Hardware-Software Co-design to Accelerate Neural
Network Applications

MOHSEN IMANI, RICARDO GARCIA, SARANSH GUPTA, and TAJANA ROSING,

University of California San Diego

Many applications, such as machine learning and data sensing, are statistical in nature and can tolerate some
level of inaccuracy in their computation. A variety of designs have been put forward exploiting the statis-
tical nature of machine learning through approximate computing. With approximate multipliers being the
main focus due to their high usage in machine-learning designs. In this article, we propose a novel approxi-
mate floating point multiplier, called CMUL, which significantly reduces energy and improves performance
of multiplication while allowing for a controllable amount of error. Our design approximately models multi-
plication by replacing the most costly step of the operation with a lower energy alternative. To tune the level
of approximation, CMUL dynamically identifies the inputs that produces the largest approximation error and
processes them in precise mode. To use CMUL for deep neural network (DNN) acceleration, we propose a
framework that modifies the trained DNN model to make it suitable for approximate hardware. Our frame-
work adjusts the DNN weights to a set of “potential weights” that are suitable for approximate hardware.
Then, it compensates the possible quality loss by iteratively retraining the network. Our evaluation with four
DNN applications shows that, CMUL can achieve 60.3% energy efficiency improvement and 3.2X energy-
delay product (EDP) improvement as compared to the baseline GPU, while ensuring less than 0.2% quality
loss. These results are 38.7% and 2.0 higher than energy efficiency and EDP improvement of the CMUL
without using the proposed framework.

CCS Concepts: « Computer systems organization — Architectures; - Computing methodologies —
Machine learning;

Additional Key Words and Phrases: Approximate computing, neural network, floating point unit, energy
efficiency

ACM Reference format:

Mohsen Imani, Ricardo Garcia, Saransh Gupta, and Tajana Rosing. 2019. Hardware-Software Co-design to
Accelerate Neural Network Applications. J. Emerg. Technol. Comput. Syst. 15, 2, Article 21 (April 2019), 18
pages.

https://doi.org/10.1145/3304086

This work was partially supported by CRISP, one of six centers in JUMP, an SRC program sponsored by DARPA, and also
NSF grants #1730158 and #1527034.

Authors’ addresses: M. Imani, R. Garcia, S. Gupta, and T. Rosing, University of California San Diego, 9500 Gilman Dr, La
Jolla, CA 92093, USA; emails: {moimani, rag023}@ucsd.edu, sgupta@eng.ucsd.edu, tajana@ucsd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1550-4832/2019/04-ART21 $15.00

https://doi.org/10.1145/3304086

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21

21:2 M. Imani et al.

1 INTRODUCTION

In 2015, the number of smart devices around the world exceeded 25 billion. This number is ex-
pected to double by 2020 (Atzori et al. 2010; Gantz and Reinsel 2011). Many of these devices have
batteries with strict power constraints, so the need for systems that can efficiently handle the com-
puting requirements of data-intensive workloads is undeniable (Ji et al. 2012; Khoshavi et al. 2016).
Deep neural networks (DNNs) have been effectively used for diverse classification problems, such
as image processing, video segmentation, speech recognition, computer vision, health-care, and
manufacturing (Hinton et al. 2012; Imani et al. 2018b, 2018c; LeCun et al. 2010; Oquab et al. 2014;
Salamat et al. 2018). Running DNNs on the general purpose processors is slow, energy hungry,
and prohibitively expensive (Krizhevsky et al. 2012). Machine-learning applications are stochastic
at heart, thus they do not need highly accurate computation. So by accepting slight inaccuracy,
instead of doing all computation precisely, we can get significant energy and performance im-
provements (Han and Orshansky 2013; Imani et al. 2016d). Therefore, many traditional and state-
of-the-art computing systems use floating point units (FPUs) (Courbariaux et al. 2014; Razlighi
et al. 2017). For such algorithms of high energy and performance high power is required. To cover
the same dynamic range, the fixed point unit must be 5 times larger and 40% slower than a corre-
sponding floating point (Liang et al. 2003). Similarly, many DNN applications require floating-point
precision due to the fact that the iterative training algorithm often update the parameters using
gradients whose values are too small to sustain the additive quantization noise (Lin and Talathi
2016).

Multiplication is one of the most common and costly FP operations, slowing down the compu-
tation in many applications such as signal processing, neural networks, and streaming processes
(Imani et al. 2016¢; Suhre et al. 2013). Multiplication cost can be reduced by designing an approx-
imate multiplication unit. Most of prior work attempted to reduce the bit-size of multiplication
to enable approximation (Hashemi et al. 2015; Narayanamoorthy et al. 2015). However, either the
lack of accuracy tuning or the large area requirements of the tuned designs significantly reduce
the advantages provided by such approximation.

In this article, we instead propose a configurable floating point multiplication, called CMUL,
which significantly improves the multiplication energy consumption by trading off accuracy.
CMUL avoids the costly multiplication when calculating the fractional part of a floating point
number by adding the input mantissas, instead of multiplying them. To tune the level of accuracy,
our design checks the number of consecutive 0’s and 1’s on the first N bits of both input mantissas.
The larger sequence of continuous bit, the higher accuracy CMUL multiplication can achieve. To
use CMUL for DNN acceleration, we propose a framework that modifies the trained DNN model
to make it suitable for approximate hardware. Our framework adjusts the DNN weights to a set
of “potential weights” that are suitable for approximate hardware. Then it compensates the possi-
ble quality loss by iterative retraining the network based on the existing constraints. We evaluate
the efficiency of the proposed approach on AMD GPU architecture by replacing the conventional
FPUs with the proposed CMUL. Our evaluations on four DNN applications show that CMUL can
achieve on average 60.3% energy efficiency and 3.2Xx energy-delay product (EDP) improvement as
compared to the baseline GPU, while ensuring less than 0.2% quality loss. These results are 38.7%
and 2.0x higher energy efficiency and EDP improvement of the CMUL without using the proposed
framework.

The rest of article is organized as follow: Section 2 and Section 3 review the related work and
background. Section 4 describes the proposed approximate multiplications. Section 6 describes
the supported framework to accelerate neural network applications on approximate hardware.
The hardware integration has been described in Section 5. The experimental results are presented
in Section 7. Finally, Section 8 concludes the article.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:3

2 RELATED WORK
2.1 Approximate Computing

There are several commonly examined approaches to approximate computing: voltage over scal-
ing (VOS), use of approximate hardware blocks, and use of approximate memory units. VOS in-
volves dynamically reducing the voltage supplied to a hardware component to save energy, but at
the expense of accuracy. Error rates for VOS can be modeled to determine the tradeoff between
energy and accuracy for applications, allowing voltage to be lowered until an error threshold is
reached (Imani et al. 2017c; Krause and Polian 2011). However, the circuit is sensitive to any vari-
ations, and if the operating voltage of a circuit is decreased too far, timing errors begin to appear.

Another strategy is the application of Non-volatile memories (NVM) to create approximate
memory units for energy efficient storage and computing purposes (Gnawali et al. 2018; Imani
et al. 2016d; Kim et al. 2015). In computing, the goal of this approach is to store common inputs
and their corresponding outputs. This style of associative memory can retrieve the closest output
for given inputs to reduce power consumption (Imani et al. 2016a, 2016b; Peroni et al. 2019). This
approach does not work well in applications without a large number of the redundant calculations.
Associative memory can be integrated into FPUs reduce these redundancies.

Approximate hardware involves redesigning basic component blocks to save energy, at the cost
of accurate output (Camus et al. 2016; Hashemi et al. 2015; Lin and Lin 2013; Liu et al. 2014). Liu et al.
utilize approximate adders to create an energy efficient approximate multiplier (Liu et al. 2014).
Hashemi et al. designed a multiplier that selects a reduced number of bits used in the multiplication
to conserve power (Hashemi et al. 2015). Camus et al. propose a speculative approximate multiplier
combines gate-level pruning and an inexact speculative adder to lower power consumption and
shrink FPU area (Camus et al. 2016).

All the methods adopt to operation accuracy needed at runtime. They only have one level of
approximation that is independent of the inputs. In contrast to previous work, we design a con-
figurable approximate floating point multiplier that approximately processes data using an input
mantissa directly in the output. In addition, we propose a framework that fixes one of the multi-
plication operands in neural network to significantly reduce the error of approximate hardware.

2.2 Neural Network

Modern neural network algorithms are executed on diverse types of processors such as GPU, FP-
GAs, and ASIC chips (Ciresan et al. 2011; Han et al. 2016; Iandola et al. 2016; Imani et al. 2017b;
Nazemi et al. 2018; Razlighi et al. 2017). Prior work tried to use fixed-point quantized numerals to
improve the efficiency of DNN (Lin et al. 2016). Work in Lin et al. (2015) exploited trained binary
parameters to avoid multiplication. However, many applications require floating-point precision,
since the iterative DNN training algorithm often update the parameters using gradients whose
values are too small to sustain the additive quantization noise (Lin and Talathi 2016). In contrast,
our proposed design uses floating-point precision rather than confining the parameters to binary
numerals.

Other efficient way to improve the DNN efficiency is model compression. For example, work
in Han et al. (2015) trained sparse models with shared weights to compress the model. The com-
pressed parameters of Han et al. (2015) can be used to realize ASIC/FPGA accelerators (Han et al.
2016). However, compression does not help with execution on general purpose processors, in
which case the compressed parameters should be decompressed into the original parameters. Di-
mensionality reduction is investigated for efficient execution of DNNs (Imani et al. 2018a). These
methods are orthogonal to our proposed CMUL, since CMUL only reduces the cost of hardware
computation with minimal impact of quality loss.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:4 M. Imani et al.

1 Z; Weight Matrix (Wij) a; Z;
k . . =
£ £ g
= =
> X = SRSl — 2
¢ o= =
= E=R7} =
2 2= &
= <& =
=)
Fig. 1. General structure of DNN in fully connected layer.
Sign, Exponent Mantissa Sign ~ Exponent | Mantissa
A: [A 'AMI IAH! Al e TAu Al s [A A: A]An.;[IA.AlLAi [e TAu[Auna] - TA]
| | | | N Tuning bits
x I + I x X I " \ *
B: [BolBua] *== [Bu| B [Bu] [&:] B: [BolBua] - [Bu| B [Bua] [8]
1l 1 I I}
C: [ColCma] > [Ca] G |Cum] [c] C: [CoJCua] *=* JCu] G [Ci] [ci]
Floating Point Multiplication Proposed Design

Fig. 2. Approximate multiplication of proposed CMUL between A ad B operands.

3 DEEP NEURAL NETWORKS

A DNN model consists of multiple layers that have multiple neurons. These layers are stacked on
top of each other in a hierarchical formation; that is, the output of each layer is forwarded to the
next layer. The output of the last layer is used for inference. Figure 1 shows the structure of a fully
connected layer in a neural network. The computation in a single layer of neural network can be
modeled as a vector-matrix multiplication, which involves large amount of multiplications. How-
ever, floating point operations are costly and energy hungry. Multiplication is the most commonly
used floating point operation in both learning and multimedia applications (Han and Orshansky
2013; Hashemi et al. 2015). For example, looking at image filters such as the Sobel filter and the
Robert filter, we observed that about 85% of floating point arithmetic involve multiplication. The
neuron takes a vector of neuron values from the preceding layer X = (X, ..., X,) and then com-

putes its output as follows:
n
Zj = QD(ZVVUXI +b),
i=1

where W; and X; correspond to a weight and an input, respectively; b is a bias parameter; and ¢ is
a nonlinear activation function.

3.1 IEEE 754 Standard

In floating point notation, a number consists of three parts: a sign bit, an exponent, and a fractional
value. In IEEE 754 floating point representation, the sign bit is the most significant bit, where bits 31
to 24 hold the exponent value, and the remaining bits contain the fractional value, also known as
the mantissa. The exponent bits represent a power of two ranging from —127 to 128. The mantissa
bits store a value between 1 and 2, which is multiplied by 2°* to give the decimal value.

FPU multiply follows the steps shown in Figure 2. First, the sign bit of A X B = C is calculated by
XORing the sign bit of the A and B operands. Second, the effective value of the exponential terms

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:5

Tuning Bits

|A32 | Azr | *** |A24|A23| vee | Az |
Sign Exponent Mantissa

Fig. 3. CMUL Integration with N tuning bits.

«10*
35
§ 3 Bl crru [llProposed Design
g25
3 2
(=]
O1s5
[=]
1
05
0
0 10 20 30 40 50
Error Rate (%)

Fig. 4. Histogram of error distribution for proposed design and CFPU.

are added together. Finally, the two mantissa values are multiplied to provide the result’s mantissa.
Because the mantissa ranges from 1 to 2, the output of the multiplication always fall between 1
and 4. If the output mantissa is greater than 2, then it is normalized by dividing by 2 and increasing
the exponent by 1.

3.2 Limitations

Recently, work in Imani et al. (2017a) proposed a configurable floating point multiplier (CFPU),
which adaptively multiplies the input operands. CFPU decides to run the multiplication in exact
or approximate mode depending on the input mantissas. However, CFPU relies on one input to
approximate, which results in errors that range from 0% to 50% works in approximate mode only
when one of the input mantissa has N leading one or zero bits (N is a tuning bits). This reduces
the number of inputs that CFPU can process in approximate mode. In Section 4, we explain the
functionality of the proposed approximate multiplier, then in Section 6, we explain the framework
this approximate multiplier to accelerate DNN on GPU architecture.

4 PROPOSED APPROXIMATE MULTIPLIER

In floating point multiplication, the mantissa multiplication is the most costly operation that takes
about 80% of the total multiplication energy (Imani et al. 2017a). Here we propose CMUL to accel-
erate floating point multiplication by eliminating the costly mantissa multiplication. Our design
XORs two input sign bits to get the output sign bit. The two input exponents are added to calculate
the output exponent. Finally, instead of multiplying the two mantissas, we add two mantissas and
used the result as the mantissa for the output (as shown in Figure 3). The result shows that when
we replaced the mantissa multiplication with addition, the error rate is less than or equal to 11.1%.
Figure 4 shows the error distribution of 1 million random approximations executed by CMUL and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:6 M. Imani et al.

8000

=23

=3

=3

=1
L

[En=2[N=4| nN=6[IN=8|

of Occurance
-y
(=3
=3
o

N
=3
=3
o

0 1 2 3 4 5 6 7 8
Error Rate (%)

Fig. 5. Accuracy distribution of proposed design as the # of consecutive 1’s or 0’s changes.

55
2 5

§20 L =L}~ Proposed Design 45
o -O-CFPU <40 ~O-cFPU
5 3)
s T35 —{}- Proposed Design
w151 2
S = 30
£]
Wior £25
© H
& g20
b x
) i’ 15
>
H =

ot

5
1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
N (# of Consecutive Bits) N (# of Consecutive Bits)

() (b)
Fig. 6. (a) Average Error Rate and (b) maximum Error of CMUL using different N tuning bits.

CFPU. The result shows that CMUL has higher accuracy than the CFPU with no tuning. Due to
a lower error rate without tuning, our design is able to approximate a large amount of numbers,
resulting in speedup and energy efficiency improvement.

4.1 Tuning Accuracy

Although proposed approximate multiplication provides high energy savings, the accuracy of com-
putation is heavily affected depending on the application. For some applications, with quantized
inputs, e.g., the Sharpen filter, the proposed design can work precisely with no quality loss. In
addition, many recognition algorithms, such as motion tracking and plate detection applications,
only need to quantify changes in the input data. Therefore, the approximate multiplication can be
nearly exact for such applications.

To ensure the desired accuracy is achieved we design a tuning method that allows the design to
operate only when the approximation is at the desired error rate. The tuning process consists of
checking the N number of consecutive 0’s or 1’s in both of the input mantissas if one of the inputs
has the minimum required N value the design will operate in approximation mode. Figure 5 shows
the error distribution of random approximations as the value of N changes. The data show that as
N increases exponentially the error rate decreases as the number of consecutive 1’s or 0’s found
in one of the input mantissa.

To show the level of accuracy that can be achieved with the proposed design, random inputs
with different N values were generated and input into the CFPU and CMUL to compare maximum
and average error rates. Figure 6 shows that as N increases the error rate goes to zero for both
maximum error and average error rate for both designs. The data also show that the proposed

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:7

Sign Exponent Mantissa Sign Exponent Mantissa
-65[1[10000101[00000100..] -65[1/10000101[90000100..|
X + X X + Tuning Bits 4
10[0]10000010]01000000..] 10 [0[10000010[01000000..]

[[
650 1 [10001000[00100010...] -648[1/10001000{/01000100...|
Precise Functionality Proposed Design

Fig. 7. An example of 32-bit multiplication in conventional precise FPU and proposed CMUL using N =5
tuning bits.

design is far better in both average error rate and maximum error. Comparing both designs, the
CFPU has a larger maximum and average error rate for low N values, whereas the proposed design
has a significantly lower maximum and average error rate for low N values. This is significant,
since the lower the N value the more inputs the approximation design can approximate. Thus
the proposed design can handle a greater number of inputs than the CFPU with higher accuracy
that will result in less energy and higher speeds, since more multiplications would be able to be
approximated.

An example of CMUL multiplication is shown in Figure 7 for two 32-bit floating point numbers in
precise FPU and proposed CMUL with N = 5. The conventional FPU finds the product of A = —65
and B = 10 by adding the exponents and multiplying the two mantissa, while XORing the sign bit to
find three parts of the output data. In contrast, our design first checks both of the input mantissas
for N consecutive 0’s or 1’s if one of the mantissas contains the desired or exceeds the desired
number of consecutive 0’s or 1’s. In this example, since the input operand mantissa of A has a
leading zero in the mantissa the N number of consecutive 0’s is checked. In this example, N = 5
and the mantissa of A also has five consecutive 0’s the design will proceed with the approximation.
However, if the set value of N was larger then 5, then the design would run the exact mode instead
of approximation. In application, N is selected based on the maximum error rate the application
can tolerate, with accuracy increasing with higher N value; however, if a lower or higher error rate
is required, then N can be changed accordingly. When one of the input operands meets the tuning
condition, the multiplication processes in approximate mode. In the example shown in Figure 7,
the approximation results is —648, while the exact multiplication gets —650. If a higher accuracy
is desired, then increasing the value of N would allow the design to only approximate values that
are under a certain threshold.

5 CMUL INTEGRATION
5.1 AMD GPU Architecture

We integrated the proposed CMUL in a GPU southern Island architecture Radeon HD 7970 de-
vice. The architecture of GPU has been shown in Figure 8. This GPU has 32 compute units, where
each contains a scheduler and a set of 4 SIMD execution units. Each SIMD execution unit has 16
cores, which gives a total number of 64 cores per compute unit. Each streaming core consists of
both integer and floating point units. We replace all multipliers in floating point multiplier (MUL),
multiply-accumulator (MAC), and multiplier-addition (MAD) units with the proposed CMUL.
Every time an application launches, all GPU cores are configured as approximation level. CMUL
is a modified version of the standard floating point multiplier in GPUs that uses hardware modi-
fication to support approximation.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:8 M. Imani et al.

Mantissa

Compute Device Compute Unit SIMD Unit

/ /
‘ Ultra-threaded Dispatcher ‘ f;" Wavefront Scheduler ||/
l gl L/

Output

| Nt | FRU |

Mantissa
o Adder

Stream Core 2 ‘

£
El
g
g

Compule Compule SIMD SIMD 7 Stream Core 3

Unitl | *** | Unit32 Unit 1 Unit 4 g .

\ =]
Y g

I I b I g Stream Core 16
iy 3
3 LS

‘ Global Memory ‘ \ l Local Memory ‘ Y [Vector/Scalar RF ‘

(@)

Fig. 8. (a) The architecture of AMD Radeon HD 7970 GPU. (b) Circuitry to support tuning the level of ap-
proximation in CMUL.

(b)

5.2 CMUL Hardware Support

Figure 8(b) shows the circuitry to support CMUL accuracy tuning. Our design looks at the first
N mantissa bits of both input operands to check the tuning condition. If the tuning condition is
satisfied in either input mantissas, then our design adds the mantissa of the input operands to
generate the mantissa of the multiplication output. Otherwise, similarly to conventional FPUs,
the multiplication of the input operand mantissas generates the output multiplication mantissa.
Similarly, to tune the level of approximation, our design uses N bits (after the first mantissa bit)
of the selected mantissa to decide when to perform mantissa multiplication or approximate it.
The number of tuning bits sets the level of approximation, with each additional bit reducing the
maximum error by half. The goal is to check the value of the A;_;,...,A;_N to make sure they
are the same. As Figure 8(b) shows, the tuning circuitry is a simple transistor-resistor circuitry
that samples the match-line (ML) voltage to detect the A;_1, A;_3, ..., Ao input operand. In case of
any 1-bit in a mantissa, the sense amplifier will detect changes in the ML voltage (ML = 1). The
circuitry also needs to select the inverted values of the tuning bits for the circuitry to search. To
detect the 1 bit on Agfl, R Agh indices on CMUL, the sense amplifier Clk needs to be set to 250ps.
Based on the results, we can dynamically change the sampling time to balance the ratio of the
running input workload on the approximate CMUL core. For each application, this sampling time
can individually set to provide target accuracy.

For DNN application, CMUL hardware support do not need to use tuning circuitry, since the
software framework always ensures that the DNN weights satisfy the tuning condition. Therefore,
CMUL always works in approximate mode and adds the mantissa of the input operands to generate
the mantissa of the multiplication output. The conventional 32-bit floating point multiplier takes
7,690um? area. To enable CMUL functionality, the conventional multiplier needs to use extra 23-bit
fixed-point adder and a tuning circuit. Our evaluation using Synopsys Design Compiler shows that
the adder and the tuning logic consumes 101.5um? and 28.3um? area, respectively. Thus, the CMUL
has a 1.68% larger area as compared to the conventional floating point units. This area overhead
is negligible considering the flexibility and efficiency that the CMUL can provide.

We propose an automated framework to fine-tune the level of approximation and satisfy re-
quired required accuracy while providing the maximum energy savings. Figure 9 shows the
proposed framework consisting of the accuracy tuning and accuracy measurement blocks. The
framework starts by putting CMUL in the maximum level of approximation. Then, based on the
user accuracy requirement, it dynamically decreases the level of approximation until computation
accuracy satisfies the user desired quality. For each application, this framework returns the optimal
number of CMUL tuning, which provides maximum energy and performance efficiency.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:9

Accuracy
Requirement

Exact GPU

Approximate
GPU

Tuning <t>‘

Fig. 9. Framework to support tunable approximation.

N tuning bits

(e ———=y
Potential Weights

(3]
Error Estimation
0 e O

Q ize to The I\
Closest Potential

Weights Qun_mized |
weights I

Adopted
Trained Model

Trained
Model

——
Validation
Dataset

Hidden -7 Quantized
weights Map to Approximate

Hardware

Input Output |

)

le
> Retraining
. O

e
Train
Dataset

Fig. 10. The overview of the proposed framework in adjusting the DNN weights to a set that is suitable for
approximate hardware.

6 DNN ACCELERATION FRAMEWORK
6.1 Overview

In this section, we describe a novel framework to accelerate DNN applications on the approximate
GPU architecture. As we explained, the enhanced GPU is configurable, and thus it can be used
in a similar way as other applications to accelerate DNN. However, we observe that using this
method, there are a few numbers to satisfy the tuning condition. DNNs during inference use a
set of fixed weight values. Our framework ensures that DNNs use a weight representation that is
suitable for our new approximate hardware. Adjusting the DNN weights ensures that the proposed
CMUL has minimum error rate when multiplying input and weights. Figure 10 shows the overview
of the proposed framework. In the first step, we get the DNN model by training the network
(@). Our framework adjusts the weights by quantizing them to a closest value that satisfies the
tuning condition (@). The adjusted model inputs the DNN and the accuracy of the new network
checks over the validation dataset (@). This accuracy is compared with the baseline trained model
(Ae = eagjusted = eBaseline)- If the quality loss due to model adjustment is less than €, then we
use the adjusted model for the rest of classification (@); otherwise, we retrain the network using
the adjusted weights (@). This iterative process continues until the error condition is met or the
algorithm runs for a pre-specified number of epochs. Note that the retraining approach is general,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:10 M. Imani et al.

and it improves the classification accuracy regardless of approximate hardware. In other words,
the retraining framework adapts network to work with the existing constraints. In the following,
we explain the details of the proposed framework.

6.2 Weight Modification

The DNN computation involves many of multiplications between the input vector and weight ma-
trix. These multiplications can be accelerated by processing on approximate hardware. However,
the error of the approximate hardware, described in Section 4, depends on the input operand val-
ues. As we showed in Section 4, the multiplication of input and weight elements has low error rate
when one of the input operands have a specific representation. In particular, when one of the man-
tissas starts with a continues sequence of 0s or 1s, our approximate multiplication results in much
lower error rate. The upper bound of the multiplication error rate can be controlled depending on
the length of the sequence.

Here, we use the idea of weight modification to adjust the DNN weights such that they become
suitable for underlying approximate hardware. The DNN training gives us weights that do not
usually have our desired pattern. We modify the trained DNN model to force the weights to follow
a particular pattern. Our framework first generates a list of all “potential weights” that are suitable
for approximate hardware. These numbers are all floating point values that have N consecutive 0s
or 1s in the start of their mantissa. Our framework looks at each trained weight in neural network
and assigns it to a closet value in potential weights list (@). In case, if the potential weights include
large number of values (small N), then there will be very small change in each DNN weight, so
DNN model may work with the same accuracy as original DNN model. However, weights with
small N run on approximate hardware with larger error. Using a potential weight with large N, the
approximate hardware will have significantly low error rate. However, the modified weights will be
far from the original DNN weights, so it will result in larger change in DNN accuracy. In fact, there
is a tradeoff between hardware and software in enabling approximation. Our framework enables
software approximation by limiting the values that DNN weights can take. The more limitation
on the weights to get patterns with large N, it results in higher software approximation. However,
this reduces the level of approximation in hardware, as each multiplication can perform with lower
error. To compensate for the software approximation error, a retraining of the network is done and
then the optimal N value is selected such that the total hardware+software approximation error
is minimized.

6.3 Error Compensation

Limiting the weight is often accompanied by some degree of additive error, Ae = eagjusted-
epaseline(®). This error is a difference of the DNN accuracy using baseline and adjusted model.
After each model adjustment iteration, our framework compares the Ae with the ¢ value (). If
the condition is not satisfied, then our framework retrains the neural network to find a new model
adopted with the current constraints. After each retraining iteration, all DNN weights again map
to a closest value in “potential weight” list. This process continues for several iterations until Ae
is less than € or the number of iteration passes the maximum epochs (@). Figure 11 shows an
example of speech recognition (Dheeru and Karra Taniskidou 2017) accuracy during retraining
iterations when the mantissa of the DNN weights are forced to start with N = 4 consecutive 0s
or 1s. Our result shows that in the first iterations, the weight limitation has significantly impact
on the classification accuracy. However, our framework can completely compensate the possible
quality loss by retraining the network for several iterations (Ae = 0%).

Table 1 shows the error of different DNN applications, when we limit the potential weightsto val-
ues that satisfy required approximation, specified by user. We tested the impact of our framework

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:11

©
o

©
o

Accuracy (%)
g &

~
o

0 25 50 75 100 125 150 175 200
Retraining Iterations

Fig. 11. An example of speech recognition accuracy during different retraining iterations (N = 5).

Table 1. Error Loss of Different Applications When the Weight Are
Adjusted to a List with a Defined N Tuning Condition

N 1 2 3 4 5 6 7
MNIST 0 0 0 0 0.40% | 0.89% | 1.93%
ISOLET 0 0 ~0% | 0.06% | 0.53% | 1.71% | 2.86%

UCIHAR | 0 0 0.07% | 0.33% | 0.42% | 1.16% | 2.49%
CIFAR-10 | 0 | ~0% | 0.10% | 0.45% | 0.97% | 2.33% | 3.21%

on four different DNN applications including: handwritten digits recognition (MNIST) (LeCun et al.
1998), speech recognition (ISOLET) (Dheeru and Karra Taniskidou 2017), activity recognition (UCI-
HAR) (Anguita et al. 2013), and object recognition (CIFAR-10) (Krizhevsky and Hinton 2009). Our
evaluation shows that for application such as MNIST and ISOLET, our framework can compensate
the quality loss when using weights with N equal or less than 4. However, for applications such
as CIFAR, 0% quality loss can be achieved using weight with N = 2.

7 RESULTS

7.1 Experimental Setup

We integrated the proposed approximate CMUL on the floating point units of an AMD Southern
Island GPU, Radeon HD 7970 device. We modified Multi2sim, a cycle accurate CPU-GPU sim-
ulator (Ubal et al. 2012) to model the CMUL functionality in three main floating point units in
GPU architecture: multiplier, MAC, and MAD. We evaluated power of conventional FPUs using
Synopsys Design Compiler and optimized for power using Synopsys Prime Time for 1ns delay in
45nm ASIC flow (Compiler 2000). The circuit level simulation of CMUL has been performed us-
ing HSPICE simulator in 45nm TSMC technology. We test the efficiency of enhanced GPU on 11
general OpenCL applications: Sobel, Robert, Mean, Laplacian, Sharpen, Prewit, QuasiRandom, FFT,
Mersenne, DwHaar1D, and Blur. In these applications, roughly 85% of the floating point operations
involve multiplication.

7.2 Benchmarks and DNN Models

Table 2 lists the baseline neural network topologies running four applications and their error rates
for train and test modes. For all four datasets, we compare the baseline accuracy of the train and
inference phases with those when using the proposed CMUL framework. We compare the de-
signs in terms of runtime and power consumption. Stochastic gradient descent with momen-
tum (Sutskever et al. 2013) is used for training. The momentum is set to 0.1, the learning rate
is set to 0.001, and a batch size of 10 is used. Dropout (Srivastava et al. 2014) with drop rate of 0.5 is

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:12 M. Imani et al.

Table 2. DNN Models and Baseline Error Rates for Four Applications (Input Layer, IN;
Fully Connected Layer, FC; Convolution Layer, C; and Pooling Layer, PL)

Dataset Network Topology Error
MNIST IN :784, FC : 512, FC : 512, FC : 10 1.5%
ISOLET IN : 617, FC : 512, FC : 512, FC : 26 3.6%
UCIHAR IN : 561, FC : 512, FC : 512, FC : 19 1.7%

IN :32%x32%x3,CV :32%x3%x3,PL:2X2,
CIFAR-10 | CV : 64%x3%x3,CV : 64 x3%x3,FC:512, FC :10 100 | 14.4%

applied to hidden layers to avoid over-fitting. The activation functions are set to “Rectified Linear
Unit” clamped at 6. A “Softmax” function is applied to the output layer.

Handwritten Image Recognition (MNIST): MNIST is a popular machine-learning dataset
including images of handwritten digits (LeCun et al. 1998). The objective is to classify an input
picture as 1 of the 10 digits {0 ...9}.

Voice Recognition (ISOLET): Many mobile applications require online processing of vocal
data. We evaluate lookNN with the Isolet dataset (Dheeru and Karra Taniskidou 2017), which con-
sists of speech collected from 150 speakers. The goal of this task is to classify the vocal signal to
one of the 26 English letters.

Human Activity Recognition (UCIHAR): For this dataset, the objective is to recognize hu-
man activity based on 3-axial linear acceleration and 3-axial angular velocity that have been cap-
tured at a constant rate of 50Hz (Anguita et al. 2013).

Object Recognition (CIFAR): CIFAR-10 (Krizhevsky and Hinton 2009) are two datasets each of
which includes 50,000 training and 10,000 testing images belonging to 10 classes, respectively. The
goal is to classify an input image to the correct category, e.g., animals, airplane, automobile, ship,
truck, and so on. For the two datasets, we exploit similar topologies based on convolution layers
(CV), but they have different numbers of neurons in the last FC layer according to the number of
classes.

7.3 Approximate Multipliers

To understand the advantage of proposed design, we compare the energy consumption and delay
of the proposed CMUL with the state-of-the-art approximate multipliers proposed in Imani et al.
(2017a), Hashemii et al. (2015), Narayanamoorthy et al. (2015), and Kulkarni et al. (2011). The appli-
cation of previous designs limits to a small range of robust and error-tolerant applications, as they
are not able to tune the level of accuracy in runtime. In contrast, the proposed CMUL dynamically
finds the inaccurate data and processes them in precise mode. CMUL tunes the level of accuracy
at runtime based on the user accuracy requirement. This makes the application of CMUL general.
It should be noted that the proposed framework is general and can work properly on other large
scale datasets. For example, as prior work in Imani et al. (2018c) showed, CMUL can get minimal
quality loss even for larger datasets such as ImageNet.

Table 3 lists the power consumption, critical path delay, and energy-delay product of CMUL
alongside previous work in Imani et al. (2017a), Hashemi et al. (2015), Narayanamoorthy et al.
(2015), and Kulkarni et al. (2011) in their best configurations. Our evaluation shows that at the
same level of accuracy, the proposed design can achieve 2.4x EDP improvement compared to the
state-of-the-art approximate multipliers.

7.4 Tunable CMUL

We show the efficiency of the CFPU by running different multimedia and general streaming appli-
cations on the enhanced GPU architecture. We consider 10% average relative error as an acceptable

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:13

Table 3. Comparing the Energy and Performance of the CMUL and Previous Designs

Power (mW) | Delay (ns) | EDP (pJs) | Tuned Error | Tunable | No Tuning Error
CMUL 3 0.15 1.1 0.18 6.3% Yes 11.1%
CFPU3 (Imani et al. 2017a) 0.17 1.6 0.44 6.3% Yes 50%
DRUME6 (Hashemi et al. 2015) 0.29 1.9 1.04 6.3% No NA
ESSM8 (Narayanamoorthy et al. 2015) 0.28 2.1 1.2 11.1% No NA
Kulkarni (Kulkarni et al. 2011) 0.82 35 10.0 22.2% No NA

Table 4. Normalized EDP and Quality Loss (QL) of the GPU Enhanced
with CFPU in Different Tuning Mode

Sobel Robert Mean Laplacian FFT Mersenne | DwtHaar1D Blur
Tuningbits | ppp o1 | EDp QL |EDP QL |EDP QL | EDP QL | EDP QL | EDP QL |EDP QL
1 bit 0.11 243% | 0.13 0.45% | 0.15 0.27% | 0.17 0.37% | 0.11 9.18% | 0.15 4.29% | 0.14 11.09% | 0.17 6.24%
2 bit 0.14 1.13% | 0.15 0.17% | 0.16 0.14% | 0.18 0.21% | 0.28 5.19% [0.23 2.37% | 0.17 8.2% 0.26 2.93%
3 bits 0.16 0.21% | 0.16 0.06% | 0.19 0.03% | 0.19 0.02% | 0.37 3.1% | 0.31 1.9% | 0.25 4.1% 0.37 0.03%
4 bits 0.17 0.01% | 017 ~0% | 0.23 ~0% | 0.20 0.01% | 0.41 1.07% | 0.36 0.62% | 0.29 1.98% | 0.42 0.09%
5 bits 018 ~0% | 017 ~0% | 025 ~0% | 0.21 ~0% | 0.46 0.43% | 044 0.11% | 0.36 0.30% | 0.51 0.02%

Table 5. Normalized EDP and QL of the GPU Enhanced with CMUL in Different Tuning Mode

Sobel Robert Mean Laplacian FFT Mersenne | DwtHaar1D Blur
Tuningbits | gppp or |Epp QL |EDP QL |EDP QL |EDP QL |EDP QL |EDP QL |EDP QL
1 bit 0.08 2.09% | 0.11 0.35% | 0.14 0.09% | 0.09 0.37% | 0.10 7.26% | 0.12 3.02% | 0.10 8.42% | 0.11 4.36%
2 bit 012 0.94% | 0.13 0.07% | 0.13 0.06% | 0.14 0.09% | 0.22 3.56% | 0.18 1.33% | 0.13 5.77% | 0.20 1.05%
3 bits 0.13 0.35% | 0.14 0.01% | 0.16 0.02%| 0.15 0.01% | 0.30 1.17% | 0.24 0.63% | 0.21 1.8% | 0.33 0.01%
4 bits 0.13 0.02% | 0.14 ~0% | 0.17 ~0% | 0.16 0% | 036 041%| 032 0.12% | 0.25 0.24% | 0.27 ~0%
5 bits 0.15 ~0% | 0.15 ~0% | 021 ~0% | 0.19 ~0% | 042 0.14%| 039 0.03% | 0.31 0.12% | 0.42 ~0%

accuracy metric for all applications, verified by Esmaeilzadeh et al. (2012). We tune the level of ap-
proximation by checking the N bits of mantissa in the input operands. If all N tuning bits in one of
the input mantissa is 0 or 1, then the multiplication runs in approximate mode; otherwise, it runs
precisely by multiplying the mantissa of input operands. For each application, Table 4 and Table 5
show the normalized EDP and quality loss of different applications running on approximate GPU
enhanced by CPU and CMUL, respectively. For both designs, we change the number of tuning
bit from 1 (none) to 5 bits. The results are normalized to the EDP of the GPU using conventional
FPUs. Increasing the number of tuning bits improves the computation accuracy by processing the
far and inaccurate multiplications in precise mode. However, more number of tuning bits slows
down the computation, because a larger portion of data is processed on precise. Our experimental
evaluation shows that running applications on proposed CFPU provides 3.1x EDP improvement
as compared to a GPU using conventional FPUs, while ensuring less than 1% quality of loss. Our
results in Table 5 shows that CMUL can achieve 2.7x higher EDP improvement as compared to
CFPU design while providing the same quality of computation.

7.5 CMUL and DNN Acceleration

To provide large efficiency, we design a framework that adapts DNN to run on approximate
hardware. Using our framework, the DNN quality loss may be happened by both software and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:14 M. Imani et al.

[#>=Software/Fr k QL =O=Hardware QL -0 Total QL|

1 25
X X
50.75 E 2
8 05 c\ 8 1.5
2 21
=0.25 ! £
< : < 0.5 \c
= 3 =
g o > 9 ol p — P-x..té o

1 2 3 4 5 6 1 2 3 4 5 6

N (# of Tuning Bits) N (# of Tuning Bits)
(a) MNIST (b) ISOLET
_25 2.5
g 2 g
? 45 8
k 1.5

S) - > S
2N S 1
T 0.5 2 5 Sos
R SR -

1 2 3 4 5 6 1 2 3 4 5 6

N (# of Tuning Bits) N (# of Tuning Bits)
(c) UCIHAR (d) CIFAR-10

Fig. 12. Quality loss of different DNN applications due to software/framework and hardware approximation
using different tuning bits (N).

hardware. Figure 12 shows the quality loss different DNN applications running on proposed ap-
proximate hardware. The x-axis in figure shows the N, the sequence of the 0s and 1s at the mantissa
of the weight. For example, N = 4 ensures that all DNN weights have four consecutive 0s or 1s in
the first N bits their mantissas. The lines in the figure show the breakdown of quality loss coming
from software framework and proposed approximate hardware. The results show that increas-
ing the N parameter from 1 to 6, the software framework approximation starts increasing due to
weight constraint applied by the framework. Using large N, the DNN do not have good flexibility
to assign proper weights to DNN, thus it results in large quality loss. However, the quality loss
due to hardware approximation has reverse relation to the N value. Using large N, the approxi-
mate multiplier can achieve lower error. Figure 12 also shows the total DNN quality loss due to
both software and hardware approximation. Our result shows that applications provide optimum
quality loss using different N values. For example, MNIST can achieve to minimum 0% quality loss
using N = 3 and 4, while ISOLET can achieve to 0.05% quality loss using N = 4.

One major advantage of our proposed framework is that CMUL does not need to check the N for
each DNN application. Regardless of the N value, CMUL always takes the same time/energy to run
a DNN application. Figure 13 and Figure 14 report the energy consumption and EDP of the DNN
applications running on the enhanced-GPU with and without supported framework. All results
are relative to the energy and EDP of the conventional GPU using exact FPUs. Our evaluation
shows that using the framework our design can achieve to the same energy efficiency and EDP
improvement, regardless of the value of N. In fact, our framework can approach full hardware
approximation (CMUL always runs in approximate mode). However, the approximate GPU with
no supported framework runs partially in approximate mode. The results show that this hit rate
and energy efficiency is usually too small when the N becomes large. In addition, for every input,
CMUL with no framework needs to pay the overhead of checking the tuning condition. Our result
shows that CMUL with supported framework can achieve 60.3% and energy efficiency and 3.2x
EDP improvement as compare to the baseline GPU, while they ensure less than 0.2% quality loss
for tested applications. At the same level of accuracy, these results are 38.7% and 2.0 higher than
energy efficiency and EDP improvement of the CMUL with no supported framework.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:15

[.DNN Framework Support [INo Framework

1 2 3 4 5
N (# of Tuning Bits)

(c) UCIHAR

g s
=60 60
o 1)
s c
(] 2
G40 ‘G 40
i i
F 20
8% 8
[Q
[[
w o wo
1 2 3 4 5 1 2 3 4 5 6
N (# of Tuning Bits) N (# of Tuning Bits)
(a) MNIST (b) ISOLET
260 60
o 1)
s c
(] 2
S40 ‘G 40
i &
> >
2’20 92()
e 2
u=.| 0 wo

1 2 3 4 5 6
N (# of Tuning Bits)

(d) CIFAR-10

Fig. 13. Energy efficiency improvement of the enhanced GPU with and without DNN framework support.

€4
E
o3
3
g—_z
E1
o
wo
1 2 3 4 5
N (# of Tuning Bits)
(a) MNIST
€4
£
o3
>
g2
£
n.1
=]
wo

1 2 3 4 5
N (# of Tuning Bits)

(c) UCIHAR

/HEDNN Framework Support [INo Framework|

€4

EDP Improveme
- N w

o

1 2 3 4 5 6
N (# of Tuning Bits)

(b) ISOLET

W A

EDP Improvement
- N

o

1 2 3 4 5 6
N (# of Tuning Bits)

(d) CIFAR-10

Fig. 14. Energy-delay product of enhanced GPU with and without DNN framework support.

Table 6 compares the EDP improvement of the CMUL using the proposed DNN framework
with CMUL and CFPU (Imani et al. 2017a) with no framework support. Our evaluation shows
that CMUL using framework has less than 0.5% quality loss over all applications. To provide the
same quality of classification, CMUL and CFPU with no framework support need to run the com-
putation in a configuration very close to the precise mode, and thus they do not provide much
advantage as compared to conventional GPU. In addition, CMUL using framework ensures that all
multiplications can run in approximate mode, and this results in significantly performance im-
provement. In contrast, in CMUL and CFPU with no framework support, the slowest thread with
the least number of multiplications in approximate mode, bounds the GPU performance. To further

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:16 M. Imani et al.

Table 6. Comparing the EDP Improvement of CMUL with
and without DNN Framework with CFPU Design

QL=0.5% QL=2% QL=4%
CMUL CMUL CMUL
CMUL No Framework CFPU No Framework CFPU No Framework CFPU
MNIST 3.34% 1.06X 1.02X% 1.25% 1.12X% 1.56X 1.40%
ISOLET 3.53% 1.15% 1.12% 1.18% 1.06X 1.45% 1.30%
UCIHAR 3.01x 1.07% 1.03% 1.29% 1.17% 1.62% 1.46X
CIFAR-10 2.68%X 1.08% 1.04% 1.28% 1.15% 1.60% 1.44%

improve the EDP of the CMUL and CFPU, one can put the multiplications in deeper approximate
mode. However, this results in significantly quality loss. The results in Table 6 shows that even
with 2% (4%) quality loss, CMUL and CFPU without framework support provide 2.5X and 2.8x
(1.9x and 2.2x) lower EDP improvement as compared to CMUL, which ensures less than 0.5%
quality loss.

8 CONCLUSION

In this article, we propose a configurable floating point multiplier that can approximately perform
the computation with significantly lower energy and performance cost. The proposed approxi-
mate multiplication has tuning capability by adaptively process each new piece of data precisely.
We also proposed a framework to accelerate DNN applications with our approximate FPU. Our
framework modifies the training of the DNN to make it suitable for underlying approximate hard-
ware. Our evaluations on four DNN applications show that CMUL can achieve 60.3% and energy
efficiency and 3.2x EDP improvement as compared to the baseline GPU, while they ensure less
than 0.2% quality loss as compared to precise hardware. These results are 38.7% and 2.0x higher
than energy efficiency and EDP improvement of the CMUL without using the proposed frame-
work. Another main advantage of the proposed framework is its generality, as it can be applied
on any approximate multiplier.

REFERENCES

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. 2013. A public domain dataset for
human activity recognition using smartphones. In Proceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN’13).

Luigi Atzori, Antonio lera, and Giacomo Morabito. 2010. The internet of things: A survey. Comput. Netw. 54, 15 (2010),
2787-2805.

Vincent Camus, Jeremy Schlachter, Christian Enz, Michael Gautschi, and Frank K Gurkaynak. 2016. Approximate 32-bit
floating-point unit design with 53% power-area product reduction. In Proceedings of the 42nd Annual European Solid-
State Circuits Conference (ESSCIRC’16). IEEE, 465-468.

Dan C. Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jirgen Schmidhuber. 2011. Flexible, high per-
formance convolutional neural networks for image classification. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), Vol. 22. 1237.

Design Compiler. 2000. Synopsys Inc. https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-
synthesis.html.

Matthieu Courbariaux, Jean-Pierre David, and Yoshua Bengio. 2014. Low precision storage for deep learning. arXiv preprint
Arxiv:1412.7024 (2014).

Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural acceleration for general-purpose approx-
imate programs. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 449-460.

John Gantz and David Reinsel. 2011. Extracting value from chaos. IDC Iview 4, 12 (2011), 1-12.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

Hardware-Software Co-design to Accelerate Neural Network Applications 21:17

Self Prasad Gnawali, Seyed Nima Mozaffari, and Spyros Tragoudas. 2018. Low power spintronic ternary content addressable
memory. IEEE Transactions on Nanotechnology 16, 6 (2018), 1206-1216.

Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging paradigm for energy-efficient design. In
Proceedings of the 2013 18th IEEE European Test Symposium (ETS’13). IEEE, 1-6.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE: Efficient
inference engine on compressed deep neural network. In Proceedings of the 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA’16). IEEE, 243-254.

Song Han, Huizi Mao, and William J. Dally. 2015. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

Soheil Hashemi, R. Bahar, and Sherief Reda. 2015. DRUM: A dynamic range unbiased multiplier for approximate applica-
tions. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE Press, 418-425.

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara N. Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups. IEEE Sign. Process. Mag. 29, 6 (2012), 82-97.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, and Kurt Keutzer. 2016. Firecaffe: Near-linear acceleration of
deep neural network training on compute clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2592-2600.

Farhad Imani, Changqing Cheng, Ruimin Chen, and Hui Yang. 2018a. Nested gaussian process modeling for high-
dimensional data imputation in healthcare systems. In Proceedings of the Institute of Industrial and Systems Engineers
2018 Conference & Expo (IISE’18). 19-22.

Mahdi Imani, Seyede Fatemeh Ghoreishi, and Ulisses M Braga-Neto. 2018b. Bayesian control of large MDPs with unknown
dynamics in data-poor environments. In Advances in Neural Information Processing Systems.

Mohsen Imani, Yeseong Kim, Abbas Rahimi, and Tajana Rosing. 2016a. Acam: Approximate computing based on adaptive
associative memory with online learning. In Proceedings of the 2016 International Symposium on Low Power Electronics
and Design. ACM, 162-167.

Mohsen Imani, Pietro Mercati, and Tajana Rosing. 2016b. ReMAM: Low energy resistive multi-stage associative memory
for energy efficient computing. In Proceedings of the 2016 17th International Symposium on Quality Electronic Design
(ISQED’16). TEEE, 101-106.

Mohsen Imani, Shruti Patil, and Tajana S Rosing. 2016c. MASC: Ultra-low energy multiple-access single-charge TCAM for
approximate computing. In Proceedings of the 2016 Conference on Design, Automation & Test in Europe. EDA Consortium,
373-378.

Mohsen Imani, Daniel Peroni, Yeseong Kim, Abbas Rahimi, and Tajana Rosing. 2017b. Efficient neural network acceleration
on gpgpu using content addressable memory. In Proceedings of the 2017 Design, Automation & Test in Europe Conference
& Exhibition (DATE’17). IEEE, 1026-1031.

Mohsen Imani, Daniel Peroni, and Tajana Rosing. 2017a. CFPU: Configurable floating point multiplier for energy-efficient
computing. In Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC’17). IEEE, 1-6.

Mohsen Imani, Abbas Rahimi, Pietro Mercati, and Tajana Rosing. 2017c. Multi-stage tunable approximate search in resistive
associative memory. IEEE Trans. Multi-Scale Comput. Syst. 4, 1 (2017), 17-29.

Mohsen Imani, Abbas Rahimi, and Tajana S. Rosing. 2016d. Resistive configurable associative memory for approximate
computing. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE’16). IEEE, 1327-
1332.

Mohsen Imani, Mohammad Samragh, Yeseong Kim, Saransh Gupta, Farinaz Koushanfar, and Tajana Rosing. 2018c.
RAPIDNN: In-memory deep neural network acceleration framework. arXiv preprint arXiv:1806.05794 (2018).

Changging Ji, Yu Li, Wenming Qiu, Uchechukwu Awada, and Keqiu Li. 2012. Big data processing in cloud computing envi-
ronments. In Proceedings of the 12th International Symposium on Pervasive Systems, Algorithms and Networks (ISPAN’12).
IEEE, 17-23.

Navid Khoshavi, Xunchao Chen, Jun Wang, and Ronald F. DeMara. 2016. Read-tuned STT-RAM and eDRAM cache hier-
archies for throughput and energy enhancement. arXiv preprint arXiv:1607.08086 (2016).

Yeseong Kim et al. 2015. CAUSE: Critical application usage-aware memory system using non-volatile memory for mobile
devices. In Proceedings of the 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’15). IEEE,
690-696.

Philipp Klaus Krause and Ilia Polian. 2011. Adaptive voltage over-scaling for resilient applications. In Proceedings of the
Design, Automation & Test in Europe Conference & Exhibition (DATE’11). IEEE, 1-6.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images, (Volume. 1, issue. 4,
page. 1-7). Technical report, University of Toronto.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems. 1097-1105.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

21:18 M. Imani et al.

Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading accuracy for power with an underdesigned multiplier
architecture. In Proceedings of the 2011 24th International Conference on VLSI Design (VLSI Design’11). IEEE, 346-351.
Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. 1998. The MNIST database of handwritten digits 10 (1998), 34.

http://yann.lecun.com/exdb/mnist.

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. 2010. Convolutional networks and applications in vision. In Pro-
ceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS’10). IEEE, 253-256.

Jian Liang, Russell Tessier, and Oskar Mencer. 2003. Floating point unit generation and evaluation for FPGAs. In Proceedings
of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03). IEEE, 185-194.
Chia-Hao Lin and Chao Lin. 2013. High accuracy approximate multiplier with error correction. In Proceedings of the 2013

IEEE 31st International Conference on Computer Design (ICCD’13). IEEE, 33-38.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point quantization of deep convolutional networks.
In Proceedings of the International Conference on Machine Learning. 2849-2858.

Darryl D. Lin and Sachin S. Talathi. 2016. Overcoming challenges in fixed point training of deep convolutional networks.
arXiv preprint arXiv:1607.02241 (2016).

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. 2015. Neural networks with few multiplica-
tions. arXiv preprint arXiv:1510.03009 (2015).

Cong Liu, Jie Han, and Fabrizio Lombardi. 2014. A low-power, high-performance approximate multiplier with configurable
partial error recovery. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’ 14).
IEEE, 1-4.

Srinivasan Narayanamoorthy, Hadi Asghari Moghaddam, Zhenhong Liu, Taejoon Park, and Nam Sung Kim. 2015. Energy-
efficient approximate multiplication for digital signal processing and classification applications. IEEE Trans. VLSI Syst.
23,6 (2015), 1180-1184.

Mahdi Nazemi, Amir Erfan Eshratifar, and Massoud Pedram. 2018. A hardware-friendly algorithm for scalable training and
deployment of dimensionality reduction models on FPGA. arXiv preprint arXiv:1801.04014 (2018).

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learning and transferring mid-level image representa-
tions using convolutional neural networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’14). IEEE, 1717-1724.

Daniel Peroni et al. 2019. ALook: Adaptive lookup for GPGPU acceleration. In Proceedings of the IEEE Asia and South Pacific
Design Automation Conference (ASP-DAC’19). IEEE, 1-7.

Mohammad Samragh Razlighi, Mohsen Imani, Farinaz Koushanfar, and Tajana Rosing. 2017. Looknn: Neural network with
no multiplication. In Proceedings of the 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE’17).
IEEE, 1775-1780.

Sahand Salamat et al. 2018. RNSnet: In-memory neural network acceleration using residue number system. In Proceedings
of the 2018 IEEE International Conference on Rebooting Computing (ICRC’18). IEEE, 1-10.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929-1958.

Alexander Suhre, Furkan Keskin, Tulin Ersahin, Rengul Cetin-Atalay, Rashid Ansari, and A. Enis Cetin. 2013. A
multiplication-free framework for signal processing and applications in biomedical image analysis. In Proceedings of
the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’13). IEEE, 1123-1127.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. 2013. On the importance of initialization and
momentum in deep learning. In International Conference on Machine Learning. 1139-1147.

Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012. Multi2Sim: A simulation framework for
CPU-GPU computing. In Proceedings of the 2012 21st International Conference on Parallel Architectures and Compilation
Techniques (PACT’12). IEEE, 335-344.

Received July 2018; revised November 2018; accepted December 2018

ACM Journal on Emerging Technologies in Computing Systems, Vol. 15, No. 2, Article 21. Pub. date: April 2019.

