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Abstract
Consider the spatially inhomogeneous Landau equation with moderately soft poten-
tials (i.e. with γ ∈ (− 2, 0)) on the whole space R3. We prove that if the initial data
fin are close to the vacuum solution fvac ≡ 0 in an appropriate norm, then the solution
f remains regular globally in time. This is the first stability of vacuum result for a
binary collisional model featuring a long-range interaction. Moreover, we prove that
the solutions in the near-vacuum regime approach solutions to the linear transport
equation as t → +∞. Furthermore, in general, solutions do not approach a traveling
global Maxwellian as t → +∞. Our proof relies on robust decay estimates captured
using weighted energy estimates and the maximum principle for weighted quantities.
Importantly, we also make use of a null structure in the nonlinearity of the Landau
equation which suppresses the most slowly-decaying interactions.

Keywords Landau equation · Small data · Vacuum

1 Introduction

Consider the Landau equation for the particle density f (t, x, v) ≥ 0 in the whole
space R3. Here, t ∈ R≥0, x ∈ R

3 and v ∈ R
3. The Landau equation reads

∂t f + vi∂xi f = Q( f , f ), (1.1)

where Q( f , f ) is the collision kernel given by1

Q( f , f )(v) := ∂vi

∫
R3

ai j (v−v∗)
(
f (v∗)(∂v j f )(v)− f (v)(∂v j f )(v∗)

)
dv∗, (1.2)

1 Each of these terms depends also on (t, x). For brevity, we have suppressed these dependence in (1.2).
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and ai j is the non-negative symmetric matrix defined by

ai j (z) := (
δi j − zi z j

|z|2
)|z|γ+2. (1.3)

In all the expressions above (and in the remainder of the paper), we have used the
convention that repeated lower case Latin indices are summed over i, j = 1, 2, 3.

In this paper, we will be concerned with the case γ ∈ (−2, 0) in (1.3). The case
γ ∈ (−2, 0) is usually known as the case of moderately soft potentials. Note that the
γ = −3 case is the original case Landauwrote down, and the case that we consider can
be thought of as a limiting case of the Boltzmann equation (without angular cutoff).

It will be convenient to also define

c := ∂2zi z j ai j (z) = −2(γ + 3)|z|γ . (1.4)

and
āi j := ai j ∗ f , c̄ := c ∗ f , (1.5)

where ∗ denotes convolutions in v. The Landau equation (1.1) is then equivalent to

∂t f + vi∂xi f = āi j∂
2
viv j

f − c̄ f . (1.6)

We solve the Cauchy problem for the Landau equation (1.1), i.e. we study the
solution arising from prescribed regular initial data:

f (0, x, v) = fin(x, v) ≥ 0. (1.7)

Our main result is that if fin is sufficiently small and is sufficiently localized in
both x and v (i.e. if fin is in the “near-vacuum” regime), then it gives rise to a unique
global-in-time solution, which is moreover globally smooth. More precisely,2

Theorem 1.1 Let γ ∈(−2, 0), d0>0 and Mmax=
{
2+2� 2

2+γ
+4	 if γ ∈(−2,−1]

2+2� 1
|γ | + 4	 if γ ∈(−1, 0)

.

There exists an ε0 = ε0(γ, d0) > 0 such that if

∑
|α|+|β|≤Mmax

‖(1 + |x |2) Mmax+5
2 ∂α

x ∂β
v (e2d0(1+|v|2) fin)‖L2

x L
2
v

+
∑

|α|+|β|≤Mmax−5

‖(1+|x |2) Mmax+5
2 (1+|v|2) 1

2 ∂α
x ∂β

v (e2d0(1+|v|2) fin)‖L∞
x L∞

v
≤ε

for some ε ∈ [0, ε0], then there exists a unique global solution f : [0,+∞)×R
3×R

3

to the Landau equation (1.1) in the energy space C0([0, T ]; H4,0
ul )∩ L2([0, T ]; H4,1

ul )

for any T ∈ (0,+∞) (see Definition 3.1) which achieves the prescribed initial data
fin.

2 For the precise definition of the multi-index notations, see Section 2.
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Moreover, the solution is C∞ in (0,+∞) × R
3 × R

3 and, as long as fin is not
identically 0, it holds that f (t, x, v) > 0 for all (t, x, v) ∈ (0,+∞) × R

3 × R
3.

Remark 1.2 (The restriction on γ ∈ (−2, 0)) Our argument requires γ ∈ (−2, 0) and
indeed one sees that the number of derivatives needed in Theorem 1.1 → +∞ as γ

approaches the endpoints. For γ ∈ [−3,−2], the dispersion seems too weak for our
argument; see Section 1.1.2. On the other hand, for γ ∈ (0, 1], we lack at this point
even a local-in-time theory which incorporates near-vacuum data. Finally, the γ = 0
case seems already tractable, although it requires a slightly different argument. This
will be treated in a future work.

Theorem 1.1 above can be thought of as the global nonlinear stability of the vac-
uum solution fvac ≡ 0. Such a result is known for the Boltzmann equation with an
angular cutoff assumption in the pioneering work of Illner–Shinbrot [48]; see also
the discussion in Section 1.2.1. However, the stability of the vacuum solution is not
known for a collisional kinetic model featuring a long range interaction, such as in
the case of the Landau equation or the Boltzmann equation without angular cutoff.
One important difference between the cutoff Boltzmann equation and the Landau or
non-cutoff Boltzmann equation is that ellipticity is present in the latter models. This
ellipticitymanifests itself for instance in the smoothing of solutions; see [1,7,22,47]. In
the context of the stability of vacuum for the Landau equation, the ellipticity presents
the following difficulty in understanding the long time dynamics of solutions: on the
one hand, the collision kernel contains top-order elliptic terms which cannot be treated
completely perturbatively as in the case of cutoff Boltzmann; on the other hand, in
a neighborhood of the vacuum solution, the coefficient of the elliptic term does not
seem to be coercive enough to provide useful control of the solution.

In the proof of Theorem 1.1, we show that despite the presence of elliptic terms, the
main mechanism governing the long time behavior of the solutions is the dispersion
associated with the transport operator. In particular, except for the terms with the
top order derivatives that we necessarily treat with elliptic/parabolic methods, all the
other terms arising from the collision kernel, including commutator terms coming
from differentiating the elliptic part, are treated perturbatively. There are two main
ingredients necessary to achieve this: (1) we prove robust decay estimates showing
that solutions to the Landau equation in the near-vacuum regime obey similar decay
estimates as the linear transport equation; (2) we show that there is a null structure
in the nonlinearity which suppresses that most slowly decaying terms in the collision
kernel.

Moreover, after closing all the estimates in the proof of Theorem 1.1, we show a
posteriori that as long as we consider the solution in an appropriate weaker topology,
the Q( f , f ) term in (1.2) — including its top order contribution— can be considered
as a perturbation term. In other words, as far as the long term dynamics of the solution
in this weaker topology is concerned, it is completely dominated by the transport part,
and the elliptic term presents no correction of the long time dynamics. To formulate
this result, let us first define, associated to a function f (t, x, v), the function f �(x, v):

f �(t, x, v) := f (t, x + tv, v). (1.8)
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Note that f is a solution to the linear transport equation, i.e. ∂t f + vi∂xi f = 0, if
and only if f �(t, x, v) is in fact independent of t . Thus the statement that f (t, x, v)

approaches a solution to the linear transport equation can be captured by the following
theorem:

Theorem 1.3 There exists C > 0 depending only on γ and d0 such that the following
holds. Assume the conditions of Theorem 1.1 hold and suppose f is a solution given
by Theorem 1.1. Then there exists a unique function f �∞ : R3 ×R

3 → R such that for
every 	 ∈ N ∪ {0},

sup
t≥0

(1 + t)min{1,2+γ }‖(1 + |v|2) 	
2 (1 + |x |2) Mmax+4

2

( f �(t, x, v) − f �∞(x, v))‖L∞
x L∞

v
≤ Cε

3
2 .

One particular consequence of Theorem 1.3 is that the long-time asymptotics for
the macroscopic quantities are to leading order determined by f �∞. We formulate this
in the following corollary3:

Corollary 1.4 There exists C > 0 depending only on γ and d0 such that the following
holds. Assume the conditions of Theorem 1.1 hold. Let f �∞ be as in Theorem 1.3.
Define

ρ∞(t, x) :=
∫
R3

f �∞(x − tv, v) dv,

(mi )∞(t, x) :=
∫
R3

vi f
�∞(x − tv, v) dv,

e∞(t, x) :=
∫
R3

|v|2
2

f �∞(x − tv, v) dv.

Then the mass density, the momentum density and the energy density, respectively
defined by

ρ(t, x) :=
∫
R3

f (t, x, v) dv, mi (t, x) :=
∫
R3

vi f (t, x, v) dv,

e(t, x) := 1

2

∫
R3

|v|2 f (t, x, v) dv,

satisfy

‖ρ‖L∞
x

(t) + ‖mi‖L∞
x

(t) + ‖e‖L∞
x

(t) ≤ Cε(1 + t)−3 (1.9)

and

(1 + t)3(‖ρ − ρ∞‖L∞
x

(t) + ‖mi − (mi )∞‖L∞
x

(t) + ‖e − e∞‖L∞
x

(t))

3 Note that while we control the macroscopic momentum mi (t, x), we have no control of the macroscopic
velocity ui (t, x) = mi

ρ (t, x) since we do not have any lower bounds for ρ.
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≤ Cε
3
2 (1 + t)−min{1,2+γ } (1.10)

for every t ≥ 0.

Another natural question in the context of long-time asymptotics iswhether the limit
given in Theorem 1.3 is associated to a global travelingMaxwellian (see Definition 1.5
below). Recall that the H -functional H [ f ] = ∫

R3

∫
R3 f log f dv dx is non-increasing

along the flow by the Landau equation (1.1). Moreover, the solutions to (1.1) for which
the H -functional is constant (and have finite mass, entropy and second moments) are
exactly the traveling globalMaxwellians [51].We show that despite these facts, general
solutions to (1.1) do not necessarily approach traveling global Maxwellians.

In the case of the Boltzmann equation with an angular cutoff, the existence of
solutions not approaching traveling globalMaxwellians as t → +∞was first demon-
strated by Toscani [64] by showing that polynomial lower bound in the spatial variable
can be propagated. In fact, for the Boltzmann equation with an angular cutoff, much
more than non-convergence to traveling global Maxwellian is known: a scattering
theory can be developed in a neighborhood of any sufficient small traveling global
Maxwellian [15]. In the case of the Landau equation, in view of the smoothing effect
of the equation, it seems unlikely that a scattering theory of the type in [15] still holds
(cf. [33] for related discussions on the non-cutoff Boltzmann equation). Nonetheless,
given the estimates in Theorem 1.1, we can construct solutions which do not approach
traveling global Maxwellians using a perturbative argument.

Before we proceed to the formulation of this result (see Theorem 1.6 below), we fix
our notation and take the following definition of traveling global Maxwellians from
[51].

Definition 1.5 (Traveling globalMaxwellians)We say that a functionM : [0,+∞)×
R
3 × R

3 → R>0 is a traveling global Maxwellian if

M(t, x, v) = m
√
det Q

(2π)3
exp

(
−1

2

(
v

x − tv

)T (
σ I β I + B

β I − B α I

)(
v

x − tv

))
,

for some m ≥ 0, α, σ > 0, β ∈ R, B ∈ R
3×3 skew symmetric matrix such that

Q = (ασ − β2)I + B2 is positive definite.
Given a traveling global Maxwellian M, define M� : [0,+∞) × R

3 × R
3 by

M�(t, x, v) := M(t, x + tv, v). Note that by definition M� is independent of t . We
will henceforth writeM�(x, v) = M�(t, x, v)

We denote by M the set of all traveling global Maxwellians.

The following is our result that solutions in general do not asymptote to traveling
global Maxwellians:

Theorem 1.6 There exists fin satisfying the assumptions of Theorem 1.1 such that the
limiting function f∞ given by Theorem 1.3 (defined by f∞(t, x, v) := f �∞(x − tv, v))
does not correspond to the zero solution or a traveling global Maxwellian.
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The proof of Theorem 1.6 will in fact show that for a very large class of initial data,
the limits do not correspond to the zero solution or a traveling global Maxwellian; see
Remark 9.3.

The remainder of the introduction is structured as follows. In Section 1.1, we briefly
discuss the method of the proof. Then in Section 1.2 we discuss some related works.
Finally, in Section 1.3, we end the introduction with an outline of the remainder of the
paper.

1.1 Method of Proof

1.1.1 Local Existence

In order to construct global-in-time solutions in the near-vacuum regime, one first
needs to ensure that local-in-time solutions exist. This was carried out in a recent
work of Henderson–Snelson–Tarfulea [47] (see also [7–9] for related ideas for the
Boltzmann equation without angular cutoff).

We highlight two ingredients in [47]:

1. Use of a function space adapted to a time-dependentGaussian in |v|: As t increases,
one only aims for an upper bound by a weaker Gaussian in the v-variable. This
allows one to control the v-weights in coefficient āi j in (1.6). In order to handle
the time-dependent Gaussian weight, one also needs to exploit the anisotropy (in
v) of the coefficient āi j .

2. Use of L2-based estimates: This in particular allows for an integration by parts
argument to control the commutator terms without a loss of derivatives.

As in [47], we will use time-dependent Gaussian weights in |v|. Our choice of
Gaussian weights will decrease as t increases, but it needs to decay in a sufficiently
slow manner so that it is non-degenerate as t → +∞. More precisely, we define4

g := ed(t)〈v〉2 f , d(t) := d0(1 + (1 + t)−δ) (1.11)

for appropriate d0 > 0, δ > 0 and estimate g instead of f .
In order not to lose derivatives, we will in particular prove L2-based energy esti-

mates for g and its derivatives. However, in our setting, we will also need additional
ingredients to handle the large time behavior of g (and its derivatives).

1.1.2 Decay and Heuristic Argument

Before we proceed, we give a heuristic argument why one can expect that in the near-
vacuum regime, the solutions to the Landau equation, as t → +∞ approach solutions
to the linear transport equation

4 We will from now on use the Japanese bracket notations; see Section 2.
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∂t f + vi∂xi f = 0. (1.12)

Let us recall again the Landau equation (see (1.6))

∂t f + vi∂xi f = āi j∂
2
viv j

f − c̄ f . (1.13)

We now argue that if f obeys decay estimates similar to those satisfied by solutions
to the linear transport equation (1.12), then the RHS of (1.13) decays with a rate at
least (1+ t)−1−, which in particular is integrable in time. This at least shows that it is
consistent to expect f behaves like solutions to the linear transport equation.

(1.12) can be solved explicitly and a solution takes the form

ffree(t, x, v) = fdata(x − tv, v). (1.14)

Thus if the initial fdata is sufficiently localized in x and v, then for all 	 ∈ N ∪ {0},
∫
R3

〈v〉	 ffree(t, x, v) dv � (1 + t)−3, | ffree|(t, x, v) � 1. (1.15)

By (1.14), it also follows that taking ∂x derivatives does not worsen the decay estimate,
but taking ∂v derivatives worsen the estimate by a power of t , i.e.

∫
R3

〈v〉	|∂α
x ∂β

v ffree|(t, x, v) dv � (1 + t)−3+|β|, |∂α
x ∂β

v ffree|(t, x, v) � (1 + t)|β|.
(1.16)

Assuming that f obeys estimates as for ffree, we now consider each of the terms on
the RHS of (1.13).

The c̄ f term. An easy interpolation together with (1.15) imply that

c̄(t, x, v) �
∫
R3

|v − v∗|γ f (t, x, v∗) dv∗ � ‖ f ‖1+
γ
3

L1
v

‖ f ‖− γ
3

L∞
v

� (1 + t)−3−γ .

At the same time, f is uniformly bounded. Since γ > −2, this implies that c̄ f is
integrable in time.

The āi j∂2viv j
f term. We focus on the decay in t and neglect for the moment the

additional |v| weight which could in principle be handled using the time-dependent
Gaussian weight as in Section 1.1.1. The āi j term has decay

āi j (t, x, v) �
∫
R3

(|v| + |v∗|)2+γ f (t, x, v∗) dv∗ � 〈v〉2+γ (1 + t)−3.

On the other hand, by (1.16), ∂2viv j
f is not bound even for solutions to the free transport,

but instead grows like (1+ t)2. Hence together it seems that āi j∂2viv j
f decays only as

(1 + t)−1, which is barely non-integrable in time!
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The null structure. The key observation, however, is that while the decay estimates
in (1.15), (1.16) are in general sharp, they are sharp only when x

t ∼ v. For instance,
given sufficiently regular and localized data, when |v − x

t | � t−α for some α ∈ [0, 1),
f (t, x, v) in fact decays in time (as opposed to merely being bounded). A similar
improvement also occurs for velocity averages, as long as the velocity average is
taken over a set with an appropriate lower bound on |v − x

t |.
Returning to our problem, at a spacetime point (t, x), for the term

∫ |v −
v∗|2+γ f (v∗) dv∗(∂2viv j

f )(v), we must have one of the following three scenarios: (1) v
is not too close to x

t , (2) v∗ is not too close to x
t , or (3) v and v∗ are close to each other.

In cases (1) or (2), one has additional decay because of the gain away from v ∼ x
t

we described above; while in case (3) there is an improvement because of the small
|v − v∗|2+γ factor! It therefore implies that

|āi j∂2viv j
f | � 〈v〉2+γ (1 + t)−1−. (1.17)

The improved decay (1.17) can be viewed as a consequence of a null structure in the
nonlinearity.

These rough heuristics already give hope that one can bootstrap the decay estimates
consistent with that of the transport equation.

Given the above discussion, the key ingredients for the proof are as follows:

1. Develop a robust method for proving decay estimates for solutions to the transport
equation.

2. The robust decay estimates need to capture the improved decay in (1.17), which
is important for exploiting the null structure in the equation.

3. Moreover, the decay estimates have to be combined with L2-based energy esti-
mates (which is needed already for local regularity theory; see Section 1.1.1).

We will discuss points 1, 2, and 3 respectively in Sections 1.1.3, 1.1.4 and 1.1.5.
There is yet another issue arising from combining 1, 2, and 3, and will be discussed
in Section 1.1.6.

1.1.3 A Robust Decay Estimate for the Transport Equation and the Maximum
Principle

Main robust decay estimate. Our robust decay estimate will be based on controlling
a weighted L∞

x L∞
v norm of g and its derivatives (recall (1.11)). The main idea is very

simple for the linear transport equation. Given a sufficiently regular solution ffree to
(1.12), 〈v〉	〈x− tv〉m ffree also solves (1.12). As a result ‖〈v〉	〈x− tv〉m ffree‖L∞

x L∞
v

(t)
is uniformly bounded by its initial value. For m > 3, this implies

|
∫
R3

〈v〉	 ffree dv| � ‖〈v〉	〈x − tv〉m ffree‖L∞
x L∞

v
(0)

∫
R3

dv

〈x − tv〉m

�m
‖〈v〉	〈x − tv〉m ffree‖L∞

x L∞
v

(0)

(1 + t)3
, (1.18)

and we have a decay estimate for weighted velocity averages of ffree.
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This type of estimate turns out to be sufficiently robust to be used in a nonlinear
setting. We will prove the following weighted L∞

x L∞
v bound for g for some m ≥ 4.5

sup
(x,v)∈R3×R3

|〈v〉〈x − tv〉mg|(t, x, v) � ε. (1.19)

Since āi j and c̄ are convolutions of f with different kernels (see (1.5)), (1.19) implies
quantitative decay estimates for the coefficients āi j and c̄ in a manner similar to (1.18).

Commutators and higher order estimates.To close our estimate we in fact need also
to control also higher derivatives of g. For this purpose we use ∂x , ∂v and Y := t∂x +∂v

as commutators. ∂x and Y both commute with the transport operator ∂t + vi∂xi , but ∂v

does not commute with the transport operator.6 This results in a loss of a power of t
for every commutation with ∂v . In other words, we will aim at the following L∞

x L∞
v

estimate (see (1.16) and (1.19)):

|〈x − tv〉m∂α
x ∂β

v Y
σ g|(t, x, v) � ε〈v〉−1(1 + t)|β|. (1.20)

When m ≥ 4, (1.20) implies the following estimates for the coefficients (using an
argument similar to (1.18), after appropriately accounting for the singularity in v in
the definition of c̄):

sup
i, j

|∂α
x ∂β

v Y
σ āi j | � ε〈v〉2+γ (1 + t)−3, |∂α

x ∂β
v Y

σ c̄| � ε(1 + t)−3−γ . (1.21)

Estimating the error terms. The estimates (1.20) and (1.21) will be proven simul-
taneously in a bootstrap argument. In order to establish (1.20), we differentiate the
equation for g and control the terms on the RHS.

One of the error terms (which shows the typical difficulty) is (∂α′
x ∂

β ′
v Y σ ′

āi j )(∂2viv j

∂α′′
x ∂

β ′′
v Y σ ′′

g) (where α′ + α′′ = α, etc.). If we were to plug in (1.20) and (1.21), this
error term is controlled by7

|〈x − tv〉m(∂α′
x ∂β ′

v Y σ ′
āi j )(∂

2
viv j

∂α′′
x ∂β ′′

v Y σ ′′
g)|(t, x, v) � ε2〈v〉1+γ (1 + t)−1+|β|.

(1.22)
Wemake the following observations by comparing the 〈v〉weights and t rates in (1.20)
and (1.22):

5 Here, and for the rest of this subsubsection, we have yet to make precise the powers m that we will use.
This will turn out to be a delicate issue; see Section 1.1.4 for further discussions.
6 For the estimate (1.20), in fact one can equivalently just prove

|〈x − tv〉m∂α
x Y

σ g|(t, x, v) � ε〈v〉−1

(i.e. without commuting with ∂v) and (1.20) follows from the triangle inequality. The actual reason that we
also use ∂v as a commutator is more subtle and is related to the fact that we will use a hierarchy of weighted
norms; see (1.24) in Section 1.1.4.
7 Note that in the actual bootstrap setting we need some room and will only obtain a smallness constant of

ε
3
2 instead of ε2. We will suppress this minor detail in the rest of the introduction.
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1. We need to prove an estimate (1.20) which has better 〈v〉 weight compared to
(1.22).

2. The decay rate on the RHS of (1.22) is exactly borderline to obtain the decay rate
in (1.20).

For point (1) above, note that a gain in 〈v〉 weight is possible is due to the ed(t)〈v〉2

weight in the definition of g (see (1.11)). This gain has to be achieved, however, at the
expense of a (1 + t)δ decay rate (see definition of d(t)).

For point (2) above regarding t-decay, already the borderline rate means that we
cannot hope to straightforwardly recover (1.20) when |β| = 0. This is even more
problematic since to handle the 〈v〉 weights for point (1) above requires additional
room for the t-decay rate. We must therefore improve the decay rate in (1.22) by
taking advantage of the null structure (recall the heuristic argument in Section 1.1.2).
This will be discussed in Section 1.1.4.

The maximum principle. However, even with the ideas to be discussed in Sec-
tion 1.1.4, we will not be able to obtain sufficient t-decay to treat the main
(non-commutator) term

〈x − tv〉māi j∂2viv j
∂α
x ∂β

v Y
σ g (1.23)

Instead, we will handle (1.23) using a maximum principle argument: since āi j is semi-
positive definite, we show that the presence of the term (1.23) can only give a favorable
contribution. In other words, only the terms with |α′| + |β ′| + |σ ′| ≥ 1 in (1.22) will
be treated as errors.

Additional technical difficulties.Unfortunately, even after taking into account all the
above considerations, not all the L∞ estimates we prove will be as strong as (1.20).
This is related to the fact we need to couple our L∞ estimates with L2 estimates. The
important point, however, is that at the lower order of derivatives, i.e. for |α|+|β|+|σ |
smaller than a particular threshold, we indeed obtain the estimate (1.20).Wewill return
to this issue in Section 1.1.6.

1.1.4 Null Structure and the Hierarchy of Weighted Norms

Our robust proof of decay must also capture the null structure discussed in Sec-
tion 1.1.2! By naive inspection, one can already see that the 〈x− tv〉weight (see (1.20)
in Section 1.1.3) ensures the solution to be localized at v ∼ x

t , which as discussed in
Section 1.1.2 is exactly the mechanism which enforces the null structure.

In order to exploit this gain, however, one needs to be able to put in extra weights
on the error terms, i.e. in order to control 〈x − tv〉	∂α

x ∂
β
v Y σ g, we will need to have

estimates for 〈x − tv〉	+∂α′
x ∂

β ′
v Y σ ′

g, where 	+ denotes a positive number strictly
larger than 	. In order to close the estimates, we need to exploit more subtle features
of the problem and introduce a hierarchy of weighted norms. Namely, the weight of
〈x − tv〉 that we will use will depend on the number of Y := t∂x + ∂v derivatives on
g. In fact, we will control8

〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g (1.24)

8 Recall here Mmax is the maximum number of derivatives in the assumptions of Theorem 1.1.
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so that the more Y derivatives we have, the weaker 〈x − tv〉 weight we put.
Here are the main observations that allow such a hierarchy of weighted estimates

to be closed:

1. The main (i.e. non-commutator) term can be considered as a “good term” (see the
discussions on the maximum principle in Section 1.1.3)). Thus we only need to
control terms where at least one derivative hits on āi j , i.e.

(
∂α′
x ∂β ′

v Y σ ′
āi j

) (
∂2viv j

∂α′′
x ∂β ′′

v Y σ ′′
g
)

,

where |α′| ≥ 1, |β ′| ≥ 1 or |σ ′| ≥ 1.
2. Next, we show that if there is at least one ∂v derivative on āi j , i.e. if |β ′| ≥ 1, then

the decay is (1+ t)−2−ν with some ν > 0 (depending on γ ). This can be thought
of as a better-than-expected estimate since without using the structure of āi j , one
may naively expect that every ∂v derivative “costs” one power of t so that one only
has |∂v āi j | � (1 + t)−2.

3. In the case where there is at least one ∂x derivative on āi j , i.e. if |α′| ≥ 1, we write
∂x = t−1(t∂x + ∂v) − t−1∂v = t−1Y − t−1∂v . Note that

• since Y is one of our commutators, t−1Y effectively gains us a power of t ;
• t−1∂v also gains in terms of t due to the gain associated to ∂v in point 2 above.

4. It thus remains to control the terms where there is at least one Y = t∂x + ∂v

derivative hitting on āi j , i.e. if |σ ′| ≥ 1. In this case, it must be that there is one
fewer Y hitting on g as compared to the term that we are estimating! Our hierarchy
of norms (see (1.24)) is designed so that one can put an extra 〈x − tv〉 weight in
this term and therefore one can use the null structure to obtain an additional decay
rate.

1.1.5 L2 Energy Estimates

For regularity issues, we cannot work with L∞ estimates alone, but will also need to
work with L2 based estimates (which is already the case for local-in-time estimates;
see Section 1.1.1.) Similar to the L∞ estimates (see Section 1.1.3), we use ∂x , ∂v ,
Y := t∂x + ∂v as commutators. We then prove L2 estimates for ∂α

x ∂
β
v Y σ g, again

weighted with 〈x − tv〉Mmax+5−|σ | to exploit the null structure (see Section 1.1.4).

Main L2 estimates. Using the equation for g one derives a weighted L2 estimate
which for |α| + |β| + |σ | ≤ Mmax controls the following three terms on any time
interval [0, T ], up to some error terms:

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

, (1.25)

‖〈x − tv〉2Mmax+10−2|σ |āi j (∂vi ∂
α
x ∂β

v Y
σ g)(∂v j ∂

α
x ∂β

v Y
σ g)‖L1([0,T ];L1

x L
1
v), (1.26)

and

‖〈x − tv〉Mmax+5−|σ |(1 + t)−
1
2− δ

2 〈v〉∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

. (1.27)
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The term (1.25) is a fixed-time estimate while the terms (1.26) and (1.27) are non-
negative terms integrated over [0, T ] × R

3 × R
3.

The term (1.26) arises from the main (non-commutator) term āi j∂2viv j
∂α
x ∂

β
v Y σ g.

Note that since we do not establish any lower bound for āi j , (1.26) could be too
degenerate to be used to control error terms, but its good sign at least means that we
need not view the main term as an error term.

(1.27) has the favorable feature that it has a stronger 〈v〉weight compared to (1.25).
This term is generated by the time-dependent Gaussian in the definition of (1.11). We
will in fact use (1.27) to bound most of the error terms.9

We note as in Section 1.1.3 that ∂v does not commute with ∂t + vi∂xi and there-
fore the decay rate worsens with every commutation of ∂v . Denoting E2(T ) :=∑

|α|+|β|+|σ |≤Mmax
(1 + T )−2|β|((1.25) + (1.27)), our goal will be to prove that

E2(T ) � ε2. (1.28)

Note that this is consistent with the best L2
x L

2
v estimate that one can get for solutions

to the linear transport equation.

Controlling the error terms.We consider an example of an error term when deriving
the energy estimates (which shows the typical difficulties):

∑
α′+α′′=α, β ′+β ′′=β, σ ′+σ ′′=σ

|α′|+|β ′|+|σ ′|≥1

‖〈x − tv〉2Mmax+10−5|σ | (∂α
x ∂β

v Y
σ g

) (
∂α′
x ∂β ′

v Y σ ′
āi j

)

×
(
∂2viv j

∂α′′
x ∂β ′′

v Y σ ′′
g
)

‖L1([0,T ];L1
x L

1
v)

. (1.29)

Notice that as described above, the main (non-commutator term) can be viewed as a
good term. Therefore we indeed only need to consider the cases |α′|+ |β ′|+ |σ ′| ≥ 1.

The estimates are different depending on whether |α′| + |β ′| + |σ ′| is small or

large. When |α′| + |β ′| + |σ ′| is small, we can use (1.21) to control ∂α′
x ∂

β ′
v Y σ ′

āi j and

bound both ∂α
x ∂

β
v Y σ g and ∂2viv j

∂α′′
x ∂

β ′′
v Y σ ′′

g in L2([0, T ]; L2
x L

2
v) using the norm as

in (1.27). One then sees that the decay rate is slightly insufficient (in fact it misses
by a power of (1 + t)δ). As in the proof of the L∞

x L∞
v estimates in Section 1.1.4, to

overcome the borderline decay, we need to make use of the null structure. Indeed, we
note that |α′| + |β ′| + |σ ′| ≥ 1 so that we can argue as in Section 1.1.4 to obtain a
better decay rate. (Note that the ideas in Section 1.1.4 give a quantitatively better rate
than the borderline case. Thus by choosing δ sufficiently small, (1.29) can indeed be
controlled by the norms in (1.27).)

Consider now the term (1.29) when |α′| + |β ′| + |σ ′| is large. As a particular
example, we have the following term when |α| + |β| + |σ | = Mmax:

‖〈x − tv〉2Mmax+10−5|σ | (∂α
x ∂β

v Y
σ g

) (
∂α
x ∂β

v Y
σ āi j

) (
∂2viv j

g
)

‖L1([0,T ];L1
x L

1
v)

. (1.30)

9 The only error terms that we will not estimate with (1.27) but will instead use (1.25) are the terms arising

from the commutator [∂t + vi ∂xi , ∂
α
x ∂

β
v Y

σ ]; see Section 7 for details.
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Here, we are faced with another challenge regarding the decay rate. At the top order,
we need to control ∂α

x ∂
β
v Y σ āi j in L2

x (as opposed to L∞
x ). As a result, we only obtain

‖〈v〉−(2+γ )∂α
x ∂β

v Y
σ āi j‖L2

x L
∞
v

� ε(1 + t)−
3
2+|β|.

(This should be compared with the L∞
x L∞

v estimate in (1.21) when |α| + |β| + |σ | is
lower order.) At the same time, we need to bound ∂2viv j

g in some L∞
x norm. At first

sight, one may hope, based on linear estimates for solutions to (1.12), that

‖〈x − tv〉Mmax+5−|σ |〈v〉∂2viv j
g‖L∞

x L2
v

� ε(1 + t)
1
2 .

However, when |σ | is small, we are very tight with the 〈x − tv〉weights and in general
we only obtain the following weaker estimate10 based on Sobolev embedding and
(1.27):

‖(1 + t)−
1
2−δ−|β|〈x − tv〉Mmax+5−|σ |〈v〉∂2viv j

g‖L2([0,T ];L∞
x L2

v) � ε(1 + T )2.

Combining these estimates and using (1.28), it seems that Hölder’s inequality only
gives

‖〈x − tv〉2Mmax+10−2|σ |(∂α
x ∂β

v Y
σ g)(∂α

x ∂β
v Y

σ āi j )(∂
2
viv j

g)‖L1([0,T ];L1
x L

1
v)

� ‖〈x − tv〉Mmax+5−|σ | 〈v〉
(1 + t)

1
2+ δ

2

∂α
x ∂β

v Y
σ g‖L2([0,T ];L2

x L
2
v)‖〈v〉−(2+γ )

× (1 + t)
3
2−|β|∂α

x ∂β
v Y

σ āi j‖L∞([0,T ];L2
x L

2
v)

× ‖(1 + t)−
1
2−δ−|β|〈x − tv〉Mmax+5−|σ |〈v〉∂2viv j

g‖L∞([0,T ];L∞
x L∞

v )

× ‖(1 + t)−
1
2+ 3δ

2 +2|β|‖L∞([0,T ])
� ε2(1 + T )

3
2+ 3δ

2 +2|β|,

which is much worse than the bound (1 + T )2|β| that we aim at in (1.28).
To handle (1.30), note that while at the top order we need to put ∂α

x ∂
β
v Y σ āi j in

L2
x L

∞
v , we must have |α| + |β| + |σ | ≥ 2. In this case, we can further extend ideas as

described in Section 1.1.4 to obtain better decay rates. (Note that unlike for the L∞
estimates, ideas in Section 1.1.4 are no longer just used to beat the borderline terms,
but are instead needed to achieve a more substantial improvement.) To implement this,
wewill in addition need to contend with certain singular |v−v∗|γ factors, which affect
the decay rate. In order for the above ideas to work, we will then need to estimate some
∂α
x ∂

β
v Y σ āi j terms in a few different mixed L2

x L
p
v spaces (for appropriate p ∈ [2,∞)

depending on γ ). See Sections 5.2 and 7 for details.

10 Note that in the (1 + t) weight on the LHS, we have δ instead of δ
2 (as one may expect). This is a

technical point (see Section 7.1) which plays no substantial role.
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1.1.6 A Descent Scheme

As we have stressed above, even our decay estimates are based on the L∞ bounds, in
order not to lose derivatives, we need to combine the L∞ estimates with L2 energy
estimates. In other words, the L∞ estimates we described above in Section 1.1.3 do
not close by themselves. Indeed, in carrying out the maximum principle argument, we
encounter commutator terms that have one derivative more than the term that we are
estimating. As a result, at the higher level of derivatives, we need to use the L2 estimate
together with Sobolev embedding to control these commutator terms. This however
creates a loss in both 〈v〉 and t in the sense that the L∞ decay rate thus obtained is
weaker than the corresponding decay rate for solutions to the linear transport equation.

In order to overcome this, we introduce a descent scheme. More precisely, we allow
the higher level L∞ norms to have weaker decay in both 〈v〉 and t compared to (1.20),
but as we descend in the number of derivatives, we obtain a slight improvement at
every level, until we get to a sufficiently low level of derivatives for which we obtain
the desired (1.20). To give a concrete example, consider the special case γ = −1. We
will prove

∑
|α|+|β|+|σ |=10

〈x − tv〉Mmax+5−|σ ||∂α
x ∂β

v Y
σ g|(t, x, v) � ε(1 + t)|β|+ 3

2 ,

∑
|α|+|β|+|σ |=9

〈x − tv〉Mmax+5−|σ ||∂α
x ∂β

v Y
σ g|(t, x, v) � ε〈v〉−1(1 + t)|β|+ 3

4 ,

∑
|α|+|β|+|σ |≤8

〈x − tv〉Mmax+5−|σ ||∂α
x ∂β

v Y
σ g|(t, x, v) � ε〈v〉−1(1 + t)|β|.

Here are two observations regarding the descent scheme:

1. Such a scheme can close since when controlling a nonlinear term, a term with
higher order derivatives must multiply a term with lower order derivatives. There-
fore, the loss that we allow in a descent scheme does not accumulate. (It is therefore
also crucial that we indeed prove sharp estimates at the lower order!)

2. Moreover, when bounding the nonlinear terms, after using the ideas in Sec-
tions 1.1.3–1.1.5, every term that we encounter is quantitatively better than the
borderline case. It is for this reason that every time we descend one order of
derivative, we obtain a quantitative gain.

We note that the full hierarchy for the descent scheme is more complicated for
general γ . In fact, as γ → 0− or γ → −2+, the number of steps for which we
descend → +∞. (It is because of this fact that we need a large number of derivatives
in Theorem 1.1 as γ → 0− or γ → −2+.) We refer the reader to Section 6.3 for the
precise numerology.
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1.1.7 Long-Time Asymptotics

The above concludes the discussions of the main difficulties of proving the global
existence of near-vacuum solutions. Theorem 1.3, Corollary 1.4 and Theorem 1.6
more or less follow from the estimates that have been established.

The only thing to note is that so far we have “dropped” the main elliptic term
āi j∂2viv j

∂α
x ∂

β
v Y σ g in either themaximumprinciple or energy estimate argument, show-

ing that it can only give a better upper bound than that for the linear transport equation.
To make statements about the precise asymptotic behavior of the solutions, however,
we need to be able to control the main elliptic term.

The key point is to note that since all the estimates have now been closed, by
carrying out an estimate on f with a slightly weaker 〈x − tv〉 weight, we can use the
null structure to show that even the main term āi j∂2viv j

f has faster than integrable time
decay. We refer the reader to Section 9 for details.

1.2 RelatedWorks

1.2.1 Stability of Vacuum for Collisional Kinetic Models

The earliest work on the stability of vacuum for a collisional kinetic model is that for
theBoltzmann equationwith an angular cutoff by Illner–Shinbrot [48]. There aremany
extensions and refinements of [48]; see for instance [12,14,16,38,44,45,54,63,66]. We
refer the readers also to the related [10,34,65] in which perturbations of traveling
global Maxwellians were studied — in this setting the long-time dynamics is also
characterized by dispersion (compare Theorem 1.3).

To our knowledge the present work is the first stability of vacuum result for a
collisional kinetic model with a long range interaction. Note in particular that the
analogous stability of vacuum problem for the non-cutoff Boltzmann equation remains
open.

1.2.2 Dispersion and Stability for Collisionless Models

Stability of vacuum results in collisional models can be viewed in the larger context
of stability results for nonlinear models in kinetic theory that are driven by dispersion.
That dispersion of the transport operator is useful in establishing global result for close-
to-vacuum data has been well-known early on for collisionless models; see [13,30,31]
for some early results, which are mostly based on the method of characteristics. See
also [14] for a discussion of the relation between these results and the stability of
vacuum for the Boltzmann equation with angular cutoff. For more recent discussions,
see [17,27,56,70–73], as well as remarkable proof of the stability of the Minkowski
spacetime for the Einstein–Vlasov system [26,52,62].
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1.2.3 Regularity Theory for Landau Equation

It is an outstanding open problem whether regular initial data to the Landau equation
give rise to globally regular solutions. The literature is too vast for an exhaustive
discussion, but we highlight some relevant results here.

Weak solutions. Renormalized solutions to the Landau equation have been con-
structed in [68]. See also [5,53].

Spatially homogeneous solutions. In the Maxwellian molecule case (γ = 0) and the
hard potentials case (γ > 0), the theory of spatially homogeneous solutions is very
well-developed [24,25,67]. In the soft potentials case (γ ∈ [−3, 0)), existence was
studied in [11,23,69], and uniqueness was studied in [28,29]. See also [6,23,55,74]
for further a priori estimates in the soft potentials case.

Global nonlinear stability of Maxwellians. The global nonlinear stability of
Maxwellians on a periodic box was established in Guo’s seminal [39]. This is part
of Guo’s program to use a nonlinear energy method to construct perturbative solu-
tions in nonlinear kinetic models. The methods of Guo have moreover inspired many
subsequent perturbative results for various kinetic models [40–43,58–61], including
the remarkable works of the global nonlinear stability of Maxwellians for the non-
cutoff Boltzmann equation [2–4,36]. See also [19–21] for more recent results on
near-Maxwellian solutions.

Conditional regularity theory. A thread of recent works concern regularity of solu-
tions to the Landau equation assuming a priori pointwise control of the mass density,
energy density and entropy density [18,32,46,47,57]. Our present paper in particular
relies on thework [47], which proves the local existence, uniqueness and instantaneous
smoothing of solutions using the theory developed in the papers mentioned above.

Model problems. Various simplified models for Landau equation have been intro-
duced and some regularity results have been obtained for thesemodels; see for instance
[35,37,49,50].

1.3 Outline of the Paper

The remainder of the paper is structured as follows.
In Section 2, we introduce some notations that will be used throughout the paper.

In Section 3, we cite a recent local-in-time existence and uniqueness result of [47],
which will be the starting point of our construction of global-in-time solutions.

Sections 4–8 will be devoted to the proof of Theorem 1.1. In Section 4, we discuss
the bootstrap argument used for the proof and introduce the bootstrap assumptions.
In Section 5, we control the coefficients āi j , c̄. In Section 6, we use the maximum
principle and an appropriate iteration argument to prove the L∞

x L∞
v estimates. In

Section 7, we use energy methods to prove the L2
x L

2
v estimates. We then conclude the

proof in Section 8.
Finally, in Section 9,wediscuss the long-time asymptotics of near-vacuumsolutions

and prove Theorem 1.3, Corollary 1.4 and Theorem 1.6.
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2 Notations

We introduce some notations to be used throughout the paper.

Norms. We will use mixed L p norms, 1 ≤ p < ∞ defined in the standard manner:

‖h‖L p
v

:=
(∫

R3
|h|p(v) dv

) 1
p

.

For p = ∞, define

‖h‖L∞
v

:= ess supv∈R3 |h|(v).

For mixed norms, the norm on the right is taken first. For instance,

‖h‖L p
x L

q
v

:=
(∫

R3

(∫
R3

|h|q(x, v) dv

) p
q

dx

) 1
p

and

‖h‖Lr ([0,T ];L p
x L

q
v ) :=

⎛
⎝
∫ T

0

(∫
R3

(∫
R3

|h|q(t, x, v) dv

) p
q

dx

) r
p

dt

⎞
⎠

1
r

with obvious modification when p = ∞, q = ∞ or r = ∞. We will silently use that
‖h‖L p

x L
q
v

� ‖h‖Lq
v L

p
x
when p ≥ q.

Given two Banach spaces X1 and X2, define the following norms for the sum
X1 + X2 and the intersection X1 ∩ X2:

‖h‖X1+X2 := inf
h=h1+h2

(‖h1‖X1 + ‖h2‖X2), ‖h‖X1∩X2 := ‖h‖X1 + ‖h‖X2 .

Japanese brackets. Define

〈·〉 := (1 + | · |2) 1
2 .

Multi-indices. α = (α1, α2, α3) ∈ (N ∪ {0})3 will be called a multi-index. Given
a multi-index α, define ∂α

x = ∂
α1
x1 ∂

α2
x2 ∂

α3
x3 ; and similarly for ∂

β
v when β is a multi-

index. Let |α| = α1 + α2 + α3. Multi-indices are added according to the rule that if
α′ = (α′

1, α
′
2, α

′
3) and α′′ = (α′′

1 , α
′′
2 , α

′′
3 ), then α′+α′′ := (α′

1+α′′
1 , α

′
2+α′′

2 , α
′
3+α′′

3 ).
Given a multi-index α = (α1, α2, α3), the length of the multi-index is defined by
|α| = α1 + α2 + α3.

We will often sum over all multi-indices up to a certain length. In this context, we
will use the convention that

∑
|α|≤−1(· · · ) = 0.
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3 Local Existence

In this section, we recall the local existence result in [47] (and state a small variant of
it).

To state the result in [47], we first recall their definition of uniformly local weighted
Sobolev spaces.

Definition 3.1 (Uniformly local weighted Sobolev spaces) Let φ : R
3 → R be a

smooth and compactly supported cut-off function such that 0 ≤ φ ≤ 1 everywhere,
φ(x) = 1 for |x | ≤ 1 and φ(x) = 0 for |x | ≥ 2.

Define the Hk,	
ul norm on S(R3 × R

3) by

‖h‖Hk,	
ul

:=
∑

|α|+|β|≤k

(
sup
a∈R3

∫
R3

∫
R3

|φ(x − a)〈v〉	∂α
x ∂β

v h|2 dv dx
) 1

2

and take Hk,	
ul to be the completion of S(R3 × R

3) under this norm.

The following theorem is taken from [47]. (Note that in the statement ofTheorem1.1

in [47], the estimate (3.2) is stated only for e
1
2ρ0〈v〉2 f instead of e(ρ0−κt)〈v〉2 f , but it

is clear from the proof that (3.2) indeed holds.)

Theorem 3.2 (Henderson–Snelson–Tarfulea [47]) Fix ρ0, M0 ∈ R with ρ0 > 0,
M0 > 0 and k ∈ N with k ≥ 4. Suppose eρ0〈v〉2 fin satisfies the estimate

‖eρ0〈v〉2 fin‖Hk
ul

≤ M0. (3.1)

Then for any κ > 0, there exists T = Tγ,ρ0,M0,κ > 0 depending only on γ , ρ0, M0
and κ , such that there exists a unique solution f ≥ 0 to the Landau equation (1.1)
with initial data f (0, x, v) = fin(x, v) and satisfying

‖e(ρ0−κt)〈v〉2 f ‖C0([0,T ];Hk,0
ul )∩L2([0,T ];Hk,1

ul )
< +∞. (3.2)

Amore remarkable statement is that the solution constructed in Theorem 3.2 imme-
diately acquires smoothness and positivity11 even the initial fin may not be smooth
and may contain vacuum regions.

Theorem 3.3 (Henderson–Snelson–Tarfulea [47]) The solution f : [0, T ] ×R
3 ×R

3

in Theorem 3.2 is C∞ when t > 0. Moreover, if fin is not identically zero, then
f (t, x, v) > 0 when t > 0.

In what follows, we will need a slight variant of Theorem 3.2. It can be proven
in a very similar manner as Theorem 3.2 in [47], we therefore state it as a corollary
and omit the proof. Note that the assumptions in Corollary 3.4 are weaker than those

11 as long as the initial fin is not identically zero.
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in Theorem 3.2 (i.e. (3.3) implies (3.1)). Therefore, by Theorem 3.2, a unique local
solution indeed exists under the assumptions of Corollary 3.4 (and moreover unique-
ness holds even in the weaker space in Theorem 3.2). The point, however, is that
Corollary 3.4 also gives a stronger estimate which will be useful.

Corollary 3.4 Fix ρ0, M0, λ ∈ R with ρ0 > 0, M0 > 0 (and λ arbitrary) and k, N ∈
N with k ≥ 4. Suppose eρ0〈v〉2 fin satisfies the estimate

∑
|α|+|β|≤k

‖〈x − λv〉N ∂α
x ∂β

v

(
eρ0〈v〉2 fin

)
‖L2

x L
2
v

≤ M0. (3.3)

Then for any κ > 0, there exists T = Tγ,ρ0,M0,λ,N ,κ > 0 depending only on γ , ρ0,
M0, λ, N and κ , such that there exists a unique solution f ≥ 0 to the Landau equation
(1.1) with initial data f (0, x, v) = fin(x, v) and satisfying

∑
|α|+|β|≤k

(
‖〈x − (λ + t)v〉N ∂α

x ∂β
v

(
e(ρ0−κt)〈v〉2 f

)
‖C0([0,T ];L2

x L
2
v)

+‖〈x − (λ + t)v〉N 〈v〉∂α
x ∂β

v

(
e(ρ0−κt)〈v〉2 f

)
‖L2([0,T ];L2

x L
2
v)

)
< +∞.

(3.4)
Moreover, given fixed γ , ρ0, M0, N and κ , for any compact interval K ⊂ R, T =
Tγ,ρ0,M0,λ,N ,κ > 0 can be chosen uniformly for all λ ∈ K.

Comments on the proof. The proof is essentially the same as in [47]. Note that the
norms in this corollary are different from those in Theorem 3.2 in two places: first, it
involves a usual Sobolev space instead of a uniformly local one; second, there is an
additional weight of 〈x − (λ + t)v〉N .

The first difference in fact makes the proof easier, as one no longer needs to keep
track of the cut-off functions φ (see Definition 3.1). The second difference only affects
the proof minimally. This is because

(∂t + vi∂xi )〈x − (λ + t)v〉 = 0, |∂v j 〈x − (λ + t)v〉| �λ 1. (3.5)

One can therefore prove weighted L2 estimates with 〈x−(λ+ t)v〉N weights and (3.5)
guarantees that all extra terms arising from integrating by parts in the L2 estimate can
be easily controlled.

Finally, for λ ∈ K and K ⊂ R a compact interval, T can be chosen to depend only
on K but not the specific value of λ. This is simply because the constant in (3.5) can
be chosen uniformly for all λ ∈ K . ��

4 Bootstrap Assumptions and the Bootstrap Theorem

We now begin the proof of Theorem 1.1. We will argue using a bootstrap argu-
ment. After introducing some preliminaries in Section 4.1, we will state our bootstrap
assumptions and our main bootstrap theorem (Theorem 4.1) in Section 4.2.
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4.1 Preliminaries

Let δ be a small positive number (depending on γ ) defined by

δ := min

{
2 + γ

4
,
1

10

}
. (4.1)

Instead of directly controlling f , define

g := ed(t)〈v〉2 f , (4.2)

where

d(t) := d0(1 + (1 + t)−δ), (4.3)

d0 > 0 is the constant in the statement of Theorem 1.1, and δ > 0 is the constant fixed
above satisfying (4.1). We will estimate g instead of f .

The function g then satisfies the following equation:

∂t g + vi∂xi g + δd0
(1 + t)1+δ

〈v〉2g − āi j∂
2
viv j

g

= − c̄i g − 4d(t)āi jvi∂v j g − 2d(t)(δi j − 2d(t)viv j )āi j g. (4.4)

Define the following shorthand

Yi = t∂xi + ∂vi . (4.5)

Introduce the following energies for k = 0, 1, . . . , Mmax and for T ≥ 0.

Ek(T ) :=
∑

|α|+|β|+|σ |=k

(1 + T )−|β|‖〈x − tv〉Mmax+5−|σ |(∂α
x ∂β

v Y
σ g)‖L∞([0,T ];L2

x L
2
v)

+
∑

|α|+|β|+|σ |=k

(1 + T )−|β|‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |

× (∂α
x ∂β

v Y
σ g)‖L2([0,T ];L2

x L
2
v).

(4.6)

We note explicit the following features of the energies:

• 〈x − tv〉 weight depends on the number of Y = t∂x + ∂v derivatives: the more Y
derivatives we take, the weaker weight we have.

• For every ∂v derivative we take, we give up a power of (1 + t).
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4.2 The Bootstrap Assumptions

Introduce the bootstrap assumption for the E norms

E(T ) :=
Mmax∑
k=0

Ek(T ) ≤ ε
3
4 , (4.7)

where Mmax =
{
2 + 2� 2

2+γ
+ 4	 if γ ∈ (−2,−1]

2 + 2� 1
|γ | + 4	 if γ ∈ (−1, 0)

as in Theorem 1.1.

Introduce also the following bootstrap assumptions for the L∞
x L∞

v norms of deriva-
tives of g:

When |α| + |β| + |σ | ≤ Mmax − 4 − max{2, � 2
2+γ

	},

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

(T ) ≤ ε
3
4 (1 + T )|β|. (4.8)

When Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then

‖〈x−tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

(T ) ≤ ε
3
4 (1+T )

3
2−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
+|β|

.

(4.9)
Our goal fromnowonuntil Section 7will be to improve these bootstrap assumptions

(4.7), (4.8) and (4.9) with ε
3
4 replaced by Cε (which is indeed an improvement for

ε sufficiently small) for some constant C depending only on d0 and γ . We formulate
this as a theorem below.

Theorem 4.1 (Bootstrap theorem) Let γ , d0 and fin be as in Theorem 1.1 and let
δ > 0 be as in (4.1). There exist ε0 = ε0(d0, γ ) > 0 and C0 = C0(d0, γ ) > 0 with

C0ε0 ≤ 1
2ε

3
4
0 such that the following holds:

Suppose there exists TBoot > 0 and a solution f : [0, TBoot ) × R
3 × R

3 with
f (t, x, v) ≥ 0, f smooth for t > 0 and f (0, x, v) = fin(x, v). Moreover, suppose
that the estimates (4.7), (4.8) and(4.9) all hold for all T ∈ [0, TBoot ), then all of these
estimate in fact hold for all T ∈ [0, TBoot ) with ε

3
4 replaced by C0ε.

From now on until Section 7, we will prove Theorem 4.1 (see Section 7.5). In
these section, we therefore always work under the assumptions of Theorem 4.1.
To simplify the notations, from now on, unless explicitly stated otherwise, for two
non-negative quantities A and B, A � B means that there exists C > 0 depending
d0 and γ (and in particular independent of ε) such that A ≤ CB.

5 Estimates for the Coefficients

We work under the assumptions of Theorem 4.1.
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In this section, we prove L∞
x and L2

x type bounds for the coefficients āi j , c̄ and their
derivatives. The L∞

x estimates will be proven in Section 5.1 while the L2
x estimates

will be proven in Section 5.2.

5.1 The L∞
x Estimates for āij, c̄ and Their Derivatives

5.1.1 Preliminary Embedding Estimates

We begin with a simple interpolation estimate.

Lemma 5.1 Let ν ∈ (0, 3) and h : R
3
v → R be an L1 ∩ L∞ function. Then the

following estimate holds:

sup
v∈R3

∫
R3

|v − v∗|−ν |h|(v∗) dv∗ � ‖h‖1−
ν
3

L1
v

‖h‖
ν
3
L∞

v
.

Proof Assume that h �≡ 0 for otherwise the estimate is trivial.
Let λ > 0 be a constant to be determined. We divide the integral into regions

|v − v∗| ≤ λ and |v − v∗| > λ and use Hölder’s inequality in each of the regions to
obtain

∫
R3

|v − v∗|−ν |h|(v∗) dv∗

�
∫

{|v−v∗|≤λ}
|v − v∗|−ν |h|(v∗) dv∗ +

∫
{|v−v∗|>λ}

|v − v∗|−ν |h|(v∗) dv∗

� λ−ν+3‖h‖L∞
v

+ λ−ν‖h‖L1
v
.

Let λ = ‖h‖
1
3
L1

v
‖h‖− 1

3
L∞

v
. Then

sup
v∈R3

∫
R3

|v − v∗|−ν |h|(v∗) dv∗ � ‖h‖1−
ν
3

L1
v

‖h‖
ν
3
L∞

v
,

as claimed. ��

Lemma 5.2 Let h : [0, TBoot ) × R
3 × Rv → R be a smooth function such that

〈v〉4h, 〈x − tv〉4h ∈ L∞
x L∞

v for all t ∈ [0, TBoot ). Then for all t ∈ [0, TBoot ),

‖h‖L∞
x L1

v
(t) � (1 + t)−3

(
‖〈v〉4h‖L∞

x L∞
v

(t) + ‖〈x − tv〉4h‖L∞
x L∞

v
(t)

)
.

Proof Step 1: The case t ≤ 1. In this case we simply use the Hölder’s inequality to
estimate as follows:
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‖h‖L1
v
(t, x) �

(∫
R3

〈v〉−4 dv

)(
sup

(x,v)∈R3
〈v〉4|h|(t, x, v)

)
� ‖〈v〉4h‖L∞

x L∞
v

(t).

Taking supremum over all x ∈ R
3 yields the desired estimate.

Step 2: The case t > 1. Let λ > 0 be a constant to be chosen. We divide the region of
integration according to |v − x

t | ≤ λ and |v − x
t | > λ.

‖h‖L1
v
(t, x) �

∫
{|v− x

t |≤λ}
|h|(t, x, v) dv +

∫
{|v− x

t |>λ}
|h|(t, x, v) dv

� λ3‖h‖L∞
x L∞

v
(t) + t−4‖|x − tv|4h‖L∞

x L∞
v

(t)
∫

{|v− x
t |>λ}

|v − x

t
|−4 dv

� ‖〈x − tv〉4h‖L∞
x L∞

v
(t)

(
λ3 + λ−1t−4

)
.

Let λ = t−1 and taking the supremum over all x ∈ R
3, we obtain the desired estimate.

��
Lemma 5.3 Let ν ∈ (0, 3) and h : [0, TBoot ) × R

3 × R
3 → R be a smooth function

such that 〈v〉4h, 〈x−tv〉4h ∈ L∞
x L∞

v for all t ∈ [0, TBoot ). Then for all t ∈ [0, TBoot ),
∫
R3

|v − v∗|−ν |h|(t, x, v∗) dv∗

� (1 + t)−3+ν
(
‖〈v〉4h‖L∞

x L∞
v

(t) + ‖〈x − tv〉4h‖L∞
x L∞

v
(t)

)
.

Proof This follows from combining Lemmas 5.1 and 5.2. ��

5.1.2 Estimates for Weighted v-Integrals of f

We now use the preliminary estimates derived in Section 5.1.1 to bound general
weighted v-integrals of f ; see Lemmas 5.5 and 5.6 below.

Lemma 5.4 For every 	 ∈ N and m ∈ N ∪ {0}, the following estimate holds with an
implicit constant depending on 	, γ and d0 for any (t, x, v) ∈ [0, TBoot ) ×R

3 ×R
3:

〈v〉	〈x − tv〉m |∂α
x ∂β

v Y
σ f |(t, x, v) �

∑
|β ′|≤|β|, |σ ′|≤|σ |

〈x − tv〉m |∂α
x ∂β ′

v Y σ ′
g|(t, x, v).

Proof This follows immediately from differentiating (4.2) and using 〈v〉	e−d(t)〈v〉2 �	

1 for all 	 ∈ N. ��
Lemma 5.5 If |α| + |β| + |σ | ≤ Mmax − 4 − max{2, � 2

2+γ
	}, then

‖〈v〉4〈x − tv〉∂α
x ∂β

v Y
σ f ‖L∞

x L1
v
(t) � ε

3
4 (1 + t)−3+|β|.
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If Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then

‖〈v〉4〈x − tv〉∂α
x ∂β

v Y
σ f ‖L∞

x L1
v
(t) � ε

3
4 (1 + t)

− 3
2+|β|−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
.

Proof By Lemmas 5.2 and 5.4, we obtain

‖〈v〉4〈x − tv〉∂α
x ∂β

v Y
σ f ‖L∞

x L1
v
(t)

� (1 + t)−3(‖〈v〉8〈x − tv〉∂α
x ∂β

v Y
σ f ‖L∞

x L∞
v

(t)

+ ‖〈v〉4〈x − tv〉5∂α
x ∂β

v Y
σ f ‖L∞

x L∞
v

(t))

� (1 + t)−3

⎛
⎝ ∑

|β ′|≤|β|, |σ ′|≤|σ |
‖〈x − tv〉5∂α

x ∂β ′
v Y σ ′

g‖L∞
x L∞

v

⎞
⎠ .

The desired conclusion then follows from (4.8) and (4.9). ��
Lemma 5.6 Let ν ∈ (0, 3). If |α| + |β| + |σ | ≤ Mmax − 4 − max{2, � 2

2+γ
	}, then

∥∥∥∥
∫
R3

|v − v∗|−ν |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L∞
x L∞

v

(t) � ε
3
4 (1 + t)−3+ν+|β|.

If Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then

∥∥∥∥
∫
R3

|v − v∗|−ν |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L∞
x L∞

v

(t)

� ε
3
4 (1 + t)

− 3
2+ν+|β|−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
.

Proof By Lemmas 5.3 and 5.4,

∥∥∥∥
∫
R3

|v − v∗|−ν |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L∞
x L∞

v

(t)

� (1 + t)−3+ν(‖〈v〉4∂α
x ∂β

v Y
σ f ‖L∞

x L∞
v

(t) + ‖〈x − tv〉4∂α
x ∂β

v Y
σ f ‖L∞

x L∞
v

(t))

� (1 + t)−3+ν

⎛
⎝ ∑

|β ′|≤|β|, |σ ′|≤|σ |
‖〈x − tv〉4∂α

x ∂β ′
v Y σ ′

g‖L∞
x L∞

v
(t)

⎞
⎠ .

The desired conclusion then follows from (4.8) and (4.9). ��

5.1.3 L∞x L∞v Estimates for āij and Its Derivatives

Proposition 5.7 In the following, suppose |α| + |β| + |σ | ≤ Mmax.
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The coefficient āi j and its higher derivatives satisfy the following pointwise bounds:

max
i, j

|∂α
x ∂β

v Y
σ āi j |(t, x, v) �

∫
R3

|v − v∗|2+γ |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗, (5.1)

max
j

|∂α
x ∂β

v Y
σ (āi jvi )|(t, x, v)

� 〈v〉max{2+γ,1}
∫
R3

〈v∗〉max{2+γ,1}|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗, (5.2)

|∂α
x ∂β

v Y
σ (āi jviv j )|(t, x, v) �

∫
R3

(|v|2+γ |v∗|2 + |v∗|4+γ )|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗.

(5.3)

The first v-derivatives of āi j and their higher derivatives satisfy the following pointwise
bounds:

max
i, j,	

|∂α
x ∂β

v Y
σ ∂v	

āi j |(t, x, v) �
∫
R3

|v − v∗|1+γ |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗, (5.4)

max
i, j,	

|∂α
x ∂β

v Y
σ ∂v	

(āi jvi )|(t, x, v)

�
∫
R3

(|v||v − v∗|1+γ + |v − v∗|2+γ )|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗, (5.5)

Finally, the secondv-derivatives of āi j and their higher derivatives satisfy the following
pointwise bounds:

max
i, j,	,m

|∂α
x ∂β

v Y
σ ∂2v	vm

āi j |(t, x, v) �
∫
R3

|v − v∗|γ |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗ (5.6)

Proof Step 0: Preliminaries.Wewill repeatedly use the following easily verified facts
when12 |β ′| ≤ 2:

[∂α
x ∂β

v Y
σ ∂β ′

v ]āi j =
∫
R3

(∂β ′
v ai j (v − v∗))(∂α

x ∂β
v Y

σ f )(t, x, v∗) dv∗,

[∂α
x ∂β

v Y
σ ∂β ′

v ](āi jvi ) =
∫
R3

(∂β ′
v (ai j (v − v∗)vi ))(∂α

x ∂β
v Y

σ f )(t, x, v∗) dv∗,

[∂α
x ∂β

v Y
σ ∂β ′

v ](āi jvivv) =
∫
R3

(∂β ′
v (ai j (v − v∗)viv j ))(∂

α
x ∂β

v Y
σ f )(t, x, v∗) dv∗,

As a result, the proof of the proposition essentially boils down to checking the
derivatives of the kernel. This is what we will check below. In other words, when we
say “Proof of (5.1)”, we mean that we will estimate the kernel so that when plugging
in the above, we obtain (5.1).

12 Here, |β ′| ≤ 2 is to ensure that ∂β′
v ai j is in L1loc,v∗ so that the computation can be justified.
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Step 1: Proof of (5.1). To obtain (5.1), we only need an estimate

|ai j (v − v∗)| ≤ |v − v∗|2+γ ,

which is obvious by (1.3).

Step 2: Proof of (5.2). For (5.2), we start with (1.3) and compute

ai j (v − v∗)vi

= |v − v∗|2+γ

(
v j − (v · (v − v∗))(v − v∗) j

|v − v∗|2
)

= |v − v∗|γ
(
v j |v|2 − 2v j (v · v∗) + v j |v∗|2 − (|v|2 − (v · v∗))(v − v∗) j

)

= |v − v∗|γ
(
−v j (v · v∗) + v j |v∗|2 − (|v|2 − (v · v∗))(v∗) j

)

= |v − v∗|γ
(−v j (v∗ · (v − v∗)) − (v · (v − v∗))(v∗) j

)
.

(5.7)
We now split into various cases. First, suppose 1 + γ ≥ 0. Then (5.7) and the

triangle inequality implies that

sup
j

|ai j (v − v∗)vi | � |v − v∗|1+γ |v||v∗| � |v|2+γ |v∗| + |v||v∗|2+γ .

If 1+ γ < 0, we further split into two cases. If |v − v∗| ≤ 1, then a trivial estimate
using (1.3) implies

sup
j

|ai j (v − v∗)vi | � |v − v∗|2+γ |v| � |v|.

If 1 + γ < 0 and |v − v∗| > 1, then by (5.7), we obtain

sup
j

|ai j (v − v∗)vi | � |v − v∗|1+γ |v||v∗| � |v||v∗|.

Step 3: Proof of (5.3). For (5.3), we compute

ai j (v − v∗)viv j = |v − v∗|2+γ

(
|v|2 − (v · (v − v∗))2

|v − v∗|2
)

= |v − v∗|γ
(
|v|2(|v|2 + |v∗|2 − 2(v · v∗)) − |v|4

+2|v|2(v · v∗) − (v · v∗)2
)

= |v − v∗|γ
(
|v|2|v∗|2 − (v · v∗)2

)
.

(5.8)

Using the Pythagorean theorem, we obtain the following estimate:

|v|2|v∗|2 − (v · v∗)2 = 1

|v|2
∣∣∣|v|2v∗ − (v · v∗)v

∣∣∣2
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= 1

|v|2 |(v · (v − v∗))v∗ − (v · v∗)(v − v∗)|2 ≤ 2|v − v∗|2|v∗|2. (5.9)

Putting (5.8) and (5.9) together, and noting 2 + γ > 0, we thus obtain

|ai j (v − v∗)viv j | � |v − v∗|2+γ |v∗|2 � |v|2+γ |v∗|2 + |v∗|4+γ .

Step 4: Proof of (5.4). By homogeneity of āi j , it is easy to see that

|∂vk āi j (v − v∗)| � |v − v∗|1+γ , (5.10)

which implies (5.4).

Step 5: Proof of (5.5). Arguing again by the homogeneity of āi j , it follows that
|∂vk [āi j (v − v∗)vi ]| � |v − v∗|1+γ |v| + |v − v∗|2+γ , which then implies (5.5).

Step 6: Proof of (5.6). Finally, for the second derivatives of ai j , we use homogeneity
to obtain

|∂v	
∂vk ai j (v − v∗)| � |v − v∗|γ ,

which implies (5.6). ��
Using Proposition 5.7, as well as estimates in Section 5.1.2, we derive estimates

for āi j and its derivatives in the next few propositions. Our first proposition is the
most general, but as we will see, we will need various refinements later to close our
bootstrap argument.

Proposition 5.8 If |α| + |β| + |σ | ≤ Mmax − 4−max{2, � 2
2+γ

	}, then for (t, x, v) ∈
[0, TBoot ) × R

3 × R
3,

|∂α
x ∂β

v Y
σ āi j |(t, x, v) � ε

3
4 〈v〉2+γ (1 + t)−3+|β|.

If Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then for

(t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

|∂α
x ∂β

v Y
σ āi j |(t, x, v) � ε

3
4 〈v〉2+γ (1 + t)

− 3
2+|β|−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
.

Proof This follows from (5.1) in Proposition 5.7, the bound |v − v∗|2+γ � |v|2+γ +
|v∗|2+γ (since 2 + γ > 0), and Lemma 5.5. ��

The next proposition is a variant of Proposition 5.8: it gives an improved t-decay
rate under the assumption |β| ≥ 1.

Proposition 5.9 If |α| + |β| + |σ | ≤ Mmax − 4 − max{2, � 2
2+γ

	} and |β| ≥ 1, then

for (t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

|∂α
x ∂β

v Y
σ āi j |(t, x, v) � ε

3
4 〈v〉2+γ (1 + t)−min{4,5+γ }+|β|.
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If Mmax − 3−max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5 and |β| ≥ 1, then

for (t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

|∂α
x ∂β

v Y
σ āi j |(t, x, v) � ε

3
4 〈v〉2+γ (1 + t)

−min
{
5
2 , 72+γ

}
+|β|−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
.

Proof Assume throughout the proof that |β| ≥ 1.We start with (5.4) in Proposition 5.7
and consider separately 1 + γ ≥ 0 and 1 + γ < 0.

Suppose 1 + γ ≥ 0. Then we have

|∂α
x ∂β

v Y
σ āi j |(t, x, v) �

∑
|β ′|≤|β|−1

∫
R3

(
|v|1+γ + |v∗|1+γ

)
|∂x∂β ′

v Y σ f |(t, x, v∗) dv∗.

The desired estimate then follows from Lemma 5.5.
Suppose 1 + γ < 0. Then we have

|∂α
x ∂β

v Y
σ āi j |(t, x, v) �

∑
|β ′|≤|β|−1

∫
R3

|v − v∗|1+γ |∂x∂β ′
v Y σ f |(t, x, v∗) dv∗.

The desired estimate then follows from Lemma 5.6 with ν = −(1 + γ ).
(We note explicitly that indeed an estimate with an even better 〈v〉 weight still

holds, but we will be content with the stated weaker estimate since this allows for an
easier comparison with the estimates in Proposition 5.12, which will in turn allow us
to handle our estimates more systematically later.) ��

The next proposition is another variant of Proposition 5.8 which gives an improved
decay rate under the assumption |α| ≥ 1. (Note that the estimate is very weak as
t → 0.)

Proposition 5.10 If |α| + |β| + |σ | ≤ Mmax − 4 − max{2, � 2
2+γ

	} and |α| ≥ 1, then

for (t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

|∂α
x ∂β

v Y
σ āi j |(t, x, v) � ε

3
4 〈v〉2+γ t−1(1 + t)−min{3,4+γ }+|β|.

If Mmax − 3−max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5 and |α| ≥ 1, then

for (t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

|∂α
x ∂β

v Y
σ āi j |(t, x, v)�ε

3
4 〈v〉2+γ t−1(1+t)

−min
{
3
2 , 52+γ

}
+|β|−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
.

Proof We rely on the following simple pointwise bound, which is obtained by writing
∂x = t−1(t∂x + ∂v) − t−1∂v = t−1Y − t−1∂v:

|∂α
x ∂β

v Y
σ āi j (t, x, v)|

≤ t−1
∑

|α′|=|α|−1
|σ ′|=|σ |+1

|∂α′
x ∂β

v Y
σ ′
āi j (t, x, v)| + t−1

∑
|α′|=|α|−1
|β ′|=|β|+1

|∂α′
x ∂β ′

v Y σ āi j (t, x, v)|.
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The desired estimate is then an immediate consequence of Propositions 5.8 (for the
first term) and 5.9 (for the second term). ��

We have another variant of Proposition 5.8, which again has better t-decay rate as
t → +∞. Unlike Propositions 5.9 and 5.10, this does not require |β| ≥ 1 or |α| ≥ 1,
but there is a loss in 〈x − tv〉 weights. (Note also that the estimate is very weak as
t → 0.)

Proposition 5.11 If |α|+ |β|+ |σ | ≤ Mmax −4−max{2, � 2
2+γ

	}, then for (t, x, v) ∈
[0, TBoot ) × R

3 × R
3,

max
i, j

|∂α
x ∂β

v Y
σ āi j |(t, x, v)

� ε
3
4 〈x − tv〉min{1,2+γ }〈v〉max{0,1+γ }t−min{2+γ,1}(1 + t)−3+|β|.

If Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then for

(t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

max
i, j

|∂α
x ∂β

v Y
σ āi j |(t, x, v) � ε

3
4 〈x − tv〉min{1,2+γ }〈v〉max{0,1+γ }t−min{2+γ,1}

(1 + t)
− 3

2+|β|−(Mmax−4−k)min
{
3
4 ,

3(2+γ )
4

}
.

Proof The idea is to make use of the weight |v − v∗|2+γ and write |v − v∗|2+γ �
t−min{2+γ,1}(|x − tv| + |x − tv∗|)min{2+γ,1}|v − v∗|max{0,1+γ }. Hence, by (5.1) in
Proposition 5.7,

|∂α
x ∂β

v Y
σ āi j |(t, x, v)

�
∫
R3

|v − v∗|2+γ |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

� t−min{2+γ,1}
∫
R3

(|x − tv| + |x − tv∗|)min{2+γ,1}

|v − v∗|max{0,1+γ }|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

� t−min{2+γ,1}〈x − tv〉min{2+γ,1}〈v〉max{0,1+γ }

×
∫
R3

〈x − tv∗〉min{2+γ,1}〈v∗〉max{0,1+γ }|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗.

The desired estimate then follows from Lemma 5.5. ��
Our final estimate in the subsubsection is an analogue of Proposition 5.8, but we

now also allow contracting āi j with v’s.

Proposition 5.12 If |α|+ |β|+ |σ | ≤ Mmax −4−max{2, � 2
2+γ

	}, then for (t, x, v) ∈
[0, TBoot ) × R

3 × R
3,

max
i

|∂α
x ∂β

v Y
σ (āi jv j )|(t, x, v) + |∂α

x ∂β
v Y

σ (āi jviv j )|(t, x, v)
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� ε
3
4 〈v〉max{2+γ,1}(1 + t)−3+|β|.

If Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then for

(t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

max
i

|∂α
x ∂β

v Y
σ (āi jv j )|(t, x, v) + |∂α

x ∂β
v Y

σ (āi jviv j )|(t, x, v)

� ε
3
4 〈v〉max{2+γ,1}(1 + t)

− 3
2+|β|−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
.

Proof The follows from combining (5.2) and (5.3) in Proposition 5.7 and Lemma 5.5.
��

5.1.4 L∞x L∞v Estimates for c̄ and Its Derivatives

Proposition 5.13 If |α|+ |β|+ |σ | ≤ Mmax −4−max{2, � 2
2+γ

	}, then for (t, x, v) ∈
[0, TBoot ) × R

3 × R
3,

|∂α
x ∂β

v Y
σ c̄|(t, x, v) � ε

3
4 (1 + t)−3−γ+|β|.

If Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then for

(t, x, v) ∈ [0, TBoot ) × R
3 × R

3,

|∂α
x ∂β

v Y
σ c̄|(t, x, v) � ε

3
4 (1 + t)

− 3
2−γ+|β|−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
.

Proof By (1.4) and (1.5), we have

|∂α
x ∂β

v Y
σ c̄|(t, x, v) �

∫
R3

|v − v∗|γ |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗.

The conclusion then follows from Lemma 5.6 with ν = −γ . ��

5.2 The L2x Estimates for āij, c̄ and Their Derivatives

5.2.1 Preliminary Estimates

Lemma 5.14 Let h : [0, TBoot ) × R
3 × R

3 be a smooth function. Then

‖h‖L1
v
(t, x) � (1 + t)−

3
2 ‖〈v〉2〈x − tv〉2h(t, x, v)‖L2

v
. (5.11)

Proof Step 1: 0 ≤ t < 1. Suppose t ∈ [0, 1). This is the easy case: we simply use
Hölder’s inequality to obtain
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∫
R3

|h|(t, x, v) dv �
(∫

R3
〈v〉4h2(t, x, v) dv

) 1
2
(∫

R3
〈v〉−4 dv

) 1
2

�
(∫

R3
〈v〉4h2(t, x, v) dv

) 1
2

.

This implies (5.11) for 0 ≤ t < 1.

Step 2: t ≥ 1. Suppose now t ≥ 1. We again use Hölder’s inequality, except that we
need to partition the region of integration in order to obtain decay from the |x − tv|-
weights. More precisely,

∫
R3

|h|(t, x, v) dv

�
∫
R3∩{|v− x

t |≤t−1}
|h|(t, x, v) dv +

∫
R3∩{|v− x

t |≥t−1}
|h|(t, x, v) dv

�
(∫

R3∩{|v− x
t |≤t−1}

h2(t, x, v) dv

) 1
2
(∫

R3∩{|v− x
t |≤t−1}

dv

) 1
2

+
(∫

R3∩{|v− x
t |≥t−1}

|v − x

t
|4h2(t, x, v) dv

) 1
2
(∫

R3∩{|v− x
t |≥t−1}

|v − x

t
|−4 dv

) 1
2

� t− 3
2

(∫
R3

h2(t, x, v) dv

) 1
2 + t−2 ·

(∫
R3

〈x − tv〉4h2(t, x, v) dv

) p
2 · t 12

� t− 3
2

(∫
R3

〈x − tv〉4h2(t, x, v) dv

) 1
2

.

This yields (5.11) for t ≥ 1. ��
Lemma 5.14 implies the following L2

x L
1
v estimate.

Lemma 5.15 Let h : [0, TBoot ) × R
3 × R

3 be a smooth function. Then

‖h‖L2
x L

1
v
(t) � (1 + t)−

3
2 ‖〈v〉2〈x − tv〉2h‖L2

x L
2
v
.

Proof By Lemma 5.14, we have

‖h‖L2
x L

1
v
(t) =

(∫
R3

‖h‖2L1
v
(t, x) dx

) 1
2

� (1 + t)−
3
2

(∫
R3

‖〈v〉2〈x − tv〉2h‖2L2
v
(t, x) dx

) 1
2

= (1 + t)−
3
2 ‖〈v〉2〈x − tv〉2h‖L2

x L
2
v
.

��
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Lemma 5.16 Let h : R3 → R be a smooth function.
For ν ∈ ( 32 , 3),

∥∥∥∥
∫
R3

|v − v∗|−ν |h|(v∗) dv∗
∥∥∥∥
L2

v

� ‖h‖− 2ν
3 +2

L1
v

‖h‖
2ν
3 −1

L2
v

. (5.12)

For ν ∈ [0, 3
2 ],

∥∥∥∥
∫
R3

|v − v∗|−ν |h|(v∗) dv∗
∥∥∥∥
L

15
4ν
v

� ‖h‖1−
2ν
15

L1
v

‖h‖
2ν
15
L2

v
. (5.13)

Proof Step 1: Proof of (5.12). Without loss of generality, we assume that h is not
identically 0 (for otherwise the estimates are trivial).

Let λ > 0 be a constant to be determined. We estimate as follows (see the justifi-
cation of each step after the estimates):

‖
∫
R3

|v − v∗|−ν |h|(v∗) dv∗‖L2
v

=
(∫

R3

(∫
{v∗:|v−v∗|≤λ}

|v − v∗|−ν |h|(v∗) dv∗
)2

dv

) 1
2

+
(∫

R3

(∫
{v∗:|v−v∗|>λ}

|v − v∗|−ν |h|(v∗) dv∗
)2

dv

) 1
2

(5.14)

�
(∫

R3

(∫
{v∗:|v−v∗|≤λ}

|v − v∗|−ν |h|2(v∗) dv∗
)(∫

{v∗:|v−v∗|≤λ}
|v − v∗|−ν dv∗

)
dv

) 1
2

(5.15)

+
∫
R3

(∫
{v:|v−v∗|>λ}

|v − v∗|−2ν dv

) 1
2 |h|(v∗) dv∗ (5.16)

� λ− ν
2 + 3

2 ‖h‖L2
v

(∫
{v:|v−v∗|≤λ}

|v − v∗|−ν dv

) 1
2 + λ−ν+ 3

2 ‖h‖L1
v

(5.17)

� λ−ν+3‖h‖L2
v
+ λ−ν+ 3

2 ‖h‖L1
v
. (5.18)

In (5.14), we divided the integral into regions |v − v∗| ≤ λ and |v − v∗| > λ; in
(5.15), we used the Cauchy–Schwarz inequality; in (5.16), we used the Minkowski

inequality; in the first term in (5.17), we noted that (
∫
{v∗:|v−v∗|≤λ} |v − v∗|−ν dv∗)

1
2 �

λ− ν
2+ 3

2 and then used Fubini’s theorem; in the second term in (5.17) we simply

used (
∫
{v:|v−v∗|>λ} |v − v∗|−2ν dv)

1
2 � λ−ν+ 3

2 ; in (5.18) we used (
∫
{v:|v−v∗|≤λ} |v −

v∗|−ν dv)
1
2 � λ− ν

2+ 3
2 . (Note that in (5.17) and (5.18), we have relied on ν ∈ ( 32 , 3)

in our estimates.)
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Let λ := ‖h‖
2
3
L1

v
‖h‖− 2

3
L2

v
(which is possible since h is not identically 0). We then

obtain
∥∥∥∥
∫
R3

|v − v∗|−ν |h|(v∗) dv∗
∥∥∥∥
L2

v

� ‖h‖− 2ν
3 +2

L1
v

‖h‖
2ν
3 −1

L2
v

,

as desired.

Step 2: Proof of (5.13) For this inequality we use the Hardy–Littlewood–Sobolev
inequality in R3: for 0 < ν < 3, 1 < p < q < +∞, and 1

q = 1
p − (3−ν)

3 ,

∥∥∥∥
∫
R3

|v − v∗|−ν |h|(v∗) dv∗
∥∥∥∥
Lq

v

� ‖h‖L p
v
. (5.19)

For ν ∈ [0, 3
2 ], we now apply (5.19) with13 1

p = − 1
15ν + 1 and 1

q = 4
15ν. It then

follows that from Hölder’s inequality that

∥∥∥∥
∫
R3

|v − v∗|−ν |h|(v∗) dv∗
∥∥∥∥
L

15
4ν
v

� ‖h‖
L

15
15−ν
v

� ‖h‖1−
2ν
15

L1
v

‖h‖
2ν
15
L2

v
,

as claimed. ��
Combining Lemmas 5.14 and 5.16, and taking the L2

x norm, we obtain

Lemma 5.17 Let h : [0, TBoot ) × R
3 × R

3 be a smooth function.
For ν ∈ ( 32 , 3),

∥∥∥∥
∫
R3

|v − v∗|−ν |h|(t, x, v∗) dv∗
∥∥∥∥
L2
x L

2
v

� (1 + t)ν−3‖〈v〉2〈x − tv〉2h‖L2
x L

2
v
(t, x).

(5.20)
For ν ∈ [0, 3

2 ],
∥∥∥∥
∫
R3

|v − v∗|−ν |h|(t, x, v∗) dv∗
∥∥∥∥
L2
x L

15
4ν
v

� (1 + t)−
3
2+ ν

5 ‖〈v〉2〈x − tv〉2h‖L2
x L

2
v
(t, x).

(5.21)

5.2.2 Estimates for Weighted v-Integrals of f

Proposition 5.18 Let |α| + |β| + |σ | ≤ Mmax. Then the following three estimates14

hold for all t ∈ [0, TBoot ):
∥∥∥∥
∫
R3

〈v∗〉4|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

∞
v

� ε
3
4 (1 + t)−

3
2+|β|. (5.22)

13 Note that ν = 0 is technically not allowed in (5.19), but for the specific (p, q) under consideration, the
inequality is trivially true.
14 The reader may find the notation in (5.22) slightly confusing since the LHS does not depend on v. We
use such notation so that we have a more unified estimate later; see Proposition 5.20.
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For ν ∈ ( 32 , 3),

∥∥∥∥
∫
R3

|v − v∗|−ν〈v∗〉4〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

2
v

� ε
3
4 (1 + t)ν−3+|β|.

(5.23)
For ν ∈ [0, 3

2 ],
∥∥∥∥
∫
R3

|v − v∗|−ν〈v∗〉4〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

15
4ν
v

� ε
3
4 (1 + t)−

3
2+ ν

5+|β| � ε
3
4 (1 + t)−

6
5+|β|. (5.24)

Proof (5.22) follows from Lemmas 5.4, 5.15 and the bootstrap assumption (4.7).
(5.23) follows fromLemma5.4, (5.20) in Lemma5.17 and the bootstrap assumption

(4.7).
Finally, the first inequality in (5.24) follows fromLemma 5.4, (5.21) in Lemma 5.17

and the bootstrap assumption (4.7). The very last inequality in (5.24) is simply an
assertion that − 3

2 + ν
5 ≤ − 3

2 + 3
10 = − 6

5 when ν ∈ [0, 3
2 ]. ��

The different L p spaces used in Proposition 5.18 motivates the following defini-
tions. The notation is intended to be suggestive of the following: we will control one
v-derivative of āi j in L p∗

v and we will control two v-derivatives of āi j in L p∗∗
v . (Zeroth

v-derivatives of āi j will be estimated in L∞
v .)

Definition 5.19 Define p∗ and p∗∗ by

p∗ :=
{

∞ if γ ∈ [−1, 0)

− 15
4(γ+1) if γ ∈ (−2,−1)

, p∗∗ :=
{

− 15
4γ if γ ∈ [− 3

2 , 0)

2 if γ ∈ (−2,− 3
2

) .

Note that p∗, p∗∗ ∈ [2,∞] (for any γ ∈ (−2, 0)).

With this convention for p∗ and p∗∗, let us rephrase the last two inequalities in
Proposition 5.18:

Proposition 5.20 Let |α| + |β| + |σ | ≤ Mmax. Then the following two estimates hold
for all t ∈ [0, TBoot ):

∥∥∥∥〈v〉−max{0,1+γ }
∫
R3

|v − v∗|1+γ 〈v∗〉2〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

p∗
v

� ε
3
4 (1 + t)−

6
5+|β|, (5.25)∥∥∥∥

∫
R3

|v − v∗|γ 〈v∗〉2〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

p∗∗
v

� ε
3
4 (1 + t)−min{ 65 ,3+γ }+|β|. (5.26)
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Proof To prove (5.25), we consider separately γ ∈ [−1, 0) and γ ∈ (−2,−1). If
γ ∈ [−1, 0), p∗ = ∞. Also, |v − v∗|1+γ � |v|1+γ + |v∗|1+γ . Hence, by (5.22) in
Proposition 5.18, we obtain

∥∥∥∥〈v〉−max{0,1+γ }
∫
R3

|v − v∗|1+γ 〈v∗〉2〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

p∗
v

�
∥∥∥∥
∫
R3

〈v∗〉3+γ 〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

∞
v

� ε
3
4 (1 + t)−

3
2+|β|,

which is slightly better than (5.25).
Consider now the case γ ∈ (−2,−1). In this case, p∗ = − 54

5(γ+1) and 1 + γ ∈
(−1, 0). Hence, by (5.24) in Proposition 5.18, we obtain

∥∥∥∥〈v〉−max{0,1+γ }
∫
R3

|v − v∗|1+γ 〈v∗〉2〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

p∗
v

�
∥∥∥∥
∫
R3

|v − v∗|1+γ 〈v∗〉2〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

− 54
5γ

v

� ε
3
4 (1 + t)−

6
5+|β|.

which is as in (5.25). We have thus concluded the proof of (5.25).
We now prove (5.26). Now since γ < 0, we can directly use (5.23) and (5.24) in

Proposition 5.18 to obtain

∥∥∥∥
∫
R3

|v − v∗|γ 〈v∗〉2〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

p∗∗
v

� ε
3
4 (1 + t)

−min
{
6
5 ,3+γ

}
+|β|

,

as desired. ��

5.2.3 L2x Estimates for āij and Its Derivatives

With the above preparation, we now prove the L2
x estimates for āi j and its derivatives.

Proposition 5.21 If |α| + |β| + |σ | ≤ Mmax, then

max
i, j

‖〈v〉−(2+γ )∂α
x ∂β

v Y
σ āi j‖L2

x L
∞
v

(t) � ε
3
4 (1 + t)−

3
2+|β|.

Proof This follows from (5.1) in Proposition 5.7 and (5.22) in Proposition 5.18. ��
The next proposition improves the decay rate in t , but requires |β| ≥ 2 (compare

Proposition 5.9).
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Proposition 5.22 If |α| + |β| + |σ | ≤ Mmax and |β| ≥ 2, then

‖∂α
x ∂β

v Y
σ āi j‖L2

x L
p∗∗
v

� ε
3
4 (1 + t)

−min
{
16
5 ,5+γ

}
+|β|

,

where p∗∗ is as in Definition 5.19.

Proof By (5.6) in Proposition 5.7 and (5.26) in Proposition 5.20, we have

‖∂α
x ∂β

v Y
σ āi j‖L2

x L
p∗∗
v

(t)

�
∑

|β ′|≤|β|−2

∥∥∥∥
∫
R3

|v − v∗|−γ |∂α
x ∂β ′

v Y σ f |(t, x, v∗) dv∗
∥∥∥∥
L2
x L

p∗∗
v

(t)

�
∑

|β ′|≤|β|−2

ε
3
4 (1 + t)

−min
{
6
5 ,3+γ

}
+|β ′| � ε

3
4 (1 + t)

−min
{
16
5 ,5+γ

}
+|β|

.

��

The next proposition improves the decay rate in t , but requires |α| ≥ 2 (compare
Proposition 5.10). It is also very weak as t → 0.

Proposition 5.23 If |α| + |β| + |σ | ≤ Mmax and |α| ≥ 2, then

‖〈v〉−(2+γ )∂α
x ∂β

v Y
σ āi j‖L2

x L
∞
v +L2

x L
2
v

� ε
3
4 t−2(1 + t)−min{ 65 ,3+γ }+|β|,

where p∗∗ is as in Definition 5.19.

Proof Step 1: Preliminary estimate for the |β| ≥ 1 case The purpose of this step is to
establish the following claim, which can be viewed as an analogue of Proposition 5.22,
but with only |β| ≥ 1.

Claim: If |α| + |β| + |σ | ≤ Mmax and |β| ≥ 1, then

‖〈v〉−(2+γ )∂α
x ∂β

v Y
σ āi j‖L2

x L
p∗
v

� ε
3
4 (1 + t)−min{ 115 ,3+γ }+|β|,

where p∗ is as in Definition 5.19.
To prove this claim, it suffices to combine (5.4) in Proposition 5.7 and (5.25) in

Proposition 5.20.
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Step 2: Main argument Arguing as in the proof of Proposition 5.10, we write ∂x =
t−1Y − t−1∂v . Using this identity twice, we obtain the pointwise estimate

|∂α
x ∂β

v Y
σ āi j (t, x, v)|

� t−2
∑

|α′|=|α|−2
|σ ′|=|σ |+2

|∂α′
x ∂β

v Y
σ ′
āi j (t, x, v)| + t−2

∑
|α′|=|α|−2
|β ′|=|β|+1
|σ ′|=|σ |+1

|∂α′
x ∂β ′

v Y σ ′
āi j (t, x, v)|

+ t−2
∑

|α′|=|α|−2
|β ′|=|β|+2

|∂α′
x ∂β ′

v Y σ āi j (t, x, v)|.

We now estimate the first term with Proposition 5.21 (with (α′, β, σ ′) in place of
(α, β, σ )), estimate the second term with the Claim in Step 1 (with (α′, β ′, σ ) in place
of (α, β, σ ), noting that |β ′| ≥ 1), and estimate the last term with Proposition 5.22
(with (α′, β ′, σ ) in place of (α, β, σ ), noting that |β ′| ≥ 2), we obtain

‖〈v〉−(2+γ )∂α
x ∂β

v Y
σ āi j‖L2

x L
∞
v +L2

x L
p∗
v +L2

x L
p∗∗
v

� ε
3
4 max{t−2(1 + t)−

3
2+|β|, t−2(1 + t)−

6
5+|β|, t−2(1 + t)

−min
{
6
5 ,3+γ

}
+|β|}.

Since 3
2 ≥ 6

5 , this implies

‖〈v〉2+γ ∂α
x ∂β

v Y
σ āi j‖L2

x L
∞
v +L2

x L
p∗
v +L2

x L
p∗∗
v

� ε
3
4 t−2(1 + t)

−min
{
6
5 ,3+γ

}
+|β|

. (5.27)

Step 3: Calculus lemma and conclusion of the proof Noticing the elementary embed-
ding

Lq ⊂ L p + Lr

when 1 ≤ p ≤ q ≤ r ≤ +∞, and using p∗, p∗∗ ∈ [2,+∞], the conclusion thus
follows from (5.27). ��

The next estimate gives a better decay rate as t → +∞, but it is very weak as
t → 0 and requires an additional weight of 〈x − tv〉2 (compare Proposition 5.11).

Proposition 5.24 For p∗∗ ∈ [2,∞] as in Definition 5.19, if |α| + |β| + |σ | ≤ Mmax,
then for t ∈ [0, TBoot ),

max
i, j

‖〈x − tv〉−2∂α
x ∂β

v Y
σ āi j‖L2

x L
∞
v +L2

x L
p∗∗
v

(t) � ε
3
4 t−2(1 + t)

−min
{
6
5 ,3+γ

}
+|β|

.
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Proof By (5.1) in Proposition 5.7 and the triangle inequality,

|∂α
x ∂β

v Y
σ āi j |(t, x, v)

�
∫
R3

|v − v∗|2+γ |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

�
∫
R3

|v − v∗|γ
(
|v − x

t
|2 + |v∗ − x

t
|2
)

|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

� t−2
∫
R3

|v − v∗|γ (|x − tv|2 + |x − tv∗|2)|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗.

Therefore,

max
i, j

‖〈x − tv〉−2∂α
x ∂β

v Y
σ āi j‖L2

x L
p∗∗
v

(t)

� t−2
∥∥∥∥
∫
R3

|v − v∗|γ 〈x − tv∗〉2|∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

p∗∗
v

(t).

The desired conclusion then follows from (5.26) in Proposition 5.20. ��

We next prove estimates for āi j for its derivatives when contracted with v (compare
Proposition 5.12). When |α| ≥ 1 or |β| ≥ 1, we have an improvement in the decay
rate (although the estimate is very weak as t → 0).

Proposition 5.25 If |α| + |β| + |σ | ≤ Mmax, then

max
j

‖〈v〉−max{2+γ,1}∂α
x ∂β

v Y
σ (āi jvi )‖L2

x L
∞
v

(t) � ε
3
4 (1 + t)−

3
2+|β| (5.28)

and

‖〈v〉−(2+γ )∂α
x ∂β

v Y
σ (āi jviv j )‖L2

x L
∞
v

(t) � ε
3
4 (1 + t)−

3
2+|β|.

If |α| + |β| + |σ | ≤ Mmax and max{|α|, |β|} ≥ 1, then

max
j

‖〈v〉−max{2+γ,1}∂α
x ∂β

v Y
σ (āi jvi )‖L2

x L
∞
v +L2

x L
p∗
v

(t) � ε
3
4 t−1(1+t)

−min
{
6
5 ,3+γ

}
+|β|

.

(5.29)
where p∗ is as in Definition 5.19.

Proof The first two inequalities follow from combining (5.2) and (5.3) in Proposi-
tion 5.7 with (5.22) in Proposition 5.18.
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We now prove (5.29). First we consider the |β| ≥ 1 case. Using (5.5) in Proposi-
tion 5.7, (5.22) in Proposition 5.18 and (5.25) in Proposition 5.20, we obtain

max
j

‖〈v〉−max{2+γ,1}∂α
x ∂β

v Y
σ (āi jvi )‖L2

x L
∞
v +L2

x L
p∗
v

(t)

� ε
3
4 (1 + t)−

3
2+|β|−1 + ε

3
4 (1 + t)−min{ 65 ,3+γ }+|β|−1

� ε
3
4 (1 + t)

−min
{
11
5 ,4+γ

}
+|β|

,

(5.30)

which implies (5.29) when |β| ≥ 1.
For the |α| ≥ 1 case, using ∂x = t−1Y − t−1∂v , we have the pointwise bound

|∂α
x ∂β

v Y
σ (āi jvi )|(t, x, v) � t−1

∑
|α′|=|α|−1
|σ ′|=|σ |+1

|∂α′
x ∂β

v Y
σ ′

(āi jvi )|(t, x, v)

+t−1
∑

|α′|=|α|−1
|β ′|=|β|+1

|∂α′
x ∂β ′

v Y σ (āi jvi )|(t, x, v).

The desired estimate (5.29) (in the |α| ≥ 1 case) then follows from (5.28) and (5.30)
applied to the first and second term respectively. ��

5.2.4 L2x Estimates for c̄ and Its Derivatives

Proposition 5.26 For p∗∗ ∈ [2,∞] as in Definition 5.19, if |α| + |β| + |σ | ≤ Mmax,
then for t ∈ [0, TBoot ),

‖∂α
x ∂β

v Y
σ c̄‖L2

x L
p∗∗
v

(t) � ε
3
4 (1 + t)

−min
{
6
5 ,3+γ

}
+|β|

.

Proof This is an easy consequence of (5.26) in Proposition 5.20 since

‖∂α
x ∂β

v Y
σ c̄‖L2

x L
p∗∗
v

(t) �
∥∥∥∥
∫
R3

|v − v∗|γ |∂α
x ∂β

v Y
σ f |(t, x, v∗) dv∗

∥∥∥∥
L2
x L

p∗∗
v

� ε
3
4 (1 + t)

−min
{
6
5 ,3+γ

}
+|β|

.

��

6 TheMaximum Principle Argument and the L∞
x L∞

v Estimates

We continue to work under the assumptions of Theorem 4.1.
In this section, we prove L∞

x L∞
v bounds for g and its derivatives. These estimates

are based on an application of the maximum principle In the process, we need to
obtain a hierarchy of estimates in a descent scheme; see Section 1.1.6. By the end
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of the section, we will have improved in particular the constants in the bootstrap
assumptions (4.8) and (4.9) (see Proposition 6.7).

This section is structured as follows. First, inSection6.1,weprove somepreliminary
L∞
x L∞

v estimates, which are Sobolev-embedding based (and are by themselves too
weak to close the argument). In Section 6.2, we derive a general maximum principle
for linear inhomogeneous equation that is suitable in our setting. We then introduce
our hierarchy of estimates in Section 6.3. In the same section, we initiate an induction
argument aim at proving this hierarchy of estimates. In the next few subsection, the
goal will be to use themaximum principle in Section 6.2 in the context of the induction
argument introduced in Section 6.3. This consists of a few steps. (a) In Section 6.4,
we classify the different types of inhomogeneous terms arising in the equation for g
and its derivatives. (b) In Section 6.5, we then control the error terms that we classified
in Section 6.4. (c) In Section 6.6, we put together the bounds from (a) and (b) above
to conclude the induction. Finally, we end the section with Section 6.7 in which we
improve the constants in the bootstrap assumptions (4.8) and (4.9).

6.1 Preliminary L∞
x L∞

v Estimates

We begin with some preliminary L∞
x L∞

v estimates (see already Proposition 6.2),
which are completely based on Sobolev embedding. These estimates are not optimal
in either t or 〈v〉.
Lemma 6.1 Let h : [0, TBoot) × R

3 × R
3 → R be a C∞ function. Then for every

t ∈ [0, TBoot ), the following estimate holds:

‖h‖L∞
x L∞

v
�

⎛
⎝‖h‖L2

x L
2
v
+

∑
|α|=4

‖∂α
x h‖L2

x L
2
v

⎞
⎠

5
8
⎛
⎝ ∑

|β|=4

‖∂β
v h‖L2

x L
2
v

⎞
⎠

3
8

.

Proof Without loss of generality, we assume that h �≡ 0 (for otherwise the estimate is
trivial).

Standard Sobolev embedding in R6 gives

‖h‖L∞
x L∞

v
�

∑
|α|+|β|+|σ |≤4

‖∂α
x ∂β

v h‖L2
x L

2
v
.

An easy argument (for instance using Plancherel’s theorem) allows us to control the
RHS with only the lowest and the highest derivatives, i.e.

‖h‖L∞
x L∞

v
� ‖h‖L2

x L
2
v
+

∑
|α|=4

‖∂α
x h‖L2

x L
2
v
+

∑
|β|=4

‖∂β
v h‖L2

x L
2
v
. (6.1)

We scale h in the v-variable, i.e. introduce, for λ > 0,

hλ(x, v) := h(x, λ−1v).
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One then computes that

‖hλ‖L∞
x L∞

v
= ‖h‖L∞

x L∞
v

, ‖hλ‖L2
x L

2
v

= λ
3
2 ‖h‖L2

x L
2
v
,∑

|α|=4

‖∂α
x hλ‖L2

x L
2
v
=λ

3
2
∑
|α|=4

‖∂α
x h‖L2

x L
2
v
,

∑
|β|=4

‖∂β
v hλ‖L2

x L
2
v
=λ− 5

2
∑
|β|=4

‖∂β
v h‖L2

x L
2
v
.

Applying (6.1) to hλ and using the above computations then imply that for any λ > 0,

‖h‖L∞
x L∞

v
� λ

3
2

⎛
⎝‖h‖L2

x L
2
v
+

∑
|α|=4

‖∂α
x h‖L2

x L
2
v

⎞
⎠ + λ− 5

2
∑
|β|=4

‖∂β
v h‖L2

x L
2
v
. (6.2)

Let λ =
(
‖h‖L2

x L
2
v
+ ∑

|α|=4 ‖∂α
x h‖L2

x L
2
v

)− 1
4
(∑

|β|=4 ‖∂β
v h‖L2

x L
2
v

) 1
4
. (We can do this

since h �≡ 0.) By (6.2),

‖h‖L∞
x L∞

v
�

⎛
⎝‖h‖L2

x L
2
v
+

∑
|α|=4

‖∂α
x h‖L2

x L
2
v

⎞
⎠

5
8
⎛
⎝ ∑

|β|=4

‖∂β
v h‖L2

x L
2
v

⎞
⎠

3
8

,

as claimed. ��

We apply Lemma 6.1 in our context to estimate the derivative of g.

Proposition 6.2 For |α| + |β| + |σ | ≤ Mmax − 4,

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

(t) � ε
3
4 (1 + t)

3
2+|β|.

Proof The goal is to apply Lemma 6.1 to

h = 〈x − tv〉Mmax+5−|σ |(∂α
x ∂β

v Y
σ g). (6.3)

For the rest of the proof, we fix h as in (6.3). We now compute the derivatives of h (in
terms of weighted derivatives of g). The ∂x derivatives are easier to compute: since
|∂α′

x 〈x − tv〉Mmax+5−|σ || � 〈x − tv〉Mmax+5−|σ |−|α′| for |α′| ≤ 4, we have

∑
|α′|=4

|∂α′
x h| �

∑
|α′′|≤|α|+4

〈x − tv〉Mmax+5−|σ |−|α′′||∂α′′
x ∂β

v Y
σ g|

�
∑

|α′′|≤|α|+4

〈x − tv〉Mmax+5−|σ ||∂α′′
x ∂β

v Y
σ g|.

(6.4)
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For the ∂v derivative, note that when ∂v acts on 〈x − tv〉Mmax+5−|σ |, we get a power
of t , i.e. |∂β ′

v 〈x − tv〉Mmax+5−|σ || � t |β ′|〈x − tv〉Mmax+5−|σ |−|β ′| for |β ′| ≤ 4. Hence,

∑
|β ′|=4

|∂β ′
v h| �

∑
|β ′′|+|β ′′′|≤|β|+4

t |β ′′′|〈x − tv〉Mmax+5−|σ |−|β ′′′||∂α
x ∂β ′′

v Y σ g|

�
∑

|β ′′|+|β ′′′|≤|β|+4

t |β ′′′|〈x − tv〉Mmax+5−|σ ||∂α
x ∂β ′′

v Y σ g|.
(6.5)

Applying Lemma 6.1 to h and using (6.4), (6.5) and the bootstrap assumption (4.7),
we obtain

‖〈x − tv〉Mmax+5−|σ | (∂α
x ∂β

v Y
σ g

) ‖L∞
x L∞

v
(t) = ‖h‖L∞

x L∞
v

(t)

�

⎛
⎝‖h‖L2

x L
2
v
(t) +

∑
|α′|=4

‖∂α′
x h‖L2

x L
2
v
(t)

⎞
⎠

5
8
⎛
⎝ ∑

|β ′|=4

‖∂β ′
v h‖L2

x L
2
v
(t)

⎞
⎠

3
8

�

⎛
⎝ ∑

|α′′|≤|α|+4

‖〈x − tv〉Mmax+5−|σ |(∂α′′
x ∂β

v Y
σ g)‖L2

x L
2
v
(t)

⎞
⎠

5
8

×
⎛
⎝ ∑

|β ′′|+|β ′′′|≤|β|+4

t |β ′′′|‖〈x − tv〉Mmax+5−|σ |(∂α
x ∂β ′′

v Y σ g)‖L2
x L

2
v
(t)

⎞
⎠

3
8

� ε
3
4 (1 + t)

5|β|
8

⎛
⎝ ∑

|β ′′|+|β ′′′|≤|β|+4

t
3|β′′′ |

8 (1 + t)
3|β′′|
8

⎞
⎠ � ε

3
4 (1 + t)

5|β|
8 + 3|β|

8 + 3·4
8

= ε
3
4 (1 + t)|β|+ 3

2 ,

as claimed. ��

6.2 TheMaximum Principle

The goal of this subsection is to establish a general maximum principle; see Proposi-
tion 6.3. Before we precisely state the maximum principle, let us already give some
remarks:

1. Despite the various technicalities, the main point of Proposition 6.3 is to get a
bound for the solution h to the equation (6.8). The bound that we derive (see (6.9)
and (6.11)) is such that we either gain two powers in 〈v〉 and lose (1 + δ)-power
in (1 + t), or we have no gain in 〈v〉 and lose exactly one power of (1 + t).
Such a statement is straightforward if (6.8) is replaced by the transport equation
∂t h+vi∂xi h+ δd0

(1+t)1+δ 〈v〉2h = H . The key point of Proposition 6.3 is therefore to

ensure that the term −āi j∂2viv j
h on the LHS of (6.8) does not destroy the transport

estimate.
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2. In order to carry out the argument, we need some a priori control on h; see (6.6).
This is a very weak bound which can have very bad dependence on t (compare
this with the conclusion of Proposition 6.3, which gives a much stronger bound),
but importantly for every fixed t we need the estimate to be uniform in x and v so
as to control various cutoffs we introduce.

3. In additional to an estimate on h, we also need an a priori bound on ∂vh; see
(6.7). This is a technical condition necessary to carry out a cut-off argument. The
bounds that we need are sufficiently weak to be consistent with the descent scheme
(see Section 6.3.3).

The following is our main general maximum principle. The reader can keep inmind
that Proposition 6.3 will be applied for h being appropriate derivatives of g.

Proposition 6.3 (Maximum principle) Let N ∈ N with N ≤ Mmax + 5. Let h :
[0, TBoot) × R

3 × R
3 → R be a C∞ function such that the following four conditions

hold for some pH ∈ [1, 2), rH ≥ −1 − δ, and CH ≥ 1:

1. h is bounded on compact subintervals of [0, TBoot): For every T ∈ [0, TBoot), there
exists a constant CT > 0 such that for every (t, x, v) ∈ [0, T ] × R

3 × R
3,

〈x − tv〉N |h(t, x, v)| ≤ CT . (6.6)

2. ∂vi h satisfy the following estimate: for i = 1, 2, 3 and for every (t, x, v) ∈
[0, TBoot) × R

3 × R
3,

〈x − tv〉N |∂vi h(t, x, v)| ≤ CH ε
3
4 〈v〉min{pH−2−γ,pH−1}(1 + t)rH+2+min{2+γ,1}.

(6.7)
3. h satisfies the following equation:

∂t h + vi∂xi h + δd0
(1 + t)1+δ

〈v〉2h − āi j∂
2
viv j

h = H , (6.8)

where H : [0, TBoot ) × R
3 × R

3 is a smooth function satisfying the bound

〈x − tv〉N |H |(t, x, v)

≤
{
CH ε〈v〉pH (1 + t)rH + CH ε〈v〉pH−2(1 + t)rH+δ if rH + δ ≥ 0

CH ε〈v〉pH (1 + t)rH if rH + δ ∈ [−1, 0)
.

(6.9)

4. The initial data for h satisfy the bound

〈v〉〈x〉N |h|(0, x, v) ≤ CH ε. (6.10)

Then for ε0 is sufficiently small (depending only on γ and d0, and in particular
independent of CT , CH , pH and rH above), the following estimate holds for all
(t, x, v) ∈ [0, TBoot ) × R

3 × R
3:
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|〈x − tv〉Nh|(t, x, v) ≤
(
3 + 6

d0δ

)
CH ε〈v〉pH−2(1 + t)rH+1+δ. (6.11)

Proof Step 1: Deriving an equation with weights Define

wN (t, x, v) := 〈v〉〈x − tv〉Ne−d(t)〈v〉2 , (6.12)

and
h̃N (t, x, v) := (wNh)(t, x, v). (6.13)

We now derive an equation for h̃N (t, x, v) (see already (6.16)). To simplify the
notations, let us suppress the explicit dependence on (t, x, v) when there is no risk of
confusion.

We first compute
wN ∂vi h = ∂vi h̃N − (∂vi logwN )̃hN ,

which implies

wN∂2viv j
h

= ∂vi (∂v j h̃N − (∂v j logwN )̃hN ) − (∂vi logwN )(∂v j h̃N − (∂v j logwN )̃hN )

= ∂2viv j
h̃N − (∂vi logwN )(∂v j h̃N )

− (∂v j logwN )(∂vi h̃N ) − [(∂2viv j
logwN ) − (∂vi logwN )(∂v j logwN )]̃hN

= ∂2viv j
h̃N − (∂vi logwN )wN (∂v j h)

− (∂v j logwN )wN (∂vi h) − [(∂2viv j
logwN ) + (∂vi logwN )(∂v j logwN )]̃hN .

(6.14)
On the other hand, we have

(∂t + vi∂xi )(logwN ) = d0δ

(1 + t)1+δ
〈v〉2

so that

wN (∂t + vi∂xi )h = (∂t + vi∂xi )̃hN − d0δ

(1 + t)1+δ
〈v〉2h̃N . (6.15)

By (6.8), (6.14) and (6.15), and using āi j = ā j i , we obtain

∂t h̃N + vi∂xi h̃N − āi j∂
2
viv j

h̃N = −2āi jwN (∂vi h)(∂v j logwN ) − āi j h̃N [∂2viv j
logwN

+ (∂vi logwN )(∂v j logwN )] + wN H .

(6.16)
Step 2: Cutoff at infinity In order to avoid the difficulty with applying the maximum
principle in non-compact domains, we cut off the function h. Introduce a smooth cutoff
function χ : R → R≥0 such that χ(x) = 1 for |x | ≤ 1, χ(x) = 0 for |x | ≥ 2 and
‖χ ′‖L∞ , ‖χ ′′‖L∞ ≤ 10. We cut off h̃N and define
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h̃N ,R(t, x, v) = χ

( |x |2
R6

)
χ

( |v|2
R2

)
h̃N (t, x, v)

for R > 1 large and to be chosen. (Note that |x | is allowed to be much larger, with
|x | � R3, as opposed to |v|, for which the cutoff only allows |v| � R.)

Fix an arbitrary T ∈ [0, TBoot ).Wewill allowour choice of R in the cutoffs to depend
on T . In order to emphasize that the implicit constant depends on T (in addition to d0
and γ ), we will use the convention �T .

Our next goal will be to estimate |∂t h̃N ,R + vi∂xi h̃N ,R − āi j∂2viv j
h̃N ,R |(t, x, v). To

this end, we will use (6.16) and estimate all the error terms arising from differentiating
the cut-off functions.

We first note the following simple estimate which we will repeatedly use. Since
d(t) ≥ d0, it follows that e−d(t)〈v〉2〈v〉 � 1. Therefore, by (6.6), we have

|̃hN |(t, x, v) �T 1. (6.17)

Now we compute

vi∂xi h̃N ,R = χ

( |x |2
R6

)
χ

( |v|2
R2

)
vi∂xi h̃N + 2(v · x)R−6χ ′

( |x |2
R6

)
χ

( |v|2
R2

)
h̃N .

Now on the support of the cutoff functions, we have |v · x | � R · R3 = R4. Combining
this with (6.17), we obtain

|vi∂xi h̃N ,R(t, x, v) − χ

( |x |2
R6

)
χ

( |v|2
R2

)
vi∂xi h̃N (t, x, v)| �T R−2. (6.18)

On the other hand, we compute

āi j∂
2
viv j

h̃N ,R

= āi jχ
( |x |2
R6

)
χ
( |v|2
R2

)
∂2viv j

h̃N + āi jχ
( |x |2
R6

)(
2δi j R

−2χ ′( |v|2
R2

)

+ 4viv j R
−4χ ′′( |v|2

R2

))̃
hN + 4āi jχ

( |x |2
R6

)
χ ′( |v|2

R2

)
vi R

−2∂v j h̃N

= āi jχ
( |x |2
R6

)
χ
( |v|2
R2

)
∂2viv j

h̃N + āi jχ
( |x |2
R6

)(
2δi j R

−2χ ′( |v|2
R2

)

+ 4viv j R
−4χ ′′( |v|2

R2

))̃
hN + 4āi jχ

( |x |2
R6

)
χ ′( |v|2

R2

)
vi R

−2(wN ∂v j h

+ (
∂v j logwN

)̃
hN

)
.

(6.19)

We now control the difference āi j∂2viv j
h̃N ,R − āi jχ(

|x |2
R6 )χ(

|v|2
R2 )∂2viv j

h̃N using (6.19).
First, by (6.17), Propositions 5.8 and 5.12, we obtain

123



11 Page 46 of 101 J. Luk

|āi jχ
( |x |2
R6

)(
2δi j R

−2χ ′( |v|2
R2

) + 4viv j R
−4χ ′′( |v|2

R2

))̃
hN |

�T Rmax{2+γ,1}R−2 �T Rmax{−1,γ }.
(6.20)

To control the term with ∂v j h, we use (6.7) and Proposition 5.12 to obtain

|āi jχ
( |x |2

R6

)
χ ′

( |v|2
R2

)
vi R

−2wN ∂v j h|

�T CH ε
7
4 Rmax{2+γ,1}R−2Rmin{pH−2−γ,pH−1} �T CH ε

7
4 RpH−2.

(6.21)

To handle the remaining term in (6.19), we compute

∂vi logwN = 1

2
∂vi (log(1 + |v|2)) + N

2
∂vi (log(1 + |x − tv|2)) − 2d(t)vi

= vi

1 + |v|2 − Nt(x − tv)i

1 + |x − tv|2 − 2d(t)vi . (6.22)

Using (6.17), (6.22), Propositions 5.8 and 5.12, we obtain

|4āi jχ
( |x |2

R6

)
χ ′

( |v|2
R2

)
vi R

−2 (∂v j logwN
)
h̃N |

�T

(
max

j
āi jvi

)
χ

( |x |2
R6

)
χ ′

( |v|2
R2

)
R−2 |̃hN |

+ āi jviv jχ

( |x |2
R6

)
χ ′

( |v|2
R2

)
R−2 |̃hN |

�T Rmax{2+γ,1}−2 �T Rmax{−1,γ }.

(6.23)

Combining (6.20), (6.21) and (6.23) and plugging the estimates into (6.19), we obtain

|āi j∂2viv j
h̃N ,R(t, x, v) − āi jχ

( |x |2
R6

)
χ

( |v|2
R2

)
∂2viv j

h̃N (t, x, v)|
�CH ,T Rmax{−1,γ,pH−2}. (6.24)

Combining (6.18) and (6.24), we get that for any T ∈ [0, TBoot ), there exists
C ′
T > 0 (depending on T , CH in addition to d0 and γ ) such that for every (t, x, v) ∈

[0, T ) × B(0,
√
2R3) × B(0,

√
2R)

|∂t h̃N ,R + vi∂xi h̃N ,R − āi j∂
2
viv j

h̃N ,R |(t, x, v)

≤ χ

( |x |2
R6

)
χ

( |v|2
R2

)
× |RHS of (6.16)| + C ′

T R
min{−1,γ,pH−2}. (6.25)

123



Stability of Vacuum for the Landau Equation with... Page 47 of 101 11

At this point, we fix a sequence of cutoff parameters {Rn}∞n=1. For n ∈ N, let
Tn = TBoot − 1

n . We define Rn > 0 so that

C ′
Tn R

min{−1,γ,pH−2}
n ≤ 1

4n

d0δ

(1 + TBoot )1+δ
〈v〉2. (6.26)

Such a sequence of Rn exists since γ < 0 and pH < 2. We assume moreover without
loss of generality that Rn is increasing and Rn → +∞ so that

[0, Tn] × B(0, R3
n) × B(0, Rn) ⊂ [0, Tn+1] × B(0, R3

n+1) × B(0, Rn+1), ∀n ∈ N

(6.27)
and

∪∞
n=1

(
[0, Tn] × B(0, R3

n) × B(0, Rn)
)

= [0, TBoot ) × R
3 × R

3. (6.28)

Step 3: Continuity argument and estimating χ(
|x |2
R6
n
)χ(

|v|2
R2
n
)× (RHS of (6.16)). Let Rn

be as in the previous step (so that (6.26), (6.27) and (6.28) hold). Our goal in this

step is to bound χ(
|x |2
R6
n
)χ(

|v|2
R2
n
) × (RHS of (6.16)). To carry out these estimates, we

introduce a continuity argument.
Define d̃ : [0,+∞) → R by

d̃(t) := d0(1 − (1 + t)−δ), (6.29)

and define T ′
n ∈ [0, Tn] by

T ′
n := sup{t ∈ [0, Tn] : |̃hN ,Rn (s, x, v)| ≤

(
6 + 12

d0δ

)
CH ε

e−d(s)〈v〉2〈v〉pH−1(1 + s)rH+1+δ + 2ed̃(s)〈v〉2

n
,

∀(s, x, v) ∈ [0, t] × B(0,
√
2R3

n) × B(0,
√
2Rn)}.

(6.30)

By (6.10) and the continuity of h̃N ,Rn (and the fact that we are only considering a
compact set), T ′

n > 0. Moreover, again using the continuity of h̃N ,Rn , the following
estimate holds for (t, x, v) ∈ [0, T ′

n] × B(0,
√
2R3

n) × B(0,
√
2Rn):

|̃hN ,Rn (t, x, v)| ≤
(
6 + 12

d0δ

)
CH εe−d(t)〈v〉2〈v〉pH−1(1 + t)rH+1+δ + 2ed̃(t)〈v〉2

n
.

(6.31)
From now on until Step 7, we will carry out our estimates using the bound (6.31).

The goal will be to prove an estimate that is better than (6.31) so that we conclude by
continuity that T ′

n = Tn .

In the remainder of Step 3, we bound χ(
|x |2
R6
n
)χ(

|v|2
R2
n
)×|RHS of (6.16)| using (6.31).

We first carry out preliminary calculations in Step 3(a), and then in Steps 3(b) to 3(e)
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we consider each of the terms on RHS of (6.16). Finally, we will combine everything
in Step 3(f) and show that under (6.31), the estimate (6.47) holds.

Step 3(a): Preliminary computations. Using (6.22), we compute

∂2viv j
logwN = ∂v j

(
vi

1 + |v|2 − Nt(x − tv)i

1 + |x − tv|2 − 2d(t)vi

)

= δi j (1 + |v|2) − 2viv j

(1 + |v|2)2 − Nt2δi j (1 + |x − tv|2) − 2Nt2(x − tv)i (x − tv) j

(1 + |x − tv|2)2
− 2d(t)δi j .

(6.32)

Step 3(b): Estimating 2χ(
|x |2
R6
n
)χ(

|v|2
R2
n
)āi jwN (∂vi h)(∂v j logwN ). Using (6.22) and

bounding χ ≤ 1, we obtain

|2χ
( |x |2

R6
n

)
χ

( |v|2
R2
n

)
āi jwN (∂vi h)(∂v j logwN )|(t, x, v)

�
(
max

j
|āi j |

)
wN |∂vi h|(t, x, v) + |āi jv j |wN |∂vi h|(t, x, v)

+ t〈x − tv〉−1
(
max

j
|āi j |

)
wN |∂vi h|(t, x, v).

(6.33)

The first two terms in (6.33) can be controlled in a similar manner: we use Propo-
sitions 5.8 and 5.12 to bound āi j and āi jv j respectively, and then use also (6.7) to
obtain (

max
j

|āi j |
)

wN |∂vi h|(t, x, v) + |āi jv j |wN |∂vi h|(t, x, v)

� ε
3
4 〈v〉max{2+γ,1}(1 + t)−3 · e−d(t)〈v〉2〈v〉

· CH ε
3
4 〈v〉min{pH−2−γ,pH−1}(1 + t)rH+2+min{2+γ,1}

� CH ε
3
2 e−d(t)〈v〉2〈v〉pH+1(1 + t)rH−1+min{2+γ,1}.

(6.34)

For the last term in (6.33), we use instead Proposition 5.11 to bound 〈x − tv〉−1|āi j |.
Combining Proposition 5.11 with (6.7), we obtain

t〈x − tv〉−1
(
max

j
|āi j |

)
wN |∂vi h|(t, x, v)

� t · ε
3
4 〈v〉max{0,1+γ }t−min{1,2+γ }(1 + t)−3 · e−d(t)|v|2〈v〉

· CH ε
3
4 〈v〉min{pH−2−γ,pH−1}(1 + t)rH+2+min{2+γ,1}

� CH ε
3
2 e−d(t)〈v〉2〈v〉pH (1 + t)rH .

(6.35)
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Plugging (6.34) and (6.35) into (6.33), and estimating crudely, we obtain

|2χ
( |x |2

R6
n

)
χ

( |v|2
R2
n

)
āi jwN (∂vi h)(∂v j logwN )|(t, x, v)

� CH ε
3
2 e−d(t)〈v〉2〈v〉pH+1(1 + t)rH . (6.36)

Step 3(c): Estimating χ(
|x |2
R6
n
)χ(

|v|2
R2
n
)āi j h̃N ∂2viv j

logwN . By (6.32),

|χ
( |x |2

R6
n

)
χ

( |v|2
R2
n

)
āi j h̃N∂2viv j

logwN |(t, x, v) � max
i, j

(|āi j ||̃hN ,Rn |(t, x, v)

+ t2〈x − tv〉−2|āi j ||̃hN ,Rn |(t, x, v)).

(6.37)
To handle the first term in (6.37), we use Proposition 5.8 and (6.31) to obtain

max
i, j

|āi j ||̃hN ,Rn |(t, x, v)

� ε
3
4 〈v〉2+γ (1 + t)−3 ·

(
CH εe−d(t)〈v〉2〈v〉pH−1(1 + t)rH+1+δ + ed̃(t)〈v〉2

n

)

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH+1+γ (1 + t)rH−2+δ + ε

3
4 ed̃(t)〈v〉2

n
〈v〉2+γ (1 + t)−3.

(6.38)
To bound the second term in (6.37), we will in fact prove an estimate when the t and
〈x − tv〉 weights are even slightly worse (since such a stronger estimate will be useful
later). By Proposition 5.11 and (6.31),

max
i, j

t(1 + t)〈x − tv〉−1|āi j ||̃hN ,Rn |(t, x, v)

� t(1 + t) · ε
3
4 〈v〉max{0,1+γ }t−min{1,2+γ }(1 + t)−3

·
(
CH εe−d(t)〈v〉2〈v〉pH−1(1 + t)rH+1+δ + ed̃(t)〈v〉2

n

)

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH (1 + t)rH−min{2+γ,1}+δ

+ ε
3
4 ed̃(t)〈v〉2

n
(1 + t)−1−min{2+γ,1}〈v〉max{0,1+γ }.

(6.39)

Taking the worse bounds from (6.38) and (6.39) and plugging into (6.37), we obtain

|χ
( |x |2

R6
n

)
χ

( |v|2
R2
n

)
āi j h̃N ∂2viv j

logwN |(t, x, v)

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH+1(1 + t)rH−min{2+γ,1}+δ
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+ ε
3
4 ed̃(t)〈v〉2

n
(1 + t)−1−min{2+γ,1}〈v〉2+γ

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH+1(1 + t)rH + ε

3
4 ed̃(t)〈v〉2

n
(1 + t)−1−δ〈v〉2, (6.40)

where in the last line we have used (4.1).

Step 3(d): Estimating. χ(
|x |2
R6
n
)χ(

|v|2
R2
n
)āi j h̃N (∂vi logwN )(∂v j logwN ). By (6.22),

|χ
( |x |2

R6
n

)
χ

( |v|2
R2
n

)
āi j h̃N (∂vi logwN )(∂v j logwN )|(t, x, v)

� |āi j h̃N ,Rn (∂vi logwN )(∂v j logwN )|(t, x, v)

�
((

max
i, j

āi j

)
+

(
max
i

āi jv j

)
+ āi jviv j

)
|̃hN ,Rn |(t, x, v)

+ t〈x − tv〉−1
((

max
i, j

āi j

)
+

(
max
i

āi jv j

))
|̃hN ,Rn |(t, x, v)

+ t2〈x − tv〉−2
(
max
i, j

āi j

)
|̃hN ,Rn |(t, x, v).

(6.41)

The first term on the RHS of (6.41) can be estimated in a similar way as (6.38), except
that we also apply Proposition 5.12 to bound (maxi āi jv j ) and āi jviv j . We then obtain
a similar estimate as (6.38) (after accounting for the difference in 〈v〉weights between
Propositions 5.8 and 5.12), i.e.

((
max
i, j

āi j

)
+

(
max
i

āi jv j

)
+ āi jviv j

)
|̃hN ,Rn |(t, x, v)

� CH ε
7
4 e−d(t)〈v〉2〈v〉max{pH+1+γ,pH }(1 + t)rH−2+δ

+ ε
3
4 ed̃(t)〈v〉2

n
〈v〉max{2+γ,1}(1 + t)−3.

(6.42)

For the second term on the RHS of (6.41), we first use the simple bound (maxi, j āi j )+
(maxi āi jv j ) � maxi, j |āi j |〈v〉 and then apply (6.39) to obtain

t〈x − tv〉−1
((

max
i, j

āi j

)
+

(
max
i

āi jv j

))
|̃hN ,Rn |(t, x, v)

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH+1(1 + t)rH−min{2+γ,1}+δ

+ ε
3
4 ed̃(t)〈v〉2

n
(1 + t)−1−min{2+γ,1}〈v〉max{1,2+γ }.

(6.43)
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The last term on the RHS of (6.41) can also be controlled by (6.39) so that we obtain

t2〈x − tv〉−2
(
max
i, j

āi j

)
|̃hN ,Rn |(t, x, v)

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH (1 + t)rH−min{2+γ,1}+δ

+ ε
3
4 ed̃(t)〈v〉2

n
(1 + t)−1−min{2+γ,1}〈v〉max{0,1+γ }.

(6.44)

We now take the worse bounds in (6.42), (6.43) and (6.44) and plug them into (6.41)
to obtain

|χ
( |x |2

R6
n

)
χ

( |v|2
R2
n

)
āi j h̃N (∂vi logwN )(∂v j logwN )|(t, x, v)

� CH ε
7
4 e−d(t)〈v〉2〈v〉max{pH+1+γ,pH }(1 + t)rH−min{2+γ,1}+δ

+ ε
3
4 ed̃(t)〈v〉2

n
(1 + t)−1−min{2+γ,1}〈v〉max{2+γ,1}

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH+1(1 + t)rH + ε

3
4 ed̃(t)〈v〉2

n
(1 + t)−1−δ〈v〉2,

(6.45)

where in the last line we have used (4.1).

Step 3(e): Estimating wN H . Using (6.12) and plugging in (6.9), we obtain

|wN H |(t, x, v)

≤
{
CH εe−d(t)〈v〉2 〈v〉pH+1(1 + t)rH + CH εe−d(t)〈v〉2 〈v〉pH−1(1+t)rH+δ if rH +δ≥0

CH εe−d(t)〈v〉2 〈v〉pH+1(1+t)rH if rH +δ∈[−1, 0).

(6.46)

Step 3(f): Putting everything together. By (6.16) and the estimates (6.36), (6.40), (6.45)
and (6.46), after choosing ε0 (and therefore also ε) sufficiently small and using (4.1),
we obtain

χ

(
|x |2
R6
n

)
χ

(
|v|2
R2
n

)
× |RHS of (6.16)|(t, x, v)

≤

⎧⎪⎪⎨
⎪⎪⎩
2CH εe−d(t)〈v〉2 〈v〉pH+1(1+t)rH +CH εe−d(t)〈v〉2 〈v〉pH−1(1+t)rH+δ

+ 1
4n e

d̃(t)〈v〉2 〈v〉2(1+t)−1−δ if rH +δ≥0

2CH εe−d(t)〈v〉2 〈v〉pH+1(1+t)rH + 1
4n e

d̃(t)〈v〉2 〈v〉2(1+t)−1−δ if rH +δ∈[−1, 0).

(6.47)
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Step 4: The functions u(n),±
N . For every n ∈ N, define u(n),±

N : [0, Tn]× B(0,
√
2R3

n)×
B(0,

√
2Rn) → R by

u(n),±
N (t, x, v)

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h̃N ,Rn (t, x, v) ± ed̃(t)〈v〉2
n ± 3CH ε

∫ t
0 e−d(s)〈v〉2 〈v〉pH+1(1 + s)rH ds

±2CH εe−d(t)〈v〉2 〈v〉pH−1(1 + t)rH+1+δ if rH + δ ≥ 0

h̃N ,Rn (t, x, v) ± ed̃(t)〈v〉2
n ± 3CH ε

∫ t
0 e−d(s)〈v〉2 〈v〉pH+1(1 + s)rH ds if rH + δ ∈ [−1, 0).

(6.48)
We will apply the maximum principle (respectively, the minimum principle) to u(n),−

N

(respectively, u(n),+
N ) in Step 5 (respectively, Step 6) below. In preparation for these

steps, we show that (a) u(n),±
N satisfy appropriate differential inequalities, and (b)

u(n),±
N satisfy appropriate boundary conditions. This is carried out in Steps 4(a) and

4(b) below. Step 4(a) is further divided into Step 4(a)(i) and Step 4(a)(ii) according to
whether rH + δ < 0 or rH + δ ≥ 0.

Step 4(a)(i): Differential inequalities for u(n),±
N when rH + δ < 0. Assume now that

rH + δ < 0. (This case is slightly simpler than the rH + δ ≥ 0 case.) Differentiating
(6.48) and recalling the definitions of d(t) and d̃(t) in (4.3) and (6.29), we have

∂t u
(n),±
N (t, x, v) + vi∂xi u

(n),±
N (t, x, v) − āi j∂

2
viv j

u(n),±
N (t, x, v)

= ∂t h̃N ,Rn (t, x, v) + vi∂xi h̃N ,Rn (t, x, v) − āi j∂
2
viv j

h̃N ,Rn (t, x, v)︸ ︷︷ ︸
=:h contribution

± ed̃(t)〈v〉2

n

d0δ

(1 + t)1+δ
〈v〉2

︸ ︷︷ ︸
=:good term1

∓ed̃(t)〈v〉2

n
āi j d̃(t)(2δi j + 4d̃(t)viv j )︸ ︷︷ ︸

=:error term1

± 3CH εe−d(t)〈v〉2〈v〉pH+1(1 + t)rH︸ ︷︷ ︸
=:good term2

± 3CH εāi j (t, x, v)

∫ t

0
d(s)(2δi j − 4d(s)viv j )e

−d(s)〈v〉2 〈v〉pH+1(1 + s)rH ds
︸ ︷︷ ︸

=:error term2,1

± 6CH (pH + 1)εāi j (t, x, v)

∫ t

0
d(s)viv j e

−d(s)〈v〉2〈v〉pH−1(1 + s)rH ds
︸ ︷︷ ︸

=:error term2,2

∓ 3CH (pH + 1)εāi j (t, x, v)

∫ t

0
(δi j + (pH − 1)viv j

〈v〉2 )e−d(s)〈v〉2 〈v〉pH−1(1 + s)rH ds
︸ ︷︷ ︸

=:error term2,3

.

(6.49)
Let us first explain the strategy in handling RHS of (6.49). For the “h contribution”

term, we use the equation (6.16) and the estimates obtained in (6.47). We then have
two good terms, which are good in the sense that they are≥ 0 in the “+” case and ≤ 0
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in the “−” case. Finally, we have four error terms. We will show that the term “error
term1” can be controlled by “good term1”; while the terms “error term2,1”, “error
term2,2” and “error term2,3” can all be controlled by “good term2”.

To carry this out, we first compare “good term1” and “error term1”. Noting that
d̃(t) ≤ 2d0, estimating āi i and āi jviv j by Propositions 5.8 and 5.12 respectively, we
obtain

|error term1| � ed̃(t)〈v〉2

n
ε

3
4 〈v〉max{2+γ,1}(1 + t)−3.

Choosing ε0 sufficiently small (so that ε is also small), we see that “good term1”
controls “error term1” and in fact

ed̃(t)〈v〉2

n

d0δ

(1 + t)1+δ
〈v〉2 − |error term1| ≥ 3ed̃(t)〈v〉2

4n

d0δ

(1 + t)1+δ
〈v〉2. (6.50)

Next, we compare “good term2”, “error term2,1”, “error term2,2” and “error
term2,3”. For this purpose we first consider the integral

∫ t
0 e

−d(s)〈v〉2〈v〉pH+3(1 +
s)rH ds. Let us assume for the moment that rH + 1 + δ �= 0. Then since d ′(t) =
− d0δ

(1+t)1+δ and d(t) is monotonically decreasing, we obtain the following estimate
after integrating by parts:

CH ε

∫ t

0
e−d(s)〈v〉2〈v〉pH+3(1 + s)rH ds

= −CH ε〈v〉pH+3
∫ t

0

( 1

d ′(s)〈v〉2
d

ds
e−d(s)〈v〉2)(1 + s)rH ds

≤ CH ε

d0δ
〈v〉pH+1

∫ t

0
e−d(s)〈v〉2

∣∣∣∣ dds (1 + s)rH+1+δ

∣∣∣∣ ds
+ CH ε

d0δ
〈v〉pH+1(e−d(t)〈v〉2(1 + t)rH+1+δ − e−2d0〈v〉2)

≤ CH ε|rH + 1 + δ|
d0δ

〈v〉pH+1e−d(t)〈v〉2
∫ t

0
(1 + s)rH+δ ds

+ CH ε

d0δ
〈v〉pH+1e−d(t)〈v〉2(1 + t)rH+1+δ

≤ CH ε|rH + 1 + δ|
d0δ|rH + 1 + δ| 〈v〉pH+1e−d(t)〈v〉2 max

{
1, (1 + t)rH+1+δ

}

+ CH ε

d0δ
〈v〉pH+1e−d(t)〈v〉2(1 + t)rH+1+δ

≤ 2CH ε

d0δ
〈v〉pH+1e−d(t)〈v〉2 max

{
1, (1 + t)rH+1+δ

}

≤ 2CH ε

d0δ
〈v〉pH+1e−d(t)〈v〉2(1 + t)rH+1+δ,

(6.51)

since rH +1+δ ≥ 0 by assumption. In the case rH +1+δ = 0, we argue in a similar,
but simpler, way:
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CH ε

∫ t

0
e−d(s)〈v〉2〈v〉pH+3(1 + s)rH ds

= −CH ε〈v〉pH+3
∫ t

0

( 1

d ′(s)〈v〉2
d

ds
e−d(s)〈v〉2)(1 + s)rH ds

= CH ε

d0δ
〈v〉pH+1e−d(t)〈v〉2 ≤ 2CH ε

d0δ
〈v〉pH+1e−d(t)〈v〉2(1 + t)rH+1+δ.

(6.52)

We now estimate the terms “error term2,1”, “error term2,2” and “error term2,3” in
(6.49). Noting that d(t) ≤ 2d0 for all t ≥ 0, we apply Propositions 5.8 and 5.12,
(6.51) and (6.52) to obtain

|error term2,1| + |error term2,2| + |error term2,3|
� CH ε

7
4

∫ t

0
e−d(s)〈v〉2〈v〉pH+3(1 + s)rH ds

� CH ε
7
4 〈v〉pH+1e−d(t)〈v〉2(1 + t)rH+1+δ.

Choosing ε0 (and therefore also ε) sufficiently small, we can bound “error term2,1”,
“error term2,2” and “error term2,3” by “good term2” and in fact

3CH εe−d(t)〈v〉2〈v〉pH+1(1 + t)rH − |error term2,1|+|error term2,2|+|error term2,3|
> 2CH εe−d(t)〈v〉2〈v〉pH+1(1 + t)rH .

(6.53)
We now consider the “+” case in (6.49). By (6.25), (6.47), (6.50) and (6.53), we

obtain

∂t u
(n),+
N (t, x, v) + vi∂xi u

(n),+
N (t, x, v) − āi j∂

2
viv j

u(n),+
N (t, x, v)

> − 2CH εe−d(t)〈v〉2〈v〉pH+1(1 + t)rH − ed̃(t)〈v〉2

4n
〈v〉2(1 + t)−1−δ

− C ′
Tn R

min{−1,γ,pH−2}
n

+ 3ed̃(t)〈v〉2

4n

d0δ

(1 + t)1+δ
〈v〉2 + 2CH εe−d(t)〈v〉2〈v〉pH+1(1 + t)rH

(6.54)

Now note that the first term on the RHS of (6.54) is ≤ the last term on the RHS
of (6.54). For the remaining three terms, note that by (6.26), for any (t, x, v) ∈
[0, TBoot ) × R

3 × R
3, we have

− ed̃(t)〈v〉2

4n
〈v〉2(1 + t)−1−δ − C ′

Tn R
min{−1,γ,pH−2}
n + 3ed̃(t)〈v〉2

4n

d0δ

(1 + t)1+δ
〈v〉2

≥ ed̃(t)〈v〉2

2n

d0δ

(1 + t)1+δ
〈v〉2 − 1

4n

d0δ

(1 + TBoot )1+δ
〈v〉2 ≥ d0δ

4n(1 + TBoot )1+δ
.
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Putting all these together, we thus obtain

∂t u
(n),+
N (t, x, v)+vi∂xi u

(n),+
N (t, x, v) − āi j∂

2
viv j

u(n),+
N (t, x, v)≥ d0δ

4n(1 + TBoot )1+δ
.

(6.55)
In a completely analogous manner, in the “−” case we obtain

∂t u
(n),−
N (t, x, v) + vi∂xi u

(n),−
N (t, x, v) − āi j∂

2
viv j

u(n),−
N (t, x, v)

≤ − d0δ

4n(1 + TBoot )1+δ
.

(6.56)

Step 4(a)(ii): Differential inequalities for u(n),±
N when rH + δ ≥ 0. We now consider

the case rH + δ ≥ 0. Our goal will be to show that (6.55) and (6.56) also hold in this
case.

To proceed, we carry out a computation as in (6.49), using (6.48), (4.3) and (6.29).
Note that in the rH + δ ≥ 0 case that we are considering, there are a few more terms
arising from various derivatives of 2CH εe−d(t)〈v〉2〈v〉pH−1(1 + t)rH+1+δ .

∂t u
(n),±
N (t, x, v) + vi ∂xi u

(n),±
N (t, x, v) − āi j∂

2
vi v j

u(n),±
N (t, x, v)

= RHS of (6.49)

± 2CH ε(r + δ + 1)e−d(t)〈v〉2 〈v〉pH−1(1 + t)rH+δ︸ ︷︷ ︸
=:good term3

±2CH εd0δe
−d(t)〈v〉2 〈v〉pH+1(1 + t)rH︸ ︷︷ ︸
=:good term4

± 2CH εāi j (2d(t)δi j − 4(d(t))2viv j )e
−d(t)〈v〉2 〈v〉pH−1(1 + t)rH+δ+1

︸ ︷︷ ︸
=:error term4,1

± 2CH εāi j (− (pH − 1)(4d(t)viv j + δi j )

〈v〉2 − (pH − 1)(pH − 3)viv j

〈v〉4 )e−d(t)〈v〉2 〈v〉pH−1(1 + t)rH+δ+1

︸ ︷︷ ︸
=:error term4,2

.

(6.57)
We first treat the terms that arise in RHS of (6.49). Note that this can almost be

treated exactly as in (6.49), except that now since rH + δ ≥ 0, in the “h contribution”
term, we have an extra contribution on the RHS of (6.47), which is bounded in mag-
nitude by CH εe−d(t)〈v〉2〈v〉pH−1(1 + t)rH+δ . Now note that this can be absorbed by
“good term3” since when r + δ ≥ 0 we have

2CH ε(r + δ + 1)e−d(t)〈v〉2〈v〉pH−1(1 + t)rH+δ − CH εe−d(t)〈v〉2〈v〉pH−1(1+t)rH+δ

≥ CH εe−d(t)〈v〉2〈v〉pH−1(1 + t)rH+δ.

The other terms on the RHS of (6.49) can be treated exactly as in Step 4(a)(i).
To handle the RHS of (6.57), it therefore remains to show the terms “error term4,1”

and “error term4,2” can be absorbed by “good term4”. Note that by Propositions 5.8
and 5.12 and (4.1),
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CH ε(āi i + āi jviv j )e
−d(t)〈v〉2〈v〉pH−1(1 + t)rH+δ+1

� CH ε · ε
3
4 〈v〉max{2+γ,1}(1 + t)−3 · e−d(t)〈v〉2〈v〉pH−1(1 + t)rH+δ+1

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH−1+max{2+γ,1}(1 + t)rH+δ−2

� CH ε
7
4 e−d(t)〈v〉2〈v〉pH+1(1 + t)rH .

(6.58)

Now it is easy to observe that

|error term4,1|+|error term4,2| � CH ε(āi i +āi jviv j )e
−d(t)〈v〉2〈v〉pH−1(1+t)rH+δ+1.

(6.59)
It therefore follows from (6.58) and (6.59) that

2CH εd0δe
−d(t)〈v〉2〈v〉pH+1(1 + t)rH − |error term4,1| − |error term4,2|

≥ CH εd0δe
−d(t)〈v〉2〈v〉pH+1(1 + t)rH .

(6.60)

Since all the other terms are exactly as in the rH +δ < 0 case, we therefore conclude
that both inequalities (6.55) and (6.56) hold also in the case rH + δ ≥ 0.

Step 4(b): Boundary conditions for u(n),±
N . Since for every t ∈ [0, Tn], h̃N ,Rn (t, x, v)

is compactly support in B(0,
√
2R3

n) × B(0,
√
2Rn), h̃N ,Rn �∂(B(0,

√
2R3)×B(0,

√
2R))

(t) = 0. Noting also the obvious signs for the other terms in the definition of u(n),±
N ,R

in (6.48), we obtain that for every t ∈ [0, T ′
n],

u(n),+
N �∂(B(0,

√
2R3

n)×B(0,
√
2Rn))

(t) ≥ 0, u(n),−
N �∂(B(0,

√
2R3

n)×B(0,
√
2Rn))

(t) ≤ 0.
(6.61)

Step 5: Maximum principle argument. We now apply the maximum principle to obtain

an upper bound for u(n),−
N . To simplify notation, let Dn := [0, T ′

n] × B(0,
√
2R3

n) ×
B(0,

√
2Rn).

Our goal is to show that

sup
(t,x,v)∈Dn

u(n),−
N (t, x, v) ≤ CH ε. (6.62)

Since Dn is compact, u(n),−
N achieves a maximum in Dn . It is clearly sufficient to

bound the maximum of u(n),−
N . At least one15 of the following holds:

1. The maximum is achieved on the initial time slice Dn ∩ {(t, x, v) : t = 0}.
2. The maximum is achieved on the set (0, T ′

n) × ∂(B(0,
√
2R3

n) × B(0,
√
2Rn)).

3. The maximum is achieved at an interior point Do
n .

4. The maximum is achieved in the interior of the future boundary Dn ∩
{(T ′

n, x, v) : |x | <
√
2R3

n or |v| <
√
2Rn}.

15 It is possible that more than one of the following possibilities hold since these sets are not disjoint and
moreover the maximum can be achieved at two distinct points.
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In Case 1, the estimate (6.62) is trivially true by (6.10).
In Case 2, the estimate (6.62) is also trivially true by (6.61).
We next argue that Case 3 is impossible. If there exists an interior maximum point

p of u(n),−
N , it holds that ∂t u

(n),−
N (p) = ∂xi u

(n),−
N (p) = ∂vi u

(n),−
N (p) = 0 for i =

1, 2, 3, and āi j∂2viv j
u(n),−
N (p) ≤ 0. Hence, (6.56) evaluated at p implies that 0 ≤

− d0δ
4n(1+TBoot )1+δ , which is a contradiction.
Finally, we argue that Case 4 is also impossible. Suppose there is a point p ∈

Dn ∩ {(T ′
n, x, v) : |x | <

√
2R3

n or |v| <
√
2Rn} so that u(n),−

N assumes its maximum

at p. Then ∂xi u
(n),−
N (p) = ∂vi u

(n),−
N (p) = 0 for i = 1, 2, 3, and āi j∂2viv j

u(n),−
N (p) ≤ 0.

Hence, (6.56) evaluated at point p implies that

∂t u
(n),−
N (p) ≤ − d0δ

4n(1 + TBoot )1+δ
.

As a consequence, by considering the Taylor expansion of u(n),−
N at p, one concludes

that u(n),−
N (p) is in fact not a maximum, contradicting the definition of p.

Combining the considerations in the four cases above, we have established (6.62).

Step 6: Minimum principle. In an entirely analogous manner as Step 5, but considering
instead the minimum of u(n),+

N , we obtain

inf
(t,x,v)∈Dn

u(n),+
N (t, x, v) ≥ −CH ε. (6.63)

Step 7: Completion of the continuity argument. By the definition of u(n),±
N in (6.48),

the estimates (6.62) and (6.63), and the triangle inequality,

|̃hN ,Rn (t, x, v)|

≤

⎧⎪⎪⎨
⎪⎪⎩
CH ε+ ed̃(t)〈v〉2

n +3CH ε
∫ t
0 e

−d(s)〈v〉2〈v〉pH+1(1+s)rH ds

+2CH εe−d(t)〈v〉2〈v〉pH−1(1+t)rH+1+δ if rH +δ≥0

CH ε+ ed̃(t)〈v〉2
n +3CH ε

∫ t
0 e

−d(s)〈v〉2〈v〉pH+1(1+s)rH ds if rH +δ∈[−1, 0)
(6.64)

for every (t, x, v) ∈ Dn .
To proceed, we need to control the term 3CH ε

∫ t
0 e

−d(s)〈v〉2〈v〉pH+1(1+ s)rH ds in
(6.64). By (6.51) and (6.52) (and multiplying by 〈v〉−2), we obtain

3CH ε

∫ t

0
e−d(s)〈v〉2〈v〉pH+1(1 + s)rH ds ≤ 6CH ε

d0δ
〈v〉pH−1e−d(t)〈v〉2(1 + t)rH+1+δ.
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Plugging this into (6.64), we obtain

|̃hN ,Rn (t, x, v)|

≤
⎧⎨
⎩
(
3+ 6

d0δ

)
CH ε〈v〉pH−1e−d(t)〈v〉2(1+t)rH+1+δ+ ed̃(t)〈v〉2

n if rH +δ≥0(
1+ 6

d0δ

)
CH ε〈v〉pH−1e−d(t)〈v〉2(1+t)rH+1+δ+ ed̃(t)〈v〉2

n if rH +δ ∈ [−1, 0).

(6.65)
for every (t, x, v) ∈ Dn . Note that this improves the constant in (6.31).

We now complete the continuity argument initiated in Step 3; namely, we show
that for every n ∈ N, T ′

n = Tn (where T ′
n is as in (6.30)). Suppose not, then by (6.65)

and continuity of h̃N ,Rn , (6.31) must hold for some short time beyond T ′
n . This then

contradicts the definition of T ′
n .

Therefore, we have proven that Dn = [0, Tn] × B(0,
√
2R3

n) × B(0,
√
2Rn) and

thus (6.65) holds in the whole region [0, Tn] × B(0,
√
2R3

n) × B(0,
√
2Rn).

Step 8: Putting everything together. Fix a point (t, x, v) ∈ [0, TBoot ) × R
3 × R

3.
By (6.27) and (6.28), there exists n0 ∈ N such that (t, x, v) ∈ [0, Tn] × B(0, R3

n) ×
B(0, Rn) for all n ≥ n0.

By (6.65) and the fact that Dn = [0, Tn] × B(0,
√
2R3

n) × B(0,
√
2Rn), we know

that

|̃hN (t, x, v)| ≤ |̃hN ,Rn (t, x, v)| ≤
(
3 + 6

d0δ

)
CH ε〈v〉pH−1e−d(t)〈v〉2(1 + t)rH+1+δ

+ed̃(t)〈v〉2

n

for every n ≥ n0. Taking n → +∞, we thus obtain

|̃hN (t, x, v)| ≤
(
3 + 6

d0δ

)
CH ε〈v〉pH−1e−d(t)〈v〉2(1 + t)rH+1+δ.

Recalling the definition of h̃N in (6.12) and (6.13), this implies

〈x − tv〉N |h|(t, x, v) �
(
3 + 6

d0δ

)
CH ε〈v〉pH−2(1 + t)rH+1+δ.

Since (t, x, v) is arbitrary, we have proven (6.11). ��

6.3 The Hierarchy of L∞
x L∞

v Estimates and the Induction Argument

We now discuss the (hierarchy of) L∞
x L∞

v estimates that we will prove. Recall from
Section 1.1.6 that our L∞

x L∞
v estimates will be proved in a descent scheme in which

the estimates are better at lower levels of derivatives. In this section, we make precise
the numerology of the estimates (see Sections 6.3.1 and 6.3.2). We then initiate in
Section 6.3.3 an induction argument to prove these estimates.
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6.3.1 Definition ofMint

Define Mint by

Mint :=

⎧⎪⎨
⎪⎩
Mmax −

⌈(
2

2+γ
+ 4

)⌉
if γ ∈ (−2,−1]

Mmax −
⌈(

1
|γ | + 4

)⌉
if γ ∈ (−1, 0)

. (6.66)

The parameter Mint is used to indicate an “intermediate” number of derivatives, below
which we have sharp Z estimates (i.e. with ζ = θ = 0 in (6.69); see Section 6.3.2 for
definitions). Note that by definition

Mmax + 2 ≥ 2Mint. (6.67)

An easy computation shows that

{
Mmax − Mint ≥ 7 if γ ∈ (−2,−1]
Mmax − Mint ≥ 6 if γ ∈ (−1, 0)

(6.68)

Moreover, Mmax − Mint → ∞ as γ → −2 or γ → 0.

6.3.2 Definition of the Zk,�,� Norms

For ζ ∈ [0, 3
2 ) and θ ∈ [0, 1), introduce also the following L∞-type norm:

Zk,ζ,θ (T ) :=
∑

|α|+|β|+|σ |=k

‖(1 + t)−ζ−|β|〈v〉1−θ

〈x − tv〉Mmax+5−|σ |(∂α
x ∂β

v Y
σ g)‖L∞([0,T ];L∞

x L∞
v ). (6.69)

Like the Ek norms (cf. (4.6)), the Zk,ζ,θ norms have weights of 〈x − tv〉 dependent on
the number of Y derivatives and the norms become worse in t for every ∂v derivative.
Moreover, the Zk,ζ,θ norms depend on two parameters ζ and θ . The Z norms are
the strongest when ζ = θ = 0, and the parameters ζ and θ exactly parametrize the
“loss” compared to the strongest case in the growth rate in t and the weight in 〈v〉
respectively. In addition, note that when θ = 0, the Z norm is one 〈v〉 weight stronger
compared to the E norm.

The values of ζ and θ that we will use depend on k (in addition to γ ). We define
below ζk and θk . For each k = 0, 1, . . . , Mmax −4, our goal will be to control Zk,ζk ,θk .
(In the process of bounding the Zk,ζk ,θk , wewill first need someweaker Zk,ζk ,θm bounds
for m ≥ k; see Section 6.3.3).

Suppose 0 ≤ k ≤ Mint. Define

ζk = θk = 0. (6.70)
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Suppose γ ∈ (−2,−1] and Mint + 1 ≤ k ≤ Mmax − 5. Define

ζk = 3

2
− 3(2 + γ )

4
· (Mmax − 4 − k), θk = 0. (6.71)

Suppose γ ∈ (−1, 0) and Mint + 1 ≤ k ≤ Mmax − 6. Define

ζk = 0, θk = 1 + (Mmax − 4 − k)γ. (6.72)

Suppose γ ∈ (−1, 0) and k = Mmax − 5. Define

ζk = 3

4
, θk = 1 + γ. (6.73)

Suppose k = Mmax − 4. Define

ζk = 3

2
, θk = 1. (6.74)

6.3.3 The Induction Argument

In order to prove the desired estimates for the Zk,ζ,θ norms, we prove the following
statement with an induction (decreasing) in m = 0, 1, . . . , Mmax − 4:

{
Zk,ζk ,θm � ε

3
4 for k ≤ m

Zk,ζk ,θk � ε
3
4 for k ≥ m,

(6.75)

i.e. for k ≥ m we prove the sharp estimates, while for k ≤ m we prove estimates
corresponding to the sharp ζk but with only a weaker 〈v〉 weight corresponding to θm .

First, note that the base case of the induction, i.e. the m = Mmax − 4 case, holds
thanks to Proposition 6.2 and the bootstrap assumptions (4.8) and (4.9). We then carry
out the induction step below.

From now on until Section 6.6, we assume (6.75) holds for m = m∗ + 1 for some
m = 0, 1, . . . , Mmax − 5. Our goal will be to show that (6.75) holds also for m = m∗.
(In fact, we will show a slightly stronger estimate with ε

3
4 replaced by ε.)

Before we proceed, observe that in the induction step it suffices to control ∂α
x ∂

β
v Y σ g

for |α| + |β| + |σ | ≤ m∗ (since the required estimate when |α| + |β| + |σ | > m∗ is
tautologically part of the induction hypotheses).

6.4 Classifying the Inhomogeneous Terms in the Equation for@˛
x @ˇ

v Y�g

We continue to work under the induction hypotheses in Section 6.3.3.
Our goal in this subsection is to control |(∂t + vi∂xi − āi j∂2viv j

)(∂α
x ∂

β
v Y σ g)| in

preparation to apply the maximum principle in Proposition 6.3.
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Proposition 6.4 Suppose |α| + |β| + |σ | ≤ Mmax − 5. Let h := ∂α
x ∂

β
v Y σ g. Then,

under the assumptions of Theorem 4.1, (∂t + vi∂xi − āi j∂2viv j
)h obeys the following

estimates for all (t, x, v) ∈ [0, TBoot ) × R
3 × R

3:

|(∂t + vi∂xi − āi j∂
2
viv j

)h|(t, x, v) � (I α,β,σ
p + I I α,β,σ

p + I I I α,β,σ
p

+ I V α,β,σ
p + V α,β,σ

p + V I α,β,σ
p )(t, x, v),

where16

I α,β,σ
p :=

∑
|α′|+|α′′|=|α|, |β ′|+|β ′′|=|β|+2

|σ ′|+|σ ′′|=|σ |
1≤|α′|+|β ′|+|σ ′|≤|α|+|β|+|σ |

max
i, j

|∂α′
x ∂β ′

v Y σ ′
āi j ||∂α′′

x ∂β ′′
v Y σ ′′

g|, (6.76)

I I α,β,σ
p :=

∑
|α′|+|α′′|=|α|, |σ ′|+|σ ′′|=|σ |
|β ′|+|β ′′|=|β|+1, |β ′|≤|β|

max
j

|∂α′
x ∂β ′

v Y σ ′
(āi jvi )||∂α′′

x ∂β ′′
v Y σ ′′

g|, (6.77)

I I I α,β,σ
p :=

∑
|α′|+|α′′|=|α|
|β ′|+|β ′′|=|β|
|σ ′|+|σ ′′|=|σ |

(|∂α′
x ∂β ′

v Y σ ′
āi i | + |∂α′

x ∂β ′
v Y σ ′

(āi jviv j )|)|∂α′′
x ∂β ′′

v Y σ ′′
g|,

(6.78)

I V α,β,σ
p :=

∑
|α′|+|α′′|=|α|
|β ′|+|β ′′|=|β|
|σ ′|+|σ ′′|=|σ |

|∂α′
x ∂β ′

v Y σ ′
c̄||∂α′′

x ∂β ′′
v Y σ ′′

g|, (6.79)

V α,β,σ
p :=

∑
|α′|≤|α|+1, |β ′|≤|β|−1

|∂α′
x ∂β ′

v Y σ g|, (6.80)

V I α,β,σ
p :=

∑
|β ′|≤|β|, |σ ′|≤|σ |

|β ′|+|σ ′|≤|β|+|σ |−1

〈v〉
(1 + t)1+δ

|∂α
x ∂β ′

v Y σ ′
g|. (6.81)

Here, by our convention (see Section 2), if |β| + |σ | = 0, then the terms V α,β,σ
p and

V I α,β,σ
p are not present.

Proof Differentiating (4.4) by ∂α
x ∂

β
v Y σ , we obtain

∂t∂
α
x ∂β

v Y
σ g + vi∂xi ∂

α
x ∂β

v Y
σ g + δd0

(1 + t)1+δ
〈v〉2∂α

x ∂β
v Y

σ g − āi j∂
2
viv j

∂α
x ∂β

v Y
σ g

= [
∂t + vi∂xi , ∂

α
x ∂β

v Y
σ
]
g︸ ︷︷ ︸

=:Term1

+ δd0
(1 + t)1+δ

(
∂α
x ∂β

v Y
σ (〈v〉2g) − 〈v〉2∂α

x ∂β
v Y

σ g
)

︸ ︷︷ ︸
=:Term2

16 All of the following terms are functions of (t, x, v). We suppress the explicit dependence on (t, x, v)

when there is no risk of confusion.

123



11 Page 62 of 101 J. Luk

+
(
∂α
x ∂β

v Y
σ (āi j∂

2
viv j

g) − āi j∂
2
viv j

∂α
x ∂β

v Y
σ g

)
︸ ︷︷ ︸

=:Term3

−∂α
x ∂β

v Y
σ (c̄i g)︸ ︷︷ ︸

=:Term4

− 4d(t)∂α
x ∂β

v Y
σ (āi jvi∂v j g)︸ ︷︷ ︸

=:Term5

− 2d(t)∂α
x ∂β

v Y
σ ((δi j − 2d(t)viv j )āi j g)︸ ︷︷ ︸

=:Term6

. (6.82)

The terms Term1–Term3 are commutator terms, while the terms Term4–Term6 arise
from differentiating the RHS of (4.4).

We estimate each term on the RHS of (6.82).
For Term1, note that both ∂x and Y commute with the transport operator ∂t + vi∂xi .

Hence,

Term1 = [
∂t + vi∂xi , ∂

α
x ∂β

v Y
σ
]
g =

∑
β ′+β ′′=β

|β ′|=1

∂β ′
x ∂β ′′

v ∂α
x Y

σ g.

Therefore,

|Term1| �
∑

|α′|≤|α|+1, |β ′|≤|β|−1

|∂α′
x ∂β ′

v Y σ g|. (6.83)

This gives the contribution V α,β,σ
p in (6.80).

For Term2, the commutator term arises from ∂v or t∂x + ∂v acting on 〈v〉2. We thus
have

|Term2| �
∑

|β ′|≤|β|, |σ ′|≤|σ |
|β ′|+|σ ′|≤|β|+|σ |−1

δd0
(1 + t)1+δ

|v||∂α
x ∂β ′

v Y σ ′
g|

+
∑

|β ′|≤|β|, |σ ′|≤|σ |
|β ′|+|σ ′|≤|β|+|σ |−2

δd0
(1 + t)1+δ

|∂α
x ∂β ′

v Y σ ′
g|.

(6.84)

A very rough estimate then shows that this gives the contribution V Iα,β,σ
p in (6.81).

For Term3, distributing the derivatives we get

Term3 =
∑

α′+α′′=α
β ′+β ′′=β

σ ′+σ ′′=σ
|α′|+|β ′|+|σ ′|≥1

(∂α′
x ∂β ′

v Y σ ′
āi j )∂

2
viv j

∂α′′
x ∂β ′′

v Y σ ′′
g.

After relabeling the multi-indices, this gives the contribution Iα,β,σ
p (7.13).
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For Term4, we distribute the derivatives to get

|Term4| �
∑

|α′|+|α′′|=|α|
|β ′|+|β ′′|=|β|
|σ ′|+|σ ′′|=|σ |

|∂α′
x ∂β ′

v Y σ ′
c̄||∂α′′

x ∂β ′′
v Y σ ′′

g|. (6.85)

This gives the contribution I V α,β,σ
p in (6.79).

For Term5, since d(t) is uniformly bounded, we distribute the derivatives to obtain

|Term5| �
∑

|α′|+|α′′|=|α|, |σ ′|+|σ ′′|=|σ |
|β ′|+|β ′′|=|β|+1, |β ′|≤|β|

max
j

|∂α′
x ∂β ′

v Y σ ′
(āi jvi )||∂α′′

x ∂β ′′
v Y σ ′′

g|, (6.86)

which gives the contribution I Iα,β,σ
p .

Finally, for Term6, using again the uniform boundedness of d(t), it is easy to see
that

|Term6| �
∑

|α′|+|α′′|=|α|
|β ′|+|β ′′|=|β|
|σ ′|+|σ ′′|=|σ |

(|∂α′
x ∂β ′

v Y σ ′
āi i | + |∂α′

x ∂β ′
v Y σ ′

(āi jviv j )|)|∂α′′
x ∂β ′′

v Y σ ′′
g|,

(6.87)
which gives the contribution I I Iα,β,σ

p . ��

6.5 Controlling the Error Terms

We continue to work under the induction hypotheses in Section 6.3.3.
The goal of this subsection is to control the terms (6.76)–(6.79) in Proposition 6.4.

Proposition 6.5 Let m∗ be as in the induction hypotheses in Section 6.3.3 and suppose
k := |α|+|β|+|σ | ≤ m∗. Then for I α,β,σ

p as in (6.76) and for (t, x, v) ∈ [0, TBoot )×
R
3 × R

3,

〈x − tv〉Mmax+5−|σ | I α,β,σ
p (t, x, v) � ε

3
2 〈v〉1+θm∗ (1 + t)−1−δ+ζk+|β|.

Proof From now on, take α′, α′′, β ′, β ′′, σ ′, σ ′′ which obey |α′|+|α′′| = |α|, |β ′|+
|β ′′| = |β| + 2, |σ ′| + |σ ′′| = |σ |, 1 ≤ |α′| + |β ′| + |σ ′| ≤ |α| + |β| + |σ | =: k. We
will always silently assume that these conditions are satisfied.

Short-time estimates: t ≤ 1. We first bound 〈x − tv〉Mmax+5−|σ | I α,β,σ
p (t, x, v)

when t ≤ 1. Estimating maxi, j |∂α′
x ∂

β ′
v Y σ ′

āi j | by Proposition 5.8 and bounding

|∂α′′
x ∂

β ′′
v Y σ ′′

g|(t, x, v) by the induction hypotheses, we obtain

〈x − tv〉Mmax+5−|σ | max
i, j

|∂α′
x ∂β ′

v Y σ ′
āi j ||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v)

� ε
3
4 〈v〉2+γ · ε

3
4 〈v〉−1+θm∗+1 � ε

3
2 〈v〉1+γ+θm∗+1 .

(6.88)
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To see that (6.88) implies the desired estimates when t ≤ 1, note that by (6.70)–(6.74),
θm∗+1 + γ ≤ θm∗ .

Long-time estimates: t ≥ 1. We now assume t ≥ 1. Notice that we have |α′|+ |β ′|+
|σ ′| ≥ 1. We divide below into the (non-mutually exclusive) cases |σ ′| ≥ 1 (Case 1)
and max{|α′|, |β ′|} ≥ 1 (Case 2).

Case 1: |σ ′| ≥ 1. Since |σ ′| ≥ 1, we have |σ ′′| ≤ |σ | − 1. This implies 〈x −
tv〉Mmax+5−|σ | � 〈x − tv〉Mmax+5−|σ ′′|〈x − tv〉−1

Since k ≤ m∗ ≤ Mmax−5, by (6.67), either |α′|+|β ′|+|σ ′| ≤ Mint or |α′′|+|β ′′|+
|σ ′′| ≤ Mint. Term 1 below handles the situations where |α′′| + |β ′′| + |σ ′′| ≤ Mint,
while term 2 below handles the situations where |α′| + |β ′| + |σ ′| ≤ Mint. To obtain
term 1, we note that |α′| + |β ′| + |σ ′| ≤ k and apply Proposition 5.11 (to control 〈x −
tv〉−1|∂α′

x ∂
β ′
v Y σ ′

āi j |) and the induction hypotheses (to control ∂α′′
x ∂

β ′′
v Y σ ′′

g). To obtain
term 2, we note that |α′′|+ |β ′′|+ |σ ′′| ≤ k +1 and apply Proposition 5.11 (to control

〈x − tv〉−1|∂α′
x ∂

β ′
v Y σ ′

āi j |) and the induction hypotheses (to control ∂α′′
x ∂

β ′′
v Y σ ′′

g).

〈x − tv〉Mmax+5−|σ | max
i, j

|∂α′
x ∂β ′

v Y σ ′
āi j ||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v)

� (max
i, j

〈x − tv〉−1|∂α′
x ∂β ′

v Y σ ′
āi j |(t, x, v))(〈x − tv〉Mmax+5−|σ ′′||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v))

� ε
3
4 〈v〉max{0,1+γ }(1 + t)−3−min{2+γ,1}+ζk+|β ′| · ε

3
4 (1 + t)|β ′′|︸ ︷︷ ︸

Case 1, Term 1

+ ε
3
4 〈v〉max{0,1+γ }(1 + t)−3−min{2+γ,1}+|β ′| · ε

3
4 (1 + t)ζk+1+|β ′′|︸ ︷︷ ︸

Case 1, Term 2

= ε
3
2 〈v〉(1 + t)−1−min{2+γ,1}+ζk+1+|β|,

(6.89)
where in the last line we have used |β ′| + |β ′′| ≤ |β| + 2 and γ < 0. Now note that
by (6.70)–(6.74), ζk+1 − ζk ≤ min{ 34 , 3(2+γ )

4 }. Therefore, combining this with (4.1),
we obtain

− 1 − min{2 + γ, 1} + ζk+1 + |β| ≤ −1 − δ + ζk + |β|. (6.90)

On the other hand, note also that since by (6.70)–(6.74) θm∗ ≥ 0, we have 1 ≤ 1+θm∗ .
Hence, the estimate we obtained in (6.89) above is better than is required in the
statement of the proposition.

Case 2: |α′| ≥ 1 or |β ′| ≥ 1. By (6.67), either |α′′|+|β ′′|+|σ ′′| ≤ Mint or |α′|+|β ′|+
|σ ′| ≤ Mint. These are handled respectively as term 1 and term 2 below. In term 1, we
also have |α′|+|β ′|+|σ ′| ≤ k; while in term 2we also have |α′′|+|β ′′|+|σ ′′| ≤ k+1.

For each of these two terms, we bound ∂α′
x ∂

β ′
v Y σ ′

āi j using Proposition 5.9 or 5.10

(applicable since |β ′| ≥ 1 or |α′| ≥ 1) and estimate ∂α′′
x ∂

β ′′
v Y σ ′′

g using the induction
hypotheses.
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〈x − tv〉Mmax+5−|σ | max
i, j

|∂α′
x ∂β ′

v Y σ ′
āi j ||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v)

� (max
i, j

|∂α′
x ∂β ′

v āi j |(t, x, v))(〈x − tv〉Mmax+5−|σ ′′||∂α′′
x ∂β ′′

v Y σ ′′
g|(t, x, v))

� ε
3
4 〈v〉2+γ (1 + t)−3−min{2+γ,1}+ζk+|β ′| · ε

3
4 〈v〉−1+θm∗+1(1 + t)|β ′′|︸ ︷︷ ︸

Case2,Term1

+ ε
3
4 〈v〉2+γ (1 + t)−3−min{2+γ,1}+|β ′| · ε

3
4 〈v〉−1+θm∗+1(1 + t)ζk+1+|β ′′|︸ ︷︷ ︸

Case2,Term2

� ε
3
2 〈v〉1+γ+θm∗+1(1 + t)−1−min{2+γ,1}+ζk+1+|β|,

(6.91)

wherewe have used |β ′|+|β ′′| ≤ |β|+2. Nownote that by (6.70)–(6.74), θm∗+1+γ ≤
θm∗ . Therefore, using also (6.90), we see that (6.91) is better than is required in the
statement of the proposition. ��
Proposition 6.6 Let m∗ be as in the induction hypotheses in Section 6.3.3 and suppose
k := |α|+|β|+|σ | ≤ m∗. Then for I I α,β,σ

p as in (6.77) and for (t, x, v) ∈ [0, TBoot )×
R
3 × R

3,

〈x − tv〉Mmax+5−|σ | I I α,β,σ
p (t, x, v) � ε

3
2 〈v〉1+θm∗ (1 + t)−1−δ+ζk+|β|.

Proof We can argue in a very similar manner as Proposition 6.5 so only the key points
will be sketched. From now on take α′, α′′, β ′, β ′′, σ ′ and σ ′′ as in I I α,β,σ

p in (6.77).
First, for t ≤ 1, we have a similar bound as (6.88) using Proposition 5.12 and the

induction hypotheses:

〈x − tv〉Mmax+5−|σ | max
j

|∂α′
x ∂β ′

v Y σ ′
(āi jvi )||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v)

� ε
3
4 〈v〉max{2+γ,1} · ε

3
4 〈v〉−1+θm∗+1 � ε

3
2 〈v〉max{1+γ+θm∗+1,θm∗+1} � ε

3
4 〈v〉1+θm∗ .

In the last step above, we have used

max{1 + γ + θm∗+1, θm∗+1} ≤ 1 + θm∗ , (6.92)

which can be checked using (6.70)–(6.74).
For the t ≥ 1, we argue as in Case 2 (i.e. the |α′| ≥ 1 or |β ′| ≥ 1 case) in the proof

of Proposition 6.5. We note the following:

1. We have ai jvi instead of ai j so that we will use Proposition 5.12 in place of
Propositions 5.9 and 5.10. (Note that the application of Proposition 5.12 does not
require |α′| ≥ 1 or |β ′| ≥ 1.)

2. By comparing Proposition 5.12 with Propositions 5.9 and 5.10, we see that the

estimates we obtain for max j |∂α′
x ∂

β ′
v Y σ ′

(āi jvi )| are different from those we obtain

in the |α′| + |β ′| ≥ 1 case for maxi, j |∂α′
x ∂

β ′
v Y σ ′

āi j | in the following ways:
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(a) We have 〈v〉max{2+γ,1} instead of 〈v〉2+γ , and
(b) we have a t rate that is (1 + t)min{2+γ,1} worse.

3. On the other hand, for the I I α,β,σ
p terms, we have |β ′| + |β ′′| ≤ |β| + 1 instead of

|β ′| + |β ′′| ≤ |β| + 2 as in I α,β,σ
p . This gives a gain of (1 + t)−1.

Combining all these observations and making the necessary changes of the proof in
Case 2 of Proposition 6.5, we obtain the following analogue of (6.91):

〈x − tv〉Mmax+5−|σ | max
j

|∂α′
x ∂β ′

v Y σ ′
(āi jvi )||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v)

� ε
3
2 〈v〉max{1+γ+θm∗+1,θm∗+1}(1 + t)−2+ζk+1+|β|.

Now using (6.92) and (6.90), we obtain the desired conclusion. ��

Proposition 6.7 Let m∗ be as in the induction hypotheses in Section 6.3.3 and suppose
k := |α| + |β| + |σ | ≤ m∗. Then for I I I α,β,σ

p as in (6.78) and for (t, x, v) ∈
[0, TBoot ) × R

3 × R
3,

〈x − tv〉Mmax+5−|σ | I I I α,β,σ
p (t, x, v) � ε

3
2 〈v〉1+θm∗ (1 + t)−1−δ+ζk+|β|.

Proof The I I I α,β,σ
p is even better behaved than the I I α,β,σ

p term. To see this, note

that by Propositions 5.8 and 5.12, ∂α′
x ∂

β ′
v Y σ ′

āi i and ∂α′
x ∂

β ′
v Y σ ′

(āi jviv j ) obey all the

estimates that ∂α′
x ∂

β ′
v Y σ ′

(āi jvi ) satisfy. Note moreover that for the I I I α,β,σ
p terms, we

have |β ′| + |β ′′| ≤ |β| instead of |β ′| + |β ′′| ≤ |β| + 1 as in I I α,β,σ
p , which therefore

gives a better estimate in terms of (1 + t). Hence the term I I Iα,β,σ
p obeys all the

estimates that I I α,β,σ
p satisfy. The conclusion then follows from Proposition 6.6. ��

Proposition 6.8 Let m∗ be as in the induction hypotheses in Section 6.3.3 and suppose
k := |α|+|β|+|σ | ≤ m∗. Then for I V α,β,σ

p as in (6.79) and for (t, x, v) ∈ [0, TBoot )×
R
3 × R

3,

〈x − tv〉Mmax+5−|σ | I V α,β,σ
p (t, x, v) � ε

3
2 (1 + t)−1−δ+ζk+|β|.

Proof In this proof, we will also take α′, α′′, β ′, β ′′, σ ′, σ ′′ as in the term I V α,β,σ
p ,

i.e. |α′| + |α′′| ≤ |α|, |β ′| + |β ′′| ≤ |β| and |σ ′| + |σ ′′| ≤ |σ |.
By (6.67), we have either |α′′|+|β ′′|+|σ ′′| ≤ Mint or |α′|+|β ′|+|σ ′| ≤ Mint. We

treat these two cases respectively in term 1 and term 2 below. Note that in both terms
we also have |α′|+ |β ′|+ |σ ′| ≤ k and |α′′|+ |β ′′|+ |σ ′′| ≤ k. In each of these terms,

we use Proposition 5.13 to control |∂α′
x ∂

β ′
v Y σ ′

c̄| and use the induction hypotheses to

control 〈x − tv〉Mmax+5−|σ ′′||∂α′′
x ∂

β ′′
v Y σ ′′

g|.
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〈x − tv〉Mmax+5−|σ ||∂α′
x ∂β ′

v Y σ ′
c̄||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v)

� |∂α′
x ∂β ′

v Y σ ′
c̄|(t, x, v)(〈x − tv〉Mmax+5−|σ ′′||∂α′′

x ∂β ′′
v Y σ ′′

g|(t, x, v))

� ε
3
4 (1 + t)−3−γ+ζk+|β ′| · ε

3
4 (1 + t)|β ′′|︸ ︷︷ ︸

Term1

+ ε
3
4 (1 + t)−3−γ+|β ′| · ε

3
4 (1 + t)ζk+|β ′′|︸ ︷︷ ︸

Term2

� ε
3
2 (1 + t)−3−γ+ζk+|β|,

where in the last line we have used |β ′|+ |β ′′| = |β|. The statement of the proposition
hence follows from (4.1). ��

6.6 Concluding the Induction Argument

We continue to work under the induction hypotheses in Section 6.3.3. Our goal in this
subsection will be to conclude the induction argument.

Combining Proposition 6.4 and Propositions 6.5–6.8, we immediately obtain

Proposition 6.9 Let m∗ be as in the induction hypotheses in Section 6.3.3 and suppose
k := |α| + |β| + |σ | ≤ m∗. Then for (t, x, v) ∈ [0, TBoot ) × R

3 × R
3,

〈x − tv〉Mmax+5−|σ ||(∂t + vi∂xi − āi j∂
2
viv j

)(∂α
x ∂β

v Y
σ g)|(t, x, v)

� ε
3
2 〈v〉1+θm∗ (1+t)−1−δ+ζk+|β|+

∑
|α′|≤|α|+1
|β ′|≤|β|−1

〈x − tv〉Mmax+5−|σ ||∂α′
x ∂β ′

v Y σ g|(t, x, v)

+
∑

|β ′|≤|β|, |σ ′|≤|σ |
|β ′|+|σ ′|≤|β|+|σ |−1

〈v〉
(1 + t)1+δ

〈x − tv〉Mmax+5−|σ ||∂α
x ∂β ′

v Y σ ′
g|(t, x, v).

(6.93)

Proof It suffices to bound the terms Iα,β,σ
p , . . . , V I α,β,σ

p in Proposition 6.4. Proposi-

tions 6.5–6.8 exactly show that the terms I α,β,σ
p , I I α,β,σ

p , I I I α,β,σ
p and I V α,β,σ

p are

bounded above by the first term on the RHS of (6.93). Finally, the terms V α,β,σ
p and

V I α,β,σ
p are exactly the last two terms on the RHS of (6.93). ��

Proposition 6.10 Letm∗ be as in the induction hypotheses in Section 6.3.3 and suppose
k := |α| + |β| + |σ | ≤ m∗. Let h := ∂α

x ∂
β
v Y σ g. Then the assumptions 1, 2 and 4 in

Proposition 6.3 hold with (N , rH , pH ) defined as follows (and depend on γ , d0, |α|,
|β| and |σ |):

N = Mmax + 5 − |σ |,
rH = − 1 − δ + ζk + |β|,
pH = 1 + θm∗ ,

and CH ≥ 1 some constant depending only on γ and d0.
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Proof Step 1: Verifying assumption 1. This is an immediate corollary of the preliminary
L∞ estimate in Proposition 6.2.

Step 2: Verifying assumption 2. In view of the definition of (rH , pH ), (6.7) and the
induction hypotheses in Section 6.3.3, we need to check that

θm∗+1 − 1 ≤ min{θm∗ − 1 − γ, θm∗}, ζk+1 + 1 + |β| ≤ 1 − δ + ζk

+min{2 + γ, 1} + |β|.

The first inequality can be checked explicitly using (6.70)–(6.74), while the second
inequality is equivalent to (6.90) that we have already checked.

Step 3: Verifying assumption 4. This is an immediate consequence of the assumptions
of Theorem 1.1. ��

Proposition 6.11 Letm∗ be as in the induction hypotheses in Section 6.3.3 and suppose
k := |α| + |β| + |σ | ≤ m∗. Then for (t, x, v) ∈ [0, TBoot ) × R

3 × R
3,

〈x − tv〉Mmax+5−|σ ||∂α
x ∂β

v Y
σ g|(t, x, v) � ε〈v〉−1+θm∗ (1 + t)ζk+|β|. (6.94)

Proof The idea of the proof is to use themaximumprinciple in Proposition 6.3 together
with the estimates established in Propositions 6.9 and 6.10. In Proposition 6.10, we
have checked assumptions 1, 2 and 4 of Proposition 6.3.Wewant to use Proposition 6.9
to verify assumption 3 of Proposition 6.3. The only remaining issue is to handle the
last two terms in (6.93). For this reason, we proceed by an induction argument on
|β| + |σ |.
Base case: |β| + |σ | = 0 In this case, the last two terms on the RHS of (6.93) are not
present. Hence we simply have, for every |α| ≤ m∗,

〈x − tv〉Mmax+5|(∂t + vi∂xi − āi j∂
2
viv j

)(∂α
x g)|(t, x, v) � ε

3
2 〈v〉1+θm∗ (1 + t)−1−δ+ζk .

Therefore, by Propositions 6.3 (with (N , rH , pH ) = (Mmax + 5−|σ |,−1− δ + ζk +
|β|, 1 + θm∗)) and 6.10, we obtain

〈x − tv〉Mmax+5|∂α
x g|(t, x, v) � ε〈v〉−1+θm∗ (1 + t)ζk ,

as desired.

Induction step. Assume as an induction hypothesis that there exists B ∈ N such that
if |α| + |β| + |σ | ≤ m∗ and |β| + |σ | ≤ B − 1, then (6.94) holds.

We now take α, β, σ such that |α| + |β| + |σ | =: k ≤ m∗ and |β| + |σ | = B. Our
goal is to show that (6.94) holds for this choice of (α, β, σ ).
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It is easy to see that after plugging in the estimates in the induction hypothesis into
(6.93) in Proposition 6.9, we obtain

〈x − tv〉Mmax+5−|σ ||(∂t + vi ∂xi − āi j∂
2
vi v j

)(∂α
x ∂β

v Y
σ g)|(t, x, v)

�
{

ε
3
2 〈v〉1+θm∗ (1+t)−1−δ+ζk+|β|+ε〈v〉−1+θm∗ (1+t)−1+ζk+|β|+ε〈v〉θm∗ (1+t)−1−δ+ζk−1+|β| if |β|≥1

ε
3
2 〈v〉1+θm∗ (1+t)−1−δ+ζk +ε〈v〉θm∗ (1+t)−1−δ+ζk−1 if |β|=0

�
{

ε〈v〉1+θm∗ (1 + t)−1−δ+ζk+|β| + ε〈v〉−1+θm∗ (1 + t)−1+ζk+|β| if |β|≥1

ε〈v〉1+θm∗ (1 + t)−1−δ+ζk+|β| if |β|=0
.

(6.95)
Using the estimate in (6.95) and the bounds in Proposition 6.10, we now apply

the maximum principle in Propositions 6.3 (again with (N , rH , pH ) = (Mmax + 5 −
|σ |,−1− δ + ζk +|β|, 1+θm∗)). Note that when |β| ≥ 1, we have ζk +|β| ≥ 0 so we
can allow the second term on the last line of (6.95). This yields the desired estimates
(6.94) for |α| + |β| + |σ | ≤ m∗ and |β| + |σ | = B.

By induction on |β| + |σ |, we have thus proven (6.94) for all α, β, σ such that
|α| + |β| + |σ | ≤ m∗. ��

Proposition 6.11 concludes the induction argument (on m∗) initiated in Sec-
tion 6.3.3. As a consequence, (6.75) holds for all 1 ≤ m ≤ Mmax − 4. Moreover,

our arguments showed that (6.75) holds with ε
3
4 replaced by ε. This in turn implies

that (6.94) holds for all k := |α| + |β| + |σ | ≤ m with 1 ≤ m ≤ Mmax − 5. We
summarize this in the following corollary:

Corollary 6.12 Let k := |α| + |β| + |σ | with 1 ≤ k ≤ Mmax − 5. Then for (t, x, v) ∈
[0, TBoot ) × R

3 × R
3,

〈x − tv〉Mmax+5−|σ ||∂α
x ∂β

v Y
σ g|(t, x, v) � ε〈v〉−1+θk (1 + t)ζk+|β|.

6.7 Recovering the Bootstrap Assumptions (4.8) and (4.9)

The L∞
x L∞

v estimates obtained in Corollary 6.12 in particular improve the constants in
the bootstrap assumptions (4.8) and (4.9). We record this in the following proposition.

Proposition 6.13 If |α| + |β| + |σ | ≤ Mmax − 4 − max{2, � 2
2+γ

	}, then for every
t ∈ [0, TBoot ),

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

(t) � ε(1 + t)|β|. (6.96)

If Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then for every
t ∈ [0, TBoot ),

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

(t) � ε(1 + t)
3
2−(Mmax−4−k)min{ 34 ,

3(2+γ )
4 }+|β|.

(6.97)

Proof This is an immediate consequence of Corollary 6.12: first, note that−1+θk ≤ 0
so that we can drop the 〈v〉 weights; then compare the definition of ζk in (6.70)–(6.74)
with the t-rates in (6.96) and (6.97). ��
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7 Energy Estimates

We continue to work under the assumptions of Theorem 4.1.
In this section, our goal is to prove L2

x L
2
v for g and its derivatives. We begin in

Section 7.1 by obtaining some preliminary estimateswhichwill later be used to control
some error terms. In Section 7.2, we prove our main energy estimates, and classify the
error terms that arise. In Section 7.3, we control all the error terms from Section 7.2.In
Section 7.4, we then put together the estimates in Sections 7.2 and 7.4 and conclude
the energy estimates using an induction argument. Finally, in Section 7.5, we complete
the proof of Theorem 4.1.

7.1 Preliminary Estimates

Lemma 7.1 For T ∈ [0, TBoot) and |α| + |β| + |σ | ≤ Mmax,

‖(1 + t)−
1
2− 2δ

2 −|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L2([0,T ];L2

x L
2
v) � ε

3
4 .

Proof We can assume that T > 1 for otherwise the inequality is an immediate conse-
quence of the bootstrap assumption (4.7).

We split the integration in time into dyadic intervals. More precisely, let k =
�log2 T 	 + 1. Define {Ti }ki=0 with T0 < T1 < T2 < · · · < Tk , where T0 = 0,
Ti = 2i−1 when i = 1, . . . , k − 1 and Tk = T . Note that by the bootstrap assumption
(4.7), for any i = 1, . . . , k,

‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L2([Ti−1,Ti ];L2

x L
2
v)

� ε
3
4 2|β|i .

Therefore,

‖(1 + t)−
1
2− 2δ

2 −|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L2([0,T ];L2

x L
2
v)

�
(

k∑
i=1

‖(1 + t)−
1
2− 2δ

2 −|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([Ti−1,Ti ];L2

x L
2
v)

) 1
2

�
(

k∑
i=1

2−2|β|i−δi‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([Ti−1,Ti ];L2

x L
2
v)

) 1
2

� ε
3
4

(
k∑

i=1

2−2|β|i−δi · 22|β|i
) 1

2

= ε
3
4

(
k∑

i=1

2−δi

) 1
2

� ε
3
4 ,

which is what we claimed. ��
Wenext prove an interpolation estimate for the lower order (i.e.with |α|+|β|+|σ | ≤

Mint) norms, which is an immediate consequence of Proposition 6.11 and Lemma 7.1.
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Proposition 7.2 Let |α|+ |β|+ |σ | ≤ Mint (where Mint is as in (6.66)). Then for every
T ∈ [0, TBoot ),

‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L∞
x L2

v∩L∞
x L∞

v ) � ε
3
4 .

(7.1)

As a consequence, for any p ∈ [2,∞], the following holds for every T ∈ [0, TBoot )

‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L∞
x L2

v∩L∞
x L p

v ) � ε
3
4 .

(7.2)

Proof For the remainder of the proof take |α| + |β| + |σ | ≤ Mint.

Step 1: Proof of (7.1). By definition, it suffices to prove this estimate separately for
the L2([0, T ]; L∞

x L2
v) norm and the L2([0, T ]; L∞

x L∞
v ) norm.

To control the L2([0, T ]; L∞
x L2

v) norm, let us in fact prove an estimate for the
stronger norm L2([0, T ]; L2

vL
∞
x ). For each (t, v) ∈ [0, T ] × R

3, standard Sobolev
embedding in R3 (for the x variables) yields

‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L∞
x

(t, v)

�
∑

|α′|≤2

‖∂α′
x ((1 + t)−

1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g)‖L2
x
(t, v)

�
∑

|α′′|≤|α|+2

‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α′′

x ∂β
v Y

σ g‖L2
x
(t, v)

Taking the L2
v norm and then the L2([0, T ]) norm on both sides, and using Lemma 7.1

(which is applicable, since if |α|+ |β|+ |σ | ≤ Mint, then |α|+ |β|+ |σ |+ 2 ≤ Mmax
by (6.68)), we obtain

‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L2
vL

∞
x ) � ε

3
4 .

Next we control the L2([0, T ]; L∞
x L∞

v ) norm. Using Corollary 6.12 and the fact
that ζk = θk = 0 when k ≤ Mint according to (6.70), we obtain

‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L∞
v L∞

x )

� ε‖(1 + t)−
1
2−δ‖L2([0,T ]) � ε.

This concludes the proof of (7.1).

Step 2:Proof of (7.2). (7.2) is an immediate consequence of (7.1) andHölder’s inequal-
ity. ��
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7.2 Main Energy Estimates

In this subsection, we prove the main energy estimates.We first prove a general energy
estimate for solutions to equation of the form

∂t h + vi∂xi h + δd0
(1 + t)1+δ

〈v〉2h − āi j∂
2
viv j

h = H .

This estimate will be then be applied to g and its derivatives; see Proposition 7.4.

Proposition 7.3 Let 	 ∈ N∪{0}, 	 ≤ Mmax+5. Suppose h : [0, TBoot )×R
3×R

3 → R

is a C∞ solution to

∂t h + vi∂xi h + δd0
(1 + t)1+δ

〈v〉2h − āi j∂
2
viv j

h = H , (7.3)

with 〈x − tv〉	h ∈ L2
x L

2
v for all t ∈ [0, TBoot ), and 〈x − tv〉	H : [0, TBoot )×R

3 ×R
3

is a C∞ function such that 〈x − tv〉	H ∈ L2([0, TBoot ); L2
x L

2
v).

Then for any T ∈ [0, TBoot ),

‖〈x − tv〉	h‖2L∞([0,T ];L2
x L

2
v)

+ ‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉	h‖2L2([0,T ];L2
x L

2
v)

� ‖〈x〉	h‖2L2
x L

2
v
(0) +

∫ T

0

∣∣∣∣
∫
R3

∫
R3

〈x − tv〉2	hH(t, x, v) dv dx

∣∣∣∣ dt .

Proof Let T be as in the statement of the proposition and take T∗ ∈ (0, T ] to be
arbitrary. The idea is to multiply (7.3) by 〈x − tv〉2	h, integrate in [0, T∗] ×R

3 ×R
3,

and integrate by parts. First note that we have

(
∂

∂t
+ vi

∂

∂xi

)(
〈x − tv〉2	

)
= 0.

Hence, performing the integration discussed above and integrate by parts in t and x ,
we obtain

1

2

∫
R3

∫
R3

〈x − T∗v〉2	h2(T∗, x, v) dv dx − 1

2

∫
R3

∫
R3

〈x〉2	h2(0, x, v) dv dx (7.4)

+
∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	 δd0
(1 + t)1+δ

〈v〉2h2(t, x, v) dv dx dt (7.5)

+
∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	āi j h∂2viv j
h(t, x, v) dv dx dt (7.6)

=
∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	hH(t, x, v) dv dx dt . (7.7)
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For the term (7.6), we integrate by parts in v (multiple times) and use that āi j is
symmetric to obtain

∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	āi j h∂2viv j
h(t, x, v) dv dx dt

= −
∫ T∗

0

∫
R3

∫
R3

∂vi (〈x − tv〉2	āi j h)∂v j h(t, x, v) dv dx dt

= −
∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	āi j (∂vi h)(∂v j h)(t, x, v) dv dx dt

+
∫ T∗

0

∫
R3

∫
R3

	〈x − tv〉2	−2t(xi − tvi )āi j ∂v j h
2(t, x, v) dv dx dt

− 1

2

∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	(∂vi āi j )∂v j h
2(t, x, v) dv dx dt

= −
∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	āi j (∂vi h)(∂v j h)(t, x, v) dv dx dt (7.8)

+ 	

∫ T∗

0

∫
R3

∫
R3

t2δi j 〈x − tv〉2	−2āi j h
2(t, x, v) dv dx dt (7.9)

+ 2	(	−1)
∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	−4t2(xi −tvi )(x j −tv j )āi j h
2(t, x, v) dv dx dt

(7.10)

− 2	
∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	−2t(xi − tvi )(∂v j āi j )h
2(t, x, v) dv dx dt (7.11)

+ 1

2

∫ T∗

0

∫
R3

∫
R3

〈x − tv〉2	(∂2viv j
āi j )h

2(t, x, v) dv dx dt . (7.12)

We now analyze each of (7.8)–(7.12). For (7.8), we simply note that

(7.8) ≤ 0.

For (7.9), we apply Hölder’s inequality and Proposition 5.11 to obtain

|(7.9)| �
∫ T∗

0
t2‖〈x − tv〉−2〈v〉−1āi j‖L∞

x L∞
v

(t)‖〈v〉〈x − tv〉	h‖2L2
x L

2
v
(t) dt

� ε
3
4

∫ T∗

0
(1 + t)−1−min{2+γ,1}‖〈v〉〈x − tv〉	h‖2L2

x L
2
v
(t) dt .

For (7.10), we argue similarly as for (7.9), since clearly
∣∣〈x − tv〉2	−4(xi − tvi )(x j −

tv j )
∣∣ ≤ 〈x − tv〉2	−2. We therefore apply Hölder’s inequality and Proposition 5.11 to

obtain
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|(7.10)|�
∫ T∗

0
t2‖〈x − tv〉−2〈v〉−1āi j‖L∞

x L∞
v

(t)‖〈v〉〈x − tv〉	h‖2L2
x L

2
v
(t) dt

� ε
3
4

∫ T∗

0
(1 + t)−1−min{2+γ,1}‖〈v〉〈x − tv〉	h‖2L2

x L
2
v
(t) dt .

For (7.11), first note that 〈x − tv〉2	−2|xi − tvi | ≤ 〈x − tv〉2	−1. Therefore, applying
Hölder’s inequality and Proposition 5.11, we obtain

|(7.11)| �
∫ T∗

0
t

⎛
⎝ ∑

|β|=1

‖〈x − tv〉−1〈v〉−1∂β
v āi j‖L∞

x L∞
v

(t)

⎞
⎠ ‖〈v〉〈x − tv〉	h‖L2

x L
2
v
(t) dt

� ε
3
4

∫ T∗

0
(1 + t)−1−min{2+γ,1}‖〈v〉〈x − tv〉	h‖2L2

x L
2
v
(t) dt .

For (7.12), there is no gain in 〈x − tv〉 factors for an application of Proposition 5.11.
Instead, we take advantage of the ∂v derivatives on āi j . More precisely, we apply
Hölder’s inequality and Proposition 5.9 to obtain

|(7.12)| �
∫ T∗

0

⎛
⎝ ∑

|β|=2

‖〈v〉−1∂β
v āi j‖L∞

x L∞
v

(t)

⎞
⎠ ‖〈v〉〈x − tv〉	h‖L2

x L
2
v
(t) dt

� ε
3
4

∫ T∗

0
(1 + t)−1−min{2+γ,1}‖〈v〉〈x − tv〉	h‖L2

x L
2
v
(t) dt .

This concludes the discussion on the term (7.6).
Finally, we look at the term (7.7), which can easily be controlled by

|(7.7)| ≤
∫ T∗

0

∣∣∣∣
∫
R3

∫
R3

〈x − tv〉2	hH(t, x, v) dv dx

∣∣∣∣ dt .

Returning to the main identity (7.4)–(7.7), we therefore obtain

‖〈x − T∗v〉	h‖2L2
x L

2
v
(T∗) + δd0‖(1 + t)−

1
2− δ

2 〈v〉〈x − tv〉	h(t, x, v)‖2L2([0,T∗];L2
x L

2
v)

� ‖〈x〉	h‖2L2
x L

2
v
(0) + ε

3
4 ‖(1 + t)−

1
2− 1

2 min{2+γ,1}〈v〉〈x − tv〉	h‖2L2([0,T∗];L2
x L

2
v)

+
∫ T∗

0

∣∣∣∣
∫
R3

∫
R3

〈x − tv〉2	hH(t, x, v) dv dx

∣∣∣∣ dt .

Note that since δ < min{2 + γ, 1} (see (4.1)), by choosing ε0 sufficiently small (and
therefore ε sufficiently small), the second term on the RHS can be absorbed into the
second term on the LHS. Using also T∗ ≤ T , this gives
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‖〈x − T∗v〉	h‖2L2
x L

2
v
(T∗) + δd0‖(1 + t)−

1
2− δ

2 〈v〉〈x − tv〉	h(t, x, v)‖2L2([0,T∗];L2
x L

2
v)

� ‖〈x〉	h‖2L2
x L

2
v
(0) +

∫ T

0

∣∣∣∣
∫
R3

∫
R3

〈x − tv〉2	hH(t, x, v) dv dx

∣∣∣∣ dt .

Finally, taking the supremum over all T∗ ∈ (0, T ], we obtain the desired estimate. ��

Proposition 7.4 Let |α| + |β| + |σ | ≤ Mmax. Then the following estimate holds for
all T ∈ [0, TBoot ):

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

+ ‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

� ε2 + (
I α,β,σ
e + I I α,β,σ

e + I I I α,β,σ
e + I V α,β,σ

e + V α,β,σ
e

+V I α,β,σ
e + V I I α,β,σ

e + V I I I α,β,σ
e

)
(T ),

where17

I α,β,σ
e := max

i, j

∑
|α′|+|α′′|+|α′′′|≤2|α|

|β ′|+|β ′′|+|β ′′′|≤2|β|+2
|σ ′|+|σ ′′|+|σ ′′′|≤2|σ |

|α′′′|+|β ′′′|+|σ ′′′|=|α|+|β|+|σ |
1≤|α′|+|β ′|+|σ ′|≤|α|+|β|+|σ |
|α′′|+|β ′′|+|σ ′′|≤|α|+|β|+|σ |

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂β ′′′

v Y σ ′′′
g|

×|∂α′
x ∂β ′

v Y σ ′
āi j ||∂α′′

x ∂β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v), (7.13)

I I α,β,σ
e := max

i, j

∑
|α′|+|α′′|+|α′′′|≤2|α|

|β ′|+|β ′′|+|β ′′′|≤2|β|+1
|σ ′|+|σ ′′|+|σ ′′′|≤2|σ |

|α′′′|+|β ′′′|+|σ ′′′|=|α|+|β|+|σ |
|α′|+|β ′|+|σ ′|=1

‖t〈x − tv〉2Mmax+9−2|σ ||∂α′′′
x ∂β ′′′

v Y σ ′′′
g|

×|∂α′
x ∂β ′

v Y σ ′
āi j ||∂α′′

x ∂β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v), (7.14)

I I I α,β,σ
e := max

j

∑
|α′|+|α′′|=|α|

|β ′|+|β ′′|=|β|+1
|σ ′|+|σ ′′|=|σ |

1≤|α′|+|β ′|+|σ ′|≤|α|+|β|+|σ |
|α′′|+|β ′′|+|σ ′′|≤|α|+|β|+|σ |

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g|

×|∂α′
x ∂β ′

v Y σ ′
(āi jvi )||∂α′′

x ∂β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v), (7.15)

I V α,β,σ
e :=max

j
‖t〈x − tv〉2Mmax+9−2|σ ||∂α

x ∂β
v Y

σ g||āi jvi ||∂α
x ∂β

v Y
σg|‖L1([0,T ];L1

x L
1
v),

(7.16)

17 For the sake of brevity, we suppress the arguments (t, x, v) of g, a, c and their derivatives.
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V α,β,σ
e :=

∑
|α′|+|α′′|≤|α|
|β ′|+|β ′′|≤|β|
|σ ′|+|σ ′′|≤|σ |

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v g|

×|∂α′
x ∂β ′

v Y σ ′
āi i ||∂α′′

x ∂β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

+
∑

|α′|+|α′′|≤|α|
|β ′|+|β ′′|≤|β|
|σ ′|+|σ ′′|≤|σ |

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g||∂α′

x ∂β ′
v Y σ ′

(āi jviv j )|

×|∂α′′
x ∂β ′′

v Y σ ′′
g|‖L1([0,T ];L1

x L
1
v), (7.17)

V I α,β,σ
e :=

∑
|α′|+|α′′|≤|α|
|β ′|+|β ′′|≤|β|
|σ ′|+|σ ′′|≤|σ |

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g|

×|∂α′
x ∂β ′

v Y σ ′
c̄||∂α′′

x ∂β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v), (7.18)

V I I α,β,σ
e :=

∑
|α′|≤|α|+1, |β ′|≤|β|−1

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g|

×|∂α′
x ∂β ′

v Y σ g|‖L1([0,T ];L1
x L

1
v), (7.19)

and

V I I I α,β,σ
e :=

∑
|β ′|≤|β|, |σ ′|≤|σ |

|β ′|+|σ ′|≤|β|+|σ |−1

‖ 〈v〉 1
2

(1 + t)1+δ
〈x − tv〉2Mmax+10−2|σ ||∂α

x ∂β
v Y

σ g|

× |∂α
x ∂β ′

v Y σ ′
g|‖L1([0,T ];L1

x L
1
v).

(7.20)
Here, by our convention (see Section 2), if |β|+ |σ | = 0, then the terms V I I α,β,σ

e and
V I I I α,β,σ

e are not present.

Proof In view of the general estimate in Proposition 7.3 and the data bound in the
assumption of Theorem 1.1, it suffices to show that18

∫ T

0

∣∣∣∣
∫
R3

∫
R3

〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g × (RHS of (6.82)) dv dx

∣∣∣∣ dt

is bounded by the terms Ie through V I Ie.
Consider each term on the RHS of (6.82).

Step 1: Controlling Term1. By (6.83), the contribution from Term1 can be bounded
by the term V I Ie in (7.19).

18 We remark that technically at the top level, i.e. when |α|+|β|+|σ | = Mmax, our bootstrap assumptions
by themselves are not strong enough to ensure that the RHS is in L2([0, T ]; L2x L2v) to apply Proposition 7.3.
Nevertheless, by a standard argument which approximates the initial data with slightly more regular data
and proves that higher regularity persists, this can be justified. We omit the details.
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Step 2: Controlling Term2. By (6.84), the contribution from Term2 can be bounded
by the term V I I Ie in (7.20).

Step 3: Controlling Term3. To handle this term requires additional integrations by
parts. (This is in contrast to the L∞ estimate in Proposition 6.4, since we now cannot
lose derivatives.)

Consider first the case (|α′|, |β ′|, |σ ′|) = (1, 0, 0). In this case, ∂α′
x = ∂x	

for some

	 and ∂α′
x ∂

β ′
v Y σ ′ = ∂x	

, ∂α
x = ∂x	

∂α′′
x , ∂β ′′

v = ∂
β
v , Y σ ′′ = Y σ .

We now carry out the (two) integrations by parts. To simplify notation, let us not
write the integrals, but use the notation � to denote that the equality holds after
integrating with respect to dv dx .

〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂x	

āi j )∂
2
viv j

∂α′′
x ∂β

v Y
σ g

� −〈x − tv〉2Mmax+10−2|σ |∂vi ∂x	
∂α′′
x ∂β

v Y
σ g(∂x	

āi j )∂v j ∂
α′′
x ∂β

v Y
σ g

+ 4t(Mmax + 5 − |σ |)(xi − tvi )〈x − tv〉2Mmax+8−2|σ |∂α
x ∂β

v Y
σ

× g(∂x	
āi j )∂v j ∂

α′′
x ∂β

v Y
σ g

− 〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂vi ∂x	

āi j )∂v j ∂
α′′
x ∂β

v Y
σ g

� 1

2
〈x − tv〉2Mmax+10−2|σ |∂vi ∂

α′′
x ∂β

v Y
σ g(∂2x	

āi j )∂v j ∂
α′′
x ∂β

v Y
σ g

+ 2(Mmax + 5 − |σ |)(x	 − tv	)〈x − tv〉2Mmax+8−2|σ |∂vi ∂
α′′
x ∂β

v Y
σ

× g(∂x	
āi j )∂v j ∂

α′′
x ∂β

v Y
σ g

+ 4t(Mmax + 5 − |σ |)(xi − tvi )〈x − tv〉2Mmax+8−2|σ |∂α
x ∂β

v Y
σ

× g(∂x	
āi j )∂v j ∂

α′′
x ∂β

v Y
σ g

− 〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂vi ∂x	

āi j )∂v j ∂
α′′
x ∂β

v Y
σ g.

Take the L1([0, T ]; L1
x L

1
v) norm of each of these terms. The first, second and fourth

terms can be bounded by Ie while the third term can be bounded by I Ie.
Next, we consider the case (|α′|, |β ′|, |σ ′|) = (0, 1, 0). In this case, ∂α′

v = ∂v	
for

some 	 and ∂α′
x ∂

β ′
v Y σ ′ = ∂v	

, ∂α′′
x = ∂α

x , ∂
β
v = ∂v	

∂
β ′′
x , Y σ ′′ = Y σ .

As above, � means that two expressions are equal after integrating with respect to
dv dx .

〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂v	

āi j )∂
2
viv j

∂α
x ∂β ′′

v Y σ g

� −〈x − tv〉2Mmax+10−2|σ |∂vi ∂
α
x ∂v	

∂β ′′
v Y σ g(∂v	

āi j )∂v j ∂
α
x ∂β ′′

v Y σ g

+ 4t(Mmax + 5 − |σ |)(xi − tvi )〈x − tv〉2Mmax+8−2|σ |∂α
x ∂β

v Y
σ

g(∂v	
āi j )∂v j ∂

α
x ∂β ′′

v Y σ g

− 〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂vi ∂v	

āi j )∂v j ∂
α
x ∂β ′′

v Y σ g

� 1

2
〈x − tv〉2Mmax+10−2|σ |∂vi ∂

α
x ∂β ′′

v Y σ g(∂2v	
āi j )∂v j ∂

α
x ∂β ′′

v Y σ g
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− 2t(Mmax + 5 − |σ |)(x	 − tv	)〈x − tv〉2Mmax+8−2|σ |∂vi ∂
α
x ∂β ′′

v Y σ

g(∂x	
āi j )∂v j ∂

α
x ∂β ′′

v Y σ g

+ 4t(Mmax + 5 − |σ |)(xi − tvi )〈x − tv〉2Mmax+8−2|σ |∂α
x ∂β

v Y
σ g

(∂v	
āi j )∂v j ∂

α
x ∂β ′′

v Y σ g

− 〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂vi ∂v	

āi j )∂v j ∂
α
x ∂β ′′

v Y σ g.

Take the L1([0, T ]; L1
x L

1
v) norm of each of these terms. The first and fourth terms can

be bounded by Ie while the second and third terms can be bounded by I Ie.
Finally, we consider the case (|α′|, |β ′|, |σ ′|) = (0, 0, 1). In this case, Y α′ =

t∂x	
+ ∂v	

=: Y	 for some 	 and ∂α′
x ∂

β ′
v Y σ ′ = Y	, ∂α′′

x = ∂α
x , ∂

β ′′
v = ∂

β
x , Y σ = Y	Y σ ′′

.
As above, � means that two expressions are equal after integrating with respect to

dv dx .

〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ ′′
Y	g(Y	āi j )∂

2
viv j

∂α
x ∂β

v Y
σ ′′
g

� −〈x − tv〉2Mmax+10−2|σ |∂vi ∂
α
x ∂β

v Y	Y
σ ′′
g(Y	āi j )∂v j ∂

α
x ∂β

v Y
σ ′′
g

+ 4t(Mmax + 5 − |σ |)(xi − tvi )〈x − tv〉2Mmax+8−2|σ |∂α
x ∂β

v Y
σ

g(Y	āi j )∂v j ∂
α
x ∂β

v Y
σ ′′
g

− 〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂vi Y	āi j )∂v j ∂

α
x ∂β

v Y
σ ′′
g

� 1

2
〈x − tv〉2Mmax+10−2|σ |∂vi ∂

α
x ∂β

v Y
σ ′′
g(Y 2

	 āi j )∂v j ∂
α
x ∂β

v Y
σ ′′
g

+ 4t(Mmax + 5 − |σ |)(xi − tvi )〈x − tv〉2Mmax+8−2|σ |∂α
x ∂β

v Y
σ

g(Y	āi j )∂v j ∂
α
x ∂β

v Y
σ ′′
g

− 〈x − tv〉2Mmax+10−2|σ |∂α
x ∂β

v Y
σ g(∂vi Y	āi j )∂v j ∂

α
x ∂β

v Y
σ ′′
g.

Take the L1([0, T ]; L1
x L

1
v) norm of each of these terms. The first and third terms can

be bounded by Ie while the second term can be bounded by I Ie.

Step 4: Controlling Term4. For Term4, it is straightforward to see that (6.85) implies
that the corresponding contribution is bounded by V I α,β,σ

e in (7.18).

Step 5: Controlling Term5. For Term5,

4(d(t))2∂α
x ∂β

v Y
σ (āi jvi∂v j g)

= 4(d(t))2
∑

α′+α′′=α
β ′+β ′′=β

σ ′+σ ′′=σ
|α′|+|β ′|+|σ ′|≥1

(∂α′
x ∂β ′

v Y σ ′
(āi jvi ))(∂v j ∂

α′′
x ∂β ′′

v g)

+ 4(d(t))2āi jvi∂v j ∂
α
x ∂β

v Y
σ g.

(7.21)

The first term in (7.21) gives a contribution of the type I I Ie in (7.15).
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For the second term in (7.21), we need an integration by parts in ∂v j :

∣∣∣∣
∫
R3

∫
R3

4(d(t))2〈x − tv〉2Mmax+10−2|σ |(∂α
x ∂β

v Y
σ g)āi jvi (∂v j ∂

α
x ∂β

v Y
σ g) dv dx

∣∣∣∣
≤ 2(d(t))2‖〈x − tv〉2Mmax+10−2|σ |∂α

x ∂β
v Y

σ g(∂v j (āi jvi ))∂
α
x ∂β

v Y
σ g‖L1

vL
1
x

+ 4(Mmax + 5 − |σ |)(d(t))2‖〈x − tv〉2Mmax+8−2|σ |

(x j − tv j )∂
α
x ∂β

v Y
σ g(āi jvi )∂

α
x ∂β

v Y
σ g‖L1

vL
1
x
.

(7.22)
After bounding (d(t))2 � 1, |x j − tv j | � 〈x − tv〉, and integrating over t ∈ [0, T ],
the first term on the RHS of (7.22) gives a contribution of the type I I Ie in (7.15) and
the second term on the RHS of (7.22) gives a contribution of the type I Ve in (7.16).

Step 6: Controlling Term6. By (6.87), Term6 can be bounded by V α,β,σ
e in (7.17). ��

7.3 Controlling the Error Terms

Proposition 7.5 Let |α|+|β|+|σ | ≤ Mmax. Then the term I α,β,σ
e in (7.13) is bounded

as follows for every T ∈ [0, TBoot ):

I α,β,σ
e � ε2(1 + T )2|β|.

Proof From now on we take a particular term in Iα,β,σ
e , and assume that α′, α′′, α′′′,

β ′, β ′′, β ′′′, σ ′, σ ′′ and σ ′′′ obey the required conditions in the sum in I α,β,σ
e .

Short-time estimates: T ≤ 1. We first consider the estimates for T ≤ 1. We will
consider separately the cases |α′| + |β ′| + |σ ′| ≤ Mint and |α′| + |β ′| + |σ ′| > Mint.

Case 1: |α′| + |β ′| + |σ ′| ≤ Mint. By Hölder’s inequality, Proposition 5.8 and
Lemma 7.1,

max
i, j

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂

β ′′′
v Y σ ′′′

g||∂α′
x ∂

β ′
v Y σ ′

āi j ||∂α′′
x ∂

β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

� max
i, j

‖〈v〉〈x − tv〉Mmax+5−|σ ′′′|∂α′′′
x ∂

β ′′′
v Y σ ′′′

g‖L2([0,T ];L2
x L

2
v)

× ‖〈v〉−2∂α′
x ∂

β ′
v Y σ ′

āi j‖L∞([0,T ];L∞
x L∞

v ) × ‖〈v〉〈x − tv〉Mmax+5−|σ ′′|

∂α′′
x ∂

β ′′
v Y σ ′′

g‖L2([0,T ];L2
x L

2
v)

� ε
3
4 × ε

3
4 × ε

3
4 = ε

9
4 .

Case 2: |α′| + |β ′| + |σ ′| > Mint. Note that in this case |α′′| + |β ′′| + |σ ′′| ≤ Mint.
By Hölder’s inequality, Propositions 5.21 and 7.2,

max
i, j

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂

β ′′′
v Y σ ′′′

g||∂α′
x ∂

β ′
v Y σ ′

āi j ||∂α′′
x ∂

β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

� max
i, j

‖〈v〉〈x − tv〉Mmax+5−|σ ′′′|∂α′′′
x ∂

β ′′′
v Y σ ′′′

g‖L2([0,T ];L2
x L

2
v)
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× ‖〈v〉−2∂α′
x ∂

β ′
v Y σ ′

āi j‖L∞([0,T ];L2
x L

∞
v ) × ‖〈v〉〈x − tv〉Mmax+5−|σ ′′|

∂α′′
x ∂

β ′′
v Y σ ′′

g‖L2([0,T ];L∞
x L2

v)

� ε
3
4 × ε

3
4 × ε

3
4 = ε

9
4 .

Long-time estimates: T ≥ 1. We now move to the estimates for T ≥ 1. Again, we
separately consider the cases |α′| + |β ′| + |σ ′| ≤ Mint and |α′| + |β ′| + |σ ′| > Mint.

Case 1: |α′|+|β ′|+|σ ′| ≤ Mint. In this case, we control ∂α′
x ∂

β ′
v Y σ ′

āi j in L∞
x L∞

v (with
appropriateweights). SinceMint ≤ Mmax−4−max{2, � 2

2+γ
	}, we can apply the lower

order L∞
x L∞

v estimates for ∂α′
x ∂

β ′
v Y σ ′

āi j without a loss. It is crucial in our estimate to
also exploit the fact |α′|+ |β ′|+ |σ ′| ≥ 1, so that we have L∞

x L∞
v estimates which are

better than that in Proposition 5.8 (which would have incurred a logarithmic loss). To
use this, we separately consider the (non-mutually exclusive) subcases |σ ′| ≥ 1 and
max{|α′|, |β ′|} ≥ 1 below.

Case 1(a): |α′| + |β ′| + |σ ′| ≤ Mint and |σ ′| ≥ 1. The key point for |σ ′| ≥ 1
is that |σ ′′′| + |σ ′′| ≤ 2|σ | − 1. As a consequence, 〈x − tv〉2Mmax+10−2|σ | �
〈x−tv〉Mmax+5−|σ ′′′|〈x−tv〉Mmax+5−|σ ′′|〈x−tv〉−1. Note also that |β ′|+|β ′′|+|β ′′′| ≤
2|β| + 2. With these bounds, we use Hölder’s inequality, Proposition 5.11 and
Lemma 7.1 to obtain

max
i, j

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂

β ′′′
v Y σ ′′′

g||∂α′
x ∂

β ′
v Y σ ′

āi j ||∂α′′
x ∂

β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

� max
i, j

(1 + T )2|β|‖(1 + t)− 1
2−δ−|β ′′′|〈v〉〈x − tv〉Mmax+5−|σ ′′′|

∂α′′′
x ∂

β ′′′
v Y σ ′′′

g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|+2〈v〉−2〈x − tv〉−1∂α′
x ∂

β ′
v Y σ ′

āi j‖L∞([0,T ];L∞
x L∞

v )

× ‖(1 + t)− 1
2−δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β ′′
v Y σ ′′

g‖L2([0,T ];L2
x L

2
v)

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε
3
4 (1 + t)1+2δ−|β ′|+2(1 + t)−3−min{2+γ,1}+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we have used that 2δ < min{2 + γ, 1} (by (4.1)).

Case 1(b): |α′| + |β ′| ≤ Mint and max{|α′|, |β ′|} ≥ 1. In this case, we do not have a
gain in the 〈x − tv〉 weight as in Case 1(a). Nevertheless, since |β ′| ≥ 1 or |α′| ≥ 1,
we can take advantage of the improvement in Propositions 5.9 or 5.10. Let us note as
in Case 1(a) that |β ′| + |β ′′| + |β ′′′| ≤ 2|β| + 2. Hence, using Hölder’s inequality,
Propositions 5.9, 5.10 and Lemma 7.1, we obtain
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max
i, j

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂

β ′′′
v Y σ ′′′

g||∂α′
x ∂

β ′
v Y σ ′

āi j ||∂α′′
x ∂

β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

� max
i, j

(1 + T )2|β|‖(1 + t)− 1
2−δ−|β ′′′|〈v〉〈x − tv〉Mmax+5−|σ ′′′|

∂α′′′
x ∂

β ′′′
v Y σ ′′′

g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|+2〈v〉−2∂α′
x ∂

β ′
v Y σ ′

āi j‖L∞([0,T ];L∞
x L∞

v )

× ‖(1 + t)− 1
2−δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β ′′
v Y σ ′′

g‖L2([0,T ];L2
x L

2
v)

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε
3
4 (1 + t)1+2δ−|β ′|+2(1 + t)−3−min{2+γ,1}+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we used that 2δ < min{2 + γ, 1} (by (4.1)).

Case 2: |α′|+|β ′|+|σ ′| > Mint. Recall again that in this case |α′′|+|β ′′|+|σ ′′| ≤ Mint

and thuswe control ∂α′′
x ∂

β ′′
v g in L2([0, T ]; L∞

x L p
v ) (for suitable p andwith appropriate

weights).
Before we proceed, one checks that by definition Mint ≥ 3. Hence, by the pigeon

hole principle, we must have |α′| ≥ 2 or |β ′| ≥ 2 or |σ ′| ≥ 2. We separate into these
three (non-mutually exclusive) subcases.

Case 2(a): |α′| + |β ′| + |σ ′| > Mint and |σ ′| ≥ 2. In analogy with case 1(a), we
take advantage of |σ ′| ≥ 2 by using that it implies |σ ′′′| + |σ ′′| ≤ 2|σ | − 2. Hence
〈x − tv〉2Mmax+10−2|σ | � 〈x − tv〉Mmax+5−|σ ′′′|〈x − tv〉Mmax+5−|σ ′′|〈x − tv〉−2. Note
also that |β ′|+ |β ′′|+ |β ′′′| ≤ 2|β|+ 2. By Hölder’s inequality, Propositions 5.24 and
7.2, we obtain

max
i, j

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂

β′′′
v Y σ ′′′

g||∂α′
x ∂

β′
v Y σ ′′

āi j ||∂α′′
x ∂

β′′
v Y σ ′′

g|‖L1([0,T ];L1x L1v)

� max
i, j

(1 + T )2|β|‖(1 + t)−
1
2−δ−|β′′′|〈v〉〈x − tv〉Mmax+5−|σ ′′′|∂α′′′

x ∂
β′′′
v Y σ ′′′

g‖L2([0,T ];L2x L2v)

× ‖(1 + t)1+2δ−|β′|+2〈v〉−2〈x − tv〉−2∂α′
x ∂

β′
v Y σ ′′

āi j‖L∞([0,T ];L2x L∞
v +L2x L

p∗∗
v )

× ‖(1 + t)−
1
2−δ−|β′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β′′
v Y σ ′′

g‖
L2

(
[0,T ];L∞

x L2v∩L∞
x L

2p∗∗
p∗∗−2

)

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε
3
4 (1 + t)1+2δ−|β′|+2(1 + t)−min{ 165 ,5+γ }+|β′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we used that 2δ < min{2 + γ, 1
5 } (by (4.1)).
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Case 2(b): |α′| + |β ′| + |σ ′| > Mint and |β ′| ≥ 2. In this case, we take advantage of
|β ′| ≥ 2 and use Proposition 5.22. More precisely, after noting |β ′| + |β ′′| + |β ′′′| ≤
2|β| + 2, we use Hölder’s inequality, Propositions 5.22 and 7.2 to obtain

max
i, j

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂

β′′′
v Y σ ′′′

g||∂α′
x ∂

β′
v Y σ ′

āi j ||∂α′′
x ∂

β′′
v Y σ ′′

g|‖L1([0,T ];L1x L1v)

� max
i, j

(1 + T )2|β|‖(1 + t)−
1
2−δ−|β′′′|〈v〉〈x − tv〉Mmax+5−|σ ′′′|∂α′′′

x ∂
β′′′
v Y σ ′′′

g‖L2([0,T ];L2x L2v)

× |(1 + t)1+2δ−|β′|+2〈v〉−2∂α′
x ∂

β′
v Y σ ′

āi j‖L∞(
[0,T ];L2x L p∗∗

v

)

× ‖(1 + t)−
1
2−δ−|β′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β′′
v Y σ ′′

g‖
L2([0,T ];L∞

x L

2p∗∗
p∗∗−2
v )

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε
3
4 (1 + t)1+2δ−|β′|+2(1 + t)−min{ 165 ,5+γ }+|β′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we again used that 2δ < min{2 + γ, 1
5 } (by (4.1)).

Case 2(c): |α′| + |β ′| + |σ ′| > Mint and |α′| ≥ 2. In this case, we take advantage of
|α′| ≥ 2 and use Proposition 5.23. More precisely, after noting |β ′| + |β ′′| + |β ′′′| ≤
2|β| + 2, we use Hölder’s inequality, Propositions 5.23 and 7.2 to obtain

max
i, j

‖〈x − tv〉2Mmax+10−2|σ ||∂α′′′
x ∂

β′′′
v Y σ ′′′

g||∂α′
x ∂

β′
v Y σ ′

āi j ||∂α′′
x ∂

β′′
v Y σ ′′

g|‖L1([0,T ];L1x L1v)

� max
i, j

(1 + T )2|β|‖(1 + t)−
1
2−δ−|β′′′|〈v〉〈x − tv〉Mmax+5−|σ ′′′|∂α′′′

x ∂
β′′′
v Y σ ′′′

g‖L2([0,T ];L2x L2v)

× ‖(1 + t)1+2δ−|β′|+2〈v〉−2∂α′
x ∂

β′
v Y σ ′

āi j‖L∞(
[0,T ];L2x L∞

v +L2x L
2
v

)

× ‖(1 + t)−
1
2−δ−|β′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β′′
v Y σ ′′

g‖L2([0,T ];L∞
x L2v∩L∞

x L∞
v )

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε
3
4 (1 + t)1+2δ−|β′|+2(1 + t)−min{ 165 ,5+γ }+|β′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we again used that 2δ < min{2 + γ, 1
5 } (by (4.1)). ��

Proposition 7.6 Let |α|+|β|+|σ | ≤ Mmax. Then the term I I α,β,σ
e in (7.14) is bounded

as follows for every T ∈ [0, TBoot ):

I I α,β,σ
e (T ) � ε2(1 + T )2|β|.

Proof Take α′, α′′, α′′′, β ′, β ′′, β ′′′, σ ′, σ ′′ and σ ′′′ satisfying the required conditions
in the sum of I I α,β,σ

e . In particular, since |α′| + |β ′| + |σ ′| = 1, we can put the

∂α′
x ∂

β ′
v Y σ ′

āi j term in L∞([0, T ]; L∞
x L∞

v ). We will also make crucial use of the fact
that the 〈x − tv〉 weight is one power better than the maximal weight. Finally, note
that |β ′| + |β ′′| + |β ′′′| ≤ 2|β| + 1.

123



Stability of Vacuum for the Landau Equation with... Page 83 of 101 11

Hence, by Hölder’s inequality, Proposition 5.11 and Lemma 7.1, we obtain

max
i, j

‖t〈x − tv〉2Mmax+9−2|σ ||∂α′′′
x ∂

β ′′′
v Y σ ′′′

g||∂α′
x ∂

β ′
v Y σ ′

āi j ||∂α′′
x ∂

β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

� max
i, j

(1 + T )2|β|‖(1 + t)− 1
2−δ−|β ′′′|〈v〉〈x − tv〉Mmax+5−|σ ′′′|

∂α′′′
x ∂

β ′′′
v Y σ ′′′

g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|+2〈v〉−2〈x − tv〉−1∂α′
x ∂

β ′
v Y σ ′

āi j‖L∞([0,T ];L∞
x L∞

v )

× ‖(1 + t)− 1
2−δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β ′′
v Y σ ′′

g‖L2([0,T ];L2
x L

2
v)

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε
3
4 (1 + t)1+2δ−|β ′|+2(1 + t)−3−min{2+γ,1}+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we used that 2δ < min{2 + γ, 1} (by (4.1)). ��
Proposition 7.7 Let |α| + |β| + |σ | ≤ Mmax. Then the term I I I α,β,σ

e in (7.15) is
bounded as follows for every T ∈ [0, TBoot ):

I I I α,β,σ
e (T ) � ε2(1 + T )2|β|.

Proof Take α′, α′′, β ′, β ′′, σ ′ and σ ′′ satisfying the required conditions in the sum of
I I I α,β,σ

e .
We will consider separately the T ≤ 1 and the T ≥ 1 estimates.

Short-time estimates: T ≤ 1. This is exactly the same as the proof of the T ≤ 1
estimates in Proposition 7.5, except that we replace the use of Propositions 5.8 and
5.21 by Propositions 5.12 and 5.25 respectively; we omit the details.

Long-time estimates: T ≥ 1. We will divide into the cases |α′| + |β ′| + |σ ′| ≤ Mint
and |α′| + |β ′| + |σ ′| > Mint.

Case 1: |α′| + |β ′| + |σ ′| ≤ Mint. In this case, we control ∂α′
x ∂

β ′
v Y σ ′

(āi jvi ) in
L∞([0, T ]; L∞

x L∞
v ) with appropriate weights. Recall that |β ′| + |β ′′| ≤ |β| + 1.

Hence using Hölder’s inequality, Proposition 5.12 and Lemma 7.1, we obtain

max
j

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂

β
v Y

σ g||∂α′
x ∂

β ′
v Y σ ′

(āi jvi )||∂α′′
x ∂

β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

� max
j

(1 + T )2|β|‖(1 + t)− 1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂
β
v Y

σ g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|+1〈v〉−2∂α′
x ∂

β ′
v Y σ ′

(āi jvi )‖L∞([0,T ];L∞
x L∞

v )

× ‖(1 + t)− 1
2−δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β ′′
v Y σ ′′

g‖L2([0,T ];L2
x L

2
v)

� (1 + T )2|β| × ε
3
4 × ε

3
4

(
sup

t∈[0,T ]
(1 + t)1+2δ−|β ′|+1(1 + t)−3+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,
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where in the last line we have used 2δ < 1 (which follows from (4.1)).

Case 2: |α′|+ |β ′|+ |σ ′| > Mint. In this case, we must have |α′′|+ |β ′′|+ |σ ′′| ≤ Mint

and hence we can bound ∂α′′
x ∂

β ′′
v Y σ ′′

g in L∞
x L p

v (with weights and with p ≥ 2).
Since Mint ≥ 3, by the pigeon hole principle, we have either |α′| ≥ 1 or |β ′| ≥ 1
or |σ ′| ≥ 2. We consider below the (non-mutually exclusive) subcases |σ ′| ≥ 2 and
max{|α′|, |β ′|} ≥ 1.

Case 2(a): |α′| + |β ′| + |σ ′| > Mint and |σ ′| ≥ 2. First note that since |σ ′| ≥ 2, we
have |σ ′′| ≤ |σ | − 2. As a consequence,

〈x − tv〉2Mmax+10−2|σ | � 〈x − tv〉Mmax+5−|σ |〈x − tv〉Mmax+5−|σ ′′|〈x − tv〉−2.

(7.23)

In this case, we simply estimate ∂α′
x ∂

β ′
v Y σ ′

(āi jvi ) using the trivial pointwise esti-
mate

|∂α′
x ∂β ′

v Y σ ′
(āi jvi )| � 〈v〉

(
max
i, j

|∂α′
x ∂β ′

v Y σ ′
āi j |

)

+
∑

|β̃ ′|≤|β ′|, |̃σ ′|≤|σ ′|
|β̃ ′|+ |̃σ ′|=|β ′|+|σ ′|−1

(
max
i, j

|∂α′
x ∂β̃ ′

v Y σ̃ ′
āi j |

)
.

Together with Proposition 5.24, this then implies that19

max
j

‖〈v〉−2〈x − tv〉−2∂α′
x ∂β ′

v Y σ ′
(āi jvi )‖L2

x L
∞
v +L2

x L
p∗∗
v

(t)

� ε
3
4 (1 + t)

−min
{
16
5 ,5+γ

}
+|β ′|

. (7.24)

Recall now also that |β ′| + |β ′′| ≤ |β| + 1. Therefore, using (7.23), (7.24), Hölder’s
inequality and Proposition 7.2, we obtain

max
j

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g||∂α′

x ∂β ′
v Y σ ′

(āi jvi )||∂α′′
x ∂β ′′

v Y σ ′′
g|‖L1([0,T ];L1

x L
1
v)

� max
j

(1 + T )2|β|‖(1 + t)−
1
2 −δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α′′′

x ∂β ′′′
v Y σ ′′′

g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|+1〈v〉−2〈x − tv〉−2∂α′
x ∂β ′

v Y σ ′
(āi jvi )‖L∞([0,T ];L2

x L
∞
v +L2

x L
p∗∗
v )

× ‖(1 + t)−
1
2 −δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′ |∂α′′

x ∂β ′′
v Y σ ′′

g‖
L2

(
[0,T ];L∞

x L2
v∩L∞

x L
2p∗∗
p∗∗−2

v

)

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε

3
4 (1 + t)1+2δ−|β ′|+1(1 + t)

−min
{
16
5 ,5+γ

}
+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

19 Note that in fact the stronger estimate with 〈v〉−2 replaced by 〈v〉−1 on the LHS holds.
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where in the last line we used that 2δ < min{3 + γ, 6
5 } (by (4.1)).

Case 2(b): |α′| + |β ′| + |σ ′| > Mint and max{|α′|, |β ′|} ≥ 1. While in this case we
have no gain in 〈x − tv〉 powers, we use the improvement in Proposition 5.25 when
max{|α′|, |β ′|} ≥ 1.

Note that |β ′| + |β ′′| ≤ |β| + 1. Hence, by Hölder’s inequality, (5.29) in Proposi-
tion 5.25 and Proposition 7.2, we obtain

max
j

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂

β
v Y

σ g||∂α′
x ∂

β ′
v Y σ ′

(āi jvi )||∂α′′
x ∂

β ′′
v Y σ ′′

g|‖L1([0,T ];L1
x L

1
v)

� max
j

(1 + T )2|β|‖(1 + t)− 1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂
β
v Y

σ g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|+1〈v〉−2∂α′
x ∂

β ′
v Y σ ′

(āi jvi )‖L∞([0,T ];L2
x L

∞
v +L2

x L
p∗
v )

× ‖(1 + t)− 1
2−δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂
β ′′
v Y σ ′′

g‖
L2

(
[0,T ];L∞

x L2
v∩L∞

x L
2p∗
p∗−2
v

)

� (1 + T )2|β| × ε
3
4 ×

(
sup

t∈[0,T ]
ε
3
4 (1 + t)1+2δ−|β ′|+1(1 + t)−min{ 115 ,4+γ }+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we used that 2δ < min{2 + γ, 1
5 } (by (4.1)). ��

Proposition 7.8 Let |α| + |β| + |σ | ≤ Mmax. Then the term IV α,β,σ
e in (7.16) is

bounded as follows for every T ∈ [0, TBoot ):

I V α,β,σ
e (T ) � ε2(1 + T )2|β|.

Proof By Hölder’s inequality, Proposition 5.12 and Lemma 7.1, we obtain

max
j

‖t〈x − tv〉2Mmax+9−2|σ ||∂α
x ∂β

v Y
σ g||āi jvi ||∂α

x ∂β
v Y

σ g|‖L1([0,T ];L1
x L

1
v)

� max
j

(1+T )2|β|‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖2L2([0,T ];L2
x L

2
v)

× ‖t(1 + t)1+2δ〈v〉−2āi jvi‖L∞([0,T ];L∞
x L∞

v )

� (1 + T )2|β| × (ε
3
4 )2 × ε

3
4 sup
t∈[0,T ]

(1 + t)1+2δ+1(1 + t)−3 = ε
9
4 (1 + T )2|β|,

where in the last line we have used 2δ < 1 (by (4.1)). ��

Proposition 7.9 Let |α|+|β|+|σ | ≤ Mmax. Then the term V α,β,σ
e in (7.17) is bounded

as follows for every T ∈ [0, TBoot ):

V α,β,σ
e (T ) � ε2(1 + T )2|β|.
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Proof The term V α,β,σ
e contains two sums, one with āi i and one with āi jviv j . To

simplify the exposition, let us just estimate the terms with āi jviv j . When we handle
these terms, we will only use Propositions 5.12 and 5.25 to control āi jviv j and its
derivatives. Now note that since by Propositions 5.8 and 5.21, āi i and its derivatives
obey all the analogous estimates for āi jviv j and its derivatives in Propositions 5.12
and 5.25, the exact same argument will also apply the to terms with āi i instead of
āi jviv j .

Now take α′, α′′, β ′, β ′′, σ ′ and σ ′′ satisfying the required conditions in the sum of
V α,β,σ
e . We divide into the cases |α′|+|β ′|+|σ ′| ≤ Mint and |α′|+|β ′|+|σ ′| > Mint.

Step 1 |α′| + |β ′| + |σ ′| ≤ Mint. By Hölder’s inequality, Proposition 5.12 and
Lemma 7.1, we obtain

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g||∂α′

x ∂β ′
v Y σ ′

(āi jviv j )||∂α′′
x ∂β ′′

v Y σ ′′
g|‖L1([0,T ];L1

x L
1
v)

� (1 + T )2|β|‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|〈v〉−2∂α′
x ∂β ′

v Y σ ′
(āi jviv j )‖L∞([0,T ];L∞

x L∞
v )

× ‖(1 + t)−
1
2−δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂β ′′
v Y σ ′′

g‖L2([0,T ];L2
x L

2
v)

� (1 + T )2|β| × ε
3
4 × ε

3
4

(
sup

t∈[0,T ]
(1 + t)1+2δ−|β ′|(1 + t)−3+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we have used 2δ < 2 (by (4.1)).

Step 2 |α′| + |β ′| + |σ ′| > Mint. Note that in this case |α′′| + |β ′′| + |σ ′′| ≤ Mmax.
Hence, by Hölder’s inequality, Propositions 5.25 and 7.2, we obtain

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g||∂α′

x ∂β ′
v Y σ ′

(āi jviv j )||∂α′′
x ∂β ′′

v Y σ ′′
g|‖L1([0,T ];L1

x L
1
v)

� (1 + T )2|β|‖(1 + t)−
1
2−δ−|β|〈v〉〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|〈v〉−2∂α′
x ∂β ′

v Y σ ′
(āi jviv j )‖L∞([0,T ];L2

x L
∞
v )

× ‖(1 + t)−
1
2−δ−|β ′′|〈v〉〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂β ′′
v Y σ ′′

g‖L2([0,T ];L∞
x L2

v)

� (1 + T )2|β| × ε
3
4 × ε

3
4

(
sup

t∈[0,T ]
(1 + t)1+2δ−|β ′|(1 + t)−

3
2+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we have used 2δ < 1
2 (by (4.1)). ��

Proposition 7.10 Let |α| + |β| + |σ | ≤ Mmax. Then the term V I α,β,σ
e in (7.18) is

bounded as follows for every T ∈ [0, TBoot ):

V I α,β,σ
e (T ) � ε2(1 + T )2|β|.
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Proof Take α′, α′′, β ′, β ′′, σ ′ and σ ′′ satisfying the required conditions in the sum of
V I α,β,σ

e .Wedivide into the cases |α′|+|β ′|+|σ ′| ≤ Mint and |α′|+|β ′|+|σ ′| > Mmax.

Case 1: |α′| + |β ′| + |σ ′| ≤ Mint. By Hölder’s inequality, Proposition 5.13 and
Lemma 7.1, we obtain

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g||∂α′

x ∂β ′
v Y σ ′

c̄||∂α′′
x ∂β ′′

v Y σ ′′
g|‖L1([0,T ];L1

x L
1
v)

� (1 + T )2|β|‖(1 + t)−
1
2−δ−|β|〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|∂α′
x ∂β ′

v Y σ ′
c̄‖L∞([0,T ];L∞

x L∞
v )

× ‖(1 + t)−
1
2−δ−|β ′′|〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂β ′′
v Y σ ′′

g‖L2([0,T ];L2
x L

2
v)

� (1 + T )2|β| × ε
3
4 × ε

3
4

(
sup

t∈[0,T ]
(1 + t)1+2δ−|β ′|(1 + t)−3−γ+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we have used that 2δ < 2 + γ (by (4.1)).

Case 2: |α′| + |β ′| + |σ ′| > Mint. Note that in this case |α′′| + |β ′′| + |σ ′′| ≤ Mmax.
Hence, by Hölder’s inequality, Propositions 5.26 and 7.2, we obtain

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g||∂α′

x ∂β ′
v Y σ ′

c̄||∂α′′
x ∂β ′′

v Y σ ′′
g|‖L1([0,T ];L1

x L
1
v)

� (1 + T )2|β|‖(1 + t)−
1
2−δ−|β|〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖L2([0,T ];L2
x L

2
v)

× ‖(1 + t)1+2δ−|β ′|∂α′
x ∂β ′

v Y σ ′
c̄‖L∞([0,T ];L2

x L
p∗∗
v )

× ‖(1 + t)−
1
2−δ−|β ′′|〈x − tv〉Mmax+5−|σ ′′|∂α′′

x ∂β ′′
v Y σ ′′

g‖
L2

(
[0,T ];L∞

x L
2p∗∗
p∗∗−2
v

)

� (1 + T )2|β| × ε
3
4 × ε

3
4

(
sup

t∈[0,T ]
(1 + t)1+2δ−|β ′|(1 + t)

−min
{
6
5 ,3+γ

}
+|β ′|

)
× ε

3
4

= ε
9
4 (1 + T )2|β|,

where in the last line we have used that 2δ < min{2 + γ, 1
5 } (by (4.1)). ��

The terms V I I α,β,σ
e and V I I I α,β,σ

e are linear in g2 (or the square of the derivatives
of g). As a consequence, we will not have enough smallness if we just apply the
bootstrap assumptions to control them. Therefore unlike the previous terms, we will
still keep track of the precise terms on the RHS.

Proposition 7.11 Let |α| + |β| + |σ | ≤ Mmax. Then for every η > 0, there exists a
constant Cη > 0 (depending on η in addition to d0 and γ ) such that the term V I I α,β,σ

e
in (7.19) is bounded as follows for every T ∈ [0, TBoot ):
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V I I α,β,σ
e (T ) ≤ η‖〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖2L∞([0,T ];L2
x L

2
v)

+ CηT
2

∑
|α′|≤|α|+1
|β ′|≤|β|−1

‖〈x − tv〉Mmax+5−|σ |∂α′
x ∂β ′

v Y σ g‖2L∞([0,T ];L2
x L

2
v)

.

Proof By Hölder’s inequality,

∑
|α′|≤|α|+1, |β ′|≤|β|−1

‖〈x − tv〉2Mmax+10−2|σ ||∂α
x ∂β

v Y
σ g||∂α′

x ∂β ′
v Y σ g|‖L1([0,T ];L1

x L
1
v)

�
∑

|α′|≤|α|+1
|β ′|≤|β|−1

T ‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞([0,T ];L2

x L
2
v)

‖〈x − tv〉Mmax+5−|σ |∂α′
x ∂β ′

v Y σ g‖L∞([0,T ];L2
x L

2
v)

.

The conclusion then follows from an application of Young’s inequality. ��

Proposition 7.12 Let |α| + |β| + |σ | ≤ Mmax. Then for every η > 0, there exists a
constantCη > 0 (depending onη in addition to d0 and γ ) such that the term V I I I α,β,σ

e
in (7.20) is bounded as follows for every T ∈ [0, TBoot ):

V I I I α,β,σ
e (T ) ≤ η‖(1 + t)−

1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

+ Cη

∑
|β ′|≤|β|, |σ ′|≤|σ |

|β ′|+|σ ′|≤|β|+|σ |−1

‖(1 + t)−
1
2− δ

2

〈v〉〈x − tv〉Mmax+5−|σ ′|∂α
x ∂β ′

v Y σ ′
g‖2L2([0,T ];L2

x L
2
v)

.

Proof This is an easy consequence of the Cauchy–Schwarz inequality and Young’s
inequality. ��

We have therefore estimated all of the terms on the RHS in the estimate in Propo-
sition 7.4.

7.4 Putting Everything Together

Combining Proposition 7.4 with the estimates in Propositions 7.5–7.12, we obtain

Proposition 7.13 Let |α| + |β| + |σ | ≤ Mmax. Then for every η > 0, there exists a
constant Cη > 0 (depending on η in addition to d0 and γ ) such that the following
estimate holds for all T ∈ [0, TBoot ):
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‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

+ ‖(1 + t)−
1
2− δ

2 〈v〉
〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖2L2([0,T ];L2
x L

2
v)

≤ Cη(ε
2(1 + T )2|β| + T 2

∑
|α′|≤|α|+1
|β ′|≤|β|−1

‖〈x − tv〉Mmax+5−|σ |∂α′
x ∂β ′

v Y σ g‖2L∞([0,T ];L2
x L

2
v)

+
∑

|β ′|≤|β|, |σ ′|≤|σ |
|β ′|+|σ ′|≤|β|+|σ |−1

‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ ′|∂α
x ∂β ′

v Y σ ′
g‖2L2([0,T ];L2

x L
2
v)

)

+ η‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

+ η‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

.

We can control the terms with an η coefficient on the RHS of the estimate in Proposi-
tion 7.13 to obtain the following stronger bounds:

Proposition 7.14 Let |α| + |β| + |σ | ≤ Mmax. Then the following estimate holds for
all T ∈ [0, TBoot ):

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

+ ‖(1 + t)−
1
2− δ

2 〈v〉
〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖2L2([0,T ];L2
x L

2
v)

� ε2(1 + T )2|β| + T 2
∑

|α′|≤|α|+1
|β ′|≤|β|−1

‖〈x − tv〉Mmax+5−|σ |∂α′
x ∂β ′

v Y σ g‖2L∞([0,T ];L2
x L

2
v)

+
∑

|β ′|≤|β|, |σ ′|≤|σ |
|β ′|+|σ ′|≤|β|+|σ |−1

‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ ′|∂α
x ∂β ′

v Y σ ′
g‖2L2([0,T ];L2

x L
2
v)

.

Here, by our convention (see Section 2), if |β| + |σ | = 0, then the last two terms on
the RHS are not present.

Proof Apply Proposition 7.13 with η = 1
2 . We then subtract

1

2

(
‖〈x − tv〉Mmax+5−|σ |∂α

x ∂β
v Y

σ g‖2L∞([0,T ];L2
x L

2
v)

+‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

)

from both sides of the equation. Now that η is fixed,Cη is simply a constant depending
on d0 and γ . We have thus proven the desired inequality. ��

We now set up an induction argument to obtain the final energy estimates from
Proposition 7.14.
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Proposition 7.15 Let |α| + |β| + |σ | ≤ Mmax. Then the following estimate holds for
all T ∈ [0, TBoot ):

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

+ ‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

� ε2(1 + T )2|β|.

Proof We induct on |β| + |σ |.
Step 1 Base case: |β| + |σ | = 0. Applying Proposition 7.14 when |β| + |σ | = 0, the
last two terms on the RHS are not present. Hence we immediately obtain

‖〈x − tv〉Mmax+5∂α
x g‖2L∞([0,T ];L2

x L
2
v)

+‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5∂α
x g‖2L2([0,T ];L2

x L
2
v)

� ε2

for all |α| ≤ Mmax, as desired.

Step 2 Induction step. Assume as our induction hypothesis that there exists a B ∈ N

such that whenever |α| + |β| + |σ | ≤ Mmax and |β| + |σ | ≤ B − 1,

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

+ ‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

� ε2(1 + T )2|β|.

Now take some multi-indices α, β and σ such that |α| + |β| + |σ | ≤ Mmax and
|β| + |σ | = B. Our goal will be to show that the estimate as in the statement of the
proposition holds for this choice of (α, β, σ ).

By Proposition 7.14 and the induction hypothesis,

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L∞([0,T ];L2

x L
2
v)

+ ‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖2L2([0,T ];L2

x L
2
v)

� ε2(1 + T )2|β| + T 2
∑

|α′|≤|α|+1
|β ′|≤|β|−1

‖〈x − tv〉Mmax+5−|σ |∂α′
x ∂β ′

v Y σ g‖2L∞([0,T ];L2
x L

2
v)

+
∑

|β ′|≤|β|, |σ ′|≤|σ |
|β ′|+|σ ′|≤|β|+|σ |−1

‖(1 + t)−
1
2− δ

2 〈v〉〈x − tv〉Mmax+5−|σ ′|∂α
x ∂β ′

v Y σ ′
g‖2L2([0,T ];L2

x L
2
v)

� ε2(1 + T )2|β| + ε2

⎛
⎝ ∑

|β ′|≤|β|−1

T 2(1 + T )2|β ′|
⎞
⎠ + ε2

⎛
⎝ ∑

|β ′|≤|β|
(1 + T )2|β ′|

⎞
⎠

� ε2(1 + T )2|β|.

By induction, we have thus obtained the desired estimate. ��
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7.5 Proof of Theorem 4.1

Combining Propositions 6.13 and 7.15, we have now completed the proof of Theo-
rem 4.1.

8 Putting Everything Together (Proof of Theorem 1.1)

We now complete the proof of Theorem 1.1:

Proof of Theorem 1.1 We assume throughout that ε0 ≤ ε0 so that Theorem 4.1 applies.
Let

Tmax := sup{T ∈ [0,+∞) : there exists a unique solution f : [0, T ] × R
3

× R
3 to (1.1)1.1) with f ≥ 0, f �{t=0}= fin and satisfying (3.4) for

k = Mmax and N = Mmax + 5

such that the bootstrap assumptions (4.7), (4.8) and (4.9) hold}.
Note that by Corollary 3.4, Tmax > 0.

We will prove that Tmax = +∞. Assume for the sake of contradiction that Tmax <

+∞.
It follows from the definition of Tmax that the assumptions of Theorem 4.1 hold for

TBoot = Tmax. Therefore, by (the |σ | = 0 case in) Theorem 4.1,

∑
|α|+|β|≤Mmax

‖〈x − tv〉Mmax+5∂α
x ∂β

v (ed(t)〈v〉2 f )(t, x, v)‖L∞([0,Tmax);L2
x L

2
v) � ε. (8.1)

Take an increasing sequence {tn}∞n=1 ⊂ [0, Tmax) such that tn → Tmax. By the uniform
bound (8.1) and the local existence result in Corollary 3.4, there exists Tsmall ∈ (0, 1]
such that a unique solution exists [0, tn + Tsmall] × R

3 × R
3. In particular, taking n

sufficiently large, we have constructed a solution beyond the time Tmax, up to, say, time
Tmax+ 1

2Tsmall. The solutionmoreover satisfies (3.4) for k = Mmax and N = Mmax+5
Our next goal will be to show that in fact the estimates (4.7), (4.8) and (4.9) hold

slightly beyondTmax.Our startingpoint is that by the bootstrap theorem (Theorem4.1),

the estimates (4.7), (4.8) and (4.9) in fact all hold in [0, Tmax)

with ε
3
4 replaced by Cd0,γ ε. (8.2)

By the local existence result in Corollary 3.4, for |α| + |β| ≤ Mmax, 〈x −
tv〉Mmax+5∂α

x ∂
β
v g(t, x, v) ∈ C0([0, Tmax + 1

2Tsmall]; L2
x L

2
v). Since Y = t∂x + ∂v ,

for all |α| + |β| + |σ | ≤ Mmax, we also have 〈x − tv〉Mmax+5−|σ |∂α
x ∂

β
v Y σ g(t, x, v) ∈

C0([0, Tmax + 1
2Tsmall]; L2

x L
2
v). Using also (8.2), it follows that after choosing ε0

smaller (so that ε is sufficiently small) if necessary, there exists Text,0 ∈ (Tmax, Tmax+
1
2Tsmall] such that (4.7) holds up to time Text,0. It thus remains to prove that the esti-
mates (4.8) and (4.9) hold beyond Tmax.
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Claim 1: There exist R0 > 0 and Text,1 ∈ (Tmax, Text,0] such that

∑
|α|+|β|≤Mmax

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g(t, x, v)‖L2

x L
2
v({|x |2+|v|2≥R2

0}) ≤ ε(1 + Tmax)
−4

for every t ∈ [Tmax, Text,1].
Proof of Claim 1.We showed above that (4.7) holds up to time Text,0. In particular,∑
|α|+|β|+|σ |≤Mmax

‖〈x−Tmaxv〉Mmax+5−|σ |∂α
x ∂

β
v Y σ g(Tmax, x, v)‖L2

x L
2
v
is finite.Hence

there exists R′
0 > 0 such that

∑
|α|+|β|+|σ |≤Mmax

‖〈x − Tmaxv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g(Tmax, x, v)‖L2

x L
2
v({|x |2+|v|2≥(R′

0)
2})

≤ ε

2
(1 + Tmax)

−4.

(8.3)

Let χ : R3 × R
3 → R be a smooth cut-off function satisfying 0 ≤ χ ≤ 1 with

χ(x, v) = 1 when |x |2+|v|2 ≥ (R′
0+1)2 and χ(x, v) = 0 when |x |2+|v|2 ≤ (R′

0)
2.

By the continuity-in-timeof the L2
x L

2
v norm in local existence result inCorollary 3.4,

lim
t→T+

max

∑
|α|+|β|+|σ |≤Mmax

‖〈x − tv〉Mmax+5−|σ |χ(x, v)∂α
x ∂β

v Y
σ (g(t, x, v)

− g(Tmax, x, v))‖L2
x L

2
v

= 0. (8.4)

Let R0 = R′
0 + 1. The claim follows from (8.3) and (8.4).

Claim 2: Given Text,1 as in Claim 1, there exists Text,2 ∈ (Tmax, Text,1] such that for
every t ∈ [Tmax, Text,2], when |α| + |β| + |σ | ≤ Mmax − 4 − max{2, � 2

2+γ
	},

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

(t) ≤ 1

2
ε

3
4 (1 + t)|β|; (8.5)

and when Mmax − 3 − max{2, � 2
2+γ

	} ≤ |α| + |β| + |σ | =: k ≤ Mmax − 5, then

‖〈x−tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

(t) ≤ 1

2
ε

3
4 (1+t)

3
2−(Mmax−4−k)min

{
3
4 ,

3(2+γ )
4

}
+|β|

.

(8.6)
Proof of Claim 2.We first prove (8.5) and (8.6) for |x |2 + |v|2 ≥ (R0 + 1)2, where

R0 is as in Claim 1. Let χ : R3 × R
3 → R be a smooth cut-off function20 satisfying

0 ≤ χ ≤ 1 with χ(x, v) = 1 when |x |2 + |v|2 ≥ (R0 + 1)2 and χ(x, v) = 0 when
|x |2 + |v|2 ≤ R2

0.

20 Note that this cut-off function is slightly different from that in Claim 1.
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We use the Sobolev embedding in Lemma 6.1 to control the L∞
x L∞

v norm

χ∂α
x ∂

β
v Y σ g for t ∈ [Tmax, Text,1]

sup
t∈[Tmax,Text,1]

∑
|α|+|β|+|σ |≤Mmax−5

‖〈x − tv〉Mmax+5−|σ |χ∂α
x ∂β

v Y
σ g‖L∞

x L∞
v

� sup
t∈[Tmax,Text,1]

∑
|α|+|β|+|σ |≤Mmax−5

∑
|α′|+|β ′|≤4

‖∂α′
x ∂β ′

v (〈x − tv〉Mmax+5−|σ |χ∂α
x ∂β

v Y
σ g)‖L2

x L
2
v

� sup
t∈[Tmax,Text,1]

(1 + TBoot )
4

∑
|α|+|β|+|σ |≤Mmax−1

‖〈x − tv〉Mmax+5−|σ |∂α
x ∂β

v Y
σ g‖L2

x L
2
v({|x |2+|v|2≥R2

0)
� ε,

where in the last estimate we have used Claim 1. By the properties of χ , we have thus
proven (8.5) and (8.6) for |x |2 + |v|2 ≥ (R0 + 1)2 for every t ∈ [Tmax, Text,1].

It remains to prove (8.5) and (8.6) for |x |2 + |v|2 ≤ (R0 + 1)2. Note that this
is a spatially compact set, and we already have the estimate (8.2). Therefore, by the
smoothness of g, after choosing ε0 smaller if necessary (so that ε is also sufficiently
small), (8.5) and (8.6) hold in the region |x |2 + |v|2 ≤ (R0 + 1)2 for every t ∈
[Tmax, Text,2] for some Text,2 chosen to be sufficiently close to Tmax.

Combining the estimates for |x |2 + |v|2 ≥ (R0 + 1)2 and |x |2 + |v|2 ≤ (R0 + 1)2,
we have proven Claim 2.

Claim2 therefore established that the estimates (4.8) and (4.9) can be extend beyond
Tmax. Together with the extension of (4.7) beyond Tmax that we established earlier,
we have obtained a contradiction with the definition of Tmax. It thus follows that
Tmax = +∞.

Finally, the statements of uniqueness, smoothness and positivity of f follow from
Theorems 3.2 and 3.3. ��

9 Long-Time Asymptotics

In this final section we prove the results about long-time asymptotics of solutions in
the near-vacuum regime. In Section 9.1, we prove Theorem 1.3, in Section 9.2, we
prove Corollary 1.4, and finally in Section 9.3, we prove Theorem 1.6.

In the rest of this section, we will work under the assumptions of Theorem 1.1 and
use the estimates established in the proof of Theorem 1.1.

9.1 Existence of a Large Time Limit (Proof of Theorem 1.3)

Lemma 9.1 Assume the conditions of Theorem 1.1 hold and suppose f is a solution
given by Theorem 1.1. Define f � as in (1.8).

Given 0 ≤ T1 < T2 and 	 ∈ N∪{0}, the following estimate holds for some implicit
constant depending only on d0, γ and 	 (and is independent of T1 and T2):
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‖〈v〉	〈x〉Mmax+4| f �(T1, x, v) − f �(T2, x, v)|‖L∞
x L∞

v
� ε

3
2 (1 + T1)

−min{1,2+γ }.

Proof Using the definition of f � in (1.8) and the Landau equation (1.6), we obtain

∂t f
�(t, x, v) = (∂t f + vi∂xi f )(t, x + tv, v) = (āi j∂

2
viv j

f − c̄ f )(t, x + tv, v).

This implies

(∂t (〈v〉	〈x〉Mmax+4 f �))(t, x, v) = 〈v〉	〈x〉Mmax+4(āi j∂
2
viv j

f − c̄ f )(t, x + tv, v).

Integrating in t from t = T1 to t = T2, we thus obtain

‖〈v〉	〈x〉Mmax+4| f �(T1, x, v) − f �(T2, x, v)|‖L∞
x L∞

v

�
∫ T2

T1
‖〈v〉	〈x〉Mmax+4|āi j∂2viv j

f |(t, x + tv, v)‖L∞
x L∞

v
dt (9.1)

+
∫ T2

T1
‖〈v〉	〈x〉Mmax+4|c̄ f |(t, x + tv, v)‖L∞

x L∞
v
dt . (9.2)

To bound the terms (9.1) and (9.2), we use the fact that supx∈R3 supv∈R3 =
supx−tv∈R3 supv∈R3 . To control (9.1), we first use Lemma 5.4 to obtain

|(9.1)|

�
(
max
i, j

‖(1 + t)3+min{1,2+γ }〈v〉−(2+γ )〈x − tv〉−min{1,2+γ }āi j (t, x, v)‖L∞([T1,T2];L∞
x L∞

v )

)

×
⎛
⎝ ∑

|β|=2

‖(1 + t)−2〈v〉	+1〈x − tv〉Mmax+5∂
β
v f (t, x, v)‖L∞([T1,T2];L∞

x L∞
v )

⎞
⎠

× ‖(1 + t)−1−min{1,2+γ }‖L1([T1,T2])
�

(
max
i, j

‖(1 + t)3+min{1,2+γ }〈v〉−(2+γ )〈x − tv〉−min{1,2+γ }āi j (t, x, v)‖L∞([T1,T2];L∞
x L∞

v )

)

×
⎛
⎝ ∑

|β|=2

‖(1 + t)−2〈x − tv〉Mmax+5∂
β
v g(t, x, v)‖L2([T1,T2];L2x L2v)

⎞
⎠ (1 + T1)

−min{1,2+γ }.

(9.3)
Now by Propositions 5.8 and 5.11 (used for t ≤ 1 and t > 1 respectively), the

first factor is bounded above by ε
3
4 . By (6.70), the second factor is bounded by ε

3
4 .

Combining, we see that

|(9.1)| � |RHS of (9.3)| � ε
3
2 (1 + T1)

−min{1,2+γ }.

We next bound (9.2). Using Lemma 5.4, Proposition 5.13 and (6.70), we obtain

|(9.2)| � ‖(1 + t)−(3+γ )‖L1([T1,T2])‖(1 + t)3+γ c̄(t, x, v)‖L∞([T1,T2];L∞
x L∞

v )

× ‖〈v〉	〈x − tv〉Mmax+4 f (t, x, v)‖L∞([T1,T2];L∞
x L∞

v ) � ε
3
2 (1 + T1)

−(2+γ ).
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Finally, using the estimates for (9.1) and (9.2) above, we obtain the desired
estimate. ��

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3 By Lemma 9.1, for any 	 ∈ N and for any sequence
tn → +∞, { f �(tn, x, v)}∞n=1 is Cauchy in the Banach space with the norm

‖〈v〉	〈x〉Mmax+4(·)‖L∞
x L∞

v
. Therefore there exists a unique f �∞ : R3 × R

3 → R such
that for any 	 ∈ N ∪ {0},

lim
t→+∞ ‖〈v〉	〈x〉Mmax+4| f �(t, x, v) − f �∞(x, v)|‖L∞

x L∞
v

= 0.

Using the estimate in Lemma 9.1 again, it then follows that

sup
t≥0

(1 + t)min{1,2+γ }‖〈v〉	〈x〉Mmax+4( f �(t, x, v) − f �∞(x, v))‖L∞
x L∞

v
(t) � ε

3
2 ,

which is what we wanted to prove. ��

9.2 Large Time Asymptotics for Macroscopic Quantities (Proof of Corollary 1.4)

Wewill prove slightlymore general estimates thanCorollary 1.4. The following propo-
sition gives the main estimates.

Proposition 9.2 Assume the conditions of Theorem 1.1 hold and suppose f , f �∞ are
as given by Theorems 1.1 and 1.3 respectively.

For any 	 ∈ N ∪ {0}, the following estimate holds for all t ∈ [0,+∞) with an
implicit constant depending on d0, γ and 	:

‖〈v〉	| f (t, x, v) − f �∞(x − tv, v)|‖L∞
x L1

v
� ε

3
2 (1 + t)−3−min{1,2+γ } (9.4)

and
‖〈v〉	 f (t, x, v)‖L∞

x L1
v

� ε(1 + t)−3. (9.5)

Proof Using Lemma 5.2, then noting supx∈R3 supv∈R3 = supx−tv∈R3 supv∈R3 , and
finally using Theorem 1.3, we obtain

‖〈v〉	| f (t, x, v) − f �∞(x − tv, v)|‖L∞
x L1

v

� (1 + t)−3(‖〈v〉	+4| f (t, x, v) − f �∞(x − tv, v)|‖L∞
x L∞

v

+ ‖〈v〉	〈x − tv〉4| f (t, x, v) − f �∞(x − tv, v)|‖L∞
x L∞

v
)

= (1 + t)−3(‖〈v〉	+4| f �(t, x, v) − f �∞(x, v)|‖L∞
x L∞

v

+ ‖〈v〉	〈x〉4| f �(t, x, v) − f �∞(x, v)|‖L∞
x L∞

v
)

� ε
9
8 (1 + t)−3−min{1,2+γ }.
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This proves (9.4).
Now using a similar argument as above, we obtain

‖〈v〉	 f �∞(x − tv, v)‖L∞
x L1

v

� (1 + t)−3(‖〈v〉	+4 f �∞(x − tv, v)‖L∞
x L∞

v
+ ‖〈v〉	〈x − tv〉4 f �∞(x − tv, v)‖L∞

x L∞
v

)

� (1 + t)−3(‖〈v〉	+4 f �∞(x, v)‖L∞
x L∞

v

+ ‖〈v〉	〈x〉4 f �∞(x, v)‖L∞
x L∞

v
).

(9.6)
To proceed, note that applying the estimate in Theorem 1.3 with t = 0, we obtain, for
every 	′ ∈ N ∪ {0},

‖〈v〉	′ 〈x〉Mmax+4( fin(x, v) − f �∞(x, v))‖L∞
x L∞

v
� ε

3
2 .

Combining this estimate with the assumptions on fin in Theorem 1.1 and using the
triangle inequality, we in particular have

‖〈v〉	′ 〈x〉4 f �∞(x, v)‖L∞
x L∞

v
� ε.

Plugging this into (9.6), we then obtain

‖〈v〉	 f �∞(x − tv, v)‖L∞
x L1

v
� ε(1 + t)−3. (9.7)

Combining (9.7) with (9.4) and using the triangle inequality yields (9.5). ��

Using Proposition 9.2, we can immediately prove Corollary 1.4:

Proof of Corollary 1.4 Note that (1.9) is an immediate corollary of (9.5); while (1.10)
is an immediate corollary of (9.4). ��

9.3 The Large Time Limit is in General Not a Traveling Global Maxwellian (Proof of
Theorem 1.6)

In this final subsection, we prove Theorem 1.6. The reader may find it useful to recall
Definition 1.5.

Proof of Theorem 1.6 By Lemma 9.1 (with 	 = 2), given initial data fin with

∑
|α|+|β|+|σ |≤Mmax

‖〈x〉Mmax+5∂α
x ∂β

v (e2d0(1+|v|2) fin)‖L2
x L

2
v

+
∑

|α|+|β|+|σ |≤Mmax−5

‖〈x〉Mmax+5〈v〉∂α
x ∂β

v (e2d0(1+|v|2) fin)‖L∞
x L∞

v
≤ ε

(9.8)
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(where ε ∈ (0, ε0] with ε0, Mmax, d0 as in Theorem 1.1), there exists C∞ > 0
(depending only on d0 and γ ) such that the unique solution arising from fin satisfies

‖〈v〉2〈x〉2| f �(T1, x, v) − f �(T2, x, v)|‖L∞
x L∞

v
≤ C∞ε

3
2 (1 + T1)

−min{1,2+γ }

for all 0 ≤ T1 < T2. In particular, taking T1 = 0 and T2 → +∞, and using the
definition of f �∞, we obtain,

‖〈v〉2〈x〉2| fin(x, v) − f �∞(x, v)|‖L2
x L

2
v

≤ C∞ε
3
2 .

In view of the above inequality, in order to prove the present proposition, it suffices
to exhibit a function fin such that for some ε ∈ [0, ε0], the following two conditions
are simultaneously satisfied:

1. (9.8) holds, and
2. infM∈M ‖〈v〉2〈x〉2| fin(x, v) − M�(x, v)|‖L2

x L
2
v

> C∞ε
3
2 .

To show that such an fin exists, take an arbitrary “seed function” f : R3 × R
3 →

R>0 which

• satisfies
∑

|α|+|β|+|σ |≤Mmax

‖〈x〉Mmax+5∂α
x ∂β

v (e2d0(1+|v|2) fin)‖L2
x L

2
v

+
∑

|α|+|β|+|σ |≤Mmax−5

‖〈x〉Mmax+5〈v〉∂α
x ∂β

v

(
e2d0(1+|v|2) fin

)
‖L∞

x L∞
v

≤ C < +∞

(9.9)

for some C > 0, and
• is not M� for any global Maxwellian.

Note that there must exist a constant c > 0 such that

inf
M∈M

‖〈v〉2〈x〉2( f (x, v) − M�(x, v))‖L2
x L

2
v

≥ c > 0. (9.10)

(This is an easy consequence of the fact that global Maxwellians are parametrized
by a finite dimensional space of parameters. More precisely, if (9.10) were not
true, then there exists a sequence of global Maxwellians Mn parametrized by
(αn, βn, σn,mn, Bn) such that limn→+∞ ‖〈x〉2〈v〉2( f (x, v) − M�

n(x, v))‖L2
x L

2
v

= 0.
This convergence in particular implies that all the second moments of f are bounded.

Hence (αn, βn, σn,mn, Bn) stays in a compact set ofR×R×R×R×R
3×3. Therefore

there exists a convergent subsequence which converges, i.e. (αn, βn, σn,mn, Bn) →
(α, β, σ,m, B). This then implies fin(x, v) = M� for some M ∈ M, contradicting
our assumptions.)

For η > 0 to be chosen below, we now let

fin := η f .
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Given (9.9) and (9.10), and noting that the family of globalMaxwelliansM is invariant
under rescaling (i.e. M ∈ M ⇐⇒ λM ∈ M,∀λ > 0), the conditions (1) and (2)
above for fin therefore translates to the two conditions

Cη ≤ ε, cη > C∞ε
3
2 .

for some ε ∈ [0, ε0]. It is then easy to see that this can be satisfied if we take ε = Cη

and η < min{ c2

C2∞C3 ,
ε0
C }. ��

Remark 9.3 We have in fact proven slightly more. Given any function f which does

not correspond toM� for anyM ∈ M, there exists η0 > 0 depending on f such that
if η ∈ (0, η0), then the solution arising from fin = η f does not converge to a zero
solution or a traveling global Maxwellian.

Acknowledgements I thank Robert Strain for introducing this problem to me. I gratefully acknowledge
the support of a Sloan fellowship, a Terman fellowship, and NSF Grant DMS-1709458.
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