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ABSTRACT

The recent emergence of IoT has led to a substantial increase in the
amount of data processed. Today, a large number of applications are
data intensive, involving massive data transfers between processing
core and memory. These transfers act as a bottleneck mainly due
to the limited data bandwidth between memory and the processing
core. Processing in memory (PIM) avoids this latency problem by
doing computations at the source of data.

In this paper, we propose designs which enable PIM in the three
major memory technologies, i.e. SRAM, DRAM, and the newly
emerging non-volatile memories (NVMs). We exploit the analog
properties of different memories to implement simple logic func-
tions, namely OR, AND, and majority inside memory. We then
extend them further to implement in-memory addition and multi-
plication. We compare the three memory technologies with GPU by
running general applications on them. Our evaluations show that
SRAM, NVM, and DRAM are 29.8x (36.3x), 17.6x (20.3X) and 1.7x
(2.7X) better in performance (energy consumption) as compared to
AMD GPU.
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1 INTRODUCTION

In this era of the internet of things (IoT), billions of devices are
connected together to form a network. These devices generate
a huge amount of data leading to the concept of big data. Many
applications run several machine learning, neural network, and
other emerging algorithms on this raw data to draw meaningful
results [1-3]. In the current computing systems, all processing
tasks are done on CPU/GPU cores while the data to be processed is
stored in memory [4]. The process of bringing the entire data to
the processing core becomes a bottleneck owing to the limited data
bandwidth. The cache hierarchy in these systems tries to accelerate
this process but it fails when the size of the data becomes too large
to fit into various cache levels.
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Processing in memory present possible solutions to this data
transfer bottleneck [5-8]. It processes data inside memory, i.e. the
source of the data, without using any power hungry cores [9-11].
Although many PIM techniques have been proposed recently, the
majority of them are application specific. For example, [5, 12-14]
accelerate neural networks in memory. Similarly, work in [15]
and [16, 17] designed a PIM architecture for acceleration of brain-
inspired computing and graph processing applications. There are
some works like [18] which support limited basic functions in mem-
ory but fail to implement complex functions like addition and mul-
tiplication. However, some work implemented basic logic functions
in memory and extended them to implement advanced functions
like addition and multiplication [12, 19-22]. These techniques can
be extended to implement several functionalities in memory but
they suffer from huge latency bottleneck mainly due to the slow
switching speeds of NVMs.

The PIM techniques discussed above, as well as most of the other
proposed techniques, are targeted towards NVMs and use the pro-
grammable resistance provided by them to implement logic. Since
the current computing systems majorly use SRAMs and DRAMs,
these techniques do not provide readily implementable solutions
for the data transfer bottleneck that these systems face. The work
in [23] tried to implement PIM in DRAM by decoupling logic and
memory circuits in different dies using 3D-stacking. However, the
designing and manufacturing challenges involved with such ap-
proaches have limited their use.

In this paper, we propose GPIM (general processing in-memory)
to enable PIM in three major memory technologies, namely SRAM,
DRAM, and the emerging NVM technologies. The major contribu-
tions of this paper are as follows:

o We propose novel circuits for SRAM, DRAM, and NVM to
enable PIM. These circuits are configurable and the same
circuit can implement multiple fundamental operations, in-
cluding OR, MAJ, and AND. We also implement in-memory
addition and multiplication in GPIM-enabled SRAM, DRAM,
and NVM.

e For NVM and SRAM, GPIM exploits the differential effec-
tive resistance of logic states to generate data dependent
current. In the case of DRAM, GPIM uses data-controlled
capacitive charging to execute logic. Unlike the previous PIM
approaches, neither does our implementation destroy the
stored data, nor does it require creating temporary copies
for processing.

o GPIM significantly reduces the number of memory device
switches involved in PIM operations, thereby increasing the
lifetime of the memory. Moreover, it also minimizes the num-
ber of memory cells required for performing PIM operations.
It increases the effective memory utilization.

2 RELATED WORK

Processing in memory has recently gained interest owing to the
emergence of new memory technologies with the capability to both
store data as well as process it. Several PIM techniques have been
proposed to accelerate emerging applications. For example, [13]
accelerates neural networks by storing weights in memory and ap-
plying inputs directly to them in the form of current. The work in [5]
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Figure 1: Current-based implementation of logic functions.

uses spiking-based neuromorphic computing to multiply inputs,
applied at bitlines, with the weights, stored in the memory, to im-
plement neural networks in memory. Such techniques do accelerate
the process but depend upon utilizing multi-leveled RRAM devices.
These multi-leveled devices suffer from severely low endurance
issues. Moreover, some of these also use power-hungry ADCs and
DACs, which contribute significantly to the power requirements of
the system.

There are many PIM techniques which deal with general im-
plementations [20, 22, 24]. The work in [18] implements the basic
operations like bitwise OR, AND. However, it does not support
functions like addition and multiplication, limiting the use of such
technique for most of the applications. The work in [20, 25] intro-
duces schemes to implement addition in crossbar memory. This
is further extended in [22] to improve the efficiency of addition
and implement multiplication in memory. These techniques are
general but suffer from the high latency involved in a large number
of device switches. Moreover, [22] uses configurable interconnects
which add area overhead to the memory block.

Some researches also present PIM like techniques for SRAMs
and DRAMs. For example, [26] presents approaches to improve the
performance and energy efficiency of compute caches. Such caches
are able to execute only simple bitwise functions on the data stored
in SRAM cells using sense amplifiers. The work in [27] accelerates
machine learning by doing computations in SRAM cell. However, it
uses large DACs to implement it, introducing significant power and
area overheads. The work in [23] exploits the concept of 3D stack-
ing to separate the logic and memory circuits into different dies,
overcoming the cost challenges involved in integrating memory and
logic. These work do propose PIM techniques for SRAM and DRAM
but they have limited functionality and are not directly applicable
to more general systems running various kinds of applications.

On the other hand, we propose GPIM which implements ba-
sic logic functions by modifying the sense amplifiers for SRAM,
DRAM, and emerging memory technologies. We further extend it
to implement addition and multiplication in memory.

3 GENERAL PROCESSING-IN MEMORY

The dissimilarity in the behavior of different memory technologies
calls for different types of circuits to enable PIM in memory. We
propose two types of circuits, a current-based circuit for NVMs and
SRAM and voltage-based circuit for DRAM.

3.1 Current-based Implementation

In this section, we design an analog circuit which exploits the
difference in current flowing through the NVM and SRAM memory
cells in different states. This reduces the number of transistors
needed to implement logic. Also, it is faster than the slow purely
in-memory implementations which rely on multiple data-driven
device switches to implement various functions [20, 25]. Moreover,
the proposed circuits do not affect the read/write characteristics of
the memories.
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3.1.1 Analog Properties of SRAM and NVM. NVM: Emerging
NVM technologies, like Resistive Random Access Memory (RRAM),
Phase Change Memory (PCM), save data in form of their resis-
tance/matter state. In all the cases, a data readout occurs by apply-
ing a voltage across the memory cells and measuring the current
through it. The sense amplifiers at the periphery of the memory
blocks sense this current to output the stored data. Our design
modifies this sense amplifier to enable the execution of logic.

The total current through the memory cells, say d1, d2, and d3,
depends upon the resistance of the devices, hence the stored data.
In our setup, we consider a low (high) resistive state as logic ‘1’
(°0’). For example, in the case of memristors (ReRAM), we represent
logic 1" and ‘0" with resistive states of 10kQ (Ron) and 10MQ (Ryrf)
respectively. So, the current is maximum when all the three bits are
logic ‘1’ and minimum when they are all logic ‘0”.

SRAM: Unlike NVM, SRAM is volatile in nature. The data in
SRAM is stored in the form of logic state maintained by two cross-
coupled inverters as shown in Figure 2a. In a memory cell, one of
the inverters stores logic ‘1° at the output node while the other
stores logic ‘0. The inverter with logic ‘0” at the output node has
the NMOS transistor in on state. A transistor in on state has a much
lower resistance than that in off state. We exploit this property to
implement basic functions in SRAM.

3.1.2  Circuit Design. The memory cells in a column of the mem-
ory block share the same sense amplifier. So, the data bits to be
processed are required to be present in the same column of the
block. The memory cells are selected by activating the correspond-
ing wordlines (which select the memory row) and bitlines (which
select the required column sense amplifier). The voltage applied at
wordlines makes the current flow through the memory cells. The
total current through the selected memory cells is passed through
the sense amplifier.

Proposed Circuit: Figure 1 shows the proposed circuit. It com-
pares the current through memory cells with a reference current.
For now, we ignore the resistor R;, in the circuit. The transistor
pairs M1-M2 and M3-M4 form current mirrors. M5 acts as reference
current generator while M6 and R2 form the output stage. The total
current from the memory cells is passed through M1. This current
is copied to the M2 by the current mirror. The bias voltage, Vj; 4
applied to the gate of M5 directly controls the current through it,
making it a voltage controlled current source. We use this current
source to generate the reference current. This same current flows
through M3 as well which is copied by M4. In other words, the
current through M4 is directly proportional to the bias voltage.

Since, M2 and M4 try to drive different currents, the resistor
connected to the drains of both the transistors acts as the path to
drain the excess current. This also develops a voltage difference
across the resistor, R1. This voltage is dependent upon the amount
of current flowing through R1. As the current through R1 increases,
the voltage at node ‘A’ increases as well. Node ‘A’ controls the
output transistor, M6. As the voltage at node ‘A’ increases beyond
the threshold of M6, it turns on and pulls the output node to ground.
While the output node remains at a higher voltage when M6 is off.

Implementing MAJ, OR, and AND: The current through a mem-
ory cell changes with data. This allows us to use the total current
through multiple cells to directly implement logic functions. To
implement a function like MAJ, the reference current is set close
to the current that is generated when two of the memory cells
store data ‘1’. Hence, in the case when two out of three data bits
are ‘1, the current through M2 is close to the current through M4.
Hence, very little current flows through R1 and voltage generated
at node A is less than the threshold voltage of M6. M6 remains off,
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Table 1: Circuit parameters for RRAM and SRAM

RRAM RRAM (R,,, <1kQ) SRAM
OR [MAJ [ AND | OR | MAJ | AND | OR | MAJ | AND
Viias (V) | 05| 07 | 09 | 05 | 07 | 09 | 03 | 045 06
Lyef (WA) | 10 | 30 | 50 | 10 | 30 | 50 | 30 | 15 | 5
Latency (ps) | 50 | 50 | 50 | 50 | 50 | 50 | 150 | 150 | 150
Energy (fj) | 53| 8.1 | 9.1 | 3749 | 377.0 | 3784 | 102 | 7.9 | 5.9

maintaining the output node high. When one or none of the bits
are ‘1’ the current through M2 reduces and the voltage at node A
rises. This switches M6 on which pulls the output node low. In the
case when all the three bits are high, the current through M2 is
limited by the current that can be supplied by M4. However the
difference between the two currents is very low and the M6 remains
off, keeping output node high. The same technique is extended to
implement OR and AND. The only required change is the bias volt-
age controlling M5. For implementing OR (AND), the bias voltage
is reduced till the reference current becomes equal to the current
through the memory cells when one (three) of the data bits is ‘1".

Table 1 shows the required bias voltages, generated currents,
latency, and energy consumption for different functions. Ideally,
the current varies linearly with the change in data stored in the
memory cells. However, the current sensing transistor of sense
amplifier has an on resistance of its own which is comparable to
Ron of the memory, which introduces non-linearity in the behavior
of current. The current comparison technique still works since the
change in current is significant and detectable by the proposed
circuit.

3.1.3  Technology Dependent Variations. NVM: NVM character-
istics depend upon the material used for making the device. Hence,
the effective resistance of device as well as the performance vary
with the process. While the proposed method works well for devices
with R,y greater 1kQ, other NVM devices require slight modifica-
tions in the circuit.

In such situation, the large ON resistance of the current mirror-
ing NMOS transistor results in a huge resistance drop across the
transistor. Since there is a very little drop across memory cells, the
change in voltage across the cells and hence the current through
them is not detectable. In order to overcome this issue, we introduce
a resistor, Rk, in parallel to the current mirroring transistor. The
resistance of this resistor is equal to R, of the memory cell. It acts
as a current sink for the current through the memory cells. The
voltage at the common node is now dependent upon the data stored
in the memory. Majority of the current now flows through the
sink resistor. However, the current into the current mirror is now
determined by the voltage at the common node. Since the voltage
is dependent upon data, the current becomes data dependent as
well. The remaining circuit works as before. However, using a sink
resistor introduces a low resistive path for the current to flow, result-
ing in a direct increase in the total power consumption of the circuit.

SRAM: In the case of SRAMs, we do not have access to the ter-
minal which drains the current out of the memory cell like in case
of RRAM. Hence, we connect a gated voltage source to the bitline.
Whenever the logic is to be executed, the voltage source is activated
and the current through it is copied to the logic circuit using PMOS
current mirror. The original read/write mechanism remains the
same, wherein the voltage source is deactivated and the conven-
tional conditioning circuit is used. At the time of logic execution,
the conditioning circuits are disabled with only the auxiliary circuit
being activated. This circuit is similar to the one proposed previ-
ously with roles of NMOS and PMOS interchanged. The voltage
source feeds current to the memory cells directly through bitlines.
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Figure 2: (a) Overview of GPIM in SRAM,; (b) effect of GPIM
circuitry on stored data; (c) SRAM data while using the data
preserving techniques.

The amount of current discharging through a memory cell depends
upon the data it stores. The node of the cross-coupled inverter stor-
ing ‘1’ presents a higher resistance to the ground due to the NMOS
transistor being switched off. On the contrary, the node with ‘0’
has a lower resistance to ground. The data to be processed should
be present in the memory cells connected to the same bitline. To
execute logic in SRAM, we activate the wordlines corresponding to
the concerned memory cells.

Preserving data in SRAM — The major difference between SRAM

and NVM is the way that data is stored. In the case of SRAM, it is
possible that logic execution destroys the data stored in a cell as
shown in Figure 2b. For example, the node d in the SRAM cell C
(storing ‘0’) in Figure 2a can be charged due to the constant voltage
applied during the GPIM execution phase, destroying the initial
data. Our design adopts techniques to preserve data in SRAM while
enabling easy logic execution [28]. We reduce the voltage for the
access transistor encircled in Figure 2a in the execution phase to
prevent the circuit from having a strong effect on the data stored
in SRAM. This decreases the effective amount of current that flows
through the memory cell and hence diminishes the possibility of
data bits getting flipped. However, long and repeated access to the
same memory cell can still lead to a situation where the data is
destroyed. In order to prevent this, we split the wordline access.
Here, only the access transistor directly connected to the GPIM
circuit is activated while the other remains off during the execution
stage. This ensures the presence of a strong logic state in the other
half of the cell, hence preserving the data. The effectiveness of the
techniques can be observed in Figure 2c, where the stored data
remains intact throughout the execution phase.

3.2 Voltage-based Implementation

In this section, we introduce a circuit which uses the DRAM bitline
voltage to selectively charge the output capacitor. The total charge
developed at the capacitor is used to implement different functions
in-memory.

3.2.1 Analog Properties of DRAM. DRAM cells are generally
used in the folded bitline subarray arrangement as shown in Fig-
ure 3a. Figure 3b shows a DRAM cell. DRAM stores data in the form
of charge on a capacitor, accessible via a transistor. A read operation
on a DRAM cell is destructive in nature. Hence, a read is followed
by a write operation to preserve data in memory. Moreover, the
charge on the storage capacitor leaks out over time and requires
a periodic refresh of data. Hence, unlike the previously discussed
memories, the effective resistance of a DRAM cell is independent
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Figure 3: (a) Foldled DRAM subarray configuration; (b)
DRAM cells on the same bitline; (c) basic DRAM sense am-
plifier.

Figure 4: (a) GPIM circuit for DRAM; (b) data-dependent volt-
age at the output capacitor.

of the data stored. Hence, the usual current sensing circuit won’t
work for DRAM.

3.2.2  Circuit Design. Differential Sense Amplifier: Figure 3¢
shows the basic sense amplifier used in DRAM. It is made up of
two cross-coupled inverters. The voltage across the inverters is
controlled by signals Vj, and V},. Of the two bitlines, only one bitline
reads in a cycle while the other acts as the reference. While reading,
the access transistor of a DRAM cell is activated. The cell either
pulls down or pushes up one of the bitlines by a small amount,
depending upon the stored data. This difference generated between
the two bitlines is amplified by pulling down V}, to 0 and then
pulling up V}, to Vpp. This amplification results in rewriting the
cell with the value that was just read. Hence, such a read operation
is non-destructive in nature in contrast to the traditional DRAM
read operation.

Proposed Circuit: We propose controlled capacitor charging
based circuit to implement logic in DRAM. Figure 4a shows the
proposed circuit. The circuit consists of a capacitor whose charging
is regulated by the voltage at bitline. A signal, cap_en, activates the
logic circuit once the bitline has read the data. Whenever the logic
circuit is active and the voltage at bitline is above the threshold of
the high V7 inverter, the capacitor is charged by the power supply.
The three memory cells are read one at a time and the capacitor
is activated after every read operation. The capacitor is charged
whenever the stored bit is ‘1’ while its charge does not change if
the stored bit is ‘0. In addition to the control switches and inverter,
the circuit uses some transistors to pull up or down certain nodes
to ensure correct functioning. The cap_reset signal discharges the
capacitor completely at the beginning of every logic execution
phase.

Implementing MAJ, OR, and AND: The total voltage developed
at the capacitor at the end determines the number of bits which are
‘1, as shown in Figure 4b. In our experimental setup for 3-bit logic
operations, the voltage levels 0.25V, 0.50V, and 0.72V correspond
to the presence of one, two, and three logic high (‘1’) bits. So, a
final voltage greater than or equal to 0.25V corresponds to OR being
true. Similarly, a voltage greater than or equal to 0.50V and 0.72V
translates to MAJ and AND being high respectively.

3.3 GPIM Architecture

Figure 5 shows the overview of the proposed GPIM. It consists of an
array of memory cells. Each memory cell is connected to a wordline
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Figure 5: GPIM Overall Architecture

and a bitline, except a SRAM cell which is connected to 2 wordlines
and 2 bitlines. The controller handles the column and row circuitry
which control the bitline and wordline voltages, respectively. The
sense amplifier is responsible for reading the data and processing it.
Depending upon the memory technology, the sense amplifier will
be one of the circuits proposed in the previous sections. Figure 5
shows the structure of these possible sense amplifiers. Each bitline
has a GPIM circuit which outputs OR, MAJ, or AND depending upon
the bias voltage. The output of the sense amplifier is supplied to
a gate array, as shown in Figure 5, which is required to perform
other operations like addition. This gate array just relies on the
output of the GPIM sense amplifiers and not directly on the actual
data. In some cases, intermediate results are written back to the
memory for each bit and used to calculate the results for next bit.
N-bit addition, implemented similar to [22], is a simple example
of such a case where C,y,; of each 1-bit addition is written back to
memory.
Advantages of GPIM: GPIM provides the following benefits:

Latency — The latency of implementing bitwise functions (OR,MAJ

or AND) using the proposed amplifiers involves a read and logic
execution. Both data read and logic execution being fast, are done
together in a single cycle for SRAM and RRAM. For DRAM, the
logic execution is slower than the DRAM write operation and has
a latency approximately equal to 3 write cycles. Effectively, the
circuit takes 2 or 4 cycles to execute 1-bit addition which is quite
less than the time taken by previous PIM techniques to implement
the same functionality.

Energy Consumption — GPIM benefits in energy consumption due

to two major factors, (i) less dependency on device write opera-
tions and (ii) reduced number of memory operations required for
implementing logic.

Device Switches in NVMs — PIM in NVMs is challenged by low en-
durance issues. Implementing logic using sense amplifiers reduces
the number of read/write operations in memory, helping with the
issue. For example, 32-bit addition in [22] involves around 400 de-
vice switches while GPIM uses only 31 device switches.

Memory Utilization — The proposed technique does not require a

separate processing area in the memory block as in the case of pre-
viously proposed PIM designs. Previous designs require the use of
a memory size much larger than the storage capacity to accommo-
date for processing memory cells. This is not required by our design
since the processing happens in the sense amplifiers, increasing the
effective utilization of the memory.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

Performance and energy consumption of proposed hardware are
obtained from circuit level simulations for a 45nm CMOS process
technology using Cadence Virtuoso. We use VTEAM memristor
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Figure 6: Speedup and energy efficiency improvement of preforming PIM operation over different applications.

Table 2: Comparison of 3-bit bitwise operations and 32-bit

addition and multiplication in RRAM with prior work

Design Metric OR | MAJ | AND | XOR | 32b ADD | 32b MUL
Latency (ns) | 0.05 | 0.05 | 0.05 | 0.18 33.7 80.1
GPIM Energy (f]) 531 | 8.07 | 9.11 | 245 | 1.16 x 103 | 29.6 x 10°
Device Switches | 0 0 0 0 31 ~1.2x 10°
Latency (ns) 3.3 5.5 5.5 9.9 457.6 1090.3
MAGIC [20, 22] Energy (f]) 48.1 | 96.4 | 96.2 | 192.6 | 9.2x10% | 181 x 10%
Device Switches 3 6 6 12 ~400 ~7.5% 103

model [29] for our memory design simulation with Ron and Rorp
of 10kQ and 10MQ respectively. We design the conventional 6T
SRAM cell with standard transistor sizing using 45nm technology
library with normal V77 cells. In case of DRAM, the cell is designed
in the same technology using the 1T-1C configuration with a storage
capacitor of 30fF.

We compare the efficiency of the proposed GPIM with AMD
Radeon R9 390 GPU, a recent GPU architecture, with 8GB memory.
In order to avoid the disk communication in the comparison, all the
data used in the experiments is preloaded into 64GB, 2.1GHz DDR4
DIMMs. We used Hioki 3334 power meter to measure the power
consumption of GPU. We tested both GPIM and GPU over four
OpenCL applications: Sobel, Robert, Fast Fourier transform (FFT) and
DwHaar1D. For image processing applications, we used random
images from Caltech 101 [30] library, while for non-image process-
ing applications inputs are generated randomly. Majority of these
applications consists of additions and multiplications. The other
common operations such as square root have been approximated
by these two functions in OpenCL code.

4.2 Energy and Performance Comparison

We compare GPIM with the state-of-the-art prior work [20, 22].
The work in [20] is based on MAGIC logic family. It uses NOR
computations to implement different functions in memory. The
work in [22] used it to implement data-intensive additions and
multiplications in memory. Table 2 compares the implementation of
a 32-bit adder using GPIM for RRAM devices with those in [20, 22].
It shows that GPIM outperforms all the previous implementations.
It performs at least 2.4X times better than the fastest adder. A
major part of this improvement comes from the fact that GPIM
avoids the huge latency associated with RRAM device switches
by implementing logic using sense amplifiers. We evaluate GPIM
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for 32-bit multiplication. We compare it with [22] since it is the
only switching based PIM supporting multiplication in memory.
Our results show that in the case of RRAM, GPIM is 15% faster
and consumes 6X less energy. This improvement can be credited
to the lower latency and energy consumption of the MOSFETs as
compared to RRAM devices.

4.3 GPIM Exploration over Technologies

We compare the three memory technologies, SRAM, DRAM, and
RRAM, with traditional GPU core on the basis of performance and
energy consumption. The comparison was done by running four
different applications on all technologies. The experiments were
conducted assuming that the memories were big enough to store
the required data. Figure 6 shows that SRAM performs better than
all other technologies, being on an average 29.8x faster than GPU
while having 36.3% lower energy consumption. Here, while compar-
ing performance, we take into consideration the absolute latency
of execution. RRAM has latency and power consumption close to
those of SRAM, on an average 17.6X and 20.3X respectively as com-
pared to GPU. It also follows trends similar to SRAM over different
applications. However, DRAM performs worse than even GPU in
some cases. It also has the least performance and energy efficiency
among the three memory technologies, being on an average 1.7x
faster and 2.7Xx more energy efficient as compared to GPU.

SRAM: The results indicate that SRAM is the best solution for
in-memory processing. However, this may not be a feasible option.
The major drawback of SRAM is its cell area which goes as high
as 140F? in commercial SRAMs. Hence, having really huge SRAM
blocks becomes too expensive. However, SRAMs can be utilized
as PIM when the data size is small which still gives a significant
improvement as compared to traditional GPU cores. The fast in-
memory processing opportunities provided by SRAMs can also be
exploited by compute caches [26] to reduce the data transfers across
cache hierarchy.

RRAM: RRAM has performance and energy consumption met-
rics close to SRAM. Unlike SRAM, RRAMs are dense with a cell size
of 4F? when used in a crossbar configuration. Processing in RRAM
devices is bottlenecked by the slower device switching speed as
compared to SRAM. Moreover, RRAM is challenged by endurance
issues. However, GPIM reduces the number of device switches re-
quired while processing data, which partially reduces these issues.
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Figure 7: Latency and energy breakdown of different tech-
nologies while performing 32-bits addition and multiplica-
tion.

DRAM: DRAM performs poorly, even worse than GPU for small
data sizes (< 64MB). This is due to the high latency and energy re-
quirements of DRAM read and write operations which directly
impact the efficiency of PIM in DRAM. However, as the data size
increases, beyond 64MB in our experimental setup, the data transfer
costs associated with the traditional GPU cores start dominating.
Since PIM reduces these data transfers, GPIM for DRAM starts per-
forming better than GPU with lower energy consumption. Hence,
PIM is suitable for DRAM when the data size gets huge.

4.4 Performance and Energy Breakdown

Figure 7 shows the distribution of total latency and energy consump-
tion among different stages of GPIM. The breakdown of latency
for RRAM reveals that in the case of both addition and multiplica-
tion, the majority of the time (>90%) is spent in writing back the
intermediate results to the memory. This is due to the high device
switching latency of RRAM, which GPIM avoids as much as possi-
ble in logic execution. The latency for SRAM is distributed between
the auxiliary circuit and memory write back in the ratio of about
2:5. This can be attributed to the reduced write latency of SRAM as
compared to RRAM, while the logic execution latency for SRAM is
more than that of RRAM. In the case of a DRAM, the distribution is
quite different with logic execution taking the majority of the time.
This happens because GPIM performs sequential reads of the data
to be processed, which happens in parallel in RRAM and SRAM.

The breakdown of energy for addition reveals that the energy
consumed by the logic circuit is greater than the device write energy
for all the three memories. A major factor behind this behavior is the
use of multiple copies of the logic circuit for different functions. In
case of multiplication, the number of device writes is high, resulting
in a greater contribution by the device write operations to the total
energy consumption. The energy consumption for SRAM are highly
skewed towards logic circuits because the device writes in SRAM
are very efficient.

4.5 GPIM Area Overhead

The area overhead of GPIM depends upon the size of a memory
bank. Our evaluations for a 4Mb memory bank indicate that GPIM
introduces overheads of 0.83%, 3.5%, and 4.1% for SRAM, DRAM,
and RRAM respectively. This result follows the densities of different
memories, with overhead being lesser for a memory with larger
cell area. Moreover, for a fixed memory bank size, the overhead
reduces with an increase in the number of rows in the bank.

5 CONCLUSION

In this paper, we proposed GPIM which enabled PIM in SRAM,
NVMs, and DRAM. The circuits exploit the analog properties of
the respective memories to implement a fast and energy efficient
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solution for PIM. The application of PIM in conventional memories
allows us to avoid the unnecessary data transfers between mem-
ory and the processing core. Moreover, our implementations use
fast switching speeds of transistors to achieve high performance
in the conventional memories as well as NVMs. GPIM executes
basic logic functions in memory and then uses them to implement
arithmetic functions like addition and multiplication. Our evalua-
tions show that SRAM, NVM, and DRAM are 29.8X (36.3X), 17.6X
(20.3x) and 1.7x (2.7x) better in performance (energy consumption)
as compared to AMD GPU.
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