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We present the first measurements of absolute branching fractions of

20 decays into E-z+, AK~z*, and

pK~K~z" final states. The measurements are made using a dataset comprising (772 + 11) x 10 BB pairs
collected at the T (4S) resonance with the Belle detector at the KEKB ete™ collider. We first measure

the absolute branching fraction for B~ — A-E? using a missing-mass technique;
(9.51 £2.10 £ 0.88) x 10™*. We subsequently measure the product branching frac-
) > B ), B(B~ = A7E)B(EY — AK~xt), and B(B~ — A;EY)B(E! —

B(B~ - A;EQ) =
tions B(B~ — A7E)B(EY

the result is

pK~K~z") with improved precision. Dividing these product branching fractions by the result for

B~ - A;E°

2. vyields the following branching fractions:
B(EY > AK=z") = (1.17 £0.37 £ 0.09)%, and B(E? —» pK K zt) =

B(E? —» =-7*) = (1.80 4 0.50 = 0.14)%,
(0.58 4 0.23 £ 0.05)%. For

the above branching fractions, the first uncertainties are statistical and the second are systematic Our

result for B(EY — Z~77") can be combined with Z
yield other absolute Z0 branching fractions.

DOI: 10.1103/PhysRevLett.122.082001

Half a century after the theory of quantum chromody-
namics (QCD) was developed, understanding the nonper-
turbative property of the strong interaction still remains a
challenge. Weak decays of charmed hadrons play a unique
role in the study of strong interactions, as the charm mass
scale is near the boundary between perturbative and non-
perturbative QCD. The charmed-baryon sector offers an
excellent laboratory for testing heavy-quark symmetry and
light-quark chiral symmetry, both of which have important
implications for the low-energy dynamics of heavy baryons
interacting with Goldstone bosons [1]. In exclusive charm
decays, the heavy-quark expansion does not work, and
experimental data are needed to extract nonperturbative
quantities in the decay amplitudes [2—5]. Decays of charmed
baryons with an additional quark and spin of 1/2 provide
complementary information to that of charm-meson decays.

Unlike in the charmed-meson sector, where D°, D", and
D decays are all well measured, in the charm-baryon
sector only A} absolute branching fractions have been
measured [6,7]. Thus, the branching fractlons of 2V
baryons are all measured relative to the 20 — Z~z+ mode.
Thus a measurement of the absolute branching fraction
B(E? - E-z") is needed to determine the absolute branch-
ing fractions of other Z0 decays. In charmed-baryon
decays, nonfactorizable contributions to the decay ampli-
tude are important, and a variety of models have been
developed to predict the decay rate in such processes

[8-17]. For example, the B(Z) — Z=z%) has been

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’

9 branching fractions measured relative to 20 — Z~ 7% to

predicted to be 0.74% or 1.12% [15], (2.24 +£0.34)%
[16], and (1.91 +0.17)% [17]. Experimental information
is crucial to validate these models as well as to constrain the
model parameters.

The B(E? - AK~z") and B(E) —» pK~K~zt) have
been measured relative to B(E? - E-z") to be 1.07 +
0.12 4+ 0.07 and 0.33 £ 0.03 £ 0.03 [18], respectively. The
decay E? — pK~ K~z plays a key role in many bottom-
baryon studies at LHCb [19,20]. The decay B~ — A7E0,
which proceeds via a b — cCs transition, has a branching
fraction predicted to be of the order 1073 [21]. However, this
has not been measured because the absolute branching
fractions of 2% are unknown. The measured product
branching fractions are B(B~ — A7EQ)B(E) - E-zF) =
(2.440.9) x 107 and B(B~—>A;E)B(E)—AK"zt)=
(2.140.9)x 1073 [22-24].

In this Letter, we perform an analysis of B~ — A;:g
with A7 reconstructed via pK* 7z~ and ng modes, and E
reconstructed both inclusively and exclusively via E=z,
AK 7", and pK~ K~z modes [25]. We present first a
measurement of the absolute branching fraction for
B~ — A7EY using a missing-mass technique. For this
analysis we fully reconstruct the tag-side Bt decay. We
subsequently measure the product branching fractions
BB~ — A;E)B(EY » E-7t), B(B~ —» AEQ)B(E? —
AK~7"), and B(B~ - A;E)B(E? —» pK~K~z"). For
these measurements we do not reconstruct the recoiling
B* decay, as the signal decays are fully reconstructed.
Dividing these product branching fractions by B(B~ —
AZE?) yields the branching fractions B(E) — E~zt),
B(E? - AK~z"), and B(EQ — pK~K~z").

This analysis is based on the full data sample of
702.6 fb=! collected at the Y(4S) resonance by the
Belle detector [26] at the KEKB asymmetric-energy

082001-3


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.082001&domain=pdf&date_stamp=2019-02-25
https://doi.org/10.1103/PhysRevLett.122.082001
https://doi.org/10.1103/PhysRevLett.122.082001
https://doi.org/10.1103/PhysRevLett.122.082001
https://doi.org/10.1103/PhysRevLett.122.082001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 122, 082001 (2019)

ete™ collider [27]. The detector is described in detail
elsewhere [26].

To optimize signal selection criteria and calculate the
signal reconstruction efficiency, we use Monte Carlo (MC)
simulated events. Signal events of B meson decays are
generated using EVTGEN [28], while inclusive Z0 decays are
generated using PYTHIA [29]. The MC events are processed
with a detector simulation based on GEANT3 [30]. MC
samples of Y(4S) — BB events with B = B* or B’, and
ete” — ggevents withg = u, d, s, c at /s = 10.58 GeV,
are used as background samples.

To select signal candidates, well-reconstructed tracks
and particle identification are performed using the same
method as in Ref. [31], as well as the A — pz~ and Kg -
x7n~ candidates [31].

For the inclusive analysis of the ZO decay, the tag-side
B meson candidate, ng, is reconstructed using a neural
network based on a full hadron-reconstruction algorithm
[32]. Each Bt*;g candidate has an associated output value
Oy from the multivariate analysis that ranges from O to 1.
A candidate with larger Ony is more likely to be a true B
meson. If multiple Bfgg candidates are found in an event,
the candidate with the largest Oyy is selected. To improve

the purity of the Bﬂ;g sample, we require Oyny > 0.005,

M > 527 GeV/c?, and |AE®¢| < 0.04 GeV, where the
latter two intervals correspond to approximately 3¢ in
resolution. The variables M;"* and AE“ are defined as

tag __ 2 —tag|2 tag — tag
M = By~ | and AESE = Y E — Eiy,
tag

where Epeam = 1/5/2 is the beam energy and (E\¢, p\"®) is

the four-momentum of the Bﬂ;g daughter i in the e*e™
+

center-of-mass system (c.m.s.). After reconstructing a B,

candidate, A; > pKz~ and A7 — pKY$ decays are recon-
structed from among the remaining tracks. We perform a fit
for the decay vertex and require that yZ...,/n.d.f. < 15,
where n.d.f. is the number of degrees of freedom. If there is
more than one A7 candidate in an event, the candidate with
the smallest y2,,/n.d.f. is selected. We define a A signal
region |Mpx+ppk0 = mji-| <10 MeV/c? (3.00), where
mj- is the nominal mass of the A- [22].

The “recoil mass” of the daughter X in B~ — A7 + X is

calculated using M?ﬁ"j{_:\/ (Pcim.S—PBfg—P,-\-_)z, where
DeAs : :

P._ ., Pp+, and P;- are the four-momenta of the initial
c.m.s B Ag

eTe™ system, the tagged BT meson, and the reconstructed
A7 baryon. To improve the recoil mass resolution, we

rec — pgrecoil _ - -
use M%< A= M A= + MBidg mg + Mj- —mj-, where

tag tag

Mpg: is the invariant mass of the B:gg candidate, M z- is the

reconstructed mass of the A7 candidate, and my is the

nominal mass of the B meson [22]. The distribution of M.

of the By, candidates versus M A- of the selected B~ —

A7E9 signal candidates summed over the two reconstructed

(GeV/c?)

A

M

2.25

5.24‘1‘ 525 ‘5.26 5.2‘7‘ 528 ‘5‘.29
M:S (GeV/c?)

FIG. 1. The distribution of M of By}, versus M- of selected
B~ — AZEY candidates with £ — anything, summed over the
two reconstructed A7 decay modes. The solid box shows the
signal region, and the dashed and dash-dotted boxes define

the My¥ and M- sidebands described in the text.

A7 decay modes is shown in Fig. 1, for 2.40 <

M;;’gg i < 2.53 GeV/c?. We observe a significant excess
of B~ — AZEY candidates in the signal region denoted
as the solid box in Fig. 1. To check for possible peaking
backgrounds, we define My: and M- sidebands, repre-
sented by the dashed and dash-dotted boxes in Fig. 1. Each
sideband box is the same size as the signal box. The
background contribution in the signal box is estimated
using half the number of events in the blue dashed sideband
boxes minus one-fourth the number of events in the red

dash-dotted sideband boxes. The Mg'ﬁ i distribution of
events in both the signal and sideband boxes is shown in
Fig. 2. No peaking backgrounds in the studied recoil Z%
mass region are found in the My¢ and M5 sideband events,

as shown with the shaded histogram in Fig. 2.

[ -eData

S 201 — All Fit

L | --BKG
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= I —Generic MC

v [

> 10|

< [

2 r
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e
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FIG. 2. The fit to the ML?E i

candidate events. The points with error bars represent the data,
the solid blue curve is the best fit, the dashed curve is the fitted
background (BKG), the cyan shaded histogram is from the scaled
M{ff and M ;- sidebands, the red open histogram is from the sum
of the MC-simulated contributions from the eTe™ — gg with
g = u,d, s, c,and Y(4S) — BB generic-decay backgrounds with
the number of events normalized to the number of events from the
normalized My¢ and M- sidebands.

distribution of the selected
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To extract the 20 signal yield, an unbinned maximum-
likelihood fit is performed to the M;;iag A- distribution. A
double-Gaussian function (its parameters are fixed to those
from a fit to the MC-simulated signal distribution) is used
to model the Z signal shape, and a first-order polynomial
is taken as the background shape. The fit results are shown
in Fig. 2.

The fitted Z0 signal yield is Ngo = 40.9 £9.0, with a
statistical significance of 5.50. The sfgniﬁcance is calculated
using v/ —21In(Ly/Lyax), Where Ly and L, are the like-
lihoods of the fits without and with a signal component,
respectively. The B(B~ — AZE?) is calculated using
Ngo/[Ng-(e1B) + &8,)]. Inthis expression, B; = B(A; —
pK*n), By = B(A; —» pK$)B(KY — nt77), and Np- =
2Ny (45 B[Y(4S) — BTB~], where Nvy(4s) is the number of
T (4S) events, and the B[Y(4S) — BTB~™] = (51.4 £ 0.6)%
[22]. The reconstruction efficiencies &; and &, of the
two A7 decay modes are obtained from MC simulation.
The B(A; —» pK*7n~), B(A; = pKY),and B(K) — ztz™)
are taken from Ref. [22]. The result is
B(B~ — A7EY) = [9.5142.10(stat)] x 107,

For the analysis of the exclusive Z0 decays, we again
use B~ — A;EQ decays in which A; —» (pK*z~, pKY).
However, instead of reconstructing the tag-side Bﬁag, we fully
reconstruct the Z? decay in the final states 2=z, AK~ 7+,
and pK~ K~ 7", where 2~ — Az~ and A — pz~. Fits to the
B~,E?, and =~ decay vertices are performed. If there is more
than one B~ candidate in an event, the one with the smallest
Xienex/n.d.f. from the B~ vertex fit is selected. We sub-
sequently require yZex/n.d.f. < 50, 15, and 15 for recon-
structed B~, EY, and =~ candidates, respectively. The £~ and
= signal ranges are defined as |M .- — m=-| < 10 MeV/c?
and |Mz — mg| <20 MeV/c* (3.00), where M, and
Mz are the invariant masses of the selected E~ and =2
candidates, and mz- and mgo are the nominal masses of 2~
and 20 [22]. The A signal interval is the same as in the
inclusive analysis of 0 decays. The B~ signal candidates are
identified using the beam-energy-constrained mass M, and
the energy difference AE, where M, and AE are calculated
in the same manner as done for Bfag candidates, but, here,

tracks from the B~ signal candidate decay are used.

€ 15k Taiee < °F ~Pata
E —All Fit
— s -BKG 3 “E (c1) “BKG
© S Sideband = 12F Sideband
% o 1o —Generic MC < 10 —Generic MC
(O] ~ ~ E
Yy 2 o 8F
< S g 6 3
9] o E
.- 5 E
= , Lﬁ Lﬁ 4;—
[— » 2F
. ) e . o Bttt X ok !
2.35 2.4 2.45 2.5 2.55 525 526 52 528 5.29 5.3 -0.04 -0.02 0 0.02 0.04
M_, (GeV/c?) M, (GeV/c?) AE (GeV)
. -Data 14F -<Data
« —All Fit < E i
S E —All Fit
G § 10 B‘KG (b2) [) 12 E (02) . BKGI
© [} Sidebénd = 10k Sideband
% = —Generic MC NS F —Generic MC
(O] o — 8F
~ 5! = 2 of
i< . 8 5F & F
= b Il @
2.25 AR AL L S R I | of
o o LT T ey ) o
235 2.4 245 2.52 2.55 525 526 527 528 529 53 -0.
M, (GeV/c) M, (GeV/c?)
[ <Data E
G 10 _anrit (b3) 8F (c3) M
L [ -BKG ~ 7F (C —ANT
% 8F  sideband 3 b BKG
= [ —Generic MC =S E Z'dem_":nc
~ 6 F < 5 E— —Generic
— [ T 4
@ 4 8 sH H —
c b c S
o O oK
> 9 >
i} i1}
) ALY W i ) 3
2-52 2.55 525 526 527 528 529 53 004 002 0 0.02  0.04
M, (GeV/c) M, (GeV/c?) AE (GeV)

FIG. 3. The distributions of Mz versus M- (a) and the fits to the My (b) and AE (c) distributions of the selected B~ — AZEY
candidates with 20 — E-z+ (1), 22 - AK"z" (2), and E2 - pK~K~z* (3) decays, summed over the two reconstructed A, decay
modes. In (a), the central solid box defines the signal region. The red dash-dotted and blue dashed boxes show the Mz and Mz-
sideband regions used for the estimation of the non-Z and non-A7 backgrounds (see text). In (b) and (c), the dots with error bars
represent the data, the blue solid curves represent the best fits, and the dashed curves represent the fitted background contributions. The
shaded and red open histograms have the same meaning as in Fig. 2.
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TABLE L

Summary of the measured branching fractions and ratios of

Z9 decays (last column), and the corresponding systematic

uncertainties (%). For the branching fractions and ratios, the first uncertainties are statistical and the second are systematic.

Observable Efficiency Fit A. decays By,  Np- Sum Measured value
B(B~ — A;EY) 3.46 4.80 5.51 4.2 1.82 9.3  (9.51+£2.10+£0.88) x 107*
BB~ - A;E)B(EY - E-xF) 4.74 3.49 5.75 1.82 84  (1.714+0.28 £0.15) x 107
B(B~ — A‘_?)B(:Q — AK~z") 4.56 4.03 5.82 1.82 86  (1.114+0.26 £0.10) x 1073
B(B~ - A;E)B(EY - pK~K~nt) 7.25 5.11 5.03 1.82 105 (547 +1.78£0.57) x 107
B(EY - E=z) 2.94 59 4.2 e 7.8 (1.80 £ 0.50 £ 0.14)%
B(EY - AK~z") 2.65 6.3 4.2 e 8.0 (1.17 £ 0.37 £ 0.09)%
B(EY - pK~K~7™") 3.84 7.0 4.2 e 9.0 (0.58 £0.23 £0.05)%
B(E? — AK—7n")/B(EY - E-xF) 1.36 53 5.5 0.65 £0.18 +0.04
B(E? - pK—K—rﬁ)/B(:g — B ") 5.24 6.2 8.1 0.32 £0.12 +0.07

We define a B~ signal region as My, > 5.27 GeV/c?
and [AE[ < 0.03 GeV. The distributions of Mz versus
Mj- for events in the B~ signal region are shown
in Figs. 3(al)-3(a3) after all selection criteria are applied.
The central solid boxes define the 9 and A signal regions.
The backgrounds from non-Z? and non-A; events are
estimated from Mz and M - sidebands, represented by the
dashed boxes in Figs. 3(al)-3(a3). The sideband’s con-
tribution is estimated similarly to the inclusive analysis.
Figures 3(b) and 3(c) show the M, and AE distributions in
the 20 and A} signal regions from the selected B~ — AZE?
candidates with (1) 2% - Z-z*, (2) E2 - AK~ 7™, and
(3) EY— pK~K~z". All distributions are summed
over the two reconstructed A. decay modes.

The number of B~ — AZZY signal events is extracted
by performing an unbinned two-dimensional maximum-
likelihood fit to the My, versus AE distributions. For the
M, distribution, the signal shape is modeled with a
Gaussian function and the background is described using
an ARGUS function [33]. For the AE distribution, the
signal shape is modeled using a double-Gaussian function
and the background is described by a first-order polyno-
mial. All shape parameters of the signal functions are fixed
to the values obtained from the fits to the MC-simulated
signal distributions. The fit results are shown in Fig. 3.

We obtain Ng-,+ =44.8£7.3, Npg-+ =24.1£5.5, and
N,k-k-»+ = 16.6 == 5.4 signal events with statistical sig-
nificances of 9.5¢, 6.80, and 4.60. Using the efficiencies
calculated from MC simulation, we obtain B(B~— A7EY)
B(EY—>E-7")=[1.7140.28(stat)] x 1075, B(B~—A;E?)
B(:S—>AK‘7r+):[1.1110.26(stat)]x10‘5, and B(B~ —
AZEOB(EY - pK~K~7") = [5.4741.78(stat)] x 1076,

There are several sources of systematic uncertainties as listed
in Table 1. The reconstruction-efficiency-related uncertainties
include those for tracking efficiency (0.35% per track), particle
identification efficiency (0.9% per kaon, 0.9% per pion, and
3.6% per proton), as well as A (3.0% [34]) and Kg (1.6% [35])
reconstruction efficiencies. Assuming that all the above sources
of systematic uncertainty are independent, the reconstruction-
efficiency-related uncertainties are summed in quadrature for

each decay mode, yielding 4.0%—8.4%, depending on the
specific decay mode. For the four branching-fraction measure-
ments, the final uncertainties related to the efficiency of the
reconstruction are summed in quadrature over the two recon-
structed A decay modes using weight factors equal to the
product of the total efficiency and the A partial decay width.

We estimate the systematic uncertainties associated
with the fit by changing the order of the background
polynomial, the fitting range, and by enlarging the mass
resolution by 20%. The observed deviations are taken
as systematic uncertainties. Uncertainties on B(A; —
pK*z~) and T(A7 = pKY)/T(A; — pK*z~) are taken
from Ref. [22]. The final uncertainties on the two A7 partial
decay widths are summed in quadrature with the
reconstruction efficiency as a weighting factor. The uncer-
tainty due to the B tagging efficiency is 4.2% [36].
The uncertainty on B[Y(4S) - B"B7] is 1.2% [22]. The
systematic uncertainty on Nvyys) is 1.37% [37]. For the =0
branching fractions and the corresponding ratios, some
common systematic uncertainties cancel, including tracking,
particle identification, /_\; branching fractions, A and Kg
selections, and N g-. The sources of uncertainty summarized
in Table I are assumed to be independent and thus are added
in quadrature to obtain the total systematic uncertainty.

In summary, based on (772 +11)x 10° BB pairs
collected by Belle, we have performed an analysis of B~ —
AZE? inclusively with respect to the 20 decay using a
hadronic B-tagging method based on a full reconstruction
algorithm [32], and exclusively for Z° decays into Z 7+,
AK~ 7", and pK~K~z" final states. We report the first
measurements of the absolute branching fractions

B~ 5 ") =
B(E) - AKnt) =
B(EY - pK~K~nt) =

(1.80 £ 0.50 £ 0.14) %,

(117 £ 0.37 £ 0.09)%,

(0.58 £ 0.23 £ 0.05)%.

The measured B(E? - E-z") is consistent with the

theoretical predictions within uncertainties [15-17].
The B(B~ — A7E?) is measured for the first time to be
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B(B~ = A;E?) = (9.51 £2.10 £ 0.88) x 107,

For the above branching fractions, the first uncertainties
are statistical and the second systematic. The product
branching fractions are B(B~—A;E))B(EV—E-zt)=
(1.71£0.284+0.15)x 107, B(B~—A;E)B(E'—»AK 7" )=
(1.1140.2640.10)x1073, and B(B~ — A;E)B(E -
pK=K=nt) = (547 £ 1.78 £ 0.57) x 107°.  The first
two are consistent with previous measurements [23,24] with
improved precision. Our results supersede previous ones
from Belle [23]. The ratios of B(E? —» AK~z")/B(E? —
Ezt) and B(E - pK K z")/B(E) - E z") are
0.65£0.18 £0.04 and 0.32 +0.12 + 0.07, respectively,
which are consistent with world-average values 1.07 +
0.14 and 0.34 +0.04 [22] within uncertainties. For the
above branching fractions, the first uncertainties are stat-
istical and the second systematic. Our measured Z% branch-
ing fractions, e.g., that for 20 — Z~z7, can be combined
with 2% branching fractions measured relative to 20 — Z~z+
to yield other absolute =¥ branching fractions.
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