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A B S T R A C T

Biopotential signals contain essential information for assessing functionality of organs and diagnosing diseases.
We present a flexible sensor, capable of measuring biopotentials, in real time, in wireless and fully-passive
manner. The flexible sensor collects and transmits biopotentials to an external reader without wire, battery, or
harvesting/regulating element. The sensor is fabricated on a 90 μm-thick polyimide substrate with footprint of
18×15×0.5mm3. The wireless fully-passive acquisition of biopotentials is enabled by the RF (Radio
Frequency) microwave backscattering effect where the biopotentials are modulated by an array of varactors with
incoming RF carrier that is backscattered to the external reader. The flexile sensor is verified and validated by
emulated signal and Electrocardiogram (ECG), Electromyogram (EMG), and Electrooculogram (EOG), respec-
tively. A deep learning algorithm analyzes the signal quality of wirelessly acquired data, along with the data
from commercially-available wired sensor counterparts. Wired and wireless data shows<3% discrepancy in
deep learning testing accuracy for ECG and EMG up to the wireless distance of 240mm. Wireless acquisition of
EOG further demonstrates accurate tracking of horizontal eye movement with deep learning training and testing
accuracy reaching up to 93.6% and 92.2%, respectively, indicating successful detection of biopotentials signal as
low as 250 μVPP. These findings support that the real-time wireless fully-passive acquisition of on-body bio-
potentials is indeed feasible and may find various uses for future clinical research.

1. Introduction

Biopotentials provide vital information for physicians to exam the
function of organs and diagnose abnormalities for subsequent treatment
or more in-depth assessment actions. For example, Electrocardiogram
(ECG) and Electromyogram (EMG), generated by heart and muscles,
help to diagnose heart arrhythmias(Romhilt and Estes, 1968) and
identiy neuromuscular disorders(Inbar and Noujaim, 1984), respec-
tively; The inherent potential difference between the cornea and retina
of eyes produce Electrooculogram (EOG), which is useful to study dis-
order of eye movement(Dey et al., 2012).

Biopotentials measurement often requires cables and wires that
connect electrodes on individuals’ skin to external bulky instrument and
equipment for signal monitor and storage(Besnoff et al., 2013). The
cumbersome cables and wires induce movement restriction and in-
convenience to individuals, prohibiting long-term ambulatory mon-
itoring of their physiological data. Commercialized wireless sensors
alleviate the challenge, allowing wires-/cables-free acquisition of bio-
potentials. However, the vast majority of current commercialized
wireless sensors rely on batteries to power electronics, resulting in a
limited continuous collection of biopotentials. The state of art wireless

sensors offer an average of merely one or two days operating time,
primarily due to the high power consumption demanded by wireless
communication protocols for data transmission(Dementyev and Smith,
2013). Biopotentials from one or two days of recording, such as ECG
from Holter monitor, has been accepted by clinicians as an effective
diagnosing tool. Some diseases or abnormalities, such as syncope and
atrial fibrillation (AF), often require an extended long period of re-
cording for months or even years to produce high diagnose yield(Israel
et al., 2004; Thomsen et al., 2010). The lack of long-term continuous
wireless biopotentials monitoring greatly limits the diagnose and study
of those diseases or abnormalities.

To overcome the limitation of battery-powered wireless sensors,
several research groups have reported wireless battery-free sensors,
such as RFID (Radio Frequency Identification) technology-enabled
wireless sensors(Besnoff et al., 2013; Dementyev and Smith, 2013;
Philipose et al., 2005). These sensors contain sophisticated electronic
circuitry that harvests power needed for operation, from such as in-
ductive or RF coupling, thereby eliminating the demand for battery
replacement. The recent highlights of such wireless battery-free sensors
include flexible and light-weight, small-size epidermal electronics,
having wireless communication capability, being the ideal form of
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wearable electronics(Kim et al., 2016). Several recent studies have
demonstrated epidermal electronics for measuring temperature(Kim
et al., 2015), pulse(Kim et al., 2016) and electrophysiology(Xu et al.,
2014). The Implementation that is closest to biopotential acquisition in
a completely wireless, battery-free manner is the flexible epidermal
electronics presented by Chung et al.(Chung et al., 2019), which uses
inductive coils to harness power via inductive coupling. Unfortunately,
wireless telemetry presented in those works suffers from the limited
communication protocol, i.e., near field communication (NFC), or the
stringent requirement of precise alignment of primary/secondary coils.

This work presents a small-size, light-weight, flexible sensor, cap-
able of acquiring biopotentials in real time in a wireless and fully-
passive manner, offering up to 240mm wireless communication by
consuming nearly zero power, except parasitics. RF backscattering
wireless communication is used not to power the electronics on the
sensor, but rather to allow bi-directional communication by reflecting
the incident RF (Radio Frequency) wave. The sensor is fabricated on
90 μm-thick flexible polyimide substrate with a footprint of
18×15×0.5mm3

, including all surface mount electronic components
for wireless fully-passive telemetry of biopotentials. The term “fully-
passive” denotes that the sensor is comprised entirely by passive com-
ponents, i.e., batteries and power-consuming active circuitry are com-
pletely excluded. Several passive/fully-passive wireless biopotential
sensors were reported(Seo et al., 2016; Wirdatmadja et al., 2016; Yeon
et al., 2016), yet their functionalities were mostly validated by emu-
lated signal(Wirdatmadja et al., 2016; Yeon et al., 2016) or evoked
stimulation response(Seo et al., 2016). One notebale work is Neural
Dust, a millimeter scale implantable wireless biopotential sensor based
on ultrasound backscattering method(Seo et al., 2016). Utilizing
acoustic wave as wireless transmission media, Neural Dust is minia-
turized as small as 0.8 × 3 × 1mm3. Neural Dust showed its func-
tionality at rather large amplitude (> 2mVpp) neural signal. The wire-
less operating distance was reported to be rather short, 8.9 mm, and
Neural Dust requires very accurate alignment to its external transceiver.
Neural Dust also contains power consuming components such as re-
sistor and transistors, thus it is passive, not fully-passive, wireless
system. In contrast, our wireless sensor does not contain any active or
resistive components, achieving near zero power consumption, for a
fully-passive wireless system. Our sensor is unique as no work currently
exists to acquire biopotentials using wearable sensors in a wireless and
fully-passive manner; all previous work use batteries or other means of
power supplying mechanisms to support electronics for wirelessly
transmiting biopotentials from the body. We present wireless acquisi-
tion of various body biopotential, including ECG, EMG, and EOG of as
low as 250 μVpp, up to a maximum distance of 240mm in a fully-pas-
sive manner. Our work may find applications in real time, long-term
biopotential monitoring for various clinical diagnose and research
purpose, in the form of small-size, flexible, epidermal or even implanted
electronic systems.

2. Material and methods

2.1. Wireless fully-passive sensor

Fig. 1 shows simplified operating principle of the wireless system,
comprising two sub-systems: 1) the wireless fully-passive sensor
(Fig. 1a) for acquiring biopotentials and 2) the external interrogator
(Fig. 1b) for wireless data readout and display. Wireless communication
between the two sub-systems is accomplished by utilizing the RF
backscattering effect, which was proposed in our previous works
(Schwerdt et al., 2015, 2013, 2012, 2011). The differences between
previous works and this work are discussed in details in supporting
information. The external interrogator generates and radiates a single-
tone sine wave RF carrier (f0). When the RF carrier reaches the antenna
on the wireless fully-passive sensor, a modulator, i.e., an array of var-
actor diodes, modulates the RF carrier with biopotentials (fm) and

antenna reflects the modulated signal back, backscattering, to the ex-
ternal interrogator. Among many harmonic components, the 3rd order
mixing product (2f0 ± fm) presents the highest SNR (signal-to-noise
ratio, see supporting information), which goes through a series of fil-
tering and demodulating process (Fig. 1b) to extract the original bio-
potential signals.

The backscattered power of 3rd order mixing products (2f0 ± fm)
can be obtained using:
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where V0 is the amplitdue of RF carrier; ω0 is the frequency of RF
carrier; Vm is the amplitude of biopotentials; C0 is zero-bias capacitance
of the varactor diode; Vj is junction potential determined by material of
the device; γ is gamma coefficient associated with doping parameter; Rr

is the radiation resistance of antenna at 2f0 ± fm (see supporting in-
formation for detailed derivation).

Equation (1) is the 1st order calculation which take little into ac-
count of other undesired harmonic products in the circuits. The fre-
quency of RF carrier (f0) is chosen as 2.33 GHz. The footprint of antenna
on the sensor benefits from higher frequencies while the associated RF
loss increases as a function of frequency. The trade-off between loss and
antenna size is discussed in previous literature(Abbaspour-Tamijani
et al., 2008). The antenna is constructed and simulated in High Fre-
quency Structure Simulator (HFSS, Ansoft, figure S-1). Fig. 1c shows the
schematic of equivalent circuit diagram of the sensor. The circuit is
simulated using Advanced Design System (ADS, Keysight, figure S-2).
The wireless fully-spassive sensor is fabricated with standard flexible
PCB technology (figure S-3). Fully assembled senor has a total footprint
of 18×15×0.5mm3. Fig. 1d shows photos of an assembled wireless
fully-passive sensor, demonstrating its small size and high flexibility.

2.2. The external interrogator

Figure S-4a shows the detailed structure of the external interrogator.
Output signal of external Interrogator is recorded by a Data Acquisition
(DAQ) system (USB-6361, National instrument) at 360 (ECG) and 1000
(EMG and EOG) Hz sampling rates, respectively. The DAQ transfers the
recorded biopotential data to an external PC, where they are digitally
filtered before being displayed in a LabView (National Instrument).
Three different types of biopotentials are considered as the measure-
ment targets: ECG, EMG and EOG. Their amplitude and frequency range
are listed in Table 1. Parameters of the digital filter are selected based
on frequency characteristics of each type of biopotentials, which are
detailed in the result section.

2.3. Study design

We studied the efficacy and accuracy of wireless fully-passive bio-
potential sensors to collect biopotentials such as ECG, EMG, and EOG.
Ground truth measurements were taken by commercially-available
sensors. To demonstrate the feasibility, we recruited volunteers to at-
tach the wireless sensors on specific locations on their body to collect
biopotentials. Randomization was not applicable and investigators were
not blinded. All participants provided informed consent, and the studies
were approved by the Arizona State University Institutional Review
Board (IRB).

2.4. Biopotential recording protocols

The standard practice for ECG acquisition measures biopotentials at
bipolar leads, (lead I, II, III in a three-electrode system), in which lead II
is the most frequently viewed lead in clinical practice(Hockman et al.,
1966) and is chosen as our target (Fig. 2a); EMG are measured at three
commonly used muscles on participants’ limbs, including biceps
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brachii, extensor digitorum, and tibialis anterior, as shown in Fig. 3a;
Fig. 4a shows the schematic setup to measure horizontal channel EOG
signal (see supporting information for details).

2.5. Signal analysis by deep learning

Recent advances in deep learning technique have shown its pro-
mising potential in the field of biopotential signal analysis, such as ECG
classification(Kiranyaz et al., 2016; Schmidhuber, 2015). Many studies
have pointed out that the signal quality of raw data, inputted to deep
learning models, has significant impact on final testing accuracy(Dodge
and Karam, 2016; Karahan et al., 2016). A supervised deep learning
algorithm is adopted in our study as a tool for signal quality comparison
between the data from commercially-available wired sensors and that
from the wireless fully-passive sensors.

We develop the deep learning algorithm using Keras on a PC.
Various deep learning models on Keras are used to analyze the biopo-
tentials. ECG and EMG, whose signal shape rather complex, require two
1D CNN layers with three full-connection dense layers. A simply-shaped
EOG only demands three full-connection dense layers (figure S-7). Each
model is trained by 30 epochs of training data set, followed by being
tested with the testing data set to obtain testing accuracy. In addition,
various slicing methods have been used, depending upon the char-
acteristics of biopotentials and sampling frequency. Details of data set
preparation are provided in supporting information.

3. Results and discussion

3.1. Bench top characterization

The verification of wireless fully-passive sensor is first performed on
bench top. Figure S-4c shows the power of backscattered 3rd order
product (2f0 + fm) increases as a function of RF carrier power at various
distances (60mm, 120mm, 240mm). The power spectrum measure-
ment of the third order mixing product strongly supports that the
wireless fully-passive telemetry benefits from RF backscattering
methods. Power of backscattered product decreases by 13–15 dB as the
transmission distance doubles, agreeing well with the EM wave free-
space propagating model(Aning and Aning, 2012). For a 2 mVpp sine
wave input signal, the sensor demonstrates a working distance of
240mm. The maximum working distance for the device to reliability
measures actual biopotentials will be discussed in the next section.
Figure S-4d shows the temporal waveforms of output at different input
shape, including sine, square and triangle. All three differently shaped
signals exhibit the minimum discrepancy with inputs, demonstrating
the sensor's capability to reliably extract both simple (sine) and com-
plicated (square and triangle) waveforms.

3.2. Electrocardiogram (ECG)

Fig. 2b shows normalized temporal ECG waveforms recorded from
wireless fully-passive (red) and wired (blue) sensors, respectively, in a
3-s period. Both waveforms are filtered by 0.3–30 Hz band-path and
60 Hz notch filters. The signal distortion due to the filters may be
negligible as ECG spans primarily 0.5–20 Hz(Lin, 2008). Correlation
analysis between two waveforms produces a correlation coefficient as
high as 0.8762, with a root-mean-square error (RMSE) as low as
0.0279. Both waveforms clearly show QRS complex and T wave.
However, P wave, which has small amplitude of less than 250 μVpp, is
barely distinguishable in wireless recorded waveform. The wireless ECG

Figure 1. (a) Schematic of a simplified operating principle of wireless fully-passive sensor. The external interrogator generates and shines RF carrier (f0) to the
sensor. The antenna on the sensor receives the carrier and a modulator, varactor diodes, mixes the carrier with biopotentials (fm) collected at the electrodes. The
harmonic mixing products, including 3rd order (2f0± fm), reflect back to the interrogator where the biopotential signals are extracted. (b) The simplified structure of
external Interrogator. RF source generates the carrier (f0) to be transmitted to the sensor as well as to be used in synchronous demodulation. The backscattered mixing
products, including 3rd order (2f0± fm), go through a series of filters and amplifiers to reach a down-converting mixer where the 3rd order product (2f0± fm) is
mixed with 2f0 to extract the biopotentials (fm). (c) Equivalent electronic circuit model diagram of the sensor. Voltage source Vm represents low-frequency biopo-
tentials (fm) collected at the electrodes. (d) Photos of a fabricated and assembled sensor on a polyimide substrate, having footprint of 18×15×0.5mm3. The 65 μm-
thick polyimide substrate contains antenna, discrete surface mount electronic components, and contact electrodes located at the backside to collect biopotentials.

Table 1
Amplitude and frequency range of target biopotentials.

Biopotentials Amplitude Range Frequency Range

Electrocardiogram (ECG) 1–5mV 0.5–20Hz
Electromyogram (EMG) 0.1–10mV 50–200 Hz
Electrooculogram (EOG) 0.1–1mV 0–30 Hz
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Fig. 2. Wireless fully-passive acquisition of
Electrocardiogram (ECG). (a) Electrodes
placement position for measuring lead II
ECG. The two measurement electrodes RA
(right arm) and LL (left leg) are connected
to the wireless fully-passive sensor as well
as a commercial wired sensor through
electrical leads. A third electrode placed at
the left shoulder (not shown in the plot)
provides reference potential for the com-
mercial sensor. (b) ECG recorded from the
wireless fully-passive sensor in comparison
with the output of the commercial wired
ECG sensor that is recorded simultaneously.
Both signals are normalized. The unit of
amplitdue is arbitrary unit (a.u.) (c)
Wireless fully-passive recording of ECG be-
fore/after the participant performs a 5-min
running exercise. (d) Signal quality of
wireless and wired ECG data as a function of
wireless distances. Higher deep learning
testing accuracy represents better signal
quality, i.e., less noise and distortion. Error
represents the percentage of miscounted
heartbeat in wireless data, comparing to the
wired counterpart. (e) Signal quality of
wireless ECG data varies as a function of
angle between external antenna and the
sensor. Inlet shows the coordinate used in
this measurement. The labelled angle re-
presents the direction where external an-
tenna locates.

Fig. 3. Wireless fully-passive acquisition of
Electromyography (EMG). (a) Schematic of
electrodes placement for the EMG re-
cording. Colored region highlights the tar-
geting muscles, including biceps (red), ex-
tensor digitorum (blue), and tibialis
anterior (violet). Electrodes are connected
to the wireless sensor via electrical leads,
together with a commercial wired sensor for
simultaneous recording. (b) EMG signal of
biceps (red), extensor digitorum (blue) and
tibialis anterior (violet) from wired/wire-
less sensors during 45 s. Straight lines (top)
represent EMG recorded from commercial
wired sensor, while dotted lines (middle)
depict their wireless counterparts. Bottom
plots show zoom in of EMG signals in the
marked regions. Data from wireless/wired
sensors are normalized and aligned to de-
monstrate their closeness to each other. (c)
EMG signal quality analysis by deep
learning algorithm, which trains computer
to distinguish EMG signal from noise. For
each muscle, the training data set comes
from 270 s of EMG recording. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
Web version of this article.)
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data also exhibits a noticeable baseline distortion, possibly resulted
from the breathing activity of participants. For temporal ECG features,
measurement results from wired/wireless sensor show little dis-
crepancy. For instance, QTc interval measured by wired and wireless
sensor is 0.370 s and 0.362 s, respectively. The 8ms difference is within
the acceptable accuracy since the standard manual determination of
QTc has an accuracy level of as large as 20–40 milli-sec(Goldenberg
et al., 2006). This supports the wireless sensor may be useful for di-
agnosing of diseases and abnormalities such as Torsades de pointes
(TdP)(Yap and Camm, 2003) and acute destabilized heart failure
(ADHF)(Breidthardt et al., 2007).

To induce a change in heartbeat rhythm, the particiant performs a
jogging practice at 6–7 km/h for 5min. Heartbeat rate of the participant
changes from 80/minutes to 94/minutes after the short-term running
practice, as shown in Fig. 2c. The recorded wireless ECG data contains
an undesirable baseline distortion introduced by breathing activity and
other movement artifacts. The artifacts undoubtedly harm the ECG data
integrity, impeding accurate feature extractions from recorded data. To
reduce the effect of artifacts, a 16th-order polynomial fitting is adapted
to remove baseline drifting curve (figure S-8).

The wireless fully-passive sensor is further evaluated by analyzing
signal quality as a function of wireless transmission distance and angle.
The ECG signal quality is assessed by using 1) the accuracy of heartbeat
rate measurement and 2) the testing accuracy of applied deep-learning
model which distinguishes ECG features from background noise. Fig. 2d
shows the testing accuracy and error as the wireless transmission dis-
tance varies from 100mm to 370mm. At a given distance, both com-
mercial wired sensor and wireless fully-passive sensor record partici-
pants’ ECG continuously for 10min. The numbers of heartbeat in each
group of data are counted and compared. Within 270mm distance,
wireless heartbeat measurement shows very small errors (< 0.5%)
during the continuous 10min recording. The heartbeat miscount occurs
only once or twice in approximately seven hundred times when the QRS
features are shadowed by artifacts. At distances larger than 270mm,
the heartbeat measurement error of wireless sensor exhibits exponential
increase, which is primarily due to the SNR loss. Meanwhile, deep
learning analysis reveals that when the distance remains less than
240mm, testing accuracy of wireless ECG is comparable to that of the
wired counterpart, with<3% discrepancy. At over 240mm distance,

such discrepancy amplifies more than three times, resulting from
testing accuracy of wireless data dropping to below 90%. As distances
increase over 320mm, the testing accuracy of wireless data suffers a
sudden drop to as low as 60%, suggesting a significant degradation of
ECG data quality.

A further observation at ECG temporal profile shows that drop of
deep learning testing accuracy may correlate to the amplitude of signal,
artifacts and noise (figure S-9). Below 240mm, the ECG features are
easily distinguishable from the wireless data. The artifacts exist, yet
their amplitudes are insignificant comparing to that of target signal.
Over 240mm, as signal amplitude attenuates, the artifacts begin to
dominate the waveform. When the distance reaches beyond 320mm,
the SNR drops to a level that features of ECG (P, QRS, and T wave)
become almost indistinguishable from noise and artifacts. Thus, we
summarize that the wireless fully-passive sensor has a working distance
of 240mm, where the sensor maintains its best performance in both
heartbeat detection and deep learning analysis. Due to the elimination
of any kind of power source on the sensor, our operating distance
cannot compete with what offered by battery-powered devices. Com-
paring to other recently developed battery-free, flexible sensors that
have similar footprints(Fonseca et al., 2006; Kim et al., 2016; Xu et al.,
2014), our sensor achieves the highest operating distance. This attrac-
tive feature may facilitate the application of the sensor in more prac-
tical settings.

Signal quality of ECG is also a function of antenna radiation angle,
the angle between external antenna and on-chip antenna on the wire-
less fully-passive sensor. Both the sensor and external antenna are de-
signed to have maximum gain in perpendicular to their radiation plan
(90°, z-axis in Fig. 2e). Fig. 2e shows the variation of deep learning
testing accuracy as the radiation angle changes in two vertical planes
(XZ plane and YZ plane), at a given distance of 140mm. The testing
accuracy in XZ plane is rather independent of angle change, main-
taining>90% for the entire angle span (0–180°). In YZ plane, testing
accuracy exhibits strong dependency on angle arrangement, achieving
the best results in the range of 50–90°. Different angular response in the
two vertical planes possibly originates from intrinsic radiation pattern
of the external dual-band antenna (A10194, Antenova).

Fig. 4. Wireless fully-passive acquisition of
Electrooculography (EOG). (a) Electrode
location for measuring horizontal EOG. (b)
Waveform of wireless recorded EOG signal
when the participant moves his eyes left and
right. Colored region represents the seg-
ment of data used to train deep learning
model. (c) EOG signal analysis using deep
learning algorithm. EOG Training data set is
labelled as shown in (b). One training epoch
represents one pass of complete data set
into the deep learning training model. The
inlet details the composition of training and
testing data set. (d) Wireless recorded EOG
signal of participant's eyes tracking a
moving dot on computer screen. The target
dot is programmed to perform horizontal
movement within an 18.5 inches width
computer monitor. The participant focuses
his gazes upon the moving dot while EOG
signal and the location of the dot are re-
corded simultaneously. Red line represents
movement trail of the dot, where the loca-
tion “0”, “1” and “-1” represent center, left
and right end of the monitor, respectively.
(For interpretation of the references to
colour in this figure legend, the reader is
referred to the Web version of this article.)
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3.3. Electromyogram (EMG)

Fig. 3b shows normalized wired/wireless EMG waveforms measured
at biceps brachii, extensor digitorum and tibialis anterior muscle, re-
spectively, during one cycle of the muscle contraction practice. For all
cases, wireless EMG show excellent correspondence with the wired
counterparts. Zooming in on the waveforms further reveals wireless
data almost overlap with wired data. The good correspondence between
wired and wireless data comes primarily from the remarkable reduction
of low-frequency noise and motion artifacts, which are filtered out by
the 20 Hz high-pass filter, thereby improving the wireless signal fide-
lity. It should also be noted that during the 6 cycles of muscle con-
traction practices, EMG data recorded from the three cases exhibit
different SNRs. As shown in Supplementary Tables S–1, EMG measured
at biceps brachii have the best signal quality, where wired and wireless
data achieve an average SNR of 25 and 21 dB, respectively. In com-
parison, the average SNRs at extensor digitorum are 16 dB and 14 dB for
wired and wireless measurements, respectively. At tibialis anterior
muscles, the average SNRs become 7 dB (wired) and 6 dB (wireless),
and only 1 in 6 cycles EMG data achieve the SNR over 10 dB. The de-
gradation of signal quality at tibialis anterior muscle may be explained
by uncertainties of electrodes location over or across the innervation
zone. Previous studies(Rainoldi et al., 2004; Saitou et al., 2000) have
shown that amplitude of the EMG signal reaches lowest when elec-
trodes are placed over innervation zone. Moreover, different in-
dividuals may have different innervation zone distribution(Saitou et al.,
2000).

Signal quality of wired and wireless EMG data is further quantified
by deep learning analysis. Fig. 3c shows the quality assessment of EMG
data using deep learning testing accuracy. At biceps brachii and ex-
tensor digitorum muscles, both wired and wireless EMG data show very
high (> 98.5%) testing accuracy, indicating that at these two muscles,
the wired and wireless sensors produce high-quality EMG data, well
distinguished from noise. A decrease of EMG SNR from to 21-25 dB to
14–16 dB, in deep learning algorithm, does not yield significant dif-
ference in testing accuracy. At tibialis anterior, however, a clear drop of
testing accuracy is observed. The wired and wireless EMG signal testing
accuracy decrease by 10% and 17%, respectively. It is obvious that SNR
degradation from to 14-16 dB to 6–7 dB has resulted in difficulty for the
deep learning model to identify EMG signal from noise. Comparing with
the case of extensor digitorum, although wired and wireless EMG data
of tibialis anterior exhibit less discrepancy in SNR, 1 dB over 2 dB, their
discrepancy in testing accuracy actually increases from 1.5% to 7%,
suggesting that deterioration of signal quality in wireless EMG data is
larger than that in the wired counterpart. Those results support that
wireless sensor delivers EMG measurement accuracy for signal with
SNR of 14 dB or above.

In application such as neuroprosthesis or movement recognition,
feature extraction is an essential step in EMG signal analysis. To eval-
uate the potential implementation of wireless sensor in those fields, we
compare four commonly used features extracted from wired and wire-
less EMG of biceps brachii, extensor digitorum, and tibialis anterior
muscles. These features include(Chan and Green, 2017; Phinyomark
et al., 2012; Zardoshti-Kermani et al., 1995): mean absolute value
(MAV), root mean square (RMS), integral of absolute value (IAV), and
wavelength (WL), listed in supplementary table (Tables S–1). MAV,
RMS, and IAV of all three cases show very small errors (< 3%) between
wired and wireless results. On the other hand, WL of wireless EMG
shows a significant increase of error at tibialis anterior, 25%, as com-
pared with the other two muscles cases,< 8%, suggesting feature ex-
traction accuracy of the wireless sensor drops when measurement signal
has low SNR. This result agrees well with the deep learning analysis in
the previous section. Therefore, we conclude that wireless sensor is
capable of reliable EMG acquisition upon SNR of over 14 dB. For such
EMG signals, the wireless sensor may offer high accuracy, less than 8%
error, so that EMG features can be used in EMG pattern recognition.

Further study needs to be performed to confirm the practical im-
plementation of the sensor, which will remain as our future work.

3.4. Electrooculogram (EOG)

EOG measures the inherent electrical potential between cornea and
retina(Bulling et al., 2011). This potential changes as eye move, pro-
ducing the EOG signal which can be used to track eye movement.
Fig. 4b shows the normalized EOG signal when the participant rotates
his eyeballs left and right, performing saccade. The angle of this rota-
tion, according to previous studies, is approximately 60°(Darrell and
Pentland, 1993). The recorded signal is filtered by a 3–30 Hz band-pass
filter to reduce baseline shifting. As a participant rotates his eyeball left,
the EOG shows a sharp increase of electrical potential, which gradually
declines when movement of eyeball stops. As the participant rotates
eyeballs right, EOG demonstrates the opposite trend. According to re-
ference article(Bulling et al., 2011), amplitude of EOG signal is typically
5–20 μVpp/degree, suggesting the wireless sensor is capable of mea-
suring EOG signal in the range of 0.12–1.2 mVpp, generated by 60 de-
grees of eyes movement.

The quality of EOG signal is analyzed using deep learning algorithm.
To guarantee sufficient window length, left and right eyes movements
are labelled in Fig. 4b. One complete left and right movement feature
includes both the sudden rise and fall of the signal and the gradual
recover that follows. When the EOG signal stabilizes, it is labelled as
noise. Fig. 4c shows the process of training the deep learning model
using the wireless measured EOG data. The training accuracy improves
very quickly with the increase of training epochs, and only 5 epochs are
required from beginning to close convergence. This fast training sug-
gests that the EOG data collected by wireless sensor have high-quality
so that they are learned by the deep learning model easily. Training
accuracy reaches a maximum value of 93.6% while the testing accuracy
achieves as high as 92.2%, which further validates the performance of
the deep learning model trained by our wireless data(Hsu et al., 2003).

A real-time tracking trial is performed by using a pre-programmed
dot moving on a computer screen. Fig. 4d shows that EOG signal closely
follows the path of moving target. The position change of target dot
from 0 to 1 corresponds to approximately 18 degrees of eye rotation,
demonstrating the wireless sensor successfully records EOG signal as
low as ∼250 μVpp. It should be noted the successful detection of EOG
largely contributes to the sensor being placed off the body as well as the
external antenna being located relatively close to the sensor, 30mm.
When the sensor, however, sits on body and the wireless transmission
distance becomes large, detecting weak biopotentials, ∼250 μVpp, is a
challenge, as shown by the P wave in ECG measurement (Fig. 2). The
recorded EOG waveform also shows that amplitude of EOG signal
changes even when the eyeball remains at a fixed location. Previous
studies have reported similar baseline drift with commercially-available
wired EOG recording equipment. (Belov et al., 2010; Bulling et al.,
2011; Iwasaki et al., 2005). The causes of such phenomenon include
change of skin resistance (Heide et al., 1999), electrode polarization,
and background interfering (Bulling et al., 2011).

3.5. Disscusion

The sensor presented in this work is intended to be placed on par-
ticipants’ skin for the measurement of body potentials. −30–50 °C may
be considered as reasonable temperature range, which falls within the
general operating range of all the passive electronic components (var-
actors, inductors and capacitors) of the sensor. For −30–50 °C tem-
perature range, the temperature has little impact on the value of the
passive components due to the extremely low temperature coefficients
(Cockbain and Harrop, 1968; Groves et al., 1996). Consequently the
temperature effect has little impact on the performance of our sensor.
We encapsulated the entire sensor by 10 μm-thick parylene-C, thus the
humidity effect may not be very large as well.
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The antenna radiation pattern is dependent upon the permittivity of
its surrounding material. When humidity changes from 0 to 100% the
permittivity of air remains almost constant (Zarnik and Belavic, 2012),
suggesting the antenna performance may remain relatively unchanged
as a function of humidity. A prior study has also shown that tempera-
ture change from −30 to 60 °C results in merely 0.2 dB variation on the
antenna gain (Mayer et al., 2001).

The overall cost of current system is primarily dominated by the
equipment used in external interrogator. However, the cost can be
substantially reduced by replacing the equipment with custom-designed
monolithic microwave integrated circuit (MMIC). The antenna of the
sensor can be further miniaturized by adapting 3D printing technology
to print sophisticated 3D antenna structure. This may allow us to
minimize the footprint of antenna while maintaining or even enhancing
its performance. Beside biopotential recording, the sensor presented in
this work may also find applications in other research field such as
cultured cell stimulation or AC impedance measurement(Liu et al.,
2017; Pan et al., 2019; Zou et al., 2016). Having near-zero power
consumption, the sensor may be attractive for many biosensing appli-
cations where temperature change needs to be minimized, such as
Surface Plasmonic Resonance (SPR)(Choi and Chae, 2009; Wang et al.,
2014, 2011). These may be our future work.

4. Conclusion

In this paper, we demonstrated wireless fully-passive acquisition of
various biopotentials, including ECG, EMG, and EOG. In ECG and EMG,
data of the wireless sensor show good agreement with those from
commercial wired sensors, maintaining<3% discrepancy in deep
learning testing accuracy, up to 240mm wireless distance. Wireless
EOG further demonstrates accurate tracking of participant's eyes
movement, with deep learning algorithm achieving 93.6% and 92.2%
training and testing accuracy, respectively. These results strongly sup-
port that the wireless fully-passive sensor is capable of accurately
measuring body biopotentials with amplitude as low as 250 μVpp and
frequency up to 100 s Hz. Several technical challenges remain to be
addressed, including signal's susceptibility to external environmental
disturbance. Future work will focus on reducing the effect of artifacts
and expanding the recording channels.
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