	0.01251871	-0.02791687	0.0110065	-0.001493594	0.01066538	0.003162759	0.01102039
40	-0.07217657	0.01484132	-0.038441108	0.01144334	-0.007355843	0.01025364	0.003252626	0.01051494
50	-0.09186859	0.0180368	-0.0493472	0.01222871	-0.01604004	0.01020275	0.003291589	0.01020678
60	-0.1116673	0.02205503	-0.06052473	0.01337097	-0.0266163	0.0105145	0.003183081	0.01002049
70	-0.1312554	0.02681084	-0.07204081	0.01484635	-0.03845618	0.01120131	0.002843088	0.009915576
80	-0.1512692	0.03246252	-0.08373385	0.01662921	-0.05099656	0.01226805	0.002239256	0.009858149
90	-0.1714417	0.03896746	-0.09557852	0.01872622	-0.06394962	0.01372077	0.00136753	0.009824624
100	-0.1916003	0.04627765	-0.1075785	0.02114855	-0.07708492	0.01554708	0.0002256174	0.009802568
110	-0.2119687	0.05448537	-0.1197012	0.02389638	-0.09028337	0.01774215	-0.001196002	0.009787441
120	-0.2326798	0.06368262	-0.1320067	0.02699023	-0.1035047	0.0202921	-0.002912961	0.009779257
130	-0.2535364	0.07381161	-0.1444581	0.03043434	-0.1167033	0.02319127	-0.004943721	0.009780505
140	-0.2740579	0.08462823	-0.1570383	0.03422973	-0.1299138	0.02644559	-0.007307095	0.009795173

Table 14: Point Prediction for Internal Value over heteroskedastic data ($n = 200, \tau = 0.1$)

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
10	-0.00078446	0.0004397085	-0.001282314	0.0004403816	-0.001281847	0.0004403461	-0.001460641	0.0004417506
20	-0.001122367	0.0004306633	-0.001431476	0.0004311207	-0.001431238	0.0004311334	-0.001977922	0.0004335427
30	-0.002288569	0.0004309951	-0.002426097	0.0004313394	-0.002424798	0.0004313337	-0.003182182	0.0004360195
40	-0.00405804	0.0004390668	-0.004017686	0.0004388123	-0.004015654	0.0004387818	-0.004960882	0.0004476175
50	-0.006300199	0.0004597561	-0.006090049	0.0004573097	-0.006086971	0.0004572689	-0.007269184	0.0004732545
60	-0.008952297	0.0004986956	-0.00857106	0.0004917471	-0.008566653	0.0004916759	-0.01008903	0.0005201175
70	-0.01195461	0.0005599192	-0.0114063	0.0005469568	-0.01140055	0.0005468245	-0.01341156	0.0005966537
80	-0.01524307	0.000648231	-0.01455151	0.0006275842	-0.01454456	0.0006273696	-0.01723004	0.000712577
90	-0.0188042	0.0007686332	-0.0179713	0.0007381116	-0.01796344	0.0007378019	-0.02153766	0.0008788525
100	-0.02260511	0.0009254938	-0.02163909	0.0008829351	-0.02163065	0.000882528	-0.02632699	0.00110763
110	-0.02662906	0.001123084	-0.02553604	0.001066478	-0.02552742	0.001065985	-0.03158974	0.001412141
120	-0.03085926	0.001365925	-0.02964955	0.001293297	-0.02964117	0.00129274	-0.03731584	0.001806523
130	-0.03531386	0.001660546	-0.03397167	0.001568158	-0.03396393	0.00156757	-0.0434914	0.002305438
140	-0.03995794	0.002010171	-0.0384976	0.001896071	-0.03849081	0.00189549	-0.05009551	0.002923419

Table 15: Point Prediction for Boundary Value over heteroskedastic data ($n = 1001, \tau = 0.3$)

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
0	-0.01641585	0.273216	-0.01371259	0.3278422	0.01500573	0.3662851	0.01063269	0.3832281
20	-0.02085331	0.2520507	-0.0253276	0.274159	0.002731055	0.2896534	0.01538866	0.2991516
30	-0.02981426	0.2462187	-0.03060796	0.2589025	0.003270715	0.2685365	0.0163369	0.2755266
40	-0.04068759	0.2442488	-0.03742699	0.2526514	0.002433103	0.2586642	0.01748551	0.2629147
50	-0.05443176	0.2442541	-0.04586018	0.2488821	0.0005299281	0.2526573	0.01882287	0.2552529
60	-0.06977487	0.245767	-0.05475483	0.2474683	-0.001728694	0.248843	0.0199724	0.2506579
70	-0.08589639	0.2481108	-0.06470145	0.2471712	-0.005360827	0.2463975	0.02061821	0.2481124
80	-0.1036357	0.25121	-0.07550857	0.2474051	-0.01066184	0.2448518	0.02070028	0.2467569
90	-0.1221155	0.2551902	-0.08684923	0.2482818	-0.01739231	0.2440367	0.02029725	0.2459808
100	-0.1410488	0.2599296	-0.09877418	0.2499431	-0.02522804	0.2438554	0.01949336	0.2454429
110	-0.1599352	0.2653016	-0.1111362	0.252298	-0.03400529	0.2440469	0.0183332	0.2449864
120	-0.1798873	0.2718873	-0.1241105	0.2552008	-0.04372748	0.2444396	0.01682687	0.2445524
130	-0.2001088	0.2793124	-0.1376482	0.2586551	-0.05435831	0.2450597	0.01496614	0.2441256
140	-0.2196351	0.2872558	-0.1514669	0.2625969	-0.06555938	0.2460242	0.01273652	0.2437067

Table 16: Point Prediction for Internal Value over heteroskedastic data ($n = 200, \tau = 0.3$)

Ban	Bias-LC	MSE-LC	Bias-LH	MSE-LH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
10	-0.005989017	0.01091506	-0.009105295	0.01090718	-0.009100397	0.01090687	-0.006151798	0.01102828
20	-0.004317512	0.01067232	-0.006852094	0.01066366	-0.006845515	0.01066378	-0.005549238	0.01077156
30	-0.004591794	0.01059617	-0.006678386	0.0105944	-0.006665835	0.01059435	-0.006333703	0.01068745
40	-0.005937551	0.01054613	-0.007674744	0.01055486	-0.007656429	0.01055456	-0.00795147	0.01063841
50	-0.007974463	0.01051967	-0.009442124	0.01053534	-0.009416436	0.01053501	-0.01019012	0.01061418
60	-0.01058953	0.01053145	-0.01180495	0.01054554	-0.01176999	0.01054509	-0.01297439	0.01062656
70	-0.01373489	0.01057533	-0.01467215	0.01059193	-0.01462675	0.01059104	-0.01627809	0.01068457
80	-0.01725266	0.01066128	-0.01798338	0.01067947	-0.01792693	0.01067781	-0.02008891	0.01079614
90	-0.02118215	0.0107964	-0.02169107	0.01081295	-0.02162338	0.01081019	-0.0243973	0.01096978
100	-0.02546816	0.01098609	-0.02575577	0.01099723	-0.02567729	0.01099311	-0.0291937	0.01121525
110	-0.03007643	0.01123397	-0.0301445	0.01123745	-0.03005627	0.01123178	-0.03446792	0.01154379
120	-0.03496193	0.01154587	-0.03483024	0.01153901	-0.03473374	0.01153169	-0.04020819	0.01196797
130	-0.04015664	0.01193249	-0.03979071	0.01190758	-0.03968792	0.01189862	-0.04639914	0.0125013
140	-0.04561132	0.01240015	-0.04500812	0.01234911	-0.04490124	0.01233864	-0.05301874	0.01315745

Table 17: Point Prediction for ISLR Wage Dataset

Method	Bias	MSE
LC	0.0004954944	0.08236025
LLH	-0.001962329	0.0808793
LLM	-6.005305e-05	0.08044857
LL	0.0002608775	0.08055141

is tabulated versus decreasing age and performed point prediction over the last 231 values of this backward dataset, i.e., the first 231 values of the original. Since this is a regression dataset with non-uniformly distributed design points we determine bandwidths for LC, LLH and LLM using the 2-sided predictive cross-validation procedure outlined in Section 2.5. We predict the value of logwage at i and compare it with the known value at that point where $i = 2770, \dots, 3000$ to determine the MSE of point prediction. Plots of the conditional density function estimated using the three model-free methods LC, LLH and LLM at a selected point are shown in Figure 8 along with that of LL as reference.

Point prediction results for all three methods over data points $2770, \dots, 3000$ (logwage versus decreasing age) are given in Table 17. It can be seen from this table that LLM has the best point prediction performance and this closely matches that of LL. As in the case of simulated data, this is an unexpected and encouraging result indicating that the LLM distribution may be an all-around favorable estimator both in terms of its quantiles as well as its center of location used for point estimation and prediction purposes.

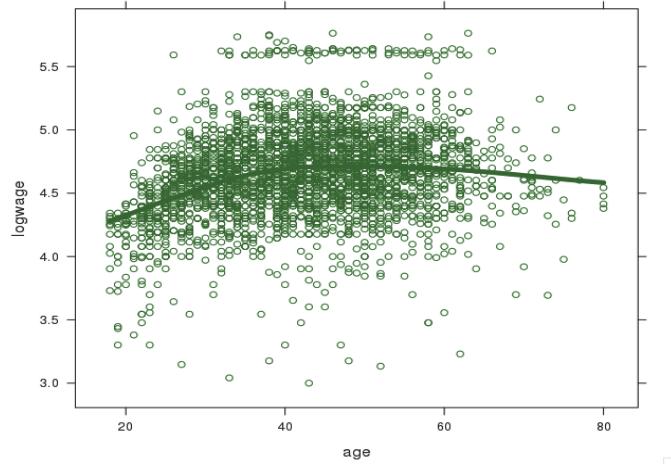


Figure 7: Plot of logwage versus age from Wage dataset (ISLR package)

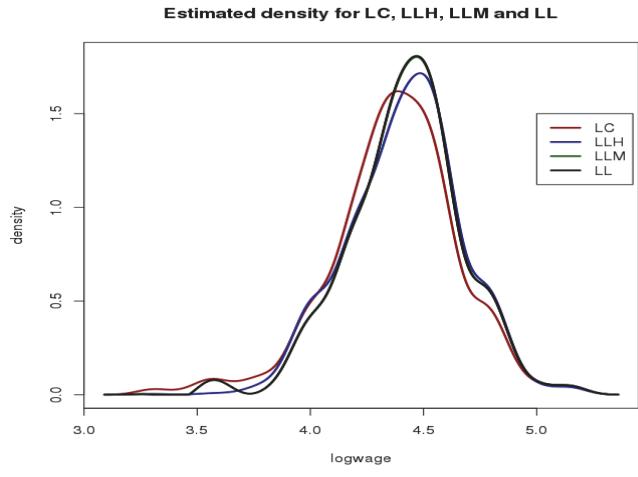


Figure 8: Plot of estimated conditional density function using LC, LLH, LLM and LL methods on ISLR dataset

4 Conclusions

Improved estimation of conditional distributions at boundary points is possible via local linear smoothing and other methods that, however, do not guarantee that the resulting estimator is a proper distribution function. In the paper at hand we propose a simple monotonicity correction procedure that is immediately applicable, easy to implement, and performs well with simulated and real data.

To elaborate, it has been shown using boundary points on simulated datasets that the

LLM distribution estimator outperforms that of LLH and LC as seen by the values of the Kolmogorov-Smirnov test statistic, accuracy of estimated quantiles, and also by its performance in point prediction—the latter finding being entirely unexpected. In contrast, for internal points on these datasets there seem to be no significant differences between the 3 estimators using these performance metrics.

In addition, among all three methods over a wide range of selected bandwidths the overall best performance is obtained using Monotone Local Linear Estimation. As can be seen from the point prediction tables, the predictor based on $\bar{F}_x^{LLM}(y)$ has lower bias compared to $\bar{F}_x(y)$ and $\bar{F}_x^{LLH}(y)$; this is consistent with the discussion in Section 2, i.e. that $\bar{F}_x^{LLM}(y)$ has improved performance because of reduced bias in extrapolation for the boundary case. No such differences in bias are noticed for the case of internal points.

As in the case of simulated data, in the real data example as well the point prediction performance of LLM closely matches in performance to that of LL which implies that the LLM distribution estimator can be used for all practical applications, including point prediction.

Acknowledgements

This research was partially supported by NSF grants DMS 12-23137 and DMS 16-13026. The authors would like to acknowledge the Pacific Research Platform, NSF Project ACI-1541349 and Larry Smarr (PI, Calit2 at UCSD) for providing the computing infrastructure used in this project.

References

Fan, J., & Gijbels, I. (1996). *Local polynomial modelling and its applications: monographs on statistics and applied probability 66* (Vol. 66). CRC Press, Boca Raton.

Hall, P., Wolff, R. C., & Yao, Q. (1999). Methods for estimating a conditional distribution function. *Journal of the American Statistical Association*, 94(445), 154–163.

Hansen, B. E. (2004). Nonparametric estimation of smooth conditional distributions. *Unpublished paper: Department of Economics, University of Wisconsin*.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). *ISLR*: Data for an introduction to statistical learning with applications in r [Computer software manual]. Retrieved from <http://CRAN.R-project.org/package=ISLR> (R package version 1.0)

Koenker, R. (2005). *Quantile regression* (No. 38). Cambridge University Press, Cambridge.

Li, Q., & Racine, J. S. (2007). *Nonparametric econometrics: theory and practice*. Princeton University Press, Princeton.

Politis, D. N. (2013). Model-free model-fitting and predictive distributions. *Test*, 22(2), 183–221.

Politis, D. N. (2015). *Model-free prediction and regression*. Springer, New York.

Schucany, W. R. (2004). Kernel smoothers: an overview of curve estimators for the first graduate course in nonparametric statistics. *Statistical Science*, 663–675.

Wand, M. P., & Jones, M. C. (1994). *Kernel smoothing*. CRC Press, Boca Raton.

Yu, K., & Jones, M. (1998). Local linear quantile regression. *Journal of the American Statistical Association*, 93(441), 228–237.

Yu, K., Lu, Z., & Stander, J. (2003). Quantile regression: applications and current research areas. *Journal of the Royal Statistical Society: Series D (The Statistician)*, 52(3), 331–350.