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Long-term trends in equatorial African rainfall have proven difficult to determine
because of a dearth in ground-measured rainfall data. Multiple, satellite-based prod-
ucts now provide daily rainfall estimates from 1983 to the present at relatively fine
spatial resolutions, but in order to assess trends in rainfall, they must be validated
alongside ground-based measurements. The purpose of this paper is twofold: (a) to
assess the accuracy of four rainfall products covering the past several decades in
western Uganda; and (b) to ascertain recent, multi-decadal trends in annual rainfall
for the region. The four products are African Rainfall Climatology Version
2 (ARC2), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS),
Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks–Climate Data Record (PERSIANN-CDR), and TAMSAT African Rain-
fall Climatology And Timeseries (TARCAT). The bias and accuracy of 10-day,
monthly, and seasonal rainfall totals of the four products were assessed using
approximately 10 years of data from 10 rain gauges. The homogeneity of the prod-
ucts over multiple time periods was assessed using change-point analysis. The accu-
racy of the four products increased with an increase in temporal scale, and CHIRPS
was the only product that could be considered sufficiently accurate at estimating sea-
sonal rainfall totals throughout most of the region. TARCAT tended to underesti-
mate totals, and ARC2 and PERSIANN were in general the least accurate products.
Only annual rainfall estimates from CHIRPS and TARCAT were significantly corre-
lated with ground-measured rainfall totals. TARCAT was the most homogeneous
product, while ARC2, CHIRPS, and PERSIANN had significant negative change
points that caused a drying bias over the 1983–2016 period. After adjusting the
satellite-based rainfall estimates based on the timing and magnitude of the change
points, annual rainfall totals derived from all four products indicated that western
Uganda experienced significantly increasing rainfall from 1983 to 2016.
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1 | INTRODUCTION

A major environmental conundrum exists in tropical Africa:
rainfall variability has an outsized impact on people in the
region, but the variability is difficult to determine using past

and present rain-gauge networks. Millions of rural house-
holds in the region practice rain-fed agriculture; conse-
quently, their livelihoods depend on the timing and amount
of rainfall within rainy seasons (Rosegrant et al., 2002; Coo-
per et al., 2008). Despite the dire need for a large network of
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daily rainfall measurements, tropical Africa has suffered a
dramatic loss of rain gauges over the past several decades,
with an extreme case being central equatorial Africa (CEA)
which has lost over 90% of its gauges since the early 1980s
(Washington et al., 2013). The available stations are
unevenly distributed across the region; for example, Ethiopia
has a relatively high density of gauges (Dinku et al., 2014)
and the Democratic Republic of Congo (DRC), which is
over twice as large as Ethiopia and is the second-largest
country in Africa, has just a few gauges (Washington
et al., 2013).

The use of satellite-based rainfall products has been
increasingly employed to both supplement and replace
ground-measured rainfall data. Rainfall-estimation algo-
rithms use onboard satellite data from thermal infrared (TIR)
and passive microwave (PM) sensors. TIR information,
which is based on the cloud-top brightness temperature, is
useful for distinguishing between raining and non-raining
clouds but is relatively poor at estimating rainfall amount
(Kidd et al., 2003; Dembélé and Zwart, 2016). PM informa-
tion, which is sensitive to the concentration of ice crystals or
droplets in a cloud associated with precipitation, is better
than TIR at estimating rainfall amount, but it is obtained at a
coarser spatial resolution (Kidd et al., 2003; Dembélé and
Zwart, 2016).

Currently, four satellite-based products provide daily
precipitation totals across tropical Africa from 1983–present
at relatively fine spatial resolutions, and thus can potentially
be used not only to analyse spatial patterns of rainfall in
tropical Africa but also to reproduce the inter-annual vari-
ability in rainfall over the past several decades. The African
Rainfall Climatology Version 2 (ARC2) product has a spa-
tial resolution of 0.10� and is derived from TIR data and
Global Telecommunication System (GTS) gauge observa-
tions reporting 24-hr rainfall accumulations (Novella and
Thiaw, 2013). The Climate Hazards Group InfraRed Precipi-
tation with Stations (CHIRPS) product has a spatial resolu-
tion of 0.05� and is derived from the following: a gridded
precipitation climatology based on topographic variables
and monthly means of station data and precipitation-related
data from five satellite products, which includes both PM
and TIR data, and interpolated station data (Funk et al.,
2015). The Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks–Climate Data
Record (PERSIANN-CDR; abbreviated in this paper as
PERSIANN) product has a spatial resolution of 0.25� and is
derived from both TIR and makes use of the Global Precipi-
tation Climatology Project (GPCP) data set, which estimates
precipitation totals at a 2.5� resolution, to adjust biases in
monthly precipitation totals (Ashouri et al., 2015). The
TAMSAT African Rainfall Climatology And Timeseries
(TARCAT) product has a spatial resolution of 0.0375� and
is based on TIR data that has been climatologically cali-
brated using rain-gauge data (Maidment et al., 2014). The

developers of all four products endorse the suitability of the
products for multi-decadal time series analyses (Novella and
Thiaw, 2013; Maidment et al., 2014; Ashouri et al., 2015;
Funk et al., 2015). Nevertheless, satellite-based rainfall
products with long time series should have some inhomoge-
neities (i.e., changes in rainfall estimates not caused by
actual changes in rainfall) caused by variations in satellite
inputs (Dinku et al., 2018).

All four satellite-based products have varying degrees of
suitability for estimating monthly/seasonal rainfall totals for
all or parts of tropical Africa. Ethiopia, with its relatively
high-density rain-gauge network, has usually been an opti-
mal validation region for the products (Dinku et al., 2007).
Most products generally struggle in complex terrain, espe-
cially mountainous areas. The products are not designed to
capture warm-cloud processes; therefore, they underestimate
rainfall in mountainous areas (Dinku et al., 2008). PER-
SIANN, for example, has performed poorly in complex ter-
rain (e.g., Ethiopia) (Derin et al., 2016; Bayissa et al., 2017).
But both CHIRPS and TARCAT performed well in Ethiopia
(Bayissa et al., 2017). ARC2, CHIRPS, and PERSIANN
have performed well in West Africa, while TARCAT per-
formed poorly there (Dembélé and Zwart, 2016). Despite
TARCAT being notorious for underestimating rainfall totals
(Young et al., 2014; Dembélé and Zwart, 2016; Maidment
et al., 2017), it has performed better than other products in
Ethiopia (Abera et al., 2016). CHIRPS has performed better
than TARCAT in Mozambique (Toté et al., 2015) and Ethi-
opia (Dinku et al., 2018) and is more accurate than ARC2,
PERSIANN, and TARCAT in East Africa as a whole
(Kimani et al., 2017; Dinku et al., 2018). While Ethiopia has
served as an excellent proving ground for rainfall products,
much less attention has been devoted to equatorial Africa.
Previous work showed that ARC2 is reasonably accurate in
western Uganda, except at low-elevation locales possibly in
a rainshadow (Diem et al., 2014a), but ARC2 has not been
compared with CHIRPS, PERSIANN, and TARCAT in the
region.

The evaluation of satellite-based rainfall products, espe-
cially a multi-decadal assessment, in tropical Africa is
becoming more important as findings of a significant drying
trend across equatorial Africa become more common and as
differing results for CEA and western Uganda emerge.
Locales in equatorial Africa typically have a bimodal rainfall
regime caused by the Intertropical Convergence Zone tra-
versing the region twice per year, resulting in the equinoctial
seasons typically having the highest rainfall totals
(Nicholson, 1996). Over the past several decades, decreasing
boreal-spring rainfall totals—derived principally from rain-
gauge measurements—have been observed for all or parts of
eastern equatorial Africa (EEA) (e.g., Kenya, northern Tan-
zania, and Somalia) (Williams and Funk, 2011; Lyon and
DeWitt, 2012; Yang et al., 2014). Western Uganda is clima-
tologically transitional between EEA and CEA (Monaghan
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et al., 2012), and significant drying in the region has been
found in studies using ARC2 data (Diem et al., 2014b; Ssen-
tongo et al., 2018). Analyses of satellite-based rainfall
estimates for CEA also reveals a drying trend there (Asefi-
Najafabady and Saatchi, 2013; Diem et al., 2014b; Hua
et al., 2016). Nevertheless, rainfall might actually be increas-
ing for CEA and western Uganda: TARCAT data show a
wetting trend in annual rainfall (Maidment et al., 2015), and
recent research involving ARC2, CHIRPS, and TARCAT
has shown that both rainy-season and annual rainfall totals at
multiple location in western Uganda has probably increased
over the past two decades (Salerno et al., 2019).

Validation work is greatly needed in western Uganda
and CEA in order to better determine the rainfall variability
in those regions. As noted previously, CEA is greatly defi-
cient in rain gauges (Washington et al., 2013); therefore,
there simply does not exist adequate ground-measured totals
to compare with satellite-based estimates. Fortunately, west-
ern Uganda contains a sufficient amount of high-quality
rainfall data to validate rainfall products, and multiple sites
in the region have ground-measured rainfall totals extending
back several decades, thereby enabling the potential identifi-
cation of significant inhomogeneities in satellite-derived
time series. While there has been previous validation
research in western Uganda (Diem et al., 2014a), it only
included one long-term satellite-based product (i.e., ARC2),
it involved only five rainfall stations, and it did not assess
the homogeneity of rainfall time series.

The purpose of this paper is to validate rainfall estimates
from ARC2, CHIRPS, PERSIANN, and TARCAT across
western Uganda. We define the western Uganda study
region as a zone within 160 km of the Congo watershed
boundary (Figure 1). It has over 6 million people (Stevens
et al., 2015), the majority of which are in households prac-
ticing rain-fed small-scale agriculture (Hartter et al., 2015).
Therefore, an enhanced understanding of rainfall is impor-
tant to those farming households. The two main objectives
of the research are as follows: (a) assess the accuracy of
satellite-based rainfall estimates over a fixed time
(e.g., 2001–2010); and (b) provide the best estimates of
trends in rainfall totals for western Uganda from 1983
to 2016.

2 | DATA AND METHODS

2.1 | Data

Ground-measured rainfall totals, primarily daily rainfall
totals, were obtained for 10 sites in the study region
(Figure 1 and Table 1). Eight of the stations were missing
less than 8% of daily rainfall totals. Among those stations
was Kanyawara, which—with uninterrupted measurements
occurring since 1976—has the longest record of any station
in western Uganda. Most of the missing daily rainfall totals

at Kanyawara occurred from 1993 to 2001; during this
period, rainfall totals on days without a recorded total were
often added to the totals on subsequent days. Fortunately,
the last day of all but 1 month (i.e., May 2013) had rainfall
totals; therefore, Kanyawara had a nearly serially complete
monthly rainfall record. The serially complete daily (i.e., no
missing days) rainfall data at Ngogo, which is located inside
Kibale National Park and 10 km southeast of and 70 m
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lower in elevation than Kanyawara, were used to estimate
rainfall at Kanyawara for May 2013. The stations with the
largest amounts of missing data were Ruhija (~15%) and
Mweya (~27%). Most of the missing data at Ruhija occurred
after 1996: the 1987–1996 period was missing less than 5%
of daily rainfall totals. All the missing data at Mweya
occurred from 1997–2002, with no data available for 1999,
2000, and 2001.

Gridded rainfall estimates for 1983–2016 from the
ARC2, CHIRPS, PERSIANN, and TARCAT products were
obtained from the International Research Institute for Cli-
mate and Society at Columbia University. CHIRPS was seri-
ally complete and TARCAT was only missing data for the
first 10 days of 1983. ARC2 and PERSIANN were missing
1.7 and 1.0%, respectively, of daily rainfall totals. Nearly all
the ARC2 missing data occurred during 1983–1990; 9.3% of
the days were missing rainfall totals during these years. Sim-
ilarly, nearly all the PERSIANN missing data occurred dur-
ing 1983–1993; 9.5% of the days were missing rainfall totals
during these years, with 1984 missing 35% of the daily rain-
fall totals.

2.2 | Validation of rainfall totals

For approximately the 2001–2010 period, rainfall totals at
the 10 rainfall stations were compared with rainfall totals
estimated by the four satellite-based products. The four prod-
ucts use ground-measured rainfall to varying degrees to pro-
duce the gridded rainfall estimates, and the following five
stations have been used as input for the products: Arua,
Gulu, Kasese, Masindi, and Mbarara. These stations have
been classified as “input stations” in this paper and the other
five stations (Budongo, Kanyawara, Mweya, Ngogo, and
Ruhija) have been classified as “independent stations”
(Figure 1 and Table 2). The distinction between input and
independent stations matters the least for TARCAT

estimates, since these estimates are not produced from con-
temporaneous gauge records (Maidment et al., 2017). Due
to the relatively large amount of missing daily rainfall totals
at Mweya and Ruhija during 2001–2010, the validation
periods for those two sites were extended to 1997–2010 and
2000–2012, respectively. Rainfall totals for periods with at
least 90% of days with non-missing rainfall totals were
upwardly adjusted to represent 100% of the days (e.g., a
period with 90% valid days had its rainfall total multiplied
by 1.11). Periods with more than 10% of days with missing
rainfall totals were excluded from the analyses. The rainfall
total for a given product corresponding to a given gauge was
calculated two ways. The first estimate was the value for the
grid cell in which the station existed. The second estimate
was a weighted mean of the gauge cell and the eight cells
sharing either an edge or corner with that cell (i.e., Queen’s
case contiguity). The weights for the nine cells were based
on the distance of the gauge to the centroids of the cells
(Figure 2). Therefore, the centre cell always had the highest
weight. The range in weights for the nine cells across all
gauge/product combinations was 0.032–0.672. The weight-
ing procedure was used to produce the satellite-based totals
at additional gauges and time periods presented in subse-
quent sections of this paper.

The ability of the products to reproduce the intra-
seasonal behaviour of rainfall was assessed by comparing
measured and estimated monthly rainfall totals. Mann–
Whitney U tests (α = .05; one-tailed) were used to test for
significant differences between measured and estimated
monthly rainfall totals. For example, a comparison of mea-
sured January rainfall and rainfall estimated by CHIRPS
involved 10 cases (i.e., 2001–2010).

Percent bias (PB) and the Nash–Sutcliffe coefficient of
efficiency (E) were calculated for 10-day, monthly, and sea-
sonal (i.e., December–February, March–May, June–August,

TABLE 1 Locations and data characteristics of the rain gauges

Site Latitude Longitude
Elevation
(m.a.s.l.) RE (m)a Data availability

% non-missing
daily data Data source

Arua 3.050�N 30.920�E 1,205 131 Jan 2000–Dec 2012 100.0 Uganda National Meteorological Authority

Budongo 1.794�N 31.583�E 1,029 38 Jan 1993–Oct 2016 98.4 Budongo Conservation Field Station

Gulu 2.783�N 32.283�E 1,078 62 Jan 2000–Dec 2012 96.6b Uganda National Meteorological Authority

Kanyawara 0.565�N 30.356�E 1,507 200 Jan 1976–Dec 2016 92.7c Makerere University Biological Field Station

Kasese 0.183�N 30.100�E 964 –323 Jan 2000–Dec 2012 98.0 Uganda National Meteorological Authority

Masindi 1.683�N 31.717�E 1,145 228 Jan 2001–Dec 2010 94.2 Uganda National Meteorological Authority

Mbarara 0.600�S 30.680�E 1,384 −28 Jan 2000–Dec 2012 98.0 Uganda National Meteorological Authority

Mweya 0.193�S 29.896�E 961 –465 Jan 1996–Jun 2011 73.1d Uganda Wildlife Authority

Ngogo 0.502�N 30.424�E 1,437 45 Jul 1996–Dec 2016 100.0 Ngogo Chimpanzee Project

Ruhija 1.049�S 29.778�E 2,301 452 Jan 1987–Jul 2012 85.3e Institute of Tropical Forest Conservation

aRE (relative elevation) is the elevation of the station minus the mean elevation of a 11,310 km2 zone centred on the station.
bDaily data are Gulu were only available for 2001–2010. Monthly data were available for 2000, 2011, and 2012.
cExcept for days in May 2013, rainfall totals on days without a recorded total were often added to the totals on subsequent days.
dAll the days with missing totals existed between 1997 and 2002.
e1987–1996 had 95.8% of days with valid totals, while 1997–2012 only had 78.5% of days with valid totals.
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and September–November) rainfall totals at the eight sta-
tions. PB and E were calculated for all time steps as follows:

PB=100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
S−Gð Þ

q

�G
, ð1Þ

E=1−
P

G− Sð Þ2P
G− �Gð Þ2

: ð2Þ

G is a rainfall total at a gauge, G is the mean observed
rainfall total at a gauge, S is a rainfall total for a satellite
product, and N is the number of data pairs. PB is the average
tendency of estimated totals to be larger or smaller than the
observed totals. In this paper, a positive (negative) PB indi-
cates overestimation (underestimation). E ranges from −∞
to 1, with higher values indicating better agreement between
observations and estimates (Nash and Sutcliffe, 1970;
Legates and McCabe, 1999). In the case of the satellite-
based rainfall products, negative E values indicate that the
mean observed value (i.e., the null model) is a better esti-
mate for all cases than are the estimated values from a
product.

2.3 | Detection of temporal change points and
adjustment of time series

The homogeneity of the satellite-based rainfall records was
assessed using change-point analysis, which involved the
use of double-mass curves (DMCs). While multiple methods
exist for detecting inhomogeneities (i.e., temporal change
points) in climatological time series (Buishand, 1982; East-
erling and Peterson, 1995), this study used the DMC
approach for the following reasons: (a) it is a straight-for-
ward, graphical tool for identifying inhomogeneities; and
(b) the curves are created from cumulative rainfall totals and
thus—when compared to other inhomogeneity-detection
procedures—should be less impacted by the occasional large
monthly difference between a ground-measured rainfall total
and a satellite-based rainfall estimate. The production of
DMCs requires serially complete data; therefore, in this
study, a day with a missing rainfall total was given the mean
rainfall total for its particular day of the year. The DMCs
were cumulative totals of monthly satellite-based rainfall
versus cumulative totals of monthly ground-measured rain-
fall. In a DMC, the relationship between the two variables is
a straight line so long as the relation between the variables is
a fixed ratio (Searcy and Hardison, 1960). Four periods were
analysed using pooled station totals: 1987–1996,
1993–2016, 1997–2016, and 2000–2012. The mean of
Kanyawara and Ruhija totals were the measured values for
the 1987–1996 analysis. The mean of Budongo and Kanya-
wara were the measured totals for the 1993–2016 analysis.
The mean of Budongo and Kanyawara/Ngogo (i.e., the mean
of those two proximate stations) values were the measured
totals for the 1997–2016 analysis. The mean of Arua,
Budongo, Gulu, Kanyawara/Ngogo, Kasese, and Mbarara
values were the measured totals for the 2000–2012 analysis.
The pooling of data from multiple gauges was performed to
reduce the possibility that a change point was caused by
station-specific inhomogeneities (e.g., change in gauge loca-
tion, change in measurement procedure, etc.) (Easterling and
Peterson, 1995); therefore, it is assumed that all significant
change points resulted from inhomogeneities in the satellite
products. The only time pooled gauge data were not used

TABLE 2 Mean percent bias (PB) and Nash–Sutcliffe E values for the
four products based on values for the 10 validation sites

ARC2 CHIRPS PERSIANN TARCAT

|PB|

Input 11 6 15 13

Independent 19 16 27 20

10-day Ea

Input 0.29 0.35 0.24 0.28

Independent −0.01 0.18 0.04 0.13

Monthly E

Input 0.38 0.59 0.34 0.40

Independent 0.11 0.32 0.00 0.20

Seasonal E

Input 0.49 0.73 0.38 0.58

Independent 0.13 0.52 −0.04 0.35

Note. Input stations (Arua, Gulu, Kasese, Masindi, and Mbarara) are those sta-
tions for which data was available during the development of the four products,
and therefore may have been ingested into the products themselves. Independent
stations (Budongo, Kanyawara, Mweya, Ngogo, and Ruhija) are stations for
which no data were used to produce any of the products. Since the optimal PB
value is zero, absolute PB values are used.
aThe Kanyawara 10-day E was estimated by multiplying the Ngogo 10-day E by
the ratio of the Kanyawara monthly E to the Ngogo monthly E.

0.131 0.138 0.069

0.178 0.195 0.074

0.078 0.079 0.057

Gauge

FIGURE 2 Example of the nine-cell weighting procedure used with the
gridded rainfall estimates. The weights shown are those pertaining to the
TARCAT data and the Arua rain gauge
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was when potential change points were further examined in
the late 1980s and early 1990s; DMCs were created for
1983–1996 at Kanyawara and 1987–1996 at Ruhija. Analy-
sis of covariance (α = .05) was used to test for significant
change points.

Rainfall time series from 1983 to 2016 for the entire
western Uganda region and time series from 2000 to 2012
for the mean of the six stations (i.e., Arua, Budongo, Gulu,
Kanyawara/Ngogo, Kasese, and Mbarara) were adjusted by
multiplying monthly rainfall estimates prior to a significant
change point by an adjustment factor. Change points were
assumed to exist for the entire region only if they existed in
multiple DMCs and occurred within approximately 2 years
of each other. Adjustment factors were the ratio of two linear
regression slopes: the slope following the change point was
divided by the slope preceding the change point (Searcy and
Hardison, 1960). The final adjustment factor was a weighted
mean of the multiple adjustment factors, with the weighting
based on the number of rain-gauge stations used to produce
the DMCs (i.e., a DMC based on eight stations was given
much more weight than a DMC based on two stations). The
month of the change point was also weighted by the number
of rain-gauge stations. If two change points of opposite sign
existed in a time series, then the monthly values between
those points were adjusted upwards (i.e., negative change
point followed by positive change point) or downwards
(i.e., positive change point followed by negative change
point). When significant change points of the same sign
existed in different curves at approximately the same year,
then a single adjustment factor was produced by using the
weighted mean of the adjustment factors. Finally, for the
2000–2012 time series, only the adjustment factors derived
from the 2000–2012 DMCs were used.

2.4 | Assessment of temporal correlations and multi-
decadal trends

Temporal relationships between the measured and estimated
annual rainfall totals from 2000 to 2012 were assessed using
Spearman’s rank correlation coefficient (one-tailed; α
= .05). The mean of Arua, Budongo, Gulu, Kanyawara/
Ngogo, Kasese, and Mbarara rainfall totals (described in
section 2.3) was used. Correlations were calculated between
both the measured and unadjusted rainfall totals and the
measured and adjusted rainfall totals.

Temporal trends in estimated annual and seasonal rain-
fall totals from 1983 to 2016 were calculated for the entire
region. As in other analyses, a missing daily rainfall total
was replaced with the mean value for that day of the year
over the period. In addition to the unadjusted rainfall totals,
adjusted rainfall totals were produced using slope ratios from
the DMCs. The Kendall–Theil robust line, the median of the
slopes between all combinations of two points in the data
(Helsel and Hirsch, 2002), was used to estimate changes
over the 34-year period.

3 | RESULTS

3.1 | Bias in rainfall estimates

While all products generally captured the typical intra-
annual rainfall variability at the 10 stations, as well as the
transition from an annual rainfall regime at the northernmost
stations to a biannual regime at the southernmost stations,
there were significant underestimates and overestimates of
rainfall totals for specific months and seasons (Figure 3).
ARC2 tended to underestimate boreal-summer and boreal-
autumn rainfall totals at the northern stations and overesti-
mated rainfall totals during all months outside of boreal
summer at Kasese and Mweya, which were the two stations
located in the rift valley and thus located hundreds of meters
below the surrounding terrain (Table 1) (Diem et al., 2014a).
ARC2 performed well at Mbarara and Ruhija, with only sig-
nificant overestimates occurring during boreal winter.
CHIRPS replicated monthly rainfall totals extremely well at
all five input stations (i.e., Arua, Gulu, Masindi, Kasese, and
Mbarara). CHIRPS had significant underestimates and over-
estimates at the five independent stations: rainfall totals were
underestimated throughout the year at Budongo and Kanya-
wara, rainfall totals were overestimated throughout the year
at Mweya, and rainfall totals were overestimated in boreal
spring at Ruhija. Except for underpredictions throughout the
year at Kasese and Mweya, PERSIANN did not have consis-
tent underpredictions and overpredictions at the other sta-
tions. Besides 1 month at Ngogo, TARCAT underpredicted
monthly rainfall totals at all non-rift stations. Similar to the
other products, TARCAT overpredicted at Kasese and
Mweya; however, the overpredictions were confined to
boreal summer and autumn.

Irrespective of specific months and seasons, the products
tended to underestimate rainfall totals at Arua, Gulu,
Budongo, Masindi, Kanyawara, Ngogo, Mbarara, and
Ruhija, and all products overestimated rainfall totals at the
rift stations (Kasese and Mweya) (Figure 4). These results
were nearly identical regardless of which procedure was
used to assign rainfall estimates to rainfall stations
(i.e., based on a single grid cell vs. a weighted mean of nine;
see section 2.2). Previous research has established a PB ≥
±25% to be unsatisfactory (Moriasi et al., 2007). Therefore,
using ±25% as a PB threshold, CHIRPS was the only prod-
uct to have satisfactory PB values at all stations. ARC2 only
exceeded +25% at Mweya, and PERSIANN only exceeded
+25% at Kasese and Mweya. TARCAT did not have any
unsatisfactory overestimates, but it did have underestimates
exceeding −25% at Kanyawara, Ngogo, and Ruhija.

3.2 | Nash–Sutcliffe E values

None of the products performed satisfactorily at estimating
10-day rainfall totals, but most products were accurate at
estimating monthly and seasonal rainfall totals, especially at
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FIGURE 3 Mean monthly rainfall totals (in mm) at 10 ain-gauge sites for approximately 2001–2010. Measured totals at the gauges and estimated totals by
the four products are shown, and significant differences between estimated totals and observed totals are denoted by plus (overestimate) and minus
(underestimate) signs. The mean annual rainfall total (in mm) is provided in the upper-left hand corner of each panel. Mweya and Ruhija values pertain to
1997–2010 and 2000–2012, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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the northern stations (Figure 4). Similar to the PB values, the
E values resulting from the two procedures used to estimate
rainfall totals at a gauge were nearly identical. And in gen-
eral, the larger the absolute PB value (i.e., increased bias) for
a product then the lower the E value; the largest PB values
produced negative E values. A product in this study had satis-
factory estimates (i.e., it was accurate) if the E value was
greater than 0.50 (Moriasi et al., 2007; Diem et al., 2014a).
ARC2 only accurately estimated seasonal totals, and that
occurred only at Arua, Gulu, and Masindi, which as noted
earlier were input stations (i.e., gauge data was used to pro-
duce satellite-based estimates). ARC2 performed poorly at
Mweya, where it consistently had negative E values. CHIRPS
was accurate at four of the 10 stations at the monthly scale
and was accurate at all stations but Mweya—where the
E value was 0.47—at the seasonal scale. PERSIANN was
accurate at the four northernmost stations at the monthly scale
and accurate at seven stations at the seasonal scale. But PER-
SIANN had extremely large negative E values at Kasese and
Mweya at both the monthly and seasonal scales. TARCAT
was accurate at three northern stations (Gulu, Budongo, and

Masindi) at the monthly scale and accurate at the four north-
ernmost stations at the seasonal scale.

CHIRPS was the most accurate product both at the input
stations and the independent stations, with the latter stations
tending to be located in more challenging environments for
rainfall estimation (Table 2). One would expect ARC2,
CHIRPS, and PERSIANN to perform better at the input sta-
tions, while TARCAT, which as noted previously is not
developed from contemporaneous gauge data, should have
performed approximately the same at the input and indepen-
dent stations. But the mean PB and E values for TARCAT at
the independent stations were much higher than and lower
than the PB and E values, respectively, at the input stations.
The five independent stations are either located in a tropical
forest (Budongo, Kanyawara, Ngogo, and Ruhija) or at the
bottom of a rift (Mweya). The products tended to substan-
tially underestimate rainfall totals at Budongo, Kanyawara,
and Ngogo and substantially overestimate rainfall totals at
Mweya (Figures 3 and 4). Over all, CHIRPS was the only
product with an acceptable mean seasonal E value at the
independent stations.
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FIGURE 4 Percent bias (PB) and Nash–Sutcliffe E values for the four products at 10 rain-gauge sites for 2001–2010 based on rainfall totals for (a) the grid
cell in which the rain gauge exists and (b) a weighted mean of nine neighbourhood grid cells. E values are provided for 10-day totals, monthly totals, and
seasonal totals. A positive PB indicates overestimation by a product, while a negative PB indicates underestimation. PB values between −20% and +20% are
indicated by dashed lines in the PB panels. E ranges from −∞ to 1, with higher values indicating better agreement between observations and estimates.
E values ≥0.5, which are indicated by dashed lines in the E panels, are considered acceptable. E values <0 indicate extremely poor performance [Colour
figure can be viewed at wileyonlinelibrary.com]
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3.3 | Homogeneity of the products

All satellite-based products had significant change points in
their time series, thereby indicating drying and wetting
biases of the products (Figure 5). For the 1987–1996 period,
both ARC2 and CHIRPS had change points occurring
around 1990: the 1991 change point in the ARC2 data and
the 1989 change point in the CHIRPS data produced 19 and
8% decreases in rainfall totals, respectively. Each product
had one or more change points during 1993–2016, with
ARC2 having a small decrease (−4%) in 1997, PERSIANN

having a moderate decrease (−9%) in 2006, and TARCAT
having a moderate increase (+11%) in 2007. CHIRPS had
artificially decreased rainfall totals from 2006 to 2010: a
negative change point in 2006 was followed by a slightly
larger positive change in 2010. Change points during
1997–2016 were similar to those during 1993–2016, with
the major differences being the lack of an ARC2 change
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FIGURE 5 Double-mass curves for the four products over four periods (1987–1996, 1993–2016, 1997–2016, and 2000–2012). Cumulative monthly rainfall
measured at gauges is the x axis, and cumulative monthly rainfall estimated by a product is the y axis. Italicized numbers are the slopes of the lines.
Significant break points in the relationship between measured and estimated rainfall are indicated by circles, and the year in which in the break occurred is
provided. When significant change points exist, the percentage change in estimated totals is indicated by red and blue numbers. Negative changes indicated a
bias towards a drying trend, positive changes indicate a bias towards a wetting trend [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Adjustments factors for monthly rainfall totals for the entire
western Uganda region

Product Period Adjustment factor

ARC2 Jan 1983–Jul 1991 0.8151

CHIRPS Jan 1983–Jul 1989 0.9353

CHIRPS Mar 2007–Apr 2010 1.1899

PERSIANN Jan 1983–Jul 2007 0.8782

TARCAT Jan 1983–Mar 2004 1.0310
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FIGURE 6 Correlations between annual rainfall for the products (both
unadjusted and adjusted) and measured rainfall for 2000–2012. Adjustment
values for the products are provided in Table 4 [Colour figure can be
viewed at wileyonlinelibrary.com]
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point and a larger negative change for PERSIANN and a
smaller positive change for TARCAT. The change points
during 2000–2012 were similar to those during the previous
two periods (1993–2016 and 1997–2016), with the follow-
ing exceptions: the ARC2 change point in 1997 was moved
to 2004, and the TARCAT change point disappeared. The
adjustment factors based on the above information are
shown in Table 3, and the impact of those adjustment factors
on rainfall trends is described in section 3.5.

3.4 | Inter-annual correlations

Inter-annual correlations from 2000 to 2012 between gauge
totals and estimated totals increased after the change-point
adjustments for the four products (Figure 6). Only CHIRPS
and TARCAT had significant correlations using the unad-
justed totals. The correlation coefficients for ARC2,
CHIRPS, and PERSIANN increased by 0.29, 0.17, and 0.75,
respectively, when moving from unadjusted to adjusted
totals. Adjustment factors are shown in Table 4. All products
but ARC2 had significant correlations when using the
adjusted totals; therefore, ARC2 was the least accurate prod-
uct at replicating inter-annual variability in annual rainfall in
the region.

3.5 | Multi-decadal trends in rainfall

There were dramatic differences among the products for
1983–2016 trends in unadjusted annual rainfall totals for
western Uganda (Figure 7). ARC2 had a significant 15%
decrease in rainfall. CHIRPS and PERSIAN did not have
significant changes. TARCAT had a significant 21%
increase in rainfall.

Adjusted annual rainfall totals for the four products show
that annual rainfall in western Uganda increased by at least
7% from 1983 to 2016 (Figure 7). The adjustment of ARC2
totals swung the trend from a significant decrease to a signif-
icant increase. CHIRPS and PERSIANN had 10 and 11%
increases in rainfall, respectively. While the TARCAT
increasing trend was reduced to 16% after adjustment, it
remained significant.

Based on adjusted seasonal rainfall totals, a significant
drying trend did not occur during any season (Figure 8).
Boreal winter did not have any significant trends of either
sign. Boreal spring and autumn, which coincide with the two
rainy seasons throughout much of western Uganda, had wet-
ting trends, with all products but ARC2 having significant
rainfall trends in one or both of the seasons. TARCAT had

significant wetting trends, either using unadjusted or
adjusted totals, during all seasons but boreal winter.

4 | DISCUSSION

This study’s results concerning the performance of the four
products at estimating monthly and seasonal rainfall totals in
western Uganda generally matched those from previous
studies in tropical Africa. CHIRPS was the least biased and
most accurate product, resulting presumably from the inclu-
sion of rain-gauge data and microwave images during the
calibration of CHIRPS data (Kimani et al., 2017). TARCAT
had the second-largest E values behind CHIRPS. However,
TARCAT was prone to underestimates, likely the result of
the product being designed to better capture more frequent,
low-intensity rainfall events and thus less able to estimate
rainfall during high-intensity events (Maidment et al., 2017).
ARC2 performed moderately well but consistently underesti-
mated boreal-summer rainfall, a characteristic of the product

TABLE 4 Adjustments factors for monthly rainfall totals for the six
stations, applying only to the 2000–2012 period

Product Period Adjustment factor

ARC2 Jan 2000–May 2004 0.9381

CHIRPS Jun 2007–Apr 2010 1.2224

PERSIANN Jan 2000–Sep 2007 0.8741
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across tropical Africa (Novella and Thiaw, 2013). ARC2
also struggled at estimating rainfall at the independent sta-
tions. PERSIANN performed well in our study region except
at Kasese and Mweya, which were the driest and lowest
locations. In fact, all products overestimated rainfall at Kas-
ese and Mweya, with PERSIANN having the largest over-
predictions. These overestimates are not unexpected, since
increased amounts of sub-cloud evaporation should cause
rainfall overestimations (i.e., rainfall is detected aloft but a
substantial amount evaporates before reaching the surface),
and, in the case of a coarse-resolution product, such as PER-
SIANN, rainfall overestimates should be larger than those
from high-resolution products (Dinku et al., 2011).

With respect to the long-term evaluation of the satellite
products, the change points indicate that—unless satellite-
based rainfall estimates are adjusted using a standard set of
gauge data—multi-decadal trends in rainfall based on data
from ARC2, CHIRPS, and PERSIANN will be biased
towards drying trends. Of the four products, the unadjusted
data for ARC2 showed a significant decrease in annual and
seasonal rainfall from 1983 to 2016 in western Uganda, and
this artificial decrease was caused by artificially decreased
rainfall totals after 1991. Adjusting for the drying bias in the
ARC2 data resulted in a significant increase in annual rain-
fall totals for western Uganda from 1983 to 2016. These
findings stand in stark contrast to previous findings of signif-
icant drying in the region, which did not sufficiently account
for the ARC2 drying bias (Diem et al., 2014b; Ssentongo
et al., 2018). Rather, the region most likely has gotten wet-
ter, and the most homogeneous product (i.e., the product
with the weakest inhomogeneities), TARCAT, showed a sig-
nificant wetting trend for the region. Among the four clima-
tological seasons, the wetting trend primarily occurred for
March–May and September–October, which coincide with
the two rainy seasons. These results are congruent with the
previously reported increased satellite-based, rainy-season
rainfall totals in western Uganda, which, in turn, were sup-
ported by perceptions by farmers in the region (Salerno
et al., 2019). Adjusted values for all four products in this
study showed an annual wetting trend from 1983 to 2016,
with the mean increase being 3.2%/decade. The annual wet-
ting trends were caused by increased rainfall during the rainy
seasons, rather than during boreal winter. Therefore, western
Uganda has not experienced the boreal-spring drying trend
experienced in EEA (Williams and Funk, 2011; Lyon and
DeWitt, 2012; Yang et al., 2014).

Temporal changes in rain-gauge data appear to be the
most likely culprit of the change points over periods of at
least a decade in the satellite-based products. TARCAT is
the only product that does not incorporate gauge data in
“real time”; thus, inter-annual variations in rainfall are
dependent only on satellite observations (Maidment et al.,
2017). It seems highly plausible that the lack of reliance on a
time series of ground-measured rainfall enabled TARCAT to

avoid significant negative change points in western Uganda.
Shifts towards a dry bias occurred for ARC2 and CHIRPS in
the late 1980s to the early 1990s, and these shifts occurred at
both stations (Kanyawara and Ruhija) with data spanning
the 1980s and 1990s (Figure 9). Both ARC2 and CHIRPS
rely on rain-gauge measurements, and the amount of gauge
data in the region has decreased dramatically over the past
several decades (Washington et al., 2013). For example, the
rapid reduction in gauge coverage in central Africa has been
hypothesized to be the cause of decreasing trends in ARC2
rainfall totals from 1983 to 2010 for the region (Maidment
et al., 2015).
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5 | CONCLUSIONS

Western Uganda has a dense human population dependent
on rainfed agriculture and highly impacted by rainfall vari-
ability. The existing rain-gauge data in the region are insuffi-
cient to determine the spatio-temporal variability of rainfall,
thereby making it difficult to understand rainfall variability
with respect to farming decisions. Satellite-based rainfall
estimates are a promising alternative to ground-measured
rainfall totals; however, those estimates must be validated.
This study has validated rainfall estimates from four prod-
ucts, ARC2, CHIRPS, PERSIANN, and TARCAT, in west-
ern Uganda. CHIRPS was the most accurate product at
estimating 10-day, monthly, and seasonal rainfall totals and
at capturing intra-seasonal rainfall variability. TARCAT was
the most reliable product when inter-annual variability was
involved: it had the largest correlations with ground-
measured rainfall and it did not have any significant negative
change points in its time series. ARC2 and PERSIANN were
arguably the least reliable products based on consistent dis-
agreements with the validation sites, especially the indepen-
dent stations, as compared to other products. ARC2 and
PERSIANN also are inappropriate for assessing inter-annual
variability, especially multi-decadal variability, in rainfall in
this region. In addition, after adjusting for inhomogeneities
in the rainfall time series of the four products, none of the
products showed a drying trend in western Uganda. In fact,
it appears highly likely that western Uganda has experienced
a wetting trend over the past several decades.

We recommend that future rainfall research in western
Uganda, and possibly for CEA in general, should rely only
on CHIRPS and TARCAT data. CHIRPS is ideal for fixed-
time rainfall-totals analyses and TARCAT is ideal for time
series analyses. CHIRPS was sufficiently accurate at estimat-
ing seasonal rainfall totals at sites in western Uganda with
varying topographic settings and rainfall regimes. While
TARCAT has an underestimation bias, its lack of reliance
on contemporaneous rain-gauge data makes it a temporally
stable product. Consequently, inter-annual analyses involv-
ing TARCAT are the least biased, and not plagued by a dry-
ing bias like the other products assessed in this study.
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