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In quasi-one- or quasi-two-dimensional traps with strong transverse confinements, quantum gases behave

like strictly one- or two-dimensional systems at large length scales. However, at short distance, the two-body

scattering intrinsically has three-dimensional characteristics such that an exact description of any universal

thermodynamic relation requires three-dimensional contacts since the range of interaction (a few nm) is orders

of magnitude smaller than the harmonic-oscillator length of the transverse confinement (∼102 nm for a 100 kHz

trap). A fundamental question arises as to whether one- or two-dimensional contacts, which were originally

defined for strictly one or two dimensions, are capable of describing quantum gases in quasi-one- or quasi-two-

dimensional traps. Here, we point out an exact relation between the three- and low-dimensional contacts in these

highly anisotropic traps. Such relation allows us to directly connect physical quantities at different length scales

and to characterize the quasi-one- or quasi-two-dimensional traps using universal thermodynamic relations that

were derived for strict one or two dimensions.

DOI: 10.1103/PhysRevA.100.012701

I. INTRODUCTION

A striking property of dilute quantum gases is that only a

few physical quantities, the so-called contacts, fully govern a

complex quantum many-body system. Contacts connect dis-

tinct physical observables through universal thermodynamic

relations and provide physicists a unique and powerful tool to

bridge few-body and many-body physics. In the past decade,

the study of contacts and universal thermodynamic relations

has become a fundamentally important topic in quantum

gases [1–20] and has attracted significant interest from nu-

clear physicists and other communities [21–23]. Whereas

the original work on contact focused on the s-wave one

[1–3], recent studies have generalized such concept to high

partial-wave contacts [24–29]. It has also been realized that to

have a complete description of the universal thermodynamic

relations, contacts should be defined as a matrix [30,31].

Similar to other physical quantities and phenomena, con-

tacts and universal thermodynamic relations exhibit dis-

tinct behaviors in different dimensions [6–9]. The three-

dimensional (3D) s-wave contact, C3D, is proportional to
∂E

∂ (−1/a3D )
at the ground state, where E is the total energy and

a3D is the 3D scattering length. In contrast, contacts in one

dimension (1D) and two dimensions (2D), C1D and C2D, are

proportional to ∂E
∂a1D

and ∂E
∂ ln(a2D )

, where a1D and a2D are the

scattering lengths in 1D and 2D, respectively. Other universal

thermodynamic relations also have qualitative differences in

different dimensions. Universal relations have also been de-

rived in arbitrary, either integer or noninteger, dimensions [9].
So far, studies of contacts at low dimensions have been

mainly focusing on the theoretical investigation of strictly 1D
and 2D systems, where the transverse degree of freedom
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is absent. Contacts and universal relations in realistic
low-dimensional systems have not been established. A
crucial question remains unanswered as to whether universal
relations theoretically derived for strictly 1D and 2D systems
apply to realistic experiments on quasi-1D and quasi-2D traps
in laboratories. It is well known that the origin of universal
relations is the asymptotic behaviors of the many-body wave
function in the limit where the distance between any two
particles approaches zero. In strictly 1D (2D) systems, the
asymptotic form of the two-body wave functions behaves like
|z| (ln ρ) when z → 0 (ρ → 0), where z (ρ) is the relative
coordinate of two particles. Such asymptotic behaviors lay
the foundation for all universal relations in strictly 1D and 2D
systems. However, these asymptotic forms do not apply to
quasi-1D or quasi-2D traps when the separation between two
particles approaches zero. In laboratories, a 1D or 2D system
is created by applying a tight confinement, for instance, a
strong harmonic trap of a harmonic-oscillator length d and
frequency ω, along one or two spatial directions, as shown
in Fig. 1. Such systems are often referred to as quasi-1D or
quasi-2D traps. When the distance between two particles is
much smaller than d , the two-body interaction inevitably has
3D characteristics, as the confining potential can barely affect
the two-body wave function in such regime. The asymptotic
form of the two-body wave function behaves like 1/r, where
r is the relative coordinate of two particles, similar to a
strictly 3D system, and C3D is required to describe universal
thermodynamic relations in quasi-1D and quasi-2D traps,
no matter how strong the transverse confinement is. Thus,
fundamental questions arise regarding how to define C1D and
C2D in quasi-1D and quasi-2D traps and whether they control
universal relations in such highly anisotropic 3D traps.

The main results of this paper are summarized as follows.

(i) In quasi-1D (quasi-2D) traps, C1D (C2D) needs to be defined

from the momentum distribution nσ (k) in the regime, kF �
k � d−1, where kF is the Fermi momentum, k = |k|, and σ =
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FIG. 1. (a) A quasi-1D trap. Atom cloud (purple cloud) with a

strong harmonic confinement in the x-y plane. Red and blue spheres

represent a spin-up and spin-down atom, respectively. When their

separation is much larger (smaller) than z∗ ∼ d , two-body scatterings

have 1D (3D) features, and C1D (C3D) controls all physical quantities

in the corresponding large (small) length and small (large) momen-

tum scales. (b) A quasi-2D trap with a strong harmonic confinement

along the z direction. C2D (C3D) controls the system in a scale

ρ � ρ∗ ∼ d (ρ � ρ∗).

↑,↓ is the spin index. To be explicit, we define k = (k⊥, kz )

and obtain

n1D
σ (kz ) ≡

∫

d2k⊥

(2π )2
nσ (k)

kF �kz�d−1

−−−−−→
C1D

k4
z

, (1)

n2D
σ (k⊥) ≡

∫ ∞

−∞

dkz

2π
nσ (k)

kF �k⊥�d−1

−−−−−→
C2D

k4
⊥

. (2)

In the regime k � d−1, C3D determines nσ (k) in the large

momentum tail,

nσ (k)
k�d−1

−−−−−→
C3D

k4
. (3)

(ii) We establish an exact relation between C1D (C2D) and C3D

in quasi-1D (quasi-2D) traps, which is

C3D = πd2C1D, (4)

C3D =
√

πd2C2D. (5)

Equations (4) and (5) provide us with a means to ex-

plore universal thermodynamic relations using two equivalent

schemes, i.e., either through C3D that controls any physical

systems, including highly anisotropic traps, or using C1D

(C2D), which governs nσ (k) in the intermediate momentum

regime. These two equations also enable an alternative means

to explore the fundamentally important problem on dimen-

sion crossover in ultracold atoms and related fields [32–36].

(iii) Using Eqs. (4) and (5), we obtain a rigorous proof that

the adiabatic relation derived for a strictly 1D (2D) system is

exact in quasi-1D (quasi-2D) traps.

It is worth pointing out that formulas similar to Eqs. (4)

and (5) were derived in [9] by assuming the validity of adi-

abatic relations in quasi-low-dimensional traps. As we have

explained in detail, adiabatic relations derived for strictly 1D

(2D) systems cannot be taken for granted in quasi-1D (quasi-

2D) traps, and even the definition of C1D and C2D in these traps

is questionable. Thus, the full asymptotic forms of the many-

body wave functions in all length scales in quasi-1D (quasi-

2D) traps need to be taken as the starting point. This allows

us to obtain Eqs. (1)–(5), provide a precise definition of C1D

(C2D) in quasi-1D (quasi-2D) traps, reveal their relations with

C3D, and access the full structure of the large momentum tail,

which includes two plateaus in nσ (k)k4, unlike strictly 1D and

2D systems with only one plateau. Eventually, adiabatic rela-

tions in quasi-1D (quasi-2D) traps are proved rigorously as the

consequence, instead of the prerequisite, of Eqs. (4) and (5).

II. CONTACTS AND UNIVERSAL RELATIONS IN

QUASI-1D TRAPS

We focus on quantum gases with zero-range interactions

such that only s-wave scatterings and s-wave contacts are

relevant. We first consider two-component fermion gases with

total numbers N↑ and N↓ in each component in a quasi-1D

trap. The Hamiltonian is written as

H = −
∑

i

h̄2∇2
i

2M
+

∑

i

V (ρi) + g

N↑
∑

i=1

N↑+N↓
∑

j=N↑+1

δ(ri j )
∂ (ri j ·)
∂ri j

,

(6)

where M is the mass of each atom, ri = (ρi, zi ) is the spatial

coordinate of the ith atom, ρi = |ρi|, ri j = ri − r j , ri j = |ri j |,
and V (ρi ) = 1

2
Mω2ρ2

i is a harmonic trapping potential for

the ith atom in the x-y plane. Atoms are free along the z

direction. g = 4π h̄2a3D/M is the strength of the Huang-Yang

pseudopotential. V (ρi ) is sufficiently strong such that d =√
2h̄/(Mω) � k−1

F is satisfied. This is equivalent to saying

that the chemical potential μ is much smaller than 2h̄ω, i.e.,

the energy separation between the ground and the first vibra-

tion level of the harmonic trap. When the distance between

a spin-up and spin-down atom, which is denoted by r = |r|,
r = r1 − r2, is much smaller than k−1

F , the wave function of a

many-body eigenstate has a universal asymptotic form,

�
r�k−1

F

−−−−−→
∫

dεqφ(r; εq)G

(

r1 + r2

2
, ri �=1,2; σi; E − εq

)

,

(7)

where φ(r; εq) is the wave function of the relative motion of

two atoms, εq = h̄ω + h̄2q2/M is the colliding energy, q is

the corresponding momentum, and E is the total energy of the

system. σi is the spin index of the ith atom. Whereas Eq. (7) is

valid for any 3D system, it is useful to make use of the explicit

form of φ(r; εq) in quasi-1D traps,

φ(r; εq) = �00(ρ)[cos(qz) + f (q)eiq|z|]

− f (q)
∑

n>0

iq

qn

�n0(ρ)e−qn|z|, (8)

where �nm(ρ) is the eigenstate of the harmonic trap with

eigenenergy Enm
⊥ = h̄ω(2n + |m| + 1) in the x-y plane, n is

the quantum number for the radial part of the wave function,

and m is the angular momentum quantum number. f (q) =
i/[cot η1D(q) − i] is the scattering amplitude and η1D(q) is

the phase shift in 1D. The first line in Eq. (8) is the con-

tribution from the ground state of the harmonic trap, the

second line is the contribution from excited states, and qn =√
(En0

⊥ − εq)M/h̄2 . For s-wave scatterings, only wave func-

tions with m = 0 are relevant. Since h̄2q2/M is typically of

the order of μ � 2h̄ω, qn is positive for all n > 0. Thus,

the second line in Eq. (8) decays exponentially in the quasi-

1D regime where the energy of the incoming wave in the

scattering problem is smaller than the gap between the ground
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and the first-excited vibration levels. When |z| � z∗ ≡ 1/q1,

Eq. (8) reduces to a wave function in strict 1D. It is also

easy to see that z∗ ∼ d � k−1
F . Correspondingly, based on the

definition nσ (k) =
∑N↑+N↓δ↓,σ

i=1+N↑δ↓,σ

∫
∏

j �=i d3r j |
∫

d3ri�e−ik·ri |2,

where δi, j is the Kronecker delta, we obtain the momentum

distribution of the many-body system in the regime kF � k �
d−1,

nσ (k)
kF �k�d−1

−−−−−→ |�00(k⊥)|2
C1D

k4
z

, σ = ↑,↓, (9)

where k = (k⊥, kz ), �00(k⊥) =
∫

d2
ρ�00(ρ)e−ik⊥·ρ,

C1D = 4N↑N↓

∫

d3R12

∣

∣

∣

∣

∫

dεqq f (q)G(R12; E − εq)

∣

∣

∣

∣

2

, (10)

and R12 is a shorthand notation for a set of coordinates

{(r1 + r2)/2, ri �=1,2; σi}, d3R12 =
∏

i �=1,2 d3rid
3(r1 + r2)/2.

Though this power-law tail comes from the singular behavior

of the relative wave function of a pair of particles when they

approach each other, it does show up in the momentum distri-

bution when k is much larger than kF and other momentum

scales, such as the center-of-mass momentum of a pair of

particles and the inverse of the scattering length. Thus, for

simplicity, we have just specified that k � kF , as the center-

of-mass momentum of a pair of particles is, in general, much

smaller than kF , and so is the inverse of the scattering length

in the strongly interacting regime. In this regime, nσ (k) is a

broad distribution along the kx and ky directions, as expected

for a quasi-1D system. For kF � kz � d−1, the expression in

Eq. (9) could be extend to k⊥ → ∞. Integrating over k⊥, we

obtain Eq. (1).

We now consider r � d , where we have

�
r�d

−−−−−→
(

1

r
−

1

a3D

) ∫

dεqG3D(R12; E − εq). (11)

Correspondingly, nσ (k) has a large momentum tail. It is given

by Eq. (3) and

C3D = (4π )2N↑N↓

∫

d3R12

∣

∣

∣

∣

∫

dεqG3D(R12; E − εq)

∣

∣

∣

∣

2

.

(12)

Indeed, Eq. (8) becomes
−iq f (q)

2
d√
π

( 1
|z| − 1

a3D
) when |z| � d

for ρ = 0, and [32]

a1D = −
d2

2a3D

(

1 − 1.4603
a3D

d

)

(13)

where cot η(q)/q = a1D and G3D(R12; E − εq) =
−iq f (q)

2
d√
π

G(R12; E − εq). Compare Eq. (10) and Eq. (12), we

immediately see that Eq. (4) holds.

It is interesting to note that Eq. (4) has a simple geometric

interpretation. Though the quasi-1D trap is highly nonuniform

in the transverse directions, it can be viewed as a cylinder

with a uniform distribution of contact density on the cross

section of radius d . Since the total contact in 3D is the contact

density multiplied by the total volume, one can view C1D as

the linear contact density. Thus, C3D is simply C1D multiplied

by the cross-sectional area πd2. Equation (4) also allows

one to establish an exact relation between nσ (k) in different

FIG. 2. (a) A contour plot of the exact momentum distribution

ln[nσ (k)] of a two-body system, with nσ (k) in units of d4|�00(k⊥ =
0)|2C1D. The total number of vibration levels considered is N = 300,

and a1D = 1000d . (b) Scaled momentum nσ (0, kz )k4
z . It is determined

by C1D and C3D in the regime a−1
1D � kz � d−1 and kz � d−1,

respectively.

momentum scales. From Eq. (1) and Eq. (3), we obtain

nσ (k)k4
∣

∣

k�d−1 = (πd2)n1D
σ (kz )k4

z

∣

∣

kF �kz�d−1 , (14)

a result originated from the exact relation between C3D

and C1D.

To verify the above results, we evaluate exactly nσ (k) of a

two-body system using Eqs. (7) and (8). Its scaling behaviors

also describe those of nσ (k) in a generic many-body system

in the regime k � kF . By taking into account a large enough

number of excited states, we obtain numerically nσ (k), as

shown in Fig. 2(a). Indeed, in the regime kF � k � d−1,

nσ (k) decays slowly with increasing kx and ky. As mentioned

above, the width of the wave function φ00(k⊥) is given

by the inverse of the harmonic-oscillator length. Thus, for

a strong confinement, nσ (k) exhibits a 1D feature in such

momentum scale. In contrast, in the regime k � d−1, nσ (k)

becomes isotropic, which is a 3D characteristic as expected.

Figure 2(b) shows the scaled momentum distribution nσ (k)k4,

which clearly demonstrates how nσ (0, kz ) gradually changes

from |�00(k⊥ = 0)|2C1D/k4
z to C3D/k4

z .

Besides nσ (k), Eq. (4) allows us to connect other universal

thermodynamic relations in 1D and 3D. Here, we focus on the

adiabatic relations. In strictly 1D systems, where the trans-

verse degrees of freedom are absent, the adiabatic relation is

written as [8]

dE

da1D

=
h̄2C1D

2M
. (15)

In quasi-1D systems, as mentioned above, C1D controls phys-

ical quantities in a large length scale z � d or, equivalently,

in the momentum scale k � d−1. A complete description of

the system needs the introduction of C3D to capture physics in

the length scale z < d or momentum scale k > d−1. A natural

question is then whether Eq. (15) is still valid.

Interestingly, a simple calculation shows that Eq. (15)

holds for the quasi-1D system. The reason is that Eq. (4)

provides an exact relation between C1D and C3D, the latter of

which governs any 3D system, including a quasi-1D trap that
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is highly anisotropic. Thus the 3D adiabatic relation [2],

dE

d (−1/a3D)
=

h̄2C3D

4πM
, (16)

is always valid in a quasi-1D trap. It is also known that a3D

and a1D are related by Eq. (13). Substitute this expression and

Eq. (4) to Eq. (16), and Eq. (15) is obtained. This immediately

tells us that the adiabatic relation derived for strictly 1D sys-

tems applies to quasi-1D traps. In practice, Eqs. (1) and (15)

are also particularly useful, as experimentalists do not need to

extract C3D from nσ (k) in the very large momentum regime

k � d−1, which may become too small to detect. Instead,

a measurement of nσ (k) in the intermediate regime kF �
k � d−1, which has a much larger amplitude, is sufficient

to obtain C1D that could also fully govern the quasi-1D

trap.

Whereas we focus on the adiabatic relation here, discus-

sions can be directly generalized to other universal thermo-

dynamic relations. Equation (4) shows that any universal

thermodynamic relations established by C3D can be rewritten

in terms of C1D that governs the behaviors of the quasi-

1D systems in the large length scale z � d . Thus, universal

thermodynamic relations in 3D can be directly transformed to

those in 1D.

III. CONTACTS AND UNIVERSAL RELATIONS IN

QUASI-2D TRAPS

We now turn to a quasi-2D trap. The Hamiltonian is written

as

H = −
∑

i

h̄2∇2
i

2M
+

∑

i

V (zi) + g

N↑
∑

i=1

N↑+N↓
∑

j=N↑+1

δ(ri j )
∂ (ri j ·)
∂ri j

,

(17)

where V (zi ) = 1
2
Mω2z2

i is a harmonic trapping potential for

the ith atom along the z direction. The system is free in the

x-y plane. The discussions are essentially parallel to those in

quasi-1D traps. Starting from Eq. (7) and the two-body wave

function in a quasi-2D trap for s-wave scattering,

φ(r; εq) =
π

2
cot η2D(q)[J0(qρ) − tan η2D(q)N0(qρ)]�0(z)

+
iπ

2

∑

n>0

(−1)n

√

(2n − 1)!!

(2n)!!
�2n(z)H

(1)
0 (iqnρ),

(18)

it is straightforward to derive Eq. (5), the tails of the momen-

tum distribution and the adiabatic relation. In Eq. (18), η2D(q)

is the 2D phase shift, J0 (N0) is the Bessel function of the

first (second) kind, H
(1)
0 is the Hankel function of the first

kind, �n(z) is the eigenfunction of the harmonic oscillator

along the z axis with eigenenergy En
z = h̄ω(n + 1/2), εq =

h̄ω/2 + h̄2q2/M, and qn =
√

(E2n
z − εq)M/h̄2 . When ρ >

ρ∗ ≡ 1/q1 (ρ < ρ∗), the wave function in Eq. (18) is 2D-like

(3D-like).

Figure 3 shows the numerical results for the momentum

distribution of a two-body system. Again, its scaling behaviors

capture those of a generic many-body system in the regime,

FIG. 3. (a) A contour plot of the exact momentum distribution

ln[nσ (k)] of a two-body system, with nσ (k) in units of d4|�0(kz =
0)|2C2D. The total number of vibration levels considered is N =
300, and a2D = 1000d . (b) Scaled momentum nσ (k⊥, 0)k4

⊥. It is

determined by C2D and C3D in the regime a−1
2D � k⊥ � d−1 and

k⊥ � d−1, respectively.

k � kF . When kF � k⊥ � d−1, we obtain the 2D analogy of

Eq. (9),

nσ (k)
kF �k�d−1

−−−−−→ |�0(kz )|2
C2D

k4
⊥

, (19)

which shows that nσ (k) decays slowly in the kz direction, a

characteristic quasi-2D feature. Integrating over kz, we obtain

Eq. (2) and

C2D = (2π )2N↑N↓

∫

d3R12

∣

∣

∣

∣

∫

dεqG(R12, E − εq)

∣

∣

∣

∣

2

. (20)

By considering the asymptotic behavior of φ(r; εq) at ρ � d

and z = 0, one can also obtain that

φ(ρ, 0; εq )
ρ�d

−−−−−→
√

d
√

π

2

(

1

ρ
−

1

a3D

)

, (21)

which is consistent with Eq. (11), and [36]

a2D =
√

2π

τ
d exp

(

−
√

π

2

d

a3D

− γ

)

, (22)

where τ = 0.915 · · · and γ is the Euler’s constant,

cot η2D = 2
π

ln (qa2Deγ /2), and G3D(R12; E − εq) =
√

d
√

π/4G(R12; E − εq). Thus, when r � d or, equivalently,

k � d−1, the system is 3D-like, as shown in Fig. 3. nσ (k)

becomes isotropic and is governed by C3D. Compare Eq. (12)

with Eq. (20), it is clear that Eq. (5) holds. We can also see

that

nσ (k)k4|k�d−1 =
√

πd2n2D
σ (k⊥)k4

⊥|kF �k⊥�d−1 . (23)

Similar to the discussions in quasi-1D cases, we find out that

the adiabatic relation,

dE

d ln a2D

=
h̄2C2D

2πM
, (24)

which was originally derived for strictly 2D systems [6], still

holds for quasi-2D traps. By taking Eq. (22) and Eq. (5) into

Eq. (24), it recovers the 3D adiabatic relation in Eq. (16).
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IV. CONCLUSION

In conclusion, we have shown an exact relation between

C3D and C1D (C2D) in quasi-1D (quasi-2D) traps, which

correlates not only physical quantities at different length or

momentum scales, but also universal relations in different

dimensions. We hope that our work will provide physicists

with an alternative angle to explore the dimension crossover,

and inspire more studies of the central role of contacts in

many-body quantum phenomena of quantum gases and re-

lated systems.
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