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ABSTRACT

The performance of graph processing for real-world graphs is lim-
ited by inefficient memory behaviours in traditional systems be-
cause of random memory access patterns. Offloading computations
to the memory is a promising strategy to overcome such challenges.
In this paper, we exploit the resistive memory (ReRAM) based
processing-in-memory (PIM) technology to accelerate graph ap-
plications. The proposed solution, GRAM, can efficiently executes
vertex-centric model, which is widely used in large-scale parallel
graph processing programs, in the computational memory. The
hardware-software co-design used in GRAM maximizes the compu-
tation parallelism while minimizing the number of data movements.
Based on our experiments with three important graph kernels on
seven real-world graphs, GRAM provides 122.5x and 11.1X speedup
compared with an in-memory graph system and optimized multi-
threading algorithms running on a multi-core CPU. Compared to a
GPU-based graph acceleration library and a recently proposed PIM
accelerator, GRAM improves the performance by 7.1x and 3.8x
respectively.
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1 INTRODUCTION

Graph is a powerful representation for data collected from different
real world domains. With the current trend indicating an explosive
growth of data in the near future, processing large graphs in an effi-
cient way, therefore, has become significantly important. However,
previous work found that the conventional computer architecture
is inefficient when processing large-scale real-world graphs [1-3].
Such inefficiency mainly comes from inconsistencies between condi-
tions favorable to hierarchical memory designs and characteristics
of graph processing like low compute-memory ratio and random
memory access patterns. Therefore, graph processing applications
are usually memory latency- or bandwidth-bound [3, 4].
Processing in-memory (PIM) is a promising approach to solve
such memory inefficiencies on many big data applications [5-8].
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Figure 1: The percentage of execution time spent on data
movements the state-of-the-art ReRAM-based graph accel-

erator [14].
Offloading computations to the memory can provide significant

benefits as it reduces the memory access latency and the offchip
bandwidth usage. Furthermore, PIM can also provide a high-degree
of parallelism to significantly accelerate a large amount of inde-
pendent computations because all memory cells can be used as
processing units. ReRAM is one of the most popular techniques
used by various PIM designs, which has shown a great potential
in not only high-performance non-volatile memories (NVMs) but
also processing units by exploiting its analog or digital characteris-
tics [9-13]. For example, the analog-based ReRAM PIM technology
can be used to accelerate different applications by implementing
in-memory vector and matrix operations [14-16]. Each ReRAM cell
in the crossbar stores a multi-bit value represented by a resistance
level. The PIM ReRAM blocks implements different operations by
applying specific voltage on rows of ReRAM cells to change their
resistance levels. Due to the overhead of converting signals between
digital and analog domains, most of the existing analog-based PIM
solutions are standalone accelerators [14, 16].

Therefore, these accelerators still have data movement issues
because the data is not stored in the computational memory. Fig. 1
shows the execution times spent on data movements in different
graph workloads in a state-of-the-art analog-based ReRAM PIM
accelerator [14]. In applications like Page Rank, which utilize fast
in-memory computations (parallel multiplication-accumulations),
data movements may take up to 69% of the total execution time.
Furthermore, a previous work [16] shows that ADC and DAC, which
are required for signal conversions, consume around 80% power of
each ReRAM block which significantly hurts the power efficiency.

Unlike representing data in the analog domain, digital-based
ReRAM PIM technology stores two resistance states which rep-
resent single-bit values without analog/digital signal conversions.
There have been several works utilizing such PIM technologies to
implement in-memory computations like bit-wise operations, addi-
tions, multiplications and efficient in-memory associative search
operations [17-20]. Compared to the analog-based PIM, the digital-
based technology is more compatible with existing systems and
more power-efficient. These characteristics enable us to build a
computational memory which not only serves as a normal memory,
but also supports in-place computations. Updating data in-place
can significantly reduce the off-chip data movements between the
processing units and the memory.

In this work, we propose to accelerate graph processing appli-
cations in a computational memory based on the digital-based
ReRAM PIM technology. The proposed solution, GRAM, can effi-
ciently execute graph processing algorithms based on vertex-centric
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Table 1: Vertex-centric Implementations of Different Algorithms

Application vProp Process(u, e) Reduce(u, e) Apply

Breadth-First Search Level eProp = u.vProp + 1 u.vTemp = min(eProp,u.vTemp) | u.vProp = min(u.vProp. u.vTemp)
Single-Source-Shortest-Path | Distance eProp = u.vProp + weight u.vTemp = min(eProp,u.vTemp) | u.vProp = min(u.vProp, u.vTemp)
Page Rank Page rank score | eProp = u.vProp » u.out_degree_factor | u.vTemp = u.vTemp + eProp u.vProp = a x u.vProp + base

Algorithm 1: Vertex-Centric Model
1: for u : ActiveList do
2 for v : OutNeighbor(v) do
3 eProp(u, v) = process(v.vProp, edge(v, u))
4 end for
5: end for
6
7
8

> Phase - Process

: foru: AllVertices do > Phase - Reduce
for v : InNeighbor(v) do

: u.vTemp = reduce(u.vTemp, eProp(v, u))
9: end for

10: end for

11: for v : AllVertices do

12: v.vProp = Apply(v.vProp, v.vTemp)

13: end for

> Phase - Apply

model, which is widely used to implement various parallel graph
algorithms based on bulk synchronous model [21, 22], in the PIM
architecture. Algorithm 1 shows the vertex-centric model used in
this work which divides each super-step into three three phases:
Process, Reduce and Apply. Each phase executes a application-
specific function for a set of vertices. All three functions are used
to calculate application-specific properties related to vertices and
edges (eProp, vTemp, and vProp shown in Algorithm 1). A vertex-
centric program runs iteratively on a subset of vertices, called
active vertices, until it converges. The vertex-centric model
is flexible to implement a wide range of graph algorithms by defin-
ing application-specific functions in three phase. Table 1 shows
vertex-centric implementations for three important graph algo-
rithms.

To fully utilize the computational memory, GRAM, organizes
vertex-centric program data, including graph structure data and
vertex-/edge-related properties, in the memory to enable various
PIM operations. We design a PIM processing flow of vertex-centric
program based on the specialized data allocation. In order to in-
crease the PIM computation parallelism, we propose a new hard-
ware design to support one key operation, compare-and-swap
(CAS), along with leveraging previous published bit-wise oper-
ations, additions, multiplications, search [17-20]. We further pro-
pose a hardware-software co-design technique based on efficient
in-memory associative search operations to parallelize the Reduce
operations. Both of these two techniques significantly increase
the parallelism available during the execution of vertex-centric
programs in the computational memory.

We test GRAM for running three important graph kernels on
seven real-world graphs. The results show that GRAM can provide
122.5% and 11.1x speedup compared with an in-memory graph sys-
tem [23] and optimized multi-threading algorithms [24] running on
a powerful multi-core CPU. Compared with a GPU-based graph ac-
celeration library [25] and a recently proposed PIM accelerator [14],
GRAM improves the performance by 7.1x and 3.8 respectively.

2 GRAM DESIGN

In this section, we introduce the design of GRAM, and the execution
of in-memory vertex-centric graph processing programs in the
computational memory. We first design the overall architecture
used in this work which consists of multiple ReRAM arrays based
on the digital-based PIM technology. Then, we design the data
organization of the vertex-centric program in the computational
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Figure 2: The hardware architecture used by GRAM.
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memory to maximize the parallelism provided by PIM operations.
Based on the architecture and data organization, we introduce the
processing flow of vertex-centric graph processing programs in
GRAM.

2.1 GRAM Architecture

The architecture used by GRAM is based on a computational mem-
ory supporting various types of PIM operations in digital-based
ReRAM blocks. Fig. 2 shows the architecture for the computational
memory used by GRAM. Each ReRAM block has a light-weight
block controller and shares a centralized main controller with the
other blocks. A block controller manages the column and row cir-
cuitry of a block which further control the wordline and bitline
voltages. The main controller handles both normal memory oper-
ations and PIM operations by sending commands to appropriate
block controllers. In-memory computations can be organized as
vector operations which enable parallel computing. Once a block
controller receives a command, it can work independently of the
other blocks which allows for the block-level parallelism, where
all the blocks can process different sub-vectors in parallel. Besides
arithmetic operations, the ReRAM block also supports efficient in-
memory search operations. To enable search operations, the mem-
ory can be organized as look-up tables with multiple data fields
where each data field is allocated to a continuous set of columns
inside a memory block. An in-memory search operation activates
table entries with a target value in a specific data field and the
results are stored as a bit-array in content-addressable memory
(CAM) sense amplifier (SA). In-memory search operations also ex-
ploits the block-level parallelism by searching in different blocks
simultaneously.

2.2 In-Memory Data Organization

To achieve the full functionality of PIM architecture, including the
massively parallel computing and efficient search operations, data
should be organized carefully in GRAM. We then introduce the
in-memory data layout when running vertex-centric graph process-
ing programs. Fig. 3 shows an example of a vertex-centric SSSP
algorithm running on a simple graph. The basic graph structure is
represented by a vertex table and a edge table. The edge table (ET)
stores information of each edge including source vertex, destination
vertex, and weight. The vertex table (VT) stores the edge table index
of the first outgoing edge from each vertex for edge traversals.
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Process Function:
eProp=vProp+Weight

Reduce Function:

2 4 vTemp=min(vTemp,eProp)
Apply Function:
vProp=min(vProp,vTemp)
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Figure 4: GRAM processing flow.

Three vertex program properties are stored in vectors where
eProp vector has M elements while vTemp and vProp vectors have
N elements. M and N are the number of edges and vertices in the
graph respectively. Three vertex program properties are stored as
in-memory vectors in one or more ReRAM blocks. Two vectors can
be processed simultaneously by utilizing the block-level parallelism.
Two tables, ET and VT, are stored in the computational memory
by organizing different fields column-wisely in ReRAM blocks. In-
memory search operations can be applied to a specific data field
(e.g. destination vertex) to activate target entries. Depending on the
application requirement, we can add extra fields in both two look-
up table under the constraint of ReRAM row-size. For example, the
active flag is required to indicate the active vertices for the current
iteration in several vertex-centric graph algorithms. In Section 3.2,
we also propose a hardware-software co-optimization which utilizes
extra fields in both ET and VT.

2.3 Processing Flow

We then introduce how GRAM executes an in-memory vertex-
centric program in the computational memory. The processing flow
is shown as Fig. 4. In the initialization stage, GRAM allocates dif-
ferent application data structures in the computational memory as
in-memory vectors and look-up tables. All values, such as initial
properties and active vertices, are initialized based on application-
specific requirements. In the Process phase, the eProp vector is
updated based on vProps of active vertices (shown as grey circle in
Fig. 3(a)). Such computations can be processed in parallel because
there is no data dependency. The updated eProp vector is then used
to update the vTemp vector in Reduce phase. We should note that
each vTemp may be updated by multiple eProps from the vertex’s
incoming edges. Therefore, computations for a vTemp must be se-
rialized in order to correctly update values. The computed vTemp
vector is then used to updated the vProp vector in the Apply phase
if some vertices has updated vTemps (vertex 1 and 4 in the example).
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Figure 6: N-bit leading one detector (LOD) circuit used to im-
plement CAS.

The updated vProp vector is used to update active vertex list for the
next iteration. If there is no active vertex or the program converges,
GRAM terminates the current application and returns the result.

3 HARDWARE/SOFTWARE
CO-OPTIMIZATION

The basic GRAM design may encounter two challenges when pro-
cessing vertex-centric graph processing programs. First, the func-
tionality of PIM-enabled ReRAM may introduce a large overhead
when executing some operations like compare-and-swap (CAS).
Therefore, we propose and design a circuit in the PIM-enable ReRAM
block to provide in-memory parallel CAS operations. Furthermore,
the Reduce phase requires sequential operations because of data de-
pendencies. Such sequential execution significantly slows down the
performance of GRAM. We then propose a scheduling mechanism
based on in-memory associative search operations to maximize
the parallelism in the Reduce phase. Both of these two techniques
significantly increase the parallelism during the execution of vertex-
centric programs.

3.1 In-Memory Compare-and-Swap (CAS)

The limitation of PIM functionality may degrade the parallelism
when handling operations with logical predication like CAS oper-
ations. CAS is a commonly used operation in many graph appli-
cations, which updates the target data based on the comparison
between old and new values. CAS computations cannot be natu-
rally handled by the computational memory. Instead, these oper-
ations should be processed by a specific ALU present in the main
controller which serially reads values (results from previous PIM
operations) from the memory and writes the updated values based
on comparisons. These serial operations may introduce significant
performance overheads. Fig. 5 shows the average ratio of execution
time spent on parallel PIM computations and serial CAS compu-
tations in breadth-first-search on different graph workloads. We
consider the overheads of block-to-controller data movements and
computations in both the main controller and the memory blocks.
The result shows that the overhead of such comparisons may take
up more than 70% of the total execution time.

In order to revolve these inefficiencies, we propose a parallel
in-memory CAS operation with a slight modification to the ReRAM
block hardware. Such operation updates large vectors without se-
quentially comparing the results in the main controller. To process
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Figure 7: Potential speedup of parallelizing the Reduce phase
over sequential execution. The serialized execution of the
Reduce may take up to 96.2% execution time in a vertex-
centric program.

Algorithm 2: Parallel Reduce

1: cur o=1
2: while rst = ET.search(Order = cur_o) do

3: fore : rstdo

4 copy(eProplel, vTemple.dst].compute_row)
5 end for

6: reduce_valid(vTemp)

7 cur_o++

8: end while

a CAS operation, the hardware first computes in-memory bitwise
XOR of all the pairs present in two vectors and the results are stored
in a processing row. It is a single step process since bitwise XOR can
happen in parallel for all word pairs. Then, the most significant ‘1’
is searched for in the output of each pair to detect the first bit with
mismatch using leading ‘one’ detector circuits (LODs). These are
implemented in the row sense amplifiers as shown in Fig. 6. The
inputs (dn—1, dN—2...do) of N-bit LOD circuit are connected to the
outputs of N 1-bit memory SAs, where N is the size of a data word.
Each LOD has N output bits (on—-1, 0N—2...00) and only the bit cor-
responding to the most significant ‘1’ goes high. The leading ‘1’
detection happens in parallel for all word pairs in a block. The bits
determined by the output of LODs are read from vector A. For the
‘1’ bits, the corresponding words in B are copied to vector A. This
approach replaces the slow sequential out-of-memory comparisons
with parallel in-memory computations. This parallel in-memory
CAS results in a significant execution time reduction, as shown in
Fig. 5.

3.2 Parallel Reduction

The Reduce phase in the vertex program cannot be efficiently pro-
cessed in the original processing flow. During the Reduce phase,
vTemp of each vertex may be updated several times depending
on the graph structure. If the PIM architecture runs in the orig-
inal order, all these computations should be processed sequen-
tially. However, there still exists parallelism in computations for
vIemps of different vertices. For instance, if the computation of
vTemp|1] requires eProp[1] while the computation of vTemp[2]
requires eProp[2] and eProp[3], we can exploit PIM operations to
calculate [vTemp([1], vTemp[2]] = func(eProp[1], eProp[2]), and
vTemp[2] = func(eProp[3]) in only two steps instead of three. Se-
rially executing the Reduce may introduce a significant overhead
considering the large number of edges in a graph. Fig. 7 shows the
potential speedup of parallelizing these computations over execut-
ing the original Reduce phase in GRAM.

We then utilize in-memory search operations to schedule parallel
operations available in the Reduce phase with the modified look-up
tables for graph structure. We add extra data fields in both vertex
and edge tables and propose a new programming paradigm to
maximize the computation parallelism. Specifically, the "#Msg" field
in VT and "Order" field in ET record the statistics for vertices and
edges in the Process phase. The "#Msg" field in VT indicates how
many in-coming edges of the vertex are processed in the Process
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Table 2: Baseline System Configurations

CPU Baseline
Cores Intel i7-7700k @ 8 cores 4.5 GHz
Cache L1: 256KiB, L2: 1MiB, L3: 8MiB
Memory 32GiB DIMM DDR4 @ 2400MHz
GPU Baseline
Product [ GeForce GTX 1080 Ti
# of CUDA cores | 3584

Table 3: Graph Workload Summary

Graph #Vertices | #Edges Description
amazon (am) [28] 403K 3.4M Amazon product co-purchasing network
ego-Twitter (tw) [28] 81K 1.8M Social circles from Twitter
soc-Pokec [28] 1.6M 30.6M Pokec online social network
wiki-topcats (wiki) [28] 1.8M 28.5M Wikepedia hyperlinks
1journal (13) [29,30] 5.4M 78M Live Journal
uniform (u) [24] 2.1M 33M Uniform random graph
8500 (g) [24.31] 2.1M 32M | Kronecker graph (Graph500 specifications)

phase. The current "Msg" value when processing a specific edge
can be used as the order of reduction in the Reduce phase. Thus,
we record this number in the "Order" field of ET. When copying
a vProp to the computation area of each eProp, the "#Msg" of the
destination vertex in VT increases by 1 and the new "#Msg" value
is used to set the "Order" of corresponding entry in ET.

Algorithm 2 shows the new processing flow in Reduce which
utilizes the parallel reduction. During the Reduce phase, we search
each "Order" (from 1) in ET and copy target eProps to correspond-
ing computation areas of vIemps. The eProps with the same order
number can be processed in parallel because destination vertices of
corresponding edges are different. If there is no entry in ET with a
specific order number, this process ends and the application contin-
ues to the Apply phase. The proposed parallel reduction maximizes
the parallelism existing in the Reduce phase by scheduling as many
independent computations as possible.

4 RESULTS
4.1 Experiment Setup

We design an in-house simulator to model the detailed hardware
functionality of GRAM. All buffers and interconnect are modeled
in Cacti [26] at 32nm. For hardware characteristics, we use HSPICE
design tool for circuit-level simulations and to calculate energy
consumption and performance of all the memory blocks. The en-
ergy consumption and performance is also cross-validated using
NVSIM [27].

We evaluate 4 different state-of-the-art graph solutions for base-
line comparison, including a in-memory graph processing sys-
tem (GraphMat [23]), an optimized parallel graph benchmark suit
(GAP [24]), an NVIDIA GPU accelerated graph library (Gunrock [25]),
the most recent PIM accelerator (GraphR [14]). The system config-
urations are shown in Table 2.

We evaluate three graph algorithms: Breadth-First-Search (BFS),
Single-Source-Shortest-Path (SSSP), and Page-Rank (PR) which are
the most commonly used graph processing kernels. The application-
specific functions based on vertex-centric model has been shown in
Table 1. We run all experiments on 5 real world graphs[28-30] and
2 synthetic graphs generated by GAP Benchmark Suite [24, 31]. A
summary of tested graphs is listed in Table 3. For the two synthetic
graphs, we also generate different numbers of vertices for graph
size sensitivity experiments.
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4.2 Overall Performance

Fig. 8 shows the performance and energy-efficiency results of
GRAM, GAP, GraphMat, Gunrock and GraphR over all benchmarks.
All results are normalized to values of GraphMat on CPU system.

4.2.1 Execution Time. For performance benefit of GRAM, the
geometric means of speedup over CPU-based graph processing
framework system (GraphMat) are 204.7x (BES), 148.9x (SSSP),
and 14.0x (PR). Compared with the optimized multi-threaded algo-
rithms (GAP), GRAM can improve the performance by 10.9%, 18.6X,
and 3.8X which are also reported as geometric means. These results
show that GRAM improves the performance of BFS and SSSP sig-
nificantly; however, the performance improvement of GRAM over
GraphMat on PR is about 1 magnitude less than improvements on
BFS and SSSP. The reason is in-memory computation multiplication
is much less efficient than conventional CMOS-based ALU. At the
same time, GRAM improves the performance of Gunrock by 7.0X%,
12.3x%, and 2.0x in BFS, SSSP, and PR respectively. When compared
to GraphR, the speedups of GRAM are 2.9x (BFS), 7.1x (SSSP), and
1.4x (PR). In general, GRAM outperforms both of these two highly
parallel baselines significantly.

4.2.2  Energy Consumption. Fig. 8 also shows the energy con-

sumption results of all solutions. Specifically, average energy-efficiency

improvements provided by GRAM over GraphMat are 1975 (BFS),
1469x (SSSP), and 356X (PR). Such great energy savings result from

energy-efficient in-memory operations and the fast execution. Un-
like the conventional CPU system, which requires frequent data
movements between processing cores and the memory, GRAM com-
pletes most computation directly inside memory cells and move
results to next locations by internal memory buses. Compared to
GAP and Gunrock, GRAM reduces the total energy consumption
by 112X and 100X respectively. These results show GRAM can
improve the energy consumption of graph process on various con-
ventional systems significantly. GRAM also consumes less energy
than previous PIM accelerator. Specifically, the energy-efficiency
improvements on BFS, SSSP, and PR are 3.84X, 4.24x and 3.38%
respectively. These improvements come from both much less data
movements and more energy-efficient computations without ADC
and DAC logics for multi-level resistance ReRAM cells.

4.3 Scalability

The design of GRAM tries to maximize the parallelism existing in
vertex-centric graph processing programs. In this section, we show
how the graph size influences the performance of GRAM. Since
we cannot scale real-world graphs up, we test GRAM, GraphMat,
GAP, Gunrock, and GraphR on two synthetic graphs with different
numbers of vertices. Fig. 9 shows the scalability results of all tested
solutions where the size of the graph is represented as the total
number of vertices. The largest graph in this experiment has 64x
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more vertices than the smallest one. Based on the result, the perfor-
mance of both GAP and GraphMat increase linearly with the size
of the graph, which are 61x and 65X respectively. The execution
time of Gunrock increases slightly faster, which is 142x.

GraphR shows the worst scalability in BFS and SSSP, which
increases about 700X. This is due to GraphR uses "Add-Op" for
these two algorithms which requires a sequential calculation for
each row in matrix-vector multiplication on adjacency matrices of
subgraphs. The dimension of each subgraph is is V X V where V is
the total number of vertices. On the contrary, the execution time of
GRAM increases only up to 4x when the graph becomes 32x larger.
This result proves GRAM can provide a good scalability with the
graph size which makes it promising for large graph processing
problems.

4.4 Endurance Feasibility

Since the NVM device has a limited number of write operations, we
then design an two-level (row-level and block-level) round-robin
mechanism to improve the endurance of GRAM. The endurance
management is triggered offline and changes the address mapping
inside ReRAM blocks. We assume ReRAM technology can support
10! write/erase cycles in total [32]. We records number of writes
happening in each memory location during one execution of all
benchmarks. Estimated lifetime is calculated based on execution
time and the most heavily written memory cells. Fig. 10 shows
the result of lifetime estimation for each benchmark running with
and without our proposed endurance management. Based on these
results, the busiest block may fail in less than 1 day without any
endurance management because of very uneven write distribution.
Our proposed endurance management mechanism can extend the
lifetime of GRAM to 469 days, 446 days, and 2640 days in average
for BFS, SSSP, and PR respectively. Considering facts that NVM is
usually cheaper than other memory technologies and it’s unlikely to
run applications repeatedly without any spare time, such endurance
improvement makes GRAM a feasible NVM-based solution for
graph processing applications.

5 CONCLUSION

In this work, we propose GRAM to accelerate graph processing ap-
plications in a computational memory based digital-based ReRAM
technology. GRAM efficiently execute vertex-centric graph pro-
cessing programs by maximizing the computation parallelism and
minimizing the number of data movements. The experiment re-
sults shows GRAM can significantly improve the performance and
energy efficiency of graph processing applications over various
state-of-the-art solutions. Furthermore, GRAM also shows good
scalability and feasibility which make it promising for implement-
ing future computing systems.
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