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We report a search for the charmless baryonic decay B0 → pp̄π0 with a data sample corresponding to an
integrated luminosity of 711 fb−1 containing ð772� 10Þ × 106 BB̄ pairs. The data were collected by the
Belle experiment running on the ϒð4SÞ resonance at the KEKB eþe− collider. We measure a branching
fraction BðB0 → pp̄π0Þ ¼ ð5.0� 1.8� 0.6Þ × 10−7, where the first uncertainty is statistical and the
second is systematic. The signal has a significance of 3.1 standard deviations and constitutes the first
evidence for this decay mode. We also search for the intermediate two-body decays B0 → Δþp̄ and
B0 → Δ̄−p, and set an upper limit on the branching fraction, BðB0 → Δþp̄Þ þ BðB0 → Δ̄−pÞ < 1.6 ×
10−6 at 90% confidence level.

DOI: 10.1103/PhysRevD.99.091104

The first observed charmless baryonic B decay was
Bþ → pp̄Kþ [1]. Following this first observation, many
other charmless baryonic B decays have been found [2].
Except for Bþ → pΛπ0 and pΛγ decays, all the channels
reported to date are entirely reconstructed from charged
particles in the final state. A noticeable hierarchy is also
observed in the branching fractions of these decays: three-
body decays are usually more frequent than their two-body
counterparts but less frequent than four-body decays [3,4].
This phenomenon can be understood in terms of the so-
called “threshold effect,” which refers to the fact that the B
meson prefers to decay into a dibaryon pair with low
invariant mass accompanied by a fast recoil meson [3,5,6].
This peaking behavior was unexpected, and has led to
various speculations about possible mechanisms [7–9].
Studying additional three-body baryonic decays might
provide a better understanding of the dynamics of B decays
and the aforementioned threshold effect. These decays are
also useful for CP violation studies [10].
This paper reports a search for a three-body charmless

baryonic B0 decays to the pp̄π0 final state [11] using a data
set corresponding to an integrated luminosity of 711 fb−1

collected with the Belle detector [12] at the ϒð4SÞ
resonance at the KEKB asymmetric-energy eþe− (3.5 on
8.0 GeV) collider [13]. So far, the decay B0 → pp̄π0 has
not been studied by any experiment. No theoretical
prediction for the branching fraction of this process is
yet available. A glance at the known branching fractions for
B decays [2] shows the three-body charmless baryonic
decays to occur in the several times 10−6 range, indicating
that the discovery of the mode B0 → pp̄π0 might be
possible with the currently available data set.

The Belle detector is a large-solid-angle magnetic spec-
trometer consisting of a silicon vertex detector (SVD), a 50-
layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like arrange-
ment of time-of-flight scintillation counters (TOF), and an
electromagnetic calorimeter (ECL) comprising CsI(Tl) crys-
tals. These detector components are located inside a super-
conducting solenoid coil that provides a 1.5 Tmagnetic field.
An iron flux-return located outside the coil is instrumented to
detect K0

L mesons and to identify muons. Two inner detector
configurations were used: a 2.0 cm radius beampipe and a
three-layer SVDwere used for the first 152 × 106 BB̄ pairs of
data, while a 1.5 cm radius beampipe, a four-layer SVD, and a
small-cell inner drift chamber were used for the remaining
620 × 106 BB̄ pairs of data. The detector is described in detail
inRef. [12]. Event selection requirements are optimized using
Monte Carlo (MC) simulations. MC events are generated
using EVTGEN [14], and the detector response is modeled
usingGEANT3 [15]. Final-state radiation is taken into account
using the PHOTOS package [16].

The reconstruction of B0 → pp̄π0 proceeds by first recon-
structing π0 → γγ candidates. An ECL cluster not matched to
any track in the CDC is identified as a photon candidate. Such
candidates are required to have an energy greater than 50MeV
in the barrel region and greater than 100 MeV in the end-cap
regions, where the barrel region covers the polar angle
32° < θ < 130° and the end-cap regions cover the ranges
12° < θ < 32° and 130° < θ < 157°. To reject showers
produced by neutral hadrons, the energy deposited in the
3 × 3 array of ECL crystals centered on the crystal with the
highest energymust exceed80%of the energydeposited in the
corresponding 5 × 5 array of crystals. We require that the γγ
invariant mass be within 20 MeV=c2 (about 3.5σ in reso-
lution) of the π0 mass [2]. To improve the π0 momentum
resolution, we perform a mass-constrained fit and require that
the resulting χ2 be less than 30. This requirement is relatively
loose, retaining more than 99% of candidates.
We subsequently combine π0 candidates with two

oppositely charged tracks, identified as a proton-antiproton
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pair. Such tracks are identified using requirements on the
distance of closest approach with respect to the interaction
point along the z axis (antiparallel to the eþ beam) of
jdzj < 3.0 cm, and in the transverse plane of dr < 0.3 cm.
In addition, charged tracks are required to have a minimum
number of SVD hits (>2 along the z axis and >1 in the
transverse direction). Particle identification is achieved
using information from the CDC, the TOF, and the ACC
subdetectors. This information is combined to form a
hadron likelihood Lh; a charged track with likelihood
ratios of Lp=ðLp þ LKÞ > 0.9 and Lp=ðLp þ LπÞ > 0.9
is regarded as a proton or antiproton. Furthermore, we
reject tracks consistent with either the electron or muon
hypothesis. The proton identification efficiency is 75% and
the probability for a kaon (pion) to be misidentified as a
proton is 6% (2%).
Candidate B0 mesons are identified using the beam-

energy-constrained mass, Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
beam − jp⃗Bcj2

p

=c2,
and the energy difference ΔE ¼ EB − Ebeam, where
Ebeam is the beam energy, and EB and p⃗B are the
reconstructed energy and momentum, respectively, of the
B0 candidate. All quantities are evaluated in the center-
of-mass (CM) frame. To improve the Mbc resolution,
the momentum p⃗B is calculated as p⃗B ¼ p⃗p þ p⃗p̄þ
p⃗π0

jp⃗π0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEbeam − Ep − Ep̄Þ2=c2 −m2
π0
c2

q

, where mπ0 is the

nominal π0 mass [2]; Eh and p⃗h are the energy and
momentum of the hadron h (h ¼ p, p̄, π0). In addition,
a vertex fit is performed to the charged tracks to form a B0

vertex. We require that the χ2 from the fit be less than 200.
Events withMbc > 5.25 GeV=c2 and −0.20 GeV < ΔE <
0.15 GeV are retained for further analysis. The signal yield
is calculated in a smaller region Mbc ∈ ð5.272; 5.286Þ
GeV=c2 and ΔE ∈ ð−0.12;þ0.06Þ GeV. In order to
reject contributions from charmonium states [e.g., ηc,
J=ψ , ψð2SÞ, χc0, χc1, and χc2], we apply a “charmonium
veto” and exclude the regions of 2.850 GeV=c2 <
mðpp̄Þ < 3.128 GeV=c2 and 3.315 GeV=c2 < mðpp̄Þ <
3.735 GeV=c2 from the event sample.
Charmless hadronic decays suffer from a large amount of

continuum background, arising from light quark production
(eþe− → qq̄, q ¼ u, d, s, c). To suppress this background,
we use a multivariate analyzer based on a neural network
(NN) [17] that distinguishes jetlike continuum events from
more spherical BB̄ events. The NN uses the following input
variables: the cosine of the angle between the thrust axis
[18] of the B0 candidate and the thrust axis of the rest of the
event; the cosine of the angle between the B0 thrust axis and
theþz axis; the cosine of the angle between theþz axis and
the B0 candidate flight direction; a set of 18 modified Fox-
Wolfram moments [19]; the ratio of the second to zeroth
(unmodified) Fox-Wolfram moments; the separation along
the z axis between the two B vertices; and the B-flavor
tagging information [20]. All but for the last two quantities

are evaluated in the CM frame. The NN is trained usingMC
simulated signal events and qq̄ background events. The NN
generates a single output variable (CNN) that ranges from
−1 for backgroundlike events to þ1 for signal-like events.
We require CNN > −0.5, which rejects approximately 86%
of the qq̄ background while retaining 94% of the signal. We
then translate CNN to a new variable

C0
NN ¼ ln

�

CNN − Cmin
NN

Cmax
NN − CNN

�

; ð1Þ

where Cmin
NN ¼ −0.5 and Cmax

NN ¼ 1.0. This translation is
advantageous as the C0

NN distribution for both signal and
background is well described by a sum of Gaussian
functions.
After applying all selection criteria, approximately 7% of

the events have multiple B0 candidates. For these events,
we retain the candidate having the smallest sum of χ2

values obtained from the π0 → γγ mass-constrained fit and
the B0 vertex-constrained fit. According to MC simulation,
this criterion selects the correct B0 candidate in 83% of
multiple-candidate events.
We measure the signal yield by performing an unbinned

extended maximum likelihood fit to the variablesMbc, ΔE,
and C0

NN. The likelihood function is defined as

L ¼ e−
P

j
Yj
Y

N

i

�

X

j

YjPjðMi
bc;ΔEi; C0i

NNÞ
�

; ð2Þ

where Yj is the yield of component j; PjðMi
bc;ΔEi; C0i

NNÞ
is the probability density function (PDF) of component j
for event i, j runs over all signal and background
components, and i runs over all events in the sample
(N). The background components consist of continuum
events, b → c (generic B) processes, and rare charmless
processes. The latter two backgrounds are small compared
to the continuum events and are studied using MC
simulations. The rare charmless background shows a
peaking structure in the Mbc distribution, most of which
arises from Bþ → pp̄ρþ decays. As correlations among the
variables Mbc, ΔE, and C0

NN are found to be small, the
three-dimensional PDFs PjðMi

bc;ΔEi; C0i
NNÞ are factorized

into the product of separate one-dimensional PDFs.
The PDF of signal events consists of two parts: one

for candidates that are correctly reconstructed, and one
for those incorrectly reconstructed, i.e., at least one
daughter originates from the other (tag side) B. For the
former case, the Mbc and ΔE distributions are modeled
with Gaussian and crystal ball [21] functions, respectively,
while the C0

NN distribution is modeled with a sum of
Gaussian and bifurcated Gaussian functions having a
common mean. The peak positions and resolutions of
the Mbc, ΔE, and C0

NN PDFs are adjusted to account for
data-MC differences observed in a high-statistics control
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sample of B0 → D̄0ð→ Kþπ−Þπ0 decays. For the latter
case, the correlated two-dimensional Mbc − ΔE distribu-
tion is modeled with a nonparametric PDF [22], and the
C0
NN component is modeled with a Gaussian function.

The fraction of incorrectly reconstructed decays (∼4% in
the signal region) is taken fromMC simulation. For the rare
charmless background, the C0

NN component is modeled
with a bifurcated Gaussian function. The Mbc and ΔE
components are modeled by a joint two-dimensional non-
parametric PDF. We model the Mbc, ΔE, and C0

NN
distributions of continuum background with an ARGUS
[23] function having its end point fixed to 5.29 GeV=c2, a
first-order polynomial, and a sum of two Gaussians having
a common mean, respectively. For the generic B back-
ground, we use a bifurcated Gaussian function to model the
C0
NN shape, while the similar shapes as of continuum

background are used to model the Mbc and ΔE distribu-
tions. In addition to the fitted yields Yj, all shape param-
eters for continuum background are also floated. All other
parameters are fixed to the corresponding MC values.
The projections of the fit are shown in Fig. 1. From the

fit, we extract 40.5� 14.2 signal events, 1490.3� 34.5
continuum, 100.6� 35.0 generic B, and 6.5� 10.1 rare
charmless background events in the Mbc − ΔE signal
region. The resulting branching fraction is calculated as

BðB0 → pp̄π0Þ ¼ Ysig

NBB̄ × ε
; ð3Þ

where Ysig represents the extracted signal yield, NBB̄ ¼
ð772� 11Þ × 106 is the total number of BB̄ events, ε ¼
ð10.53� 0.04Þ% is the reconstruction efficiency. The
efficiency is corrected to account for possible differences
in particle identification and π0 detection efficiencies
between data and simulations. In Eq. (3) we assume equal
production of B0B̄0 and BþB− pairs at the ϒð4SÞ reso-
nance. The result is

BðB0 → pp̄π0Þ ¼ ð5.0� 1.8� 0.6Þ × 10−7;

where the first uncertainty is statistical and the second is
systematic. This is the first measurement of this branching
fraction.
The signal significance is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2 lnðL0=LmaxÞ
p

, where L0 is the likelihood value when
the signal yield is fixed to 0, and Lmax is the likelihood
value of the nominal fit. To include systematic uncertainties
in the significance, we convolve the likelihood distribution
with a Gaussian function whose width is set to the total
systematic uncertainty that affects the signal yield. The
resulting significance is 3.1 standard deviations. Thus, our
measurement constitutes the first evidence for this decay
mode.

The systematic uncertainty inBðB0 → pp̄π0Þ arises from
several sources, as listed in Table I. The uncertainty due to
the fixed parameters in the PDF is estimated by varying them
individually according to their statistical uncertainties.
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FIG. 1. Projection of the three-dimensional fit to the data:
(a) Mbc in −0.12 < ΔE < 0.06 GeV and C0

NN > 1.0, (b) ΔE in
5.272 < Mbc < 5.286 GeV and C0

NN > 1.0, and (c) C0
NN in

5.272 < Mbc < 5.286 GeV and −0.12<ΔE< 0.06GeV. Points
with error bars are data, shaded areas represent the signal, (red)
dotted curves denote the continuum background, (green) dot-
dashed curves the generic B background, (magenta) dot-dot-
dashed curves the rare charmless background, and (blue) curves
show the total contribution. The χ2/(number of bins) values of
these fit projections are 0.60, 0.83, and 0.91, respectively, which
indicates that the fit gives a good description of the data.
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For each variation, the branching fraction is recalculated,
and the difference with the nominal value is taken as the
systematic uncertainty associated with that parameter. The
smoothing parameters of the nonparametric functions are
also varied. The differences in the fit results are included as
systematic uncertainties. We add all uncertainties in quad-
rature to obtain the overall uncertainty due to PDF para-
metrization. The uncertainties due to errors in the calibration
factors used to account for data-MC differences in the signal
PDF are evaluated separately but in a similar manner. To test
the stability of our fitting procedure, we generate and fit a
large ensemble of pseudoexperiments.We find a potential fit
bias of þ2.1%. We attribute this bias to neglecting small
correlations among the fitted observables.We assign a 1.5%
systematic uncertainty due to π0 reconstruction; this is
determined from a study of τ− → π−π0ντ decays [24].
The systematic uncertainty due to the track reconstruction
efficiency is 0.35% per track, as determined from a study of
partially reconstructed D�þ → D0πþ, D0 → K0

Sπ
þπ−

decays. A 0.6% systematic uncertainty is assigned due to
the particle identification efficiency of the proton-antiproton
pair; this is determined from a study ofΛ → pπ− decays.We
determine the systematic uncertainty due to the CNN
selection by applying different CNN criteria and comparing
the results with that of the CNN nominal selection. The
uncertainty due to the estimated fraction of incorrectly
reconstructed signal events is obtained by varying this
fraction by �50%. The systematic uncertainty due to the
counting of the total number of BB̄ pairs is 1.4%, and the
uncertainty due to the finite statistics of the simulated signal
sample used to evaluate the reconstructed efficiency is 0.4%.
The total systematic uncertainty is obtained by adding each
source in quadrature, as they are assumed to be uncorrelated.
Figure 2 shows the background-subtracted and effi-

ciency-corrected distribution of mðpp̄Þ, where the

charmonium veto is removed. For the background sub-
traction, we use the sPlot technique [25], with Mbc, ΔE,
and C0

NN as the discriminating variables. As expected, an
enhancement near threshold is visible. The background-
subtracted distributions of mðpπ0Þ and mðp̄π0Þ are shown
in Fig. 3. No obvious structure is seen in these distributions.
We also search for the intermediate two-body decay

B0 → Δþð→ pπ0Þp̄. Events with mðpπ0Þ < 1.4 GeV=c2

are selected for this search. No significant signal is
observed in this mass range. We set an upper limit on
the branching fraction of B0 → Δþp̄ at 90% confidence
level (C.L.) using a Bayesian approach. The limit is
obtained by integrating the likelihood function from 0 to
infinity; the value that corresponds to 90% of this total area
is taken as the 90% C.L. upper limit. We include the
systematic uncertainty in the calculation by convolving the
likelihood distribution with a Gaussian function whose
width is set equal to the total systematic uncertainty of
BðB0 → pp̄π0Þ. As we do not know the flavor of the B
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FIG. 2. Background-subtracted and efficiency-corrected distri-
bution of mðpp̄Þ. Points with error bars are the data and (green)
shaded regions represent the area of charmonium veto.
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FIG. 3. Background-subtracted and efficiency-corrected distri-
butions of mðpπ0Þ and mðp̄π0Þ. The (blue) circles represent
mðpπ0Þ and (red) squares the mðp̄π0Þ. The charmonium veto is
not applied in this plot.

TABLE I. Systematic uncertainties in BðB0 → pp̄π0Þ. Those
listed in the upper section are associated with fitting for the signal
yields and are included in the signal significance.

Source Uncertainty (%)

PDF parametrization þ2.9
−3.2

Calibration factor 11.9

Fit bias þ2.1
−0.0

π0 reconstruction 1.5
Tracking 0.7
Particle identification 0.6

Choice of CNN
þ2.0
−1.1

Incorrectly reconstructed signal events þ1.0
−0.8

Number of BB̄ pairs 1.4
MC statistics 0.4

Total þ12.8
−12.6
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meson at decay, we express our result as a sum of final
states containing either a Δþ or a Δ̄−. The result is

BðB0 → Δþp̄Þ þ BðB0 → Δ̄−pÞ < 1.6 × 10−6:

This is the first such limit and is in agreement with the
theoretical predictions [3,26].
In summary, using the full set of Belle data, we report a

measurement of the branching fraction for B0 → pp̄π0

decays. We obtain BðB0→pp̄π0Þ¼ð5.0�1.8�0.6Þ×10−7,
where the first uncertainty is statistical and the second is
systematic. The significance of this result is 3.1 standard
deviations, and thus this measurement constitutes the first
evidence for this decay. We also search for the intermediate
two-body decays B0 → Δþp̄ and B0 → Δ̄−p, and set an
upper limit on the branching fraction, BðB0 → Δþp̄Þ þ
BðB0 → Δ̄−pÞ < 1.6 × 10−6 at 90% C.L.
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