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s-wave contacts of quantum gases in quasi-one-dimensional and quasi-two-dimensional traps
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In quasi-one- or quasi-two-dimensional traps with strong transverse confinements, quantum gases behave
like strictly one- or two-dimensional systems at large length scales. However, at short distance, the two-body
scattering intrinsically has three-dimensional characteristics such that an exact description of any universal
thermodynamic relation requires three-dimensional contacts since the range of interaction (a few nm) is orders
of magnitude smaller than the harmonic-oscillator length of the transverse confinement (~10? nm for a 100 kHz
trap). A fundamental question arises as to whether one- or two-dimensional contacts, which were originally
defined for strictly one or two dimensions, are capable of describing quantum gases in quasi-one- or quasi-two-
dimensional traps. Here, we point out an exact relation between the three- and low-dimensional contacts in these
highly anisotropic traps. Such relation allows us to directly connect physical quantities at different length scales
and to characterize the quasi-one- or quasi-two-dimensional traps using universal thermodynamic relations that

were derived for strict one or two dimensions.

DOI: 10.1103/PhysRevA.100.012701

I. INTRODUCTION

A striking property of dilute quantum gases is that only a
few physical quantities, the so-called contacts, fully govern a
complex quantum many-body system. Contacts connect dis-
tinct physical observables through universal thermodynamic
relations and provide physicists a unique and powerful tool to
bridge few-body and many-body physics. In the past decade,
the study of contacts and universal thermodynamic relations
has become a fundamentally important topic in quantum
gases [1-20] and has attracted significant interest from nu-
clear physicists and other communities [21-23]. Whereas
the original work on contact focused on the s-wave one
[1-3], recent studies have generalized such concept to high
partial-wave contacts [24-29]. It has also been realized that to
have a complete description of the universal thermodynamic
relations, contacts should be defined as a matrix [30,31].

Similar to other physical quantities and phenomena, con-
tacts and universal thermodynamic relations exhibit dis-
tinct behaviors in different dimensions [6-9]. The three-
dimensional (3D) s-wave contact, Csp, is proportional to
3(+me) at the ground state, where E is the total energy and
asp is the 3D scattering length. In contrast, contacts in one
dimension (1D) and two dimensions (2D), Cip and Cyp, are
proportional to % and m where a;p and a;p are the
scattering lengths in 1D and 2D, respectively. Other universal
thermodynamic relations also have qualitative differences in
different dimensions. Universal relations have also been de-
rived in arbitrary, either integer or noninteger, dimensions [9].

So far, studies of contacts at low dimensions have been
mainly focusing on the theoretical investigation of strictly 1D
and 2D systems, where the transverse degree of freedom
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is absent. Contacts and universal relations in realistic
low-dimensional systems have not been established. A
crucial question remains unanswered as to whether universal
relations theoretically derived for strictly 1D and 2D systems
apply to realistic experiments on quasi-1D and quasi-2D traps
in laboratories. It is well known that the origin of universal
relations is the asymptotic behaviors of the many-body wave
function in the limit where the distance between any two
particles approaches zero. In strictly 1D (2D) systems, the
asymptotic form of the two-body wave functions behaves like
|z| (Inp) when z — 0 (p — 0), where z (p) is the relative
coordinate of two particles. Such asymptotic behaviors lay
the foundation for all universal relations in strictly 1D and 2D
systems. However, these asymptotic forms do not apply to
quasi-1D or quasi-2D traps when the separation between two
particles approaches zero. In laboratories, a 1D or 2D system
is created by applying a tight confinement, for instance, a
strong harmonic trap of a harmonic-oscillator length d and
frequency w, along one or two spatial directions, as shown
in Fig. 1. Such systems are often referred to as quasi-1D or
quasi-2D traps. When the distance between two particles is
much smaller than d, the two-body interaction inevitably has
3D characteristics, as the confining potential can barely affect
the two-body wave function in such regime. The asymptotic
form of the two-body wave function behaves like 1/r, where
r is the relative coordinate of two particles, similar to a
strictly 3D system, and Csp is required to describe universal
thermodynamic relations in quasi-1D and quasi-2D traps,
no matter how strong the transverse confinement is. Thus,
fundamental questions arise regarding how to define C;p and
Cyp in quasi-1D and quasi-2D traps and whether they control
universal relations in such highly anisotropic 3D traps.

The main results of this paper are summarized as follows.
(i) In quasi-1D (quasi-2D) traps, Cp (Cop) needs to be defined
from the momentum distribution n, (K) in the regime, kr <
k <« d~', where k is the Fermi momentum, k = |k|, and o =
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FIG. 1. (a) A quasi-1D trap. Atom cloud (purple cloud) with a
strong harmonic confinement in the x-y plane. Red and blue spheres
represent a spin-up and spin-down atom, respectively. When their
separation is much larger (smaller) than z* ~ d, two-body scatterings
have 1D (3D) features, and C;p (Csp) controls all physical quantities
in the corresponding large (small) length and small (large) momen-
tum scales. (b) A quasi-2D trap with a strong harmonic confinement
along the z direction. Cp (Csp) controls the system in a scale
P> p*~d(pKLp").

1, | is the spin index. To be explicit, we define k = (k_, k;)
and obtain

d’k kr <k:<d™"
1D L 1D
k)= | ——n, —_—, 1
k)= | G k§ 1)
> dk ke ki <d™"
P(k,) = / a5 G g
oo 2T k7

In the regime k > d~!, Csp determines n, (k) in the large
momentum tail,
k>d™' C
ne (k) ——> —2. 3)
K4
(i) We establish an exact relation between Cip (Cop) and Csp
in quasi-1D (quasi-2D) traps, which is

Csp = nd*Cip, “4)
C3D = 7Td2C2D- (5)

Equations (4) and (5) provide us with a means to ex-
plore universal thermodynamic relations using two equivalent
schemes, i.e., either through Csp that controls any physical
systems, including highly anisotropic traps, or using Cip
(Cyp), which governs n, (k) in the intermediate momentum
regime. These two equations also enable an alternative means
to explore the fundamentally important problem on dimen-
sion crossover in ultracold atoms and related fields [32-36].
(iii) Using Egs. (4) and (5), we obtain a rigorous proof that
the adiabatic relation derived for a strictly 1D (2D) system is
exact in quasi-1D (quasi-2D) traps.

It is worth pointing out that formulas similar to Eqs. (4)
and (5) were derived in [9] by assuming the validity of adi-
abatic relations in quasi-low-dimensional traps. As we have
explained in detail, adiabatic relations derived for strictly 1D
(2D) systems cannot be taken for granted in quasi-1D (quasi-
2D) traps, and even the definition of C;p and C;p in these traps
is questionable. Thus, the full asymptotic forms of the many-
body wave functions in all length scales in quasi-1D (quasi-
2D) traps need to be taken as the starting point. This allows
us to obtain Egs. (1)—(5), provide a precise definition of Cjp
(Cyp) in quasi-1D (quasi-2D) traps, reveal their relations with
C3p, and access the full structure of the large momentum tail,

which includes two plateaus in 7, (k)k*, unlike strictly 1D and
2D systems with only one plateau. Eventually, adiabatic rela-
tions in quasi- 1D (quasi-2D) traps are proved rigorously as the
consequence, instead of the prerequisite, of Egs. (4) and (5).

II. CONTACTS AND UNIVERSAL RELATIONS IN
QUASI-1D TRAPS

We focus on quantum gases with zero-range interactions
such that only s-wave scatterings and s-wave contacts are
relevant. We first consider two-component fermion gases with
total numbers N; and N in each component in a quasi-1D
trap. The Hamiltonian is written as

Ny Nj+N,

272
H=—Z%+ZVW+82 3 8<ri,»>3g’;ifj),

i i=1 j=N;+1
(6)

where M is the mass of each atom, r; = (p;, z;) is the spatial
coordinate of the ith atom, p; = |p;|, r;; =1; — 1}, r;j = |1},
and V(p;) = $Mw?p} is a harmonic trapping potential for
the ith atom in the x-y plane. Atoms are free along the z
direction. g = 47 liazp /M is the strength of the Huang-Yang
pseudopotential. V (p;) is sufficiently strong such that d =
V2h (M) K k;l is satisfied. This is equivalent to saying
that the chemical potential x is much smaller than 27w, i.e.,
the energy separation between the ground and the first vibra-
tion level of the harmonic trap. When the distance between
a spin-up and spin-down atom, which is denoted by r = |r|,
r = r; — I, is much smaller than k;l, the wave function of a
many-body eigenstate has a universal asymptotic form,

r<ky!
vy —

de o (r; fq)G<¥, riz12;0; E — fq),
(7N

where ¢(r; €,) is the wave function of the relative motion of
two atoms, €, = liw + i?q*/M is the colliding energy, g is
the corresponding momentum, and E is the total energy of the
system. o; is the spin index of the ith atom. Whereas Eq. (7) is
valid for any 3D system, it is useful to make use of the explicit
form of ¢(r; €,) in quasi-1D traps,

o (r;€4) = Poo(p)[cos(gz) + f(q)eiqlz\]

~f@Y ;—“@no(p)e—%'d, ®)

n>0

where ®,,,(p) is the eigenstate of the harmonic trap with
eigenenergy E" = hw(2n + |m| + 1) in the x-y plane, n is
the quantum number for the radial part of the wave function,
and m is the angular momentum quantum number. f(q) =
i/[cotnip(g) — 7] is the scattering amplitude and n;p(q) is
the phase shift in 1D. The first line in Eq. (8) is the con-
tribution from the ground state of the harmonic trap, the
second line is the contribution from excited states, and g, =
V(Ejo — €)M /hz. For s-wave scatterings, only wave func-
tions with m = 0 are relevant. Since /i°q>/M is typically of
the order of u <K 2hw, g, is positive for all n > 0. Thus,
the second line in Eq. (8) decays exponentially in the quasi-
1D regime where the energy of the incoming wave in the
scattering problem is smaller than the gap between the ground
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and the first-excited vibration levels. When |z| > z* = 1/q;,
Eq. (8) reduces to a wave function in strict 1D. It is also
easy to see that z* ~ d K k;l. Correspondingly, based on the

.. Ni+N, 3, o ik
definition n, (k) = Zi=11+1\¢/¢§¢,a f]_[#i d’rj| [ dPrVe %7,
where §; ; is the Kronecker delta, we obtain the momentum
distribution of the many-body system in the regime kr < k <
d71

kp <k<gd™!

C
Ne (k) ——— [Dpo (KL )|> —

I o=t O
where k = (K1, k;), Poo(k) = [ d*pPoo(p)e ™7,

2

Cip =4NTN¢/d3R12 /déqCIf(Q)G(Ru;E —¢)|, (10)

and Ry, is a shorthand notation for a set of coordinates
{(r1 +12)/2,vi210;0i}, d’Rpp = [liz12 d’r;d®(r) +12)/2.
Though this power-law tail comes from the singular behavior
of the relative wave function of a pair of particles when they
approach each other, it does show up in the momentum distri-
bution when k is much larger than kr and other momentum
scales, such as the center-of-mass momentum of a pair of
particles and the inverse of the scattering length. Thus, for
simplicity, we have just specified that k > kr, as the center-
of-mass momentum of a pair of particles is, in general, much
smaller than kg, and so is the inverse of the scattering length
in the strongly interacting regime. In this regime, n, (k) is a
broad distribution along the k, and k, directions, as expected
for a quasi-1D system. For ky < k, < d~', the expression in
Eq. (9) could be extend to k; — oo. Integrating over k , we
obtain Eq. (1).
We now consider r << d, where we have

r<d 1 1
v — (— — —) /déqG3D(R12;E — Gq). (11)

r asp

Correspondingly, n, (k) has a large momentum tail. It is given
by Eq. (3) and
2

C3D = (4JT)ZNTN¢/d3R12

fdGqu(Rlz;E —€)

(12)
Indeed, Eq. (8) becomes %M\%(é - ﬁ) when |z] < d
for p = 0, and [32]
2
asp
= — 1 —1.4603— 13
aw =5 =) (13)

where cotn(q)/q = aip and Gip(Rip; E —¢)) =
%M%G(Rlz;E — €4). Compare Eq. (10) and Eq. (12), we
immediately see that Eq. (4) holds.

It is interesting to note that Eq. (4) has a simple geometric
interpretation. Though the quasi-1D trap is highly nonuniform
in the transverse directions, it can be viewed as a cylinder
with a uniform distribution of contact density on the cross
section of radius d. Since the total contact in 3D is the contact
density multiplied by the total volume, one can view C|p as
the linear contact density. Thus, Csp is simply Cip multiplied
by the cross-sectional area md?. Equation (4) also allows
one to establish an exact relation between n, (k) in different
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FIG. 2. (a) A contour plot of the exact momentum distribution
In[n, (k)] of a two-body system, with 7, (k) in units of d*|®go(k, =
0)|>Cip. The total number of vibration levels considered is N = 300,
and a;p = 1000d. (b) Scaled momentum r, (0, k, )kf. It is determined
by Cip and Gip in the regime ajy <k, < d~' and k, > d~!,
respectively.

momentum scales. From Eq. (1) and Eq. (3), we obtain

no (KK | 41 = (md®)ng” (kk? (14)

|kF <k, <d™”
a result originated from the exact relation between Csp
and CID-

To verify the above results, we evaluate exactly n, (k) of a
two-body system using Eqs. (7) and (8). Its scaling behaviors
also describe those of n, (k) in a generic many-body system
in the regime k < kr. By taking into account a large enough
number of excited states, we obtain numerically n,(k), as
shown in Fig. 2(a). Indeed, in the regime kr < k < d~,
ne (k) decays slowly with increasing k, and k,. As mentioned
above, the width of the wave function ¢go(k,) is given
by the inverse of the harmonic-oscillator length. Thus, for
a strong confinement, n,(k) exhibits a 1D feature in such
momentum scale. In contrast, in the regime k > d 1 ny(K)
becomes isotropic, which is a 3D characteristic as expected.
Figure 2(b) shows the scaled momentum distribution #, (k)k*,
which clearly demonstrates how n, (0, k;) gradually changes
from |®gy(k; = 0)|2C1D/k? to C3D/k?.

Besides n, (k), Eq. (4) allows us to connect other universal
thermodynamic relations in 1D and 3D. Here, we focus on the
adiabatic relations. In strictly 1D systems, where the trans-
verse degrees of freedom are absent, the adiabatic relation is
written as [8]

dE _ K°Cip
d(llD o 2M ’

(15)

In quasi-1D systems, as mentioned above, Cip controls phys-
ical quantities in a large length scale z > d or, equivalently,
in the momentum scale k < d~'. A complete description of
the system needs the introduction of Csp to capture physics in
the length scale 7 < d or momentum scale k > d~'. A natural
question is then whether Eq. (15) is still valid.

Interestingly, a simple calculation shows that Eq. (15)
holds for the quasi-1D system. The reason is that Eq. (4)
provides an exact relation between Cjp and C;p, the latter of
which governs any 3D system, including a quasi-1D trap that
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is highly anisotropic. Thus the 3D adiabatic relation [2],
dE  RCyp
d(—l/a3D) - dnM ’

is always valid in a quasi-1D trap. It is also known that asp
and a;p are related by Eq. (13). Substitute this expression and
Eq. (4) to Eq. (16), and Eq. (15) is obtained. This immediately
tells us that the adiabatic relation derived for strictly 1D sys-
tems applies to quasi-1D traps. In practice, Eqgs. (1) and (15)
are also particularly useful, as experimentalists do not need to
extract C3p from 7, (K) in the very large momentum regime
k> d~!, which may become too small to detect. Instead,
a measurement of n, (k) in the intermediate regime kr <
k <« d~', which has a much larger amplitude, is sufficient
to obtain Cjp that could also fully govern the quasi-1D
trap.

Whereas we focus on the adiabatic relation here, discus-
sions can be directly generalized to other universal thermo-
dynamic relations. Equation (4) shows that any universal
thermodynamic relations established by C;p can be rewritten
in terms of Cjp that governs the behaviors of the quasi-
1D systems in the large length scale z > d. Thus, universal
thermodynamic relations in 3D can be directly transformed to
those in 1D.

(16)

III. CONTACTS AND UNIVERSAL RELATIONS IN
QUASI-2D TRAPS

We now turn to a quasi-2D trap. The Hamiltonian is written
as

Ny Np+N,

Z ONGED P I U)a(’”

i=1 j=N;+1

(17)

where V(z;) = %M cozz,-2 is a harmonic trapping potential for
the ith atom along the z direction. The system is free in the
x-y plane. The discussions are essentially parallel to those in
quasi-1D traps. Starting from Eq. (7) and the two-body wave
function in a quasi-2D trap for s-wave scattering,

P(r;ey) = % cot nap(q@)Jo(gp) — tan nap(g)No(g0)]1Po(z)

+Z Z( 1)”‘/ @ ),,) ©2,(2)Hy (igup),
n>0

(18)

it is straightforward to derive Eq. (5), the tails of the momen-
tum distribution and the adiabatic relation. In Eq. (18), nop(q)
is the 2D phase shift, Jy (Ny) is the Bessel function of the
first (second) kind, Hél) is the Hankel function of the first
kind, ®,(z) is the eigenfunction of the harmonic oscillator
along the z axis with eigenenergy E! = hiwo(n+ 1/2), ¢, =
hw/2 4+ W*¢*/M, and g, = «/(EZZ" - eq)M/hz. When p >
p*=1/q (p < p*), the wave function in Eq. (18) is 2D-like
(3D-like).

Figure 3 shows the numerical results for the momentum
distribution of a two-body system. Again, its scaling behaviors
capture those of a generic many-body system in the regime,
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FIG. 3. (a) A contour plot of the exact momentum distribution
In[n, (k)] of a two-body system, with n, (k) in units of d*|®q(k, =
0)|?Cyp. The total number of vibration levels considered is N =
300, and ayp = 1000d. (b) Scaled momentum n, (K, O)k“l. It is
determined by C,p and Csp in the regime az_[; <k, «d" and
k. > d!, respectively.

k < kp. When kr < k; <« d~', we obtain the 2D analogy of

Eq. (9),

kp<kd™!

N (k) —— |Po(k, >|2 (19)

k4 '
which shows that n, (k) decays slowly in the k, direction, a
characteristic quasi-2D feature. Integrating over k,, we obtain
Eq. (2) and

2
Cop = (27)*N;N, / d°Ry,

/dqu(ng,E — &)

(20)

By considering the asymptotic behavior of ¢(r;¢,) at p K< d
and z = 0, one can also obtain that

pd dﬁ(l 1)

#(p,0;¢)) —— 5
P adsp

which is consistent with Eq. (11), and [36]

2 d
ap = | Zdexp (——ﬁ— —y), 22)
T 2 asp

where 7 =0.915--- and y is
cot nap = 2 In (gazpe” /2), and Gip(Rig; E —€) =
VAT /AGR 5 E — €,). Thus, when r < d or, equivalently,
k > d~!, the system is 3D-like, as shown in Fig. 3. n, (k)
becomes isotropic and is governed by Csp. Compare Eq. (12)
with Eq. (20), it is clear that Eq. (5) holds. We can also see
that

21

the Euler’s constant,

N (KK [ppg1 = Vd?n?P (K Ok ek, <a- (23)

Similar to the discussions in quasi-1D cases, we find out that
the adiabatic relation,

dE  RCyp
T 2nM’

24

dIn asp ( )
which was originally derived for strictly 2D systems [6], still
holds for quasi-2D traps. By taking Eq. (22) and Eq. (5) into
Eq. (24), it recovers the 3D adiabatic relation in Eq. (16).
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IV. CONCLUSION

In conclusion, we have shown an exact relation between
Csp and Cip (Cpp) in quasi-1D (quasi-2D) traps, which
correlates not only physical quantities at different length or
momentum scales, but also universal relations in different
dimensions. We hope that our work will provide physicists
with an alternative angle to explore the dimension crossover,
and inspire more studies of the central role of contacts in

many-body quantum phenomena of quantum gases and re-
lated systems.
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