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We report the first observation of the double strange baryon Z(1620)° in its decay to 2z " via Ef —
E-z" " decays based on a 980 fb~! data sample collected with the Belle detector at the KEKB asymmetric-
energy et e” collider. The mass and width are measured to be 1610.4 & 6.0(stat) *$) (syst) MeV/c? and
59.9 = 4.8(stat) >¥ (syst) MeV, respectively. We obtain 4.0¢ evidence of the £(1690)° with the same data
sample. These results shed light on the structure of hyperon resonances with strangeness S = —2.

DOI: 10.1103/PhysRevLett.122.072501

The constituent quark model has been very successful in
describing the ground states of the flavor SU(3) octet and
decuplet baryons [1-3]. However, some of the observed
excited states do not agree well with the theoretical
prediction. It is thus important to study such unusual states,
both to probe the limitation of the quark models and to
spot unrevealed aspects of the quantum-chromodynamics
(QCD) description of the structure of hadron resonances.

Intriguingly, the = resonances with strangeness S = —2
may provide important information on the latter aspect.
The quantum numbers of several nucleons and § = —1

hyperon resonances have been measured. Recently, there
has been significant progress in the experimental study of
charmed baryons by the Belle, BABAR, and LHCb
Collaborations. In contrast, only a small number of =
states have been measured [1]. Neither the first radial
excitation with the spin parity of J© = %* nor a first orbital
excitation with J¥ = %‘ has been identified. Determination
of the mass of the first excited state provides a vital test of
our understanding of the structure of E resonances. One
candidate for the first excited state is the Z(1690), which
has a three-star rating on a four-star scale [1]. Another
candidate is the £(1620), with a one-star rating [1]. If the 3~
state is found, it will be the doubly strange analogue to the
A(1405) state, which has been postulated as a candidate
meson-baryon molecular state or a pentaquark [4].
Experimental evidence for the £(1620) — Ex decay was
reported in K~ p interactions in the 1970s [5—7]. The mass
and width measurements are consistent but have large
statistical uncertainties. The most recent study, in 1981, has
not found this resonance [8]. There is a lingering theoretical
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controversy about the interpretation of the Z(1620) and
E(1690) states [9-16], extending from their assignment in
the quark model to their existence. This would be addressed
with new high-quality experimental results for the first
excited state with § = —2. The hadronic decays of charmed
baryons governed by the ¢ — s quark transition are a good
laboratory to probe these strange baryons.

In this Letter, we study the decay Ef — E0zF, 50 —
E~n" based on a data sample collected with the Belle
detector at the KEKB asymmetric-energy e™e~ (3.5 on
8 GeV) collider [17]. The charge conjugate mode is
included throughout this Letter. The sample corresponds
to an integrated luminosity of 980 fb~!. The major part of
the data was taken at the Y(4S) resonance; in addition,
smaller integrated luminosity samples were collected off
resonance and at the T(15), T(25), T(3S), and T(55). We
use a Monte Carlo (MC) simulation sample to characterize
the mass resolution, detector acceptance, and invariant
mass distribution in the available phase space. The MC
samples are generated with EVTGEN [18], and the detector
response is simulated with GEANT3 [19].

The Belle detector is a large-solid-angle magnetic
spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter comprised of
CsI(T1) crystals (ECL); all these components are located
inside a superconducting solenoid coil that providesa 1.5 T
magnetic field. The detector is described in detail elsewhere
[20]. Two inner detector configurations were used. A
2.0 cm radius beam pipe and a 3-layer SVD was used
for the first sample of 156 fb~!, while a 1.5 ¢cm radius beam
pipe, a 4-layer SVD and a small-cell inner CDC were used
to record the remaining 824 fb~! [21].

We reconstruct the =F via the Ef - Zx'zat,
8~ - Azn~, A - pa~ decay channel. Final-state charged
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particles, p and z*, are identified using the information
from the tracking (SVD, CDC) and charged-hadron iden-
tification (CDC, ACC, TOF) systems combined into like-
lihood ratios L(i:j)=L;/(L;+L;), where i,j€{p.K.x}.
The 7+ particles are selected by requiring £(z:K) > 0.6;
this has about 90% efficiency. The criteria L(p:x) > 0.6
and L(p:K) > 0.6 are required for proton candidates from
the A. The A particles are reconstructed from pz~ pairs
with about 98% efficiency. The three-momentum of the A
is combined with that of a z~ track to reconstruct the helix
trajectory of the =~ candidate; this helix is extrapolated
back toward the interaction point. A vertex fit is applied
to the 2~ — Az~ decay and the y? is required to be less
than 50. We retain =~ candidates whose mass is within
+3.0 MeV/c?(436) of the nominal E~ mass. Then, we
combine the E~ with two z" candidates, where the pion
with the lower (higher) momentum is labeled z; (x;). The
closest distance between the z track and the nominal e* e~
interaction point must satisfy |dz| < 1.3 cm along the
beam direction, and |dr| < 0.16(0.13) cm in the transverse
plane for z; (z};) for both z;} and x};. A vertex fit is applied
to the EF — E-ztxt decay. The y? is required to be less
than 50. To purify the E/ samples, the scaled momentum
X, = Pem/y/35 —m(EE)? is required to exceed 0.5,
where p.,, is the momentum of Z! in the ee™ center-
of-mass system, s is the squared total center-of-mass
energy, and m(Z}) is the Ef nominal mass. We retain
El candidates that satisfy |M(E zz")—-m(E})| <
12.7 MeV/c?. The region 30.0 MeV/c? < [M(E-ztn")—
m(E})| < 55.4 MeV/c? defines the sideband for estima-
tion of the combinatorial background.

The M(E~z}) and M(E"x};) distributions of the final
sample are shown in Fig. 1(a). Peaks corresponding to
E(1530)°, £(1620)°, and Z(1690)° are observed in the
M(E~x}) distribution. A reflection due to £(1530)° decays
is seen around 2.2 GeV/c? in M(E~x};). The hatched
histograms are the distributions of the E/ sideband events,
where only the £(1530)° is observed. The Dalitz plot of
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FIG. 1. (a) The E~z; (solid) and E‘ﬂ; (dashed) invariant mass

distributions in the E/ signal region, as well as the corresponding

distributions (hatched) in the E/ sideband region. (b) The Dalitz

distribution for Ef — E~x}x}.

M?(E~n}) vs M*(Ex};) is shown in Fig. 1(b). The cluster
of events due to the Z(1530)° is seen. The region
4.3-5.3 (GeV/c?)? in M?(E~x;;) contains the Z(1620)°
and E(1690)° signals. There are currently no known
particles with a mass in the range of 2.1-2.3 GeV/c? that
would decay into Ex. Such massive particles would decay
predominantly into a three-particle final state such as Ezz.
The peaks around 1.60 and 1.69 GeV/c? in M(E~x}) are
interpreted as the £(1620)° and Z(1690)° resonances. We
see an unknown structure in the range 1.8-2.1 GeV/c? in
M(Z~z"). These events are expected to be due to reso-
nances such as 2(1820)°, £(1950)°, and Z(2030)°.

The correction of the event-reconstruction efficiency is
applied to the mass spectrum. To calculate this efficiency,
we generate MC events for the nonresonant three-body
decay Ef — E~z"z" with a uniform distribution in phase
space. The efficiency is the number of events surviving
the selections divided by the total number of generated
events, and is measured as a function of M(E "z} ); the
resulting efficiency is from 0.082 to 0.097 and shows a
nearly flat distribution in M(Z~z; ). The mass distribution
is divided by this efficiency and is normalized by the total
number of events.

We perform a binned maximum-likelihood fit to the
efficiency-corrected M(E~x}) distribution. The fit is
applied for the data samples in the signal region and the
sideband region simultaneously. The fitting range is
restricted to (1.46,1.76) GeV/c? to avoid inclusion of
the unknown structure between 1.8 and 2.1 GeV/c?. The
fitting function for the mass spectrum in the signal region
includes resonances due to the 2(1530)°, Z(1620)°, and
E(1690)°, a nonresonant contribution, and the combina-
torial background. The fitting function for the mass
spectrum in the sideband region includes the Z(1530)°
signal and the combinatorial background. The shape of
the fitting function for the combinatorial backgrounds is
common for the mass spectra in the signal region and the
sideband region, and is made by a function with a thresh-
old: u®exp(ub) + cu, where u=1-1[2-M)/(2-d))?
and M = M(E"x}); a, b, ¢, and d are free parameters. We
assume an S-wave nonresonant contribution, and generate
the distribution from the MC simulation of 27 — E~ 2tz "
decays with a uniform distribution in phase space. The
E(1620)° signal is modeled with the S-wave relativistic
Breit-Wigner function. The Z(1530)° and Z(1690)° signals
are modeled with P- and S-wave relativistic Breit-Wigner
functions convolved with a fixed Gaussian resolution
function of width 1.38 and 2.04 MeV/c?, respectively,
as determined from the MC simulation. The width and mass
of £(1530)° and Z(1620)° particles are floated in the fit.
The mass and width of the £(1690)° are fixed in the fit to
the values (1686 MeV/c?* and 10 MeV, respectively)
measured by the WA89 Collaboration [22]. The interfer-
ence between the Z(1620)° and the S-wave nonresonant

072501-4



PHYSICAL REVIEW LETTERS 122, 072501 (2019)

600F T T T T T T T T T T T
" (a) 450 o)

Events/(0.003 GeV/c?)
W u
S S
Events/(0.003 GeV/c?)
_ n n W w B
S 8 8 8 8 8
T T T T T T

15)
S
T

o
=

e Laiit 1 e
15 155 16 165 17 155

;3: ) ; 15 1. +1.6 165 1.7 +1.7
[ AN
5 1.55ME:[;6 [G;\GIF;CZ] 1.7 175 15 1.55M571:6[Ge1\./6/5C2] 17 175

o

5

Pull
oomws O

1

FIG. 2. (a) The Ex; invariant mass spectrum in the signal
region (points with error bars), together with the fit result (solid
blue curve) including the following components: Z(1530)° signal
(dashed red curve), 2(1690)° signal (dot-dashed pink curve),
E(1620)° signal and nonresonant contribution (dot-dashed black
curve), the combinatorial backgrounds (dotted black curve). The
bottom plots show the normalized residuals (pulls) of the fits.
(b) The -} invariant mass spectrum in the sideband region
(points with error bars), together with the fit result (solid blue
curve) including the following components: Z(1530)° signal
(dashed red curve), and the combinatorial backgrounds (dotted
black curve).

process is taken into account, and these are coherently
added. We check the interference of the 2(1690)° to the S-
wave nonresonant process and the Z(1620)° by applying
the fit with the interference term, and it is negligible.
Figure 2(a) and 2(b) show the E~z; mass spectrum in the
signal region and the sideband region with the fitting result,
respectively. The y?/ndf (where ndf is the number of
degrees of freedom) is 66/86. For the £(1620)° and the
£(1690)° resonance, fits are repeated by fixing each yield
to zero; the resulting difference in log-likelihood with
respect to the nominal fit and the change of the number
of degrees of freedom are used to obtain the statistical
significance. Taking the systematic uncertainties mentioned
later into account, the signal significance of the Z(1620)°
is obtained to be 25¢. The statistical significance of the
£(1690)? is 4.56. When the P-wave-only relativistic Breit-
Wigner function with fixed mass and width is used as
the fitting function, the significance is 4.0c. When the S-
wave-only relativistic Breit-Wigner function with the
floated mass and width is used, the significance is 4.6c6.
We take the minimum value of 4.0c as the significance
including the systematic uncertainty. The measured mass
and width of 2(1530)° are 1533.4 + 0.4 MeV/c? and
11.2 £ 1.5 MeV, respectively. The measured mass and
width of Z(1620)° are 1610.4 + 6.0 MeV/c? and 60.0 +
4.8 MeV, respectively. The mass resolution (o) at
1600 MeV/c? is 1.6 MeV/c? as determined from the

TABLE I. Systematic uncertainties for the mass and the width
of 2(1620)°.
Source Mass (MeV/c?)  Width (MeV)

Mass scale -1.5 =2.7

Mass shape of Z(1620) +4.5 +1.8
Mass shape of Z2(1690) +2.3 +1.7
Nonresonant contribution -2.3 +0.3/-3.8
Interference with Z(1690) +1.3 -52
Bin size +3.1 +1.3
Tou ! 3

MC simulation. The width of the Z(1620)? is 59.9 MeV
after incorporating this mass resolution.

We itemize the systematic uncertainties on the mass and
width of the Z(1620)° resonance in Table I. The mass scale
and width is checked by comparing the reconstructed mass
of the 2(1530)? in the E~z" channel with the nominal
mass. The differences of the mass and width are
—1.5 MeV/c? and —2.7 MeV, respectively. We then gen-
erate and simulate 2 — E*z", E* —» E-z" events and
analyze them by the same program as for the real data; the
mass scale is checked by comparing the reconstructed mass
of Z* with the generated mass. Here, the difference of the
mass is —0.2 MeV/c? and the difference of the width is less
than the statistical error. The systematic uncertainties due to
the mass shapes of the Z(1620)° and Z(1690)° are obtained
by the fitting their masses and widths after switching each
to the P-wave relativistic Breit-Wigner function instead of
the nominally used S-wave form. Deviation from pure
phase space for the nonresonant contribution is possible,
and we estimate this systematic uncertainty by multiplying
the nominal phase-space distribution with a third-order
polynomial passing the kinematical lower bound of
M(E~z") and refitting. The systematic uncertainty from
possible interference between the Z(1690)° and the non-
resonant component is estimated by comparing the fit
results with and without interference applied. The nominal
bin width of the mass spectrum is 3.0 MeV/c?>. We
determine its systematic uncertainty by changing the bin
size from 2.5 to 3.5 MeV/c? and refitting.

All of the above sources are uncorrelated, so the total
systematic uncertainties are calculated by summing them in
quadrature.

We refit the data using a function that excludes the
interference between Z(1620)° and the S-wave nonresonant
process. The y?/ndf is 80/87, which is worse than the
nominal fit result (66/86). The refitted mass and width of the
2(1620)° are 1601.2+1.5MeV/c? and 63.6+8.7MeV,
respectively.

For the first time, the £(1620)° particle is observed in its
decay to E-x" via Ef — E~xtz" decays. The number of
£(1620)° events is 2 orders of magnitude larger than that in
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previous experiments. The measured mass and width of
the Z(1620)° are consistent with the results of previous
measurements within the large uncertainties of the latter
and are much more precise. The width of the Z(1620)° is
somewhat larger than that of the other &* particles [1].

The constituent quark models have predicted the first
excited states of Z around 1800 MeV/c? [3]; therefore, it is
difficult to explain the structure of the Z(1620)° and
E(1690)° in this context. Instead, it implies that these
states are candidates of a new class of exotic hadrons. We
observe in the low-mass region two states with a mass
difference of about 80 MeV/c?: the Z(1620)° is strongly
coupled to Ex and the E(1690)° to K. The situation is
similar to the two poles of the A(1405) [4] and suggests the
possibility of two poles in the S = —2 sector. Studying
these states may explain the riddle about the A(1405);
consequently, the interplay between the S = —1 and S =
—2 states can help resolve this longstanding problem of
hadron physics.

The E(1620)° and E(1690)° particles are found in the
decay of £} while their signals are not seen in the sideband
events of Fig. 1(a). These results offer a clue for under-
standing the quark structure of these exotic states. The
result indicates that the hadronic decays of charmed
baryons via charm-to-strange quark transitions are poten-
tially a promising system for further studies of strange
baryons [16].
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