Annals of PDE (2019) 5:11
https://doi.org/10.1007/s40818-019-0067-2

MANUSCRIPT

®

Check for
updates

Stability of Vacuum for the Landau Equation with
Moderately Soft Potentials

Jonathan Luk’

Received: 1 October 2018 / Accepted: 13 April 2019 / Published online: 8 May 2019
© Springer Nature Switzerland AG 2019

Abstract

Consider the spatially inhomogeneous Landau equation with moderately soft poten-
tials (i.e. with y € (=2, 0)) on the whole space R3. We prove that if the initial data
fin are close to the vacuum solution fy,c = 0 in an appropriate norm, then the solution
f remains regular globally in time. This is the first stability of vacuum result for a
binary collisional model featuring a long-range interaction. Moreover, we prove that
the solutions in the near-vacuum regime approach solutions to the linear transport
equation as t — + oo. Furthermore, in general, solutions do not approach a traveling
global Maxwellian as ¢t — + oo. Our proof relies on robust decay estimates captured
using weighted energy estimates and the maximum principle for weighted quantities.
Importantly, we also make use of a null structure in the nonlinearity of the Landau
equation which suppresses the most slowly-decaying interactions.

Keywords Landau equation - Small data - Vacuum

1 Introduction

Consider the Landau equation for the particle density f (¢, x,v) > 0 in the whole
space R3. Here, 1 € Rxo,x € R3 and v € R3. The Landau equation reads

O f +vidy f =0, f) (1.1)

where Q(f, f) is the collision kernel given by!

Q(f, Hw) =0y, /R3 aij (v =) (f () @y, W) = f () By, (V) dv,  (1.2)

1 Each of these terms depends also on (¢, x). For brevity, we have suppressed these dependence in (1.2).

B4 Jonathan Luk
jluk@stanford.edu

Department of Mathematics, Stanford University, 450 Serra Mall Building 380, Stanford,
CA 94305-2125, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40818-019-0067-2&domain=pdf
http://orcid.org/0000-0001-6562-6088

11 Page2of101 J. Luk

and a;; is the non-negative symmetric matrix defined by

Zilj
aij(z) == (8;; — ﬁ)my“. (1.3)

In all the expressions above (and in the remainder of the paper), we have used the
convention that repeated lower case Latin indices are summed over i, j = 1, 2, 3.
In this paper, we will be concerned with the case y € (—2,0) in (1.3). The case
y € (=2, 0) is usually known as the case of moderately soft potentials. Note that the
y = —3 caseis the original case Landau wrote down, and the case that we consider can
be thought of as a limiting case of the Boltzmann equation (without angular cutoff).
It will be convenient to also define

ci=02,,a4ij(2) = =2y +3)l”. (1.4)

and
c_l,'j = a,-j*f, EZ=C*f, (1.5)

where * denotes convolutions in v. The Landau equation (1.1) is then equivalent to
atf+v,-ax,.f=aija,§vjf—c‘f. (1.6)

We solve the Cauchy problem for the Landau equation (1.1), i.e. we study the
solution arising from prescribed regular initial data:

f(@O,x,v) = fin(x,v) > 0. (1.7)

Our main result is that if fi, is sufficiently small and is sufficiently localized in
both x and v (i.e. if fi, is in the “near-vacuum” regime), then it gives rise to a unique
global-in-time solution, which is moreover globally smooth. More precisely,”

2 .
2+2fm+41 ifye(=2, —1]'

Theorem 1.1 Let y € (=2,0), dyp >0 and Mp,x =
vel " 2420 k441 ifye(-1.0)

There exists an € = €, (y, do) > 0 such that if

Mmax+5 2
Do I+ )T 00l (@00HD il
let|+[B1<Mmax

Mmax

+5 1 2
+ D A+ T (A7l @O )| e <e
le|+[BI<Mmax—5

for some € € [0, €], then there exists a unique global solution f : [0, +00) x R3 xR3
to the Landau equation (1.1) in the energy space CO([O, T1; Hfl’o) N LZ([O, T1; H::l’l)
forany T € (0, 400) (see Definition 3.1) which achieves the prescribed initial data

Jin-

2 For the precise definition of the multi-index notations, see Section 2.
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Moreover, the solution is C* in (0, 4+00) X R3 x R3 and, as long as fin is not
identically 0, it holds that f(t, x,v) > 0 forall (¢, x, v) € (0, +00) X R3 x R3.

Remark 1.2 (The restriction on y € (—2,0)) Our argument requires y € (—2,0) and
indeed one sees that the number of derivatives needed in Theorem 1.1 — 400 as y
approaches the endpoints. For y € [—3, —2], the dispersion seems too weak for our
argument; see Section 1.1.2. On the other hand, for y € (0, 1], we lack at this point
even a local-in-time theory which incorporates near-vacuum data. Finally, the y = 0
case seems already tractable, although it requires a slightly different argument. This
will be treated in a future work.

Theorem 1.1 above can be thought of as the global nonlinear stability of the vac-
uum solution fy,c = 0. Such a result is known for the Boltzmann equation with an
angular cutoff assumption in the pioneering work of Illner—Shinbrot [48]; see also
the discussion in Section 1.2.1. However, the stability of the vacuum solution is not
known for a collisional kinetic model featuring a long range interaction, such as in
the case of the Landau equation or the Boltzmann equation without angular cutoff.
One important difference between the cutoff Boltzmann equation and the Landau or
non-cutoff Boltzmann equation is that ellipticity is present in the latter models. This
ellipticity manifests itself for instance in the smoothing of solutions; see [1,7,22,47]. In
the context of the stability of vacuum for the Landau equation, the ellipticity presents
the following difficulty in understanding the long time dynamics of solutions: on the
one hand, the collision kernel contains top-order elliptic terms which cannot be treated
completely perturbatively as in the case of cutoff Boltzmann; on the other hand, in
a neighborhood of the vacuum solution, the coefficient of the elliptic term does not
seem to be coercive enough to provide useful control of the solution.

In the proof of Theorem 1.1, we show that despite the presence of elliptic terms, the
main mechanism governing the long time behavior of the solutions is the dispersion
associated with the transport operator. In particular, except for the terms with the
top order derivatives that we necessarily treat with elliptic/parabolic methods, all the
other terms arising from the collision kernel, including commutator terms coming
from differentiating the elliptic part, are treated perturbatively. There are two main
ingredients necessary to achieve this: (1) we prove robust decay estimates showing
that solutions to the Landau equation in the near-vacuum regime obey similar decay
estimates as the linear transport equation; (2) we show that there is a null structure
in the nonlinearity which suppresses that most slowly decaying terms in the collision
kernel.

Moreover, after closing all the estimates in the proof of Theorem 1.1, we show a
posteriori that as long as we consider the solution in an appropriate weaker topology,
the Q(f, f) termin (1.2) — including its top order contribution — can be considered
as a perturbation term. In other words, as far as the long term dynamics of the solution
in this weaker topology is concerned, it is completely dominated by the transport part,
and the elliptic term presents no correction of the long time dynamics. To formulate
this result, let us first define, associated to a function f (¢, x, v), the function f f(x, v):

FAr, x,v) == f(t, x +1v, ). (1.8)
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Note that f is a solution to the linear transport equation, i.e. 9; f + v;dy, f = 0, if
and only if f 2(¢, x, v) is in fact independent of t. Thus the statement that f (¢, x, v)
approaches a solution to the linear transport equation can be captured by the following
theorem:

Theorem 1.3 There exists C > 0 depending only on y and dy such that the following
holds. Assume the conditions of Theorem 1.1 hold and suppose f is a solution given
by Theorem 1.1. Then there exists a unique function fgo : R3 x R® — R such that for
every L € NU {0},

Mmax +4

sup(1 + ™2 (1 4 ) (1 + jx )

>0

(5, x,0) = fale, ) lzere < Ce3.

One particular consequence of Theorem 1.3 is that the long-time asymptotics for
the macroscopic quantities are to leading order determined by ffo. We formulate this

in the following corollary?:

Corollary 1.4 There exists C > 0 depending only on y and dy such that the following
holds. Assume the conditions of Theorem 1.1 hold. Let ffo be as in Theorem 1.3.
Define

IOOO(tsx) = / ijO(-x —tv, 'U) dva
R3

(Moot %) :=/ o Fo (x — 1, v) d,
]R3

P
ecolt, x) := — foo(x — tv, v) dv.
R3 2

Then the mass density, the momentum density and the energy density, respectively
defined by

p(t, x) :=f ft,x,v)dv, m;(t,x) :=/ v; f(t, x,v)dv,
R3 R3
e(t,x) := l/ |v|2f(t,x, v) dv,
2 R3
satisfy
lollzee (8) + llmill e () + llell oo (1) < Ce(1 +1)73 (1.9)
and

A+ (lo = poollLeo (0) + llmi — (Mool L (1) + lle — ecoll 2o (1))

3 Note that while we control the macroscopic momentum m; (¢, x), we have no control of the macroscopic
velocity u; (¢, x) = % (t, x) since we do not have any lower bounds for p.
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- CG%(I 4 1y~ min{1.24) (1.10)

foreveryt > Q.

Another natural question in the context of long-time asymptotics is whether the limit
given in Theorem 1.3 is associated to a global traveling Maxwellian (see Definition 1.5
below). Recall that the H-functional H[ f] = [g3 [ps flog f dvdx is non-increasing
along the flow by the Landau equation (1.1). Moreover, the solutions to (1.1) for which
the H-functional is constant (and have finite mass, entropy and second moments) are
exactly the traveling global Maxwellians [51]. We show that despite these facts, general
solutions to (1.1) do not necessarily approach traveling global Maxwellians.

In the case of the Boltzmann equation with an angular cutoff, the existence of
solutions not approaching traveling global Maxwellians as ¢ — + oo was first demon-
strated by Toscani [64] by showing that polynomial lower bound in the spatial variable
can be propagated. In fact, for the Boltzmann equation with an angular cutoff, much
more than non-convergence to traveling global Maxwellian is known: a scattering
theory can be developed in a neighborhood of any sufficient small traveling global
Maxwellian [15]. In the case of the Landau equation, in view of the smoothing effect
of the equation, it seems unlikely that a scattering theory of the type in [15] still holds
(cf. [33] for related discussions on the non-cutoff Boltzmann equation). Nonetheless,
given the estimates in Theorem 1.1, we can construct solutions which do not approach
traveling global Maxwellians using a perturbative argument.

Before we proceed to the formulation of this result (see Theorem 1.6 below), we fix
our notation and take the following definition of traveling global Maxwellians from
[51].

Definition 1.5 (Traveling global Maxwellians) We say that a function M : [0, 4+ 00) X
R? x R? — R. is a traveling global Maxwellian if

m/det O 1/ v \'( oI BI+B v
M(t,x,v)=WeXP<—§<x_tv> (IBI—B ol )(x—tv))’

for some m > 0,a,0 > 0,8 € R, B € R3*3 gkew symmetric matrix such that
0 = (a0 — I + B?is positive definite.

Given a traveling global Maxwellian M, define M* : [0, +00) x R? x R3 by
ME(t, x,v) := M(t, x + tv, v). Note that by definition M? is independent of 7. We
will henceforth write M*(x, v) = Mz, x, v)

We denote by 91 the set of all traveling global Maxwellians.

The following is our result that solutions in general do not asymptote to traveling
global Maxwellians:

Theorem 1.6 There exists fin satisfying the assumptions of Theorem 1.1 such that the

limiting function foo given by Theorem 1.3 (defined by fx(t, x,v) 1= fgo(x —1tv,v))
does not correspond to the zero solution or a traveling global Maxwellian.
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The proof of Theorem 1.6 will in fact show that for a very large class of initial data,
the limits do not correspond to the zero solution or a traveling global Maxwellian; see
Remark 9.3.

The remainder of the introduction is structured as follows. In Section 1.1, we briefly
discuss the method of the proof. Then in Section 1.2 we discuss some related works.
Finally, in Section 1.3, we end the introduction with an outline of the remainder of the

paper.
1.1 Method of Proof

1.1.1 Local Existence

In order to construct global-in-time solutions in the near-vacuum regime, one first
needs to ensure that local-in-time solutions exist. This was carried out in a recent
work of Henderson—Snelson—Tarfulea [47] (see also [7-9] for related ideas for the
Boltzmann equation without angular cutoff).

We highlight two ingredients in [47]:

1. Use of a function space adapted to a time-dependent Gaussian in |v|: As ¢ increases,
one only aims for an upper bound by a weaker Gaussian in the v-variable. This
allows one to control the v-weights in coefficient g;; in (1.6). In order to handle
the time-dependent Gaussian weight, one also needs to exploit the anisotropy (in
v) of the coefficient a;;.

2. Use of L?-based estimates: This in particular allows for an integration by parts
argument to control the commutator terms without a loss of derivatives.

As in [47], we will use time-dependent Gaussian weights in |v|. Our choice of
Gaussian weights will decrease as ¢ increases, but it needs to decay in a sufficiently
slow manner so that it is non-degenerate as r — +o0c. More precisely, we define*

g =D £ ) = do(1 4+ (1 +1)7%) (1.11)

for appropriate dp > 0, § > 0 and estimate g instead of f.

In order not to lose derivatives, we will in particular prove L?-based energy esti-
mates for g and its derivatives. However, in our setting, we will also need additional
ingredients to handle the large time behavior of g (and its derivatives).

1.1.2 Decay and Heuristic Argument

Before we proceed, we give a heuristic argument why one can expect that in the near-
vacuum regime, the solutions to the Landau equation, as t — 400 approach solutions
to the linear transport equation

4 We will from now on use the J apanese bracket notations; see Section 2.
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o f +vidy, f=0. (1.12)
Let us recall again the Landau equation (see (1.6))
8,f+vi8xif:&ij85ivjf—5f. (1.13)

We now argue that if f obeys decay estimates similar to those satisfied by solutions
to the linear transport equation (1.12), then the RHS of (1.13) decays with a rate at
least (1 +7)~'~, which in particular is integrable in time. This at least shows that it is
consistent to expect f behaves like solutions to the linear transport equation.

(1.12) can be solved explicitly and a solution takes the form

Siree(t, X, V) = faaa(x —tv, V). (1.14)

Thus if the initial fya is sufficiently localized in x and v, then for all £ € N U {0},

/<v>‘ffree<t,x,v)dvs(1+t>—3, el ) S 1. (L15)
R3

By (1.14), it also follows that taking d, derivatives does not worsen the decay estimate,
but taking 9, derivatives worsen the estimate by a power of ¢, i.e.

A3<v>‘f|aﬁafffree|(r,x, v dv S 1+ 07 (0700 fireel,x,v) S (1 + )P

(1.16)
Assuming that f obeys estimates as for ffee, we now consider each of the terms on
the RHS of (1.13).
The ¢ f term. An easy interpolation together with (1.15) imply that

- 1+% -3 3
&t x, v)5/3|v—v*|yf<z,x,v*>dv*5 1l Il S 77
R’ v v

At the same time, f is uniformly bounded. Since y > —2, this implies that ¢ f is
integrable in time.

The a;; 83{_ v,/ term. We focus on the decay in 7 and neglect for the moment the
additional |v| weight which could in principle be handled using the time-dependent
Gaussian weight as in Section 1.1.1. The a;; term has decay

C_l[j(t,x, U) S /]‘{3(“)' + |U*|)2+yf(t7xv v*) dU* S, (U>2+y(l +t)73

On the other hand, by (1.16), 831, v f isnotbound even for solutions to the free transport,
but instead grows like (1 + 7)2. Hence together it seems that a; j 851_ v f decays only as
(14 1)~!, which is barely non-integrable in time!
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The null structure. The key observation, however, is that while the decay estimates
in (1.15), (1.16) are in general sharp, they are sharp only when 7 ~ v. For instance,
given sufficiently regular and localized data, when [v — | 2 7% for some « € [0, 1),
f(t,x,v) in fact decays in time (as opposed to merely being bounded). A similar
improvement also occurs for velocity averages, as long as the velocity average is
taken over a set with an appropriate lower bound on [v — 7|.

Returning to our problem, at a spacetime point (¢, x), for the term f lv —
Vs |2+V f(vs) dv*(aﬁ. v f)(v), we must have one of the following three scenarios: (1) v
is not too close to ’l—‘ (2) vy 1s not too close to % or (3) v and v, are close to each other.
In cases (1) or (2), one has additional decay because of the gain away from v ~ );‘
we described above; while in case (3) there is an improvement because of the small
[v — vy |*T7 factor! It therefore implies that

aij gy, f1 S 7 A +07" (1.17)

The improved decay (1.17) can be viewed as a consequence of a null structure in the
nonlinearity.

These rough heuristics already give hope that one can bootstrap the decay estimates
consistent with that of the transport equation.

Given the above discussion, the key ingredients for the proof are as follows:

1. Develop a robust method for proving decay estimates for solutions to the transport
equation.

2. The robust decay estimates need to capture the improved decay in (1.17), which
is important for exploiting the null structure in the equation.

3. Moreover, the decay estimates have to be combined with L2-based energy esti-
mates (which is needed already for local regularity theory; see Section 1.1.1).

We will discuss points 1, 2, and 3 respectively in Sections 1.1.3, 1.1.4 and 1.1.5.
There is yet another issue arising from combining 1, 2, and 3, and will be discussed
in Section 1.1.6.

1.1.3 A Robust Decay Estimate for the Transport Equation and the Maximum
Principle

Main robust decay estimate. Our robust decay estimate will be based on controlling
a weighted L3’ LS° norm of g and its derivatives (recall (1.11)). The main idea is very
simple for the linear transport equation. Given a sufficiently regular solution fee to
(1.12), (v)*(x —1V)™ firee also solves (1.12). As aresult || (V)¢ (x —10)" firee |l Leoree (1)
is uniformly bounded by its initial value. For m > 3, this implies

f 1 firee dv] < 1(0) (x — V)" fireell 20120 (0) /

[[{v)“(x — 10)™ fireell L0130 (0)
S (1+1)3

.X—ZU

) (1.18)

and we have a decay estimate for weighted velocity averages of ffree-
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This type of estimate turns out to be sufficiently robust to be used in a nonlinear
setting. We will prove the following weighted L{°LS° bound for g for some m > 43

sup [{(v)(x —tv)"g|(t, x,v) < €. (1.19)
(x,v)eR3xR3

Since a;; and ¢ are convolutions of f with different kernels (see (1.5)), (1.19) implies
quantitative decay estimates for the coefficients a;; and ¢ in a manner similar to (1.18).

Commutators and higher order estimates. To close our estimate we in fact need also
to control also higher derivatives of g. For this purpose we use d, 9, and Y := td, 49,
as commutators. d, and ¥ both commute with the transport operator d; + v; dy; , but 9,
does not commute with the transport operator.® This results in a loss of a power of ¢
for every commutation with 9. In other words, we will aim at the following L{°LS°
estimate (see (1.16) and (1.19)):

[(x — 1) 9%0P Y g|(r, x, v) < ()11 + )Pl (1.20)

When m > 4, (1.20) implies the following estimates for the coefficients (using an
argument similar to (1.18), after appropriately accounting for the singularity in v in
the definition of ¢):

sup [0%02 Y7 a;j| S e) A+, [8%9PYOC Sel+0)7TTY. (1.21)
i

Estimating the error terms. The estimates (1.20) and (1.21) will be proven simul-
taneously in a bootstrap argument. In order to establish (1.20), we differentiate the
equation for g and control the terms on the RHS.

One of the error terms (which shows the typical difficulty) is (8;‘,353 / Y"/&,- ]-)(82

Vivj
3987 v°" g) (where o/ + o = a, etc.). If we were to plug in (1.20) and (1.21), this
error term is controlled by’

[0 — rv)™ @2 0 Y @) (07,09 08 Y )t x, v) S €)Y (1 )AL
(1.22)
We make the following observations by comparing the (v) weights and ¢ rates in (1.20)
and (1.22):

5 Here, and for the rest of this subsubsection, we have yet to make precise the powers m that we will use.
This will turn out to be a delicate issue; see Section 1.1.4 for further discussions.

6 For the estimate (1.20), in fact one can equivalently just prove
[0 = 0)" 3 Y gl(t, x,v) S e(v) !

(i.e. without commuting with d,) and (1.20) follows from the triangle inequality. The actual reason that we
also use 9, as a commutator is more subtle and is related to the fact that we will use a hierarchy of weighted
norms; see (1.24) in Section 1.1.4.

7 Note that in the actual bootstrap setting we need some room and will only obtain a smallness constant of

3
€2 instead of €2. We will suppress this minor detail in the rest of the introduction.
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1. We need to prove an estimate (1.20) which has better (v) weight compared to
(1.22).

2. The decay rate on the RHS of (1.22) is exactly borderline to obtain the decay rate
in (1.20).

For point (1) above, note that a gain in (v) weight is possible is due to the e
weight in the definition of g (see (1.11)). This gain has to be achieved, however, at the
expense of a (1 + 1)} decay rate (see definition of d(t)).

For point (2) above regarding 7-decay, already the borderline rate means that we
cannot hope to straightforwardly recover (1.20) when |8| = 0. This is even more
problematic since to handle the (v) weights for point (1) above requires additional
room for the 7-decay rate. We must therefore improve the decay rate in (1.22) by
taking advantage of the null structure (recall the heuristic argument in Section 1.1.2).
This will be discussed in Section 1.1.4.

d(t){v)?

The maximum principle. However, even with the ideas to be discussed in Sec-
tion 1.1.4, we will not be able to obtain sufficient f-decay to treat the main
(non-commutator) term

(x — tv)" a0y, 89V g (1.23)

Instead, we will handle (1.23) using a maximum principle argument: since a;; is semi-
positive definite, we show that the presence of the term (1.23) can only give a favorable
contribution. In other words, only the terms with |o’| + |8'| + |o/| > 1 in (1.22) will
be treated as errors.

Additional technical difficulties. Unfortunately, even after taking into account all the
above considerations, not all the L>° estimates we prove will be as strong as (1.20).
This is related to the fact we need to couple our L estimates with L?> estimates. The
important point, however, is that at the lower order of derivatives, i.e. for |a|+|B|+ |0 |
smaller than a particular threshold, we indeed obtain the estimate (1.20). We will return
to this issue in Section 1.1.6.

1.1.4 Null Structure and the Hierarchy of Weighted Norms

Our robust proof of decay must also capture the null structure discussed in Sec-
tion 1.1.2! By naive inspection, one can already see that the (x —zv) weight (see (1.20)
in Section 1.1.3) ensures the solution to be localized at v ~ ’[—“, which as discussed in
Section 1.1.2 is exactly the mechanism which enforces the null structure.

In order to exploit this gain, however, one needs to be able to put in extra weights
on the error terms, i.e. in order to control (x — w)‘fa;;f Bf Y? g, we will need to have

estimates for (x — tv)”&faf yo' g, where £+ denotes a positive number strictly
larger than €. In order to close the estimates, we need to exploit more subtle features
of the problem and introduce a hierarchy of weighted norms. Namely, the weight of
(x — tv) that we will use will depend on the number of Y := ¢d, + 9, derivatives on
g. In fact, we will control®

(x — ty)MmatS—lolgagbyo s (1.24)

8 Recall here Mmax is the maximum number of derivatives in the assumptions of Theorem 1.1.
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so that the more Y derivatives we have, the weaker (x — tv) weight we put.
Here are the main observations that allow such a hierarchy of weighted estimates
to be closed:

1. The main (i.e. non-commutator) term can be considered as a “good term” (see the
discussions on the maximum principle in Section 1.1.3)). Thus we only need to
control terms where at least one derivative hits on g;;, i.e.

(aglaflya,/aij) (aglvj ag//af// Ya,//g) ’

where [@'| > 1, |f/| = 1or|o/| > 1.

2. Next, we show that if there is at least one 9, derivative on a;;, i.e. if | B’| > 1, then
the decay is (1 4+ 7)~>~" with some v > 0 (depending on y). This can be thought
of as a better-than-expected estimate since without using the structure of @;;, one
may naively expect that every d, derivative “costs” one power of ¢ so that one only
has [3,a;;] < (1+10)72.

3. In the case where there is at least one 9, derivative on g;;, i.e. if la’| > 1, we write
3y =t 1 (tdy +8,) — 1719, =171y — 1~ 19,. Note that

e since Y is one of our commutators, 1~ 'Y effectively gains us a power of 7;
e 119, also gains in terms of 7 due to the gain associated to 3, in point 2 above.

4. Tt thus remains to control the terms where there is at least one ¥ = 19, + 0,
derivative hitting on a;;, i.e. if |o’| > 1. In this case, it must be that there is one
fewer Y hitting on g as compared to the term that we are estimating! Our hierarchy
of norms (see (1.24)) is designed so that one can put an extra (x — fv) weight in
this term and therefore one can use the null structure to obtain an additional decay
rate.

1.1.5 L? Energy Estimates

For regularity issues, we cannot work with L® estimates alone, but will also need to
work with L? based estimates (which is already the case for local-in-time estimates;
see Section 1.1.1.) Similar to the L°° estimates (see Section 1.1.3), we use 0y, 0y,
Y := td, + 9, as commutators. We then prove L? estimates for ay 353 Y% g, again
weighted with (x — rv)Mmaxt3-101 to exploit the null structure (see Section 1.1.4).

Main L’ estimates. Using the equation for g one derives a weighted L> estimate
which for |a| + |B] 4+ |o| < Mmax controls the following three terms on any time
interval [0, T'], up to some error terms:

| (x — r)MmuxtS=lolgaghyo (1.25)

2
8liqorn 1212y
1Gx — £v)>Mme 10721915, 0297 Y7 ) (30,0908 Y &)l 11 qo,71:2121y, (1.26)
and

| (x — rv)MmaxtS=lol(q 4 t)—%—%w)agafy" (1.27)

2
&l2qo.711212)°
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The term (1.25) is a fixed-time estimate while the terms (1.26) and (1.27) are non-
negative terms integrated over [0, 7] x R3 x R3.

The term (1.26) arises from the main (non-commutator) term a;; 83[_ v Y 85} Y%g.
Note that since we do not establish any lower bound for a;;, (1.26) could be too
degenerate to be used to control error terms, but its good sign at least means that we
need not view the main term as an error term.

(1.27) has the favorable feature that it has a stronger (v) weight compared to (1.25).
This term is generated by the time-dependent Gaussian in the definition of (1.11). We
will in fact use (1.27) to bound most of the error terms.’

We note as in Section 1.1.3 that 9, does not commute with 9; 4 v; 0y, and there-
fore the decay rate worsens with every commutation of 9,. Denoting E*(T) :=
> el o | <M (1 F T)~21B1((1.25) 4 (1.27)), our goal will be to prove that

EX(T) < €. (1.28)

Note that this is consistent with the best L2 L2 estimate that one can get for solutions
to the linear transport equation.

Controlling the error terms. We consider an example of an error term when deriving
the energy estimates (which shows the typical difficulties):

3 e — )2 10-5171 (9258 y7 o) (o0 vay )
CZ’+C(”:C{, ﬂ/_’_ﬁ//:ﬂ’ o,/+o_//:o_
/18l 21
x (83,-1),-8;? 85 Ye 8) ”Ll([O,T];L}L}))- (1.29)

Notice that as described above, the main (non-commutator term) can be viewed as a
good term. Therefore we indeed only need to consider the cases |o'| + || +|o’| > 1.

The estimates are different depending on whether |o’| + || + |o”/| is small or
large. When |&’| + | 8’| + |o”| is small, we can use (1.21) to control ag’af’w’é,»j and
bound both 9¢ 3Py g and 851,,,8)‘3”85“ Y?"g in L2([0, T1; L2L?) using the norm as
in (1.27). One then sees that the decay rate is slightly insufficient (in fact it misses
by a power of (1 + 7)?). As in the proof of the L LS® estimates in Section 1.1.4, to
overcome the borderline decay, we need to make use of the null structure. Indeed, we
note that |a| + |8| + |o’| > 1 so that we can argue as in Section 1.1.4 to obtain a
better decay rate. (Note that the ideas in Section 1.1.4 give a quantitatively better rate
than the borderline case. Thus by choosing § sufficiently small, (1.29) can indeed be
controlled by the norms in (1.27).)

Consider now the term (1.29) when |&’| + |B’| + |o”| is large. As a particular
example, we have the following term when |«| + |8]| + 0] = Mmax:

||<x _ tv>2Mmax+lO—5\U‘ (aj‘fafYUg) (8;[35Yo-&l]) (35[ng> ||L1([O,T];L:£Ll]})' (130)

9 The only error terms that we will not estimate with (1.27) but will instead use (1.25) are the terms arising
from the commutator [3; + v; dy; , Y 85} Y?1; see Section 7 for details.

@ Springer



Stability of Vacuum for the Landau Equation with... Page 130f 101 11

Here, we are faced with another challenge regarding the decay rate. At the top order,
we need to control 9 8{,3 Y%a;jin L% (as opposed to L$°). As a result, we only obtain

10) =958 Y a2 e S €1+ 1) 3P

(This should be compared with the L{° LS estimate in (1.21) when || + |B] + |o| is
lower order.) At the same time, we need to bound E)vziv g in some L norm. At first
sight, one may hope, based on linear estimates for solutions to (1.12), that

1
e — o)M=l ()92 | gllpoep2 S el +0)2.
However, when |o | is small, we are very tight with the (x —7v) weights and in general

we only obtain the following weaker estimate!? based on Sobolev embedding and
(1.27):

1
I+ 072707l — o) Mmat37190 )92 el 20,7y 2002) S €1+ T)

Combining these estimates and using (1.28), it seems that Holder’s inequality only
gives

1 — rv)?Mma 102101 320y 7 0) (35 05 Y 7 i) (05, ) 1 qo.73: 21 L)

<l — royMuats—lol V) gayp ~C+y)

Y? ) v
S (I_H)%Jr% 0y YO8l 20,7y, 2222) (V)

5 _
x (141)2 |ﬁ|8§‘85}Y”az‘j||L°°([0,T];L,%L%)

N _
X (140727 — o) Mt S7191 )52 el oo Lo L)

1,3
X (1 + 67272 2B o 10,7

< 62(1+T)%+%+2|,3|’

~

which is much worse than the bound (1 4+ 7)?/#! that we aim at in (1.28).

To handle (1.30), note that while at the top order we need to put 9 85 Y%a;; in
LﬁL‘jo, we must have |«| + |8] + |o| > 2. In this case, we can further extend ideas as
described in Section 1.1.4 to obtain better decay rates. (Note that unlike for the L
estimates, ideas in Section 1.1.4 are no longer just used to beat the borderline terms,
but are instead needed to achieve a more substantial improvement.) To implement this,
we will in addition need to contend with certain singular [v — v, |” factors, which affect
the decay rate. In order for the above ideas to work, we will then need to estimate some
0y 855 Y?a;; terms in a few different mixed L)%Lﬁ7 spaces (for appropriate p € [2, 00)
depending on y). See Sections 5.2 and 7 for details.

10 Note that in the (1 + t) weight on the LHS, we have § instead of % (as one may expect). This is a
technical point (see Section 7.1) which plays no substantial role.
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1.1.6 A Descent Scheme

As we have stressed above, even our decay estimates are based on the L bounds, in
order not to lose derivatives, we need to combine the L estimates with L? energy
estimates. In other words, the L estimates we described above in Section 1.1.3 do
not close by themselves. Indeed, in carrying out the maximum principle argument, we
encounter commutator terms that have one derivative more than the term that we are
estimating. As aresult, at the higher level of derivatives, we need to use the L? estimate
together with Sobolev embedding to control these commutator terms. This however
creates a loss in both (v) and ¢ in the sense that the L°° decay rate thus obtained is
weaker than the corresponding decay rate for solutions to the linear transport equation.

In order to overcome this, we introduce a descent scheme. More precisely, we allow
the higher level L°° norms to have weaker decay in both (v) and # compared to (1.20),
but as we descend in the number of derivatives, we obtain a slight improvement at
every level, until we get to a sufficiently low level of derivatives for which we obtain
the desired (1.20). To give a concrete example, consider the special case y = —1. We
will prove

S - )Mty o 1, x, v) S el 40P,

la|+1B1+lo =10
Do )Ml gl v) S o) (L4 )P
| +1B1+1o|=9
Do — )Mol 98By T g, x, v) S e(u) T (1 1)L
| +1B1+lo|<8

Here are two observations regarding the descent scheme:

1. Such a scheme can close since when controlling a nonlinear term, a term with
higher order derivatives must multiply a term with lower order derivatives. There-
fore, the loss that we allow in a descent scheme does not accumulate. (It is therefore
also crucial that we indeed prove sharp estimates at the lower order!)

2. Moreover, when bounding the nonlinear terms, after using the ideas in Sec-
tions 1.1.3-1.1.5, every term that we encounter is quantitatively better than the
borderline case. It is for this reason that every time we descend one order of
derivative, we obtain a quantitative gain.

We note that the full hierarchy for the descent scheme is more complicated for
general y. In fact, as y — 0~ or y — —27, the number of steps for which we
descend — + oo. (It is because of this fact that we need a large number of derivatives
in Theorem 1.1 as y — 0~ or y — —2%.) We refer the reader to Section 6.3 for the
precise numerology.
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1.1.7 Long-Time Asymptotics

The above concludes the discussions of the main difficulties of proving the global
existence of near-vacuum solutions. Theorem 1.3, Corollary 1.4 and Theorem 1.6
more or less follow from the estimates that have been established.

The only thing to note is that so far we have “dropped” the main elliptic term
ajj 831, v Y 8,’? Y? g in either the maximum principle or energy estimate argument, show-
ing that it can only give a better upper bound than that for the linear transport equation.
To make statements about the precise asymptotic behavior of the solutions, however,
we need to be able to control the main elliptic term.

The key point is to note that since all the estimates have now been closed, by
carrying out an estimate on f with a slightly weaker (x — rv) weight, we can use the
null structure to show that even the main term a; 851, v f has faster than integrable time
decay. We refer the reader to Section 9 for details.

1.2 Related Works
1.2.1 Stability of Vacuum for Collisional Kinetic Models

The earliest work on the stability of vacuum for a collisional kinetic model is that for
the Boltzmann equation with an angular cutoff by Illner—Shinbrot [48]. There are many
extensions and refinements of [48]; see for instance [12,14,16,38,44,45,54,63,66]. We
refer the readers also to the related [10,34,65] in which perturbations of traveling
global Maxwellians were studied — in this setting the long-time dynamics is also
characterized by dispersion (compare Theorem 1.3).

To our knowledge the present work is the first stability of vacuum result for a
collisional kinetic model with a long range interaction. Note in particular that the
analogous stability of vacuum problem for the non-cutoff Boltzmann equation remains
open.

1.2.2 Dispersion and Stability for Collisionless Models

Stability of vacuum results in collisional models can be viewed in the larger context
of stability results for nonlinear models in kinetic theory that are driven by dispersion.
That dispersion of the transport operator is useful in establishing global result for close-
to-vacuum data has been well-known early on for collisionless models; see [13,30,31]
for some early results, which are mostly based on the method of characteristics. See
also [14] for a discussion of the relation between these results and the stability of
vacuum for the Boltzmann equation with angular cutoff. For more recent discussions,
see [17,27,56,70-73], as well as remarkable proof of the stability of the Minkowski
spacetime for the Einstein—Vlasov system [26,52,62].
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1.2.3 Regularity Theory for Landau Equation

It is an outstanding open problem whether regular initial data to the Landau equation
give rise to globally regular solutions. The literature is too vast for an exhaustive
discussion, but we highlight some relevant results here.

Weak solutions. Renormalized solutions to the Landau equation have been con-
structed in [68]. See also [5,53].

Spatially homogeneous solutions. In the Maxwellian molecule case (y = 0) and the
hard potentials case (y > 0), the theory of spatially homogeneous solutions is very
well-developed [24,25,67]. In the soft potentials case (y € [—3,0)), existence was
studied in [11,23,69], and uniqueness was studied in [28,29]. See also [6,23,55,74]
for further a priori estimates in the soft potentials case.

Global nonlinear stability of Maxwellians. The global nonlinear stability of
Maxwellians on a periodic box was established in Guo’s seminal [39]. This is part
of Guo’s program to use a nonlinear energy method to construct perturbative solu-
tions in nonlinear kinetic models. The methods of Guo have moreover inspired many
subsequent perturbative results for various kinetic models [40—43,58-61], including
the remarkable works of the global nonlinear stability of Maxwellians for the non-
cutoff Boltzmann equation [2-4,36]. See also [19-21] for more recent results on
near-Maxwellian solutions.

Conditional regularity theory. A thread of recent works concern regularity of solu-
tions to the Landau equation assuming a priori pointwise control of the mass density,
energy density and entropy density [18,32,46,47,57]. Our present paper in particular
relies on the work [47], which proves the local existence, uniqueness and instantaneous
smoothing of solutions using the theory developed in the papers mentioned above.

Model problems. Various simplified models for Landau equation have been intro-
duced and some regularity results have been obtained for these models; see for instance
[35,37,49,50].

1.3 Outline of the Paper

The remainder of the paper is structured as follows.

In Section 2, we introduce some notations that will be used throughout the paper.
In Section 3, we cite a recent local-in-time existence and uniqueness result of [47],
which will be the starting point of our construction of global-in-time solutions.

Sections 4—8 will be devoted to the proof of Theorem 1.1. In Section 4, we discuss
the bootstrap argument used for the proof and introduce the bootstrap assumptions.
In Section 5, we control the coefficients a;;, ¢. In Section 6, we use the maximum
principle and an appropriate iteration argument to prove the L{°L° estimates. In
Section 7, we use energy methods to prove the L%L% estimates. We then conclude the
proof in Section 8.

Finally, in Section 9, we discuss the long-time asymptotics of near-vacuum solutions
and prove Theorem 1.3, Corollary 1.4 and Theorem 1.6.

@ Springer



Stability of Vacuum for the Landau Equation with... Page 170f 101 11

2 Notations

We introduce some notations to be used throughout the paper.

Norms. We will use mixed L” norms, 1 < p < oo defined in the standard manner:

1
Il = (/ |h|f’(v>dv)p :
R3

For p = o0, define
12l Lo := ess sup,cps|h|(v).
For mixed norms, the norm on the right is taken first. For instance,
P

1
Wl g = (f (f |h|q<x,v>dv)”’ dx)
’ R3 R3

and

SIS
~I—

T g
12l o7y 20 L8) = / ([ </ Ihl"(t,x,v)dv) dX> dt
0 R3 R3

with obvious modification when p = oo, ¢ = oo or r = co. We will silently use that
Illzppg S Ihllzgry when p = g.

Given two Banach spaces X; and X5, define the following norms for the sum
X1 + X5 and the intersection X N X5:

Ihllx,+x, == inf (lhillx, + lk2lx,),  hllxnx, == lklx, + [Allx,.
h=hy+hy
Japanese brackets. Define
1
()= +1-1)2.

Multi-indices. o = (o1, op, 23) € (NU {O})3 will be called a multi-index. Given
a multi-index «, define 9 = 9219%20%; and similarly for 3} when g is a multi-
index. Let |o| = a1 4+ a2 + a3. Multi-indices are added according to the rule that if
o = (o}, ), &) anda” = (af, &f, of), thena' +ao” = (o) +of, ) +af, af+af).
Given a multi-index ¢ = (a, o2, o3), the length of the multi-index is defined by
la| = a1 + ap + as.

We will often sum over all multi-indices up to a certain length. In this context, we
will use the convention that ng—l (---)=0.
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3 Local Existence

In this section, we recall the local existence result in [47] (and state a small variant of
it).

To state the result in [47], we first recall their definition of uniformly local weighted
Sobolev spaces.

Definition 3.1 (Uniformly local weighted Sobolev spaces) Let ¢ : R?> — R be a
smooth and compactly supported cut-off function such that 0 < ¢ < 1 everywhere,
¢(x) =1for x| < 1and ¢(x) =0 for |x| > 2.

Define the Hl]fl’e norm on S(R? x R?) by

1

2
IRl e == (sup/ / | (x — a)(v agafh|2dudx>
" eiBlsk \acR?

and take Hllfl’e to be the completion of S (R? x R?) under this norm.

The following theorem is taken from [47]. (Note that in the statement of Theorem 1.1

in [47], the estimate (3.2) is stated only for ePo(v)? f instead of e(Po—x<D(v f but it
is clear from the proof that (3.2) indeed holds.)

Theorem 3.2 (Henderson—Snelson-Tarfulea [47]) Fix po, My € R with pg > 0,
Moy > 0 and k € N with k > 4. Suppose e fln satisfies the estimate

lePot? fmllHk < Mp. (3.1

Then for any k > 0, there exists T = Ty py My« > 0 depending only on y, po, Mo

and k, such that there exists a unique solution f > 0 to the Landau equation (1.1)
with initial data f(0, x, v) = fin(x, v) and satisfying

(po—«t)(v

||€ f”c()([o TI; )ﬁLz(O T); Hul ) < +OO (32)

A more remarkable statement is that the solution constructed in Theorem 3.2 imme-

diately acquires smoothness and positivity!! even the initial f;, may not be smooth

and may contain vacuum regions.

Theorem 3.3 (Henderson—Snelson-Tarfulea [47]) The solution f : [0, T] x R3 x R3
in Theorem 3.2 is C* when t > 0. Moreover, if fin is not identically zero, then
ft,x,v) >0whent > 0.

In what follows, we will need a slight variant of Theorem 3.2. It can be proven
in a very similar manner as Theorem 3.2 in [47], we therefore state it as a corollary
and omit the proof. Note that the assumptions in Corollary 3.4 are weaker than those

g long as the initial fj, is not identically zero.
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in Theorem 3.2 (i.e. (3.3) implies (3.1)). Therefore, by Theorem 3.2, a unique local
solution indeed exists under the assumptions of Corollary 3.4 (and moreover unique-
ness holds even in the weaker space in Theorem 3.2). The point, however, is that
Corollary 3.4 also gives a stronger estimate which will be useful.

Corollary 3.4 Fix pg, My, . € Rwith pg > 0, My > 0 (and A arbitrary) and k, N €
N with k > 4. Suppose ePov)? fin satisfies the estimate

2
> = 2N ogaf (e fin) llz2rz = Mo. (33)
loe|+|BI=<k

Then for any k > 0, there exists T = Ty py Mo,1,N.« > O depending only on y, po,
Mo, A, N and «, such that there exists a unique solution f > 0 to the Landau equation
(1.1) with initial data f (0, x, v) = fin(x, v) and satisfying

_ 2
> (I = Gt 0w Vogalf (MO0 £ eogo 2z
la|+1B<k

+lx — O+ D)V ()¢ af (e“’ﬂ*“““”f) ||Lz<[o,n;L;Lg)) < +00.
3.4)
Moreover, given fixed v, po, Mo, N and «, for any compact interval K C R, T =
Ty, 00,Mo,3, N« > 0 can be chosen uniformly for all . € K.

Comments on the proof. The proof is essentially the same as in [47]. Note that the
norms in this corollary are different from those in Theorem 3.2 in two places: first, it
involves a usual Sobolev space instead of a uniformly local one; second, there is an
additional weight of (x — (A + t)v)".

The first difference in fact makes the proof easier, as one no longer needs to keep
track of the cut-off functions ¢ (see Definition 3.1). The second difference only affects
the proof minimally. This is because

(O +vi0x){x — A +0v) =0, [dy;{x — A +0v)| i 1. (3.5

One can therefore prove weighted L? estimates with (x — (A +1)v)" weights and (3.5)
guarantees that all extra terms arising from integrating by parts in the L? estimate can
be easily controlled.

Finally, for . € K and K C R a compact interval, T’ can be chosen to depend only
on K but not the specific value of A. This is simply because the constant in (3.5) can
be chosen uniformly for all A € K. O

4 Bootstrap Assumptions and the Bootstrap Theorem
We now begin the proof of Theorem 1.1. We will argue using a bootstrap argu-

ment. After introducing some preliminaries in Section 4.1, we will state our bootstrap
assumptions and our main bootstrap theorem (Theorem 4.1) in Section 4.2.

@ Springer



11 Page 20 0f 101 J. Luk

4.1 Preliminaries

Let é be a small positive number (depending on y) defined by

2 1
§:=minl=—"" 1 (4.1)
4 10

Instead of directly controlling f, define
g =00’ p, (4.2)
where
d() :=do(1+ (1 + 17, 43)

dp > 01is the constant in the statement of Theorem 1.1, and § > 0 is the constant fixed
above satisfying (4.1). We will estimate g instead of f.
The function g then satisfies the following equation:

8do 2 s a2
08+ vidy, g+ m(w 8 = aijdy,, 8
= —cCig— 4d(t)c_l,-jvi8ng — 2d(t)(5,'j — Zd(t)vivj)c_l,-jg. “4.4)

Define the following shorthand

Y =13y, + ;. 4.5)
Introduce the following energies for k = 0, 1, ..., Mmax and for T > 0.
Ex(T):= > (4T P — o)t @02 08 Y 0) | 1o g0,71:2222)
loe|+1B|+]o|=k
1_34
Y AT R ) (x — )Ml
lael+|Bl+]o|=k

X (3)?351/08)||L2([0,TJ;L§L%)~
(4.6)
We note explicit the following features of the energies:

e (x — tv) weight depends on the number of Y = #d, + 9, derivatives: the more Y
derivatives we take, the weaker weight we have.
e For every 9, derivative we take, we give up a power of (1 + 7).
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4.2 The Bootstrap Assumptions
Introduce the bootstrap assumption for the £ norms

MmaX
E(T):= Y Ex(T) <ed, 4.7)
k=0

242055 +41 ify e (=2, —1]

242[p7+41 ify € (=10

Introduce also the following bootstrap assumptions for the L° L5° norms of deriva-
tives of g:

When [ar| + |B] + o] < Minax — 4 — max{2, [ 3351},

where My x = as in Theorem 1.1.

- 3
| (x — tv)Mmaxt> Iala)‘fafY"g”LioLgc (T) <ei(1+T)P (4.8)
When Mpax — 3 — max{2, f%l} <la|+ 18] + o] =: k < Mpax — 5, then
7(Mmax*4*k) min{%,?’a[‘ﬁlﬁ,lﬂl

4.9)
Our goal from now on until Section 7 will be to improve these bootstrap assumptions

3
[ — vy Mmaxs 37119038 Y 7 g o oo (T) < 1(14T)?

4.7), (4.8) and (4.9) with e% replaced by Ce (which is indeed an improvement for
€ sufficiently small) for some constant C depending only on dp and y. We formulate
this as a theorem below.

Theorem 4.1 (Bootstrap theorem) Let y, dy and fin be as in Theorem 1.1 and let
8 > 0 be as in (4.1). There exist ¢g = €o(dy, y) > 0 and Cy = Co(dp, y) > 0 with
Coeg < %65 such that the following holds:

Suppose there exists Tpoor > 0 and a solution f : [0, Tpoor) X R3 x R3 with
f(t,x,v) =0, f smooth fort > 0 and (0, x,v) = fin(x,v). Moreover, suppose
that the estimates (4.7), (4.8) and(4.9) all hold for all T € [0, Tpoot), then all of these
estimate in fact hold for all T € [0, Tpoor) With E% replaced by Coe.

From now on until Section 7, we will prove Theorem 4.1 (see Section 7.5). In
these section, we therefore always work under the assumptions of Theorem 4.1.
To simplify the notations, from now on, unless explicitly stated otherwise, for two
non-negative quantities A and B, A < B means that there exists C > 0 depending
do and y (and in particular independent of ¢) such that A < CB.

5 Estimates for the Coefficients

We work under the assumptions of Theorem 4.1.
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In this section, we prove L and L% type bounds for the coefficients 4;, ¢ and their
derivatives. The LS° estimates will be proven in Section 5.1 while the L2 estimates
will be proven in Section 5.2.

5.1 The LY Estimates for ajj, c and Their Derivatives
5.1.1 Preliminary Embedding Estimates
We begin with a simple interpolation estimate.

Lemma5.1 Letv € (0,3) and h : Rf) — R be an L' N L™ function. Then the
following estimate holds:

B -2 v
SUP/ [v = vl VIRl (v dvs S IR IR o
R3 v v

veR3
Proof Assume that i = 0 for otherwise the estimate is trivial.
Let A > 0 be a constant to be determined. We divide the integral into regions

[v — ve] < A and |v — vi| > A and use Holder’s inequality in each of the regions to
obtain

/R} [v — v 7" 1A1(vs) doy

< f v — vl 1Al () o +/ v — vl 1Al () o
{lv—vi|<A} {lv—vs|>2}

S AP Rl + A7Vl

1 _1
Let . = |Al}}, ]l - Then

- 1-
sup /3 [v = vel VRl (vi) doy S IR,

5o
Il .
veR3 /R

1
v
as claimed. O

Lemma5.2 Let h : [0, Tgoot) X R3 x R, — R be a smooth function such that
(V)*h, (x —tv)*h € LLLY forall t € [0, Tpoor). Then for all t € [0, Tgoor),

Ml ) S (407 (1) Rl ) + 1 = 1) Al (1))

Proof Step 1: The case t < 1. In this case we simply use the Holder’s inequality to
estimate as follows:
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Al @, x) S ([H@w)‘*dv)( sup <v>4|h|(t,x,v>> S I Rl 0.

(x,v)eR3

Taking supremum over all x € R3 yields the desired estimate.

Step 2: The case t > 1. Let A > 0 be a constant to be chosen. We divide the region of
integration according to [v — 7| < A and |[v — 7| > A.

||h||L1<r,x>5/ |h|<r,x,v>dv+/ Ih1(t, x, v) dv
! {lv—%1<a) {(lo=%1>2)
_ X _
< Kl zers (1) + 1 1x —tvl“hnLgOLgo(r)/ -t
{(lv=%1>2) t

Sl = e hllgerge ) (32 + 27174,

Let A = ¢~ ! and taking the supremum over all x € R3, we obtain the desired estimate.
O

Lemma5.3 Letv € (0,3) and h : [0, Tgoor) X R? x R3 = R be a smooth function
suchthat (v)*h, (x—tv)*h € LLP forallt € [0, Tpoor). Thenforallt € [0, Toor),

[t = bl x v do,
]R3
S A+ 07 (1) iz () + 1 = ) ez ()
Proof This follows from combining Lemmas 5.1 and 5.2. O

5.1.2 Estimates for Weighted v-Integrals of f

We now use the preliminary estimates derived in Section 5.1.1 to bound general
weighted v-integrals of f; see Lemmas 5.5 and 5.6 below.

Lemma 5.4 For every £ € N and m € N U {0}, the following estimate holds with an
implicit constant depending on £, y and do for any (¢, x, v) € [0, Tpoor) x R? x R3:

W — )"0l Y fle vy S Y = w)™a%af Y gl x. v).
1B'1=1Bl. lo"1=]o]

Proof This follows immediately from differentiating (4.2) and using (v)fe ¢ Ow? e
1 forall £ € N.

Lemma5.5 If || + |B] + |0] < Mmax — 4 — max{2, r%n, then

3
o) = 10)aF 8l Y fll oy (1) S €31+ 1)V,
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If Minax — 3 = max{2, [ 7351} < la| + Bl + lo| =: k < Max — 5, then

_3 — 4 inl 3 3C+y)
||<U)4(X _ 10)3?35Y0f||LAocL'1)(t) g 6%(1 +t) 2+|,3| (Mmdx 4 k)mm{4, 7 ]

Proof By Lemmas 5.2 and 5.4, we obtain
Hw)* (x = 10)8 LY f 1 oo p1 (1)

S A+ D7) — 1) 90 Y fll Lo (1)
+ 1) = 1)L Y f | Looroe (1))

S U+~ Y =) 0%l YO gl oo e
IB'1=IBl, 1o’ |<lo]
The desired conclusion then follows from (4.8) and (4.9). O
Lemma5.6 Letv € (0,3). If || + |B] + |0| < Mmax — 4 — max{2, r%w}, then

(1) S ed (14 ) 3T HIAL

LPLY

H/ v — vl 7 1BL Y £1(t, x, v.) du,
]R;

If Minax — 3 = max{2, [ 7351} < la| + |B| + lo| =: k < Myax — 5, then

)

LPLY

H/% lv — vs 718288 Y7 f1(2, x, vy) du,
R‘

ise%a_+t)—%+u+m%%MhM—4_mnm4gﬁﬁgﬁ}'
Proof By Lemmas 5.3 and 5.4,

H/RS|U—U*l_vlagafY“ﬂ(I,X,v*)dv* ()

LPLY

S A+ %LY [l oo oo (1) + [[(x — 10)* 9208 Y7 fll o0 (1))

e Sl — )% Y gllper ()
[B'1=IBl, 1o’ |=]o]

The desired conclusion then follows from (4.8) and (4.9). O

5.1.3 L°L° Estimates for aj; and Its Derivatives

Proposition 5.7 In the following, suppose || + |B] + || < Mmax-
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The coefficient a;j and its higher derivatives satisfy the following pointwise bounds:

max|a°‘af‘Y"au|<t x,v) S / v — v P15 Y f1(2, x, ve) s, (5.1)
R.

max |9%98 Y7 (a;;vi)l(t, x, v)
J

< (uymaxitr. 1) / (v )X 15098y £1(7, x, v,) duy, (5.2)
]R3

10298 Y7 @;jviv))|(t, x, v) 5/}(|v|2+y|v*|2+ a7 Y7 £1(2, x, v) dvs.
R;
(5.3)

Thefirst v-derivatives of a;j and their higher derivatives satisfy the following pointwise
bounds:

max|8“3’5Y“8w&ij|(t,x,v),§/ v — v "T10%0P YO fF1(1, x, ve) dvs, (5.4)
]R3
max|8“8’3Y‘78W(Ezijvi)|(t,x, v)

S f3(|v||v—v*|1+y v = v PIATY f1, x, v2) du, (55)
R

Finally, the second v-derivatives of a; j and their higher derivatives satisfy the following
pointwise bounds:

max 9%9F Y7 9? a,-j|(r,x,u)§/ v — vV 10%0P YO f1(r, x, vx) dvs  (5.6)
R3

. Ve,
ij.tm Um

Proof Step 0: Preliminaries. We will repeatedly use the following easily verified facts
when'? |B'| < 2:

(9208 Y7 0f 1a;; = / @F aij(v — v0)@LOLY £)(1, x, v.) du,,
R3
[o7af v” o) 1(aijvi) = / 0l (@i = v v @FAL Y7 (1. 2, v) dvs,
R

[07af v7 0] (i vive) = /R 0f (@i = v v ) BFALY )t x. ve) dv,

As a result, the proof of the proposition essentially boils down to checking the
derivatives of the kernel. This is what we will check below. In other words, when we
say ‘“Proof of (5.1)”, we mean that we will estimate the kernel so that when plugging
in the above, we obtain (5.1).

/
12 Here, |B] < 2is to ensure that 85 ajj isin Lllm, vy SO that the computation can be justified.
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Step 1: Proof of (5.1). To obtain (5.1), we only need an estimate

2
laij (v —v)| < v — vl 717,

which is obvious by (1.3).
Step 2: Proof of (5.2). For (5.2), we start with (1.3) and compute

aij (v — ve)v;

= |v— v <vj Gl el )l Cl ”*)j>

v — vy

= v —uv|” (vj|v|2 —2vj(v-vy) + U.,'|v*|2 — (WP = (-v)) (- U*)j)
= |v—v” (—v,-(v v) vl = (v = (v v*))(v*),-)

= v —vl” (_vj(v* (v—v)) = (v (v— U*))(v*)j) .
5.7
We now split into various cases. First, suppose 1 + y > 0. Then (5.7) and the
triangle inequality implies that

1 2 2
sup [aij (v = v Vil S Jo = vl T olfvsl S 0P Joe] + ol fos 7T
J

If 1 +y < 0, we further split into two cases. If [v — v,| < 1, then a trivial estimate
using (1.3) implies

2
sup [aij (v — v)vi| S v = vl 7 o] S ol
J

If14+y <0and |v— v| > 1, then by (5.7), we obtain

1
sup [aij (v = v)vil S Jo = vl ol fvs] S Jvlvsl.
J

Step 3: Proof of (5.3). For (5.3), we compute

RO v*))2>

2 2
aij(v = v)viv; = v — vy |7 (Ivl PEE
- Ux

— y 2 2 2 _ . a4
= o= ul” (PP + P =20 o) -l

+2u - ) = (v 0.)?)
= o= vl? (1Pl = (- 0.0%).
Using the Pythagorean theorem, we obtain the following estimate:

1

5 2
e ‘Ivl v — (V- v*)v)

22 2
o7 [ve]” — (V- ve)” =
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1
= F (- (0= ) Vs — (V- 0) (0 — V)2 <20 — v P vsl®. (5.9)

Putting (5.8) and (5.9) together, and noting 2 + y > 0, we thus obtain
laij (0 = VvV S = v oaP S 0P [oal® 4 Jua 7
Step 4: Proof of (5.4). By homogeneity of a;;, it is easy to see that
|8y (v = v S v — vl 7, (5.10)

which implies (5.4).

Step 5: Proof of (5.5). Arguing again by the homogeneity of a;;, it follows that
13 [di; (v — vVl S v — v 77 [v] + [v — v,]®T7, which then implies (5.5).

Step 6: Proof of (5.6). Finally, for the second derivatives of a;;, we use homogeneity
to obtain

[0y, 0uaij (v — V)| S v — vil”,

which implies (5.6). O

Using Proposition 5.7, as well as estimates in Section 5.1.2, we derive estimates
for a;; and its derivatives in the next few propositions. Our first proposition is the
most general, but as we will see, we will need various refinements later to close our
bootstrap argument.

Proposition 5.8 If || + |B| + |0| < Mmax — 4 — max{2, r%n, then for (t, x, v) €
[0, Tgoor) x R x R?,

1990 Y7 aijl (1. x.v) S € ()27 (14 1y 3HAL
If Minax — 3 — max{2, [35 1} < lal + Bl + lo| = k < Mmax — 5, then for
(7, x,v) € [0, Thoot) X R3 x R3,

3 B (Mo — 4y min 3 3G
0900V, 0) 5 € #7141y iS5

Proof This follows from (5.1) in Proposition 5.7, the bound |v — v, >V < |v|*HY +
|v*|2+7 (since 2+ y > 0), and Lemma 5.5. O

The next proposition is a variant of Proposition 5.8: it gives an improved ¢-decay
rate under the assumption |3] > 1.

Proposition 5.9 If || + |B] + || < Mmax — 4 — max{2, r%w} and |B| > 1, then
for (¢, x,v) € [0, Thoor) X R3 x R3,

3 .
0908 Y a1 (¢, x, v) S €3 ()2 (14 1) Mt SHY AL
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If Minax =3 —max{2, [ 7351} < la| + 18] + lo| = k < Max =5 and |B| = 1, then
for (t,x,v) € [0, Thoot) x R3 x R3,

—min}3.2 _ —4—k)minl 3 3@
|3a8ﬂYGa1]|(l‘ x, U)<€%< )2+V(1+t) m1n{2,2+y}+|ﬂ| (Mmax—4 k)m1n{4, T }

Proof Assume throughout the proof that | 8] > 1. We start with (5.4) in Proposition 5.7
and consider separately 1 +y > 0and 1 4+ y < 0.
Suppose 1 + y > 0. Then we have

oY Tay |t xv) S ) / (1017 Joa 7 ) 10,08 Y £105,x, v,) du.
1p1=<1B1-1

The desired estimate then follows from Lemma 5.5.
Suppose 1 + y < 0. Then we have

0200y a |t x v) S Y / v — vs|"1710,08 Y7 £1(1, x, vs) du,.
IB'I=181—1
The desired estimate then follows from Lemma 5.6 with v = —(1 + y).
(We note explicitly that indeed an estimate with an even better (v) weight still
holds, but we will be content with the stated weaker estimate since this allows for an

easier comparison with the estimates in Proposition 5.12, which will in turn allow us
to handle our estimates more systematically later.) O

The next proposition is another variant of Proposition 5.8 which gives an improved
decay rate under the assumption || > 1. (Note that the estimate is very weak as
t—0)

Proposition 5.10 If || + |B| + |0| < Mmax — 4 — max{2, (%1} and |a| > 1, then
for (t,x,v) € [0, Tgoor) x R} x R3,

|a°‘aﬂY“a,,|(t x,v) < 6%( V2V 4 )~ minBA+y AL

If Minax =3 = max (2, [351) < |l + 1B+ o] =i k < Mumax — 5 and o] > 1, then
for (¢, x,v) € [0, Thoot) X R3 x R3,

35,4 _ s [33@4y)
|3f85Y”&ij|(t,x,v)SG%(v)zﬂ’t*l(H-t) mm{j 2 y}+|ﬁ| (Mmax =4 k)mm{‘“ T }

Proof We rely on the following simple pointwise bound, which is obtained by writing
9, =11, +0,) — 17109, = 1Y — 171,
10998 Y7 a;; (1, x, v)|
<o > ey ae o wl+t Y 00 Y a . x v)l.

lo'|=Jer|—1 lo'|=le| -1
lo’|=lo|+1 1B'1=1B1+1
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The desired estimate is then an immediate consequence of Propositions 5.8 (for the
first term) and 5.9 (for the second term). O

We have another variant of Proposition 5.8, which again has better 7-decay rate as
t — +o0. Unlike Propositions 5.9 and 5.10, this does not require |8| > 1 or |¢| > 1,
but there is a loss in (x — tv) weights. (Note also that the estimate is very weak as
t—0.)
Proposition 5.11 If |o| + |B| + 0| < Mmax — 4 — max{2, f%}}, then for (t, x,v) €
[0, Tgoor) x RY x R,

max [9998 Y7 a;;|(t, x, v)
L,

RN

< € <x _ tv>min{l,2+y} (v>max{0,1+y}t—min{2+y,l}(1 4 t)—3+\/3‘

If Muax — 3 — max{2, [551} < lal + Bl + o] = k < Muax — 5, then for
(t,x,v) € [0, Tgoor) x R x R3,
max [9498 Y% a;;1(t, x. v) < e (x — pp)min{1.27} (ymax{0, 14y}, —min{2-+y. 1}
[
(1 +t)—%+|ﬂ|—(MmaX—4—k>mm[%,W].
Proof The idea is to make use of the weight [v — v4|**? and write [v — v4|?>TV <

tfmin{2+)/,1}(|x —tv] + |x — tv*|)min{2+)/,1}|v _ v*lmaX{O,lJrV}' Hence, by (5.1) in
Proposition 5.7,

10298 Y°a;;|(t, x, v)

S /z v — v 2192087 £1(1, %, v.,) du,
R,

S t—min{2+y,l}/ (|x _ tU| + |x _ tv*l)min{2+y,l}
R3

v — v MO 3% YO f1(1, x, v dos
< t—min{2+y,l}<x _ tv)min{2+)/,l}<v>max{0,1+y}

~

x /R = ro R B maO I 9%y 7 £1(2, x, v.) dv.

The desired estimate then follows from Lemma 5.5. O

Our final estimate in the subsubsection is an analogue of Proposition 5.8, but we
now also allow contracting a;; with v’s.

Proposition 5.12 If |a|+ |B| + 0| < Mmax — 4 — max{2, (%1}, then for (t, x, v) €
[0, TBoor) X R3 x R3,

max |95 9F Y7 (@ijv;) |, x, v) + (078 Y @ijviv)) (e, x, v)
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< ng)max{zw,l}(] 4 1) "3HIBIL

If Muax =3 = max(2, [ 351} < lal + Bl + lo| =t k < Muax — 5, then for
(t7-xa v) € [O’ TBOOt) X R3 X R3)
max |8)‘2‘81’?Y°(&,~jv‘,‘)|(t, x,v) + |8)‘f85Y"(&ijvivj)|(t, X, V)
1
5’3(2?/)}

< 6%<v>maX{2+y,1}(1+t)*%+|5|*(Mmax74fk)min{4

~

Proof The follows from combining (5.2) and (5.3) in Proposition 5.7 and Lemma 5.5.
O

5.1.4 L°L3° Estimates for ¢ and Its Derivatives

Proposition 5.13 If |a| + |B| + |0| < Max — 4 — max{2, r%w}, then for (t, x,v) €
[0, Tgoor) x R x R?,

10908 YO E|(t, x, v) < €3 (1 + 1)~ 3V+IBI,
X v ~

If Minax — 3 — max{2, [3251} < le| + 1Bl + o] =t k < Muax — 5, then for
(ty X, U) € [03 TB()()I) X R3 X R3;

3 -3 3C+y)
OB a1t x, v) S €d(1 4 )73Vt min{ 32502

Proof By (1.4) and (1.5), we have
10288 YoE|(t, x,v) < / [v — vV 19%0P YO £1(2, x, vs) ds.
R3

The conclusion then follows from Lemma 5.6 with v = —y. O

5.2 The L,Z( Estimates for a;;, c and Their Derivatives
5.2.1 Preliminary Estimates
Lemma5.14 Let h : [0, Toor) X R3 x R3 be a smooth function. Then
3
IRl (2 %) < (1 + D72 () (x — 10)*h(t, x, V)| 2. (5.11)

Proof Step 1: 0 <t < 1. Suppose ¢t € [0, 1). This is the easy case: we simply use
Holder’s inequality to obtain
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1 1

/ |h|(t, x,v)dv < (/ (v)4h2(t,x,v)dv>2</ (v)_4dv>2
R3 ]R3 R3

1
< (/ Wyh* (@, x, v) dv) ’ .
R3

This implies (5.11) for0 <t < 1.

Step 2:t > 1. Suppose now ¢ > 1. We again use Holder’s inequality, except that we
need to partition the region of integration in order to obtain decay from the [x — tv|-
weights. More precisely,

/ |Al(t, x, v)dv
R3

5/ |h|(t,x,v)dv+/ |h|(t, x, v)dv
R3N{lv—F|<t~1} R3N{jv—%|=r~1}

1 1

2 2
S / (1, x, v) dv / dv
R3N{jo—F =t~} R3N{jv—¥ <1}

t
1

|
7 )
+ / |v—£|4h2(t,x,v)dv / |U—f|_4dv
R3N{ju—%[=1-1) t R3N{lv— =11} !

P

1
3 2 2z 1
<172 (/ hz(t,x,v)dv) +t_2~</ (x—tv)4h2(t,x,v)du> 12
R3 R3

1

(/ 3(x — tv)4h2(z‘, X, v) dv) ’
R

This yields (5.11) for ¢ > 1. |

t

A
ol

Lemma 5.14 implies the following L2 L) estimate.

Lemma 5.15 Let h : [0, Thoor) X R3 x R3 be a smooth function. Then

_3
2z (@) S (4072 ) (x = 1)kl 212

Proof By Lemma 5.14, we have

1
2
Il 201 (1) = (fR ||h||i15(t,x)dx)

1
S(+n73 (/ I1(w)(x — rv>2h||iz(r,x)dx>2
R3 v
= 1+ 073 ()2 — 1)kl 22
O
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Lemma5.16 Let h : R3 — R be a smooth function.
Forv e (%, 3),

. R N |
o=l @ v S I A (5.12)
3 Lu v v
Forv € [0, %],
_ -2 il
H/W [V — v 7R (vs) dvs 15 Sl P lAlS. (5.13)
J Lv\) v v

Proof Step 1: Proof of (5.12). Without loss of generality, we assume that / is not
identically O (for otherwise the estimates are trivial).

Let A > 0 be a constant to be determined. We estimate as follows (see the justifi-
cation of each step after the estimates):

[ o= v du;
R3

2\
= (/ (/ v — v*|*”|h|(v*)dv*) dv)
R3 \J{vg:lv—vi| <2}
2 \72
+ (/ (/ [V — vg| 7V A (vs) dv*) dv) (5.14)
R3 {vs:|v—v4|> A}

,S </ (/ |v_v*|_v|h|2(v*)dv*> (/ Iv_v*l_vdv*) dv)
R3 {va:lv—vi| <A} {vs:lv—vi| <2}

=

(5.15)

+[ (/ |v—v*|2”dv)é|h|<v*)dv* (5.16)
R3 \J{v:|v—vy|>A} 1

S AT (/H ™ dv)j + ATl (5.17)

< Al +A‘?+%nh—nq. (5.18)

In (5.14), we divided the integral into regions |v — v4| < A and [v — v,| > A; in
(5.15), we used the Cauchy—Schwarz inequality; in (5.16), we used the Minkowski
inequality; in the first term in (5.17), we noted that (f{v*:|v—u*\<)»} [v— vg| Y dv*)% <

»72+2 and then used Fubini’s theorem; in the second term in (5.17) we simply
1 a3
used (f{v:|v—u*\>)\} v — v 72V dv)2 < A7"F2;in (5.18) we used (f{v:\v—v*|§M v —

vel ™" dv)z < A72F3. (Note that in (5.17) and (5.18), we have relied on v € (3, 3)
in our estimates.)
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Let A := ||h|| | ||h|| (whlch is possible since 4 is not identically 0). We then
obtain
2; +2

H/ o=l do | T

< 7l

as desired.

Step 2: Proof of (5.13) For this inequality we use the Hardy-Littlewood—Sobolev

inequalityinR3: forO<v<3,1<p<gqg<+o00, andé = % — GE—U),

H/ [v — vl VRl dus | S IRl (5.19)

R3 Ll

For v € [0, %], we now apply (5.%9) with!3 % = —11—51) + 1 and é = 151} It then
follows that from Holder’s inequality that

_ _2v

f [v — v VA (v4) dvs JES S lall N ||h|| B IIhlle,
R3 Ly LY %

as claimed. m]

Combining Lemmas 5.14 and 5.16, and taking the Li norm, we obtain

Lemma5.17 Let h : [0, Toor) X R3 x R3 be a smooth function.
Forv € (3,3),

S +0"3w) 2 x — 10)2h| 2,21, x).
L%L% X v

H/3 [v — v TVIRI(E, x, vs) dusg
R

(5.20)
Forv € [0, 3],

<A+ 0702 — 10) 2Rl 2,2 ).
(5.21)

15~

L%L4U

"\/\3 |U - U*|_v|h|(t,x, v*)dv*
R

5.2.2 Estimates for Weighted v-Integrals of f

Proposition 5.18 Let |a| + |B| + |0| < Muyax. Then the following three estimates'*
hold for all t € [0, Tpoor):

H/ () 19998 Y7 (1, x, vy) do, <ei(l4n2HAL (5.22)
R3

LILy®

13 Note that v = 0 is technically not allowed in (5.19), but for the specific (p, ¢) under consideration, the
inequality is trivially true.

14 The reader may find the notation in (5.22) slightly confusing since the LHS does not depend on v. We
use such notation so that we have a more unified estimate later; see Proposition 5.20.
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Forv e (%, 3),

Sei(l 43l

/ v — va] 7 (va)* (x — 10,)21090P YO £1(2, x, vs) dus
R3

L3213
(5.23)
Forv € [0, %],
‘/ v — v 7Y (u) o — 1) 210208 YO £ (1 x v dve| s
R3 L2Ly
Sei(l4+nT 35t < ed(1 4 1)~ SHIAL (5.24)

Proof (5.22) follows from Lemmas 5.4, 5.15 and the bootstrap assumption (4.7).
(5.23) follows from Lemma 5.4, (5.20) in Lemma 5.17 and the bootstrap assumption
4.7).
Finally, the first inequality in (5.24) follows from Lemma 5.4, (5.21) in Lemma 5.17
and the bootstrap assumption (4.7). The very last inequality in (5.24) is simply an
assert10nthat—§+” < —%—i—%:—g when v € [0, %]. O

The different L? spaces used in Proposition 5.18 motivates the following defini-
tions. The notation is intended to be suggestive of the following: we will control one
v-derivative of @;; in L and we will control two v-derivatives of a; jin LP** . (Zeroth
v-derivatives of a;; will be estimated in L3°.)

Definition 5.19 Define p, and p, by

00 ify € [~1,0) -1 ity e[-3,0)
Px = . . D= , .

Note that py, ps«x € [2, 00] (for any y € (=2, 0)).

With this convention for p, and p., let us rephrase the last two inequalities in
Proposition 5.18:

Proposition 5.20 Let |a| + |B| + |o| < Mmax. Then the following two estimates hold
forallt € [0, Tpoor):

<v)7max{0,1+y} /‘? |U _ v*|1+y(v*>2<x _ IU*) Ola,BYO'fKt X, U*) dU*
R3

L2LD*
<ei(1 4 SHA (5.25)
‘/ v — vsl” ()2 (x — 10219908 Y7 £1(, x, v4) dvs
R3 L%Lf**
< € (1 4 1)~ min(§3+yIHIAI (5.26)
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Proof To prove (5.25), we consider separately y € [—1,0) and y € (=2, —1). If
y € [=1,0), psy = 00. Also, [v — v, | < |u|'"*7 4 |, T, Hence, by (5.22) in
Proposition 5.18, we obtain

H(u)‘ma"{o’l”}/z v — e 7T (0)? (x — 10,)210%0P YO £(2, x, vs) dus
]R,

L2LY*

<

[ = rw Paal ¥ e, ) dos
R3

LILE
3 3
S ei(l 402 HAL
which is slightly better than (5.25).

Consider now the case y € (=2, —1). In this case, p, =
(—1,0). Hence, by (5.24) in Proposition 5.18, we obtain

5(y+1) and 1 +y €

H (v) ™ max{0.1+} f} o — v ()2 (x = 10,) 210908 YO £1(1, x, vs) dus
R.

L2LE*

N

_x

H/ v — 0" () (x — 10218788 YO £1(1, x, vy) dus
3 L2L, Sy

< ei(l41) ST
which is as in (5.25). We have thus concluded the proof of (5.25).

We now prove (5.26). Now since y < 0, we can directly use (5.23) and (5.24) in
Proposition 5.18 to obtain

H/R v = val? () — 1020700 Y7 £1(2, x, v) dv

L2LY**
3 7min{g,3+y}+\ﬂ\
S er(l+1) ,

as desired. O

5.2.3 L2 Estimates for @;; and Its Derivatives

With the above preparation, we now prove the L)ZC estimates for a;; and its derivatives.

Proposition 5.21 If || + |B] + |o| < Mmax, then

max [|(v) " 908 Y G| 2 00 (1) < €3 (1 1) T3
LJ

Proof This follows from (5.1) in Proposition 5.7 and (5.22) in Proposition 5.18. 0O

The next proposition improves the decay rate in ¢, but requires || > 2 (compare
Proposition 5.9).
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Proposition 5.22 [f |a| + |8] + |o| < Mmax and |B| > 2, then

_ 3 —min{ 1 54y 1+
10808V ai e S €114yl SR

where py is as in Definition 5.19.

Proof By (5.6) in Proposition 5.7 and (5.26) in Proposition 5.20, we have

9207y a;; 2 e )

< E f v — v V10208 Y £1(2, x, vs) (1)
’ 3 L2 LD
IB'1=IB1-2 s Ly
-6 / 16
5 Z E%(l 4 t)—mm{g,3+y}+\/3| 5 E%(l 4 t)—mm{?,5+y}+\ﬁ|.
18'1=IB1-2

The next proposition improves the decay rate in ¢, but requires |¢| > 2 (compare
Proposition 5.10). It is also very weak as t — 0.

Proposition 5.23 If || + |B| + |o| < Mmax and |a| = 2, then

3 16
1) =020 Y | 2 pooyp2r2 S €31 (14 1)~ MGV
where py is as in Definition 5.19.

Proof Step 1: Preliminary estimate for the || > 1 case The purpose of this step is to
establish the following claim, which can be viewed as an analogue of Proposition 5.22,
but with only |B| > 1.

Claim: If |«| 4 | 8] + |o| < Mmax and |B| > 1, then
1)~ G020 Yoyl e S €3 (14 1) MBS 7IHIAL

where p, is as in Definition 5.19.
To prove this claim, it suffices to combine (5.4) in Proposition 5.7 and (5.25) in
Proposition 5.20.
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Step 2: Main argument Arguing as in the proof of Proposition 5.10, we write 9, =
1=y — t719,. Using this identity twice, we obtain the pointwise estimate

10298 Y a;;(r, x, v)|

— / ’_ _ / / /_
S Y a x|+t Y (980l Y ay(t, x, v)
o' |=le| =2 o' |=la| =2
lo’|=lo|+2 I8 |=IB]+1
o' |=lo+1

+e72 Y el Y a x, ).
o/ |=a| -2

1B'1=181+2

We now estimate the first term with Proposition 5.21 (with (o, 8, 6’) in place of
(a, B, 0)), estimate the second term with the Claim in Step 1 (with (o, 8/, o) in place
of («, B8, o), noting that |8’| > 1), and estimate the last term with Proposition 5.22
(with (¢/, B/, o) in place of (a, B, o), noting that |8’| > 2), we obtain

—Q2+y)gagByo ..
[l {v) 0y 0, Y a’J||L§LS°+L§Lf*+L§L{?**

min{ $.3+ | +18]

< el max{t2(1+ 03 HAL 21 4y SHBL 21 4 1
Since % > g, this implies
- 3 —min{ &,3
M7 3200 Y73l 2 s 21 prngee S €320+ 0TI 52)

Step 3: Calculus lemma and conclusion of the proof Noticing the elementary embed-
ding

LY cL?P+L"

when 1 < p < g <r < 400, and using px, p« € [2, +00], the conclusion thus
follows from (5.27). O

The next estimate gives a better decay rate as ¢t — 400, but it is very weak as
t — 0 and requires an additional weight of (x — rv)? (compare Proposition 5.11).

Proposition 5.24 For p.. € [2, oo] as in Definition 5.19, if |a| + |B] + || < Mmax,
then fort € [0, Tpoot),

B _ 3 —min{ &34y [+]8]
max || (x — 1v) 23;;‘85‘1/%,-,»||L%L50+L%L5**(t)geu 21 +1) [$3+] .
i,j ’
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Proof By (5.1) in Proposition 5.7 and the triangle inequality,

10%9P Y7 a;;|(t, x, v)

N /3 v — v [T [0%08 Y7 £1(2, x, v,) v,
R\

X X
S [ vl (o= TR o = 22) a7 fieex, v do,
R;

A

t—2/3 v — v,l? (Jx — 10]* + |x — 108288 Y° £1(1, x, vi) dus.
R

Therefore,

max || (x — 1) 72059 Y aij [ 2 per (1)
i .

j
St / v — v (x — 10,0282 5 Y £1(1, x, v,) du, (t).
R3 1200
The desired conclusion then follows from (5.26) in Proposition 5.20. O

We next prove estimates for g;; for its derivatives when contracted with v (compare
Proposition 5.12). When |«| > 1 or || > 1, we have an improvement in the decay
rate (although the estimate is very weak as t — 0).

Proposition 5.25 If || + |8] + lo| < Mmax, then
max | (v) =GO Y @) 11 () G- (508
and
1)~ 9408 YO @ijvivp 2o (1) S €F (14 )72 AL

Iflee] + |Bl + lo| = Mmax and max{|a|, |B|} = 1, then

3 _minl &
max | ()~ D898 YT Gv) s o e () S €4 1y 3R
j xov J LXLU +LxLu ~

(5.29)
where py is as in Definition 5.19.

Proof The first two inequalities follow from combining (5.2) and (5.3) in Proposi-
tion 5.7 with (5.22) in Proposition 5.18.
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We now prove (5.29). First we consider the |8| > 1 case. Using (5.5) in Proposi-
tion 5.7, (5.22) in Proposition 5.18 and (5.25) in Proposition 5.20, we obtain

max [|(v) =" NS Gl 2o Lanpe (O
< €3 (1 4+ 1) I TAITT i (] 4 gy~ minl$ 3ty HBI-L (5.30)
< el +z)*mi“{%’4+y}+'5',
which implies (5.29) when |8] > 1.

For the |a| > 1 case, using 3, = ¢~'Y —¢~19,, we have the pointwise bound

0008y @l (e xv) St Y 108 0PY @ijvi)l(r x . v)

o' |=a|—1
lo’|=lo|+1

T 0 Y @) (2, x, v).
o/ | =l -1

1B'1=1B1+1

The desired estimate (5.29) (in the || > 1 case) then follows from (5.28) and (5.30)
applied to the first and second term respectively. O

5.2.4 L2 Estimates for ¢ and Its Derivatives

Proposition 5.26 For p., € [2, o0] as in Definition 5.19, if || + |B] + || < Mmax,
then fort € [0, Tpoot),

3 —min] ¢
||3?3{,8Y65||L2L5**(t)561(1+t) mln[5,3+V}+|ﬁ|'

Proof This is an easy consequence of (5.26) in Proposition 5.20 since

18208 Y7 Ell e (1) < H/ v — vl 13505 Y7 11, %, v.) s
x v R

.
L)ZCL{,**

-6
< 6%(1 + t)—mln{§,3+y}+|/3|‘

~

6 The Maximum Principle Argument and the L{°L° Estimates

We continue to work under the assumptions of Theorem 4.1.

In this section, we prove L{°LS° bounds for g and its derivatives. These estimates
are based on an application of the maximum principle In the process, we need to
obtain a hierarchy of estimates in a descent scheme; see Section 1.1.6. By the end

@ Springer



11 Page400f 101 J. Luk

of the section, we will have improved in particular the constants in the bootstrap
assumptions (4.8) and (4.9) (see Proposition 6.7).

This section is structured as follows. First, in Section 6.1, we prove some preliminary
L LS® estimates, which are Sobolev-embedding based (and are by themselves too
weak to close the argument). In Section 6.2, we derive a general maximum principle
for linear inhomogeneous equation that is suitable in our setting. We then introduce
our hierarchy of estimates in Section 6.3. In the same section, we initiate an induction
argument aim at proving this hierarchy of estimates. In the next few subsection, the
goal will be to use the maximum principle in Section 6.2 in the context of the induction
argument introduced in Section 6.3. This consists of a few steps. (a) In Section 6.4,
we classify the different types of inhomogeneous terms arising in the equation for g
and its derivatives. (b) In Section 6.5, we then control the error terms that we classified
in Section 6.4. (c) In Section 6.6, we put together the bounds from (a) and (b) above
to conclude the induction. Finally, we end the section with Section 6.7 in which we
improve the constants in the bootstrap assumptions (4.8) and (4.9).

6.1 Preliminary L{°L3° Estimates

We begin with some preliminary L°LS° estimates (see already Proposition 6.2),
which are completely based on Sobolev embedding. These estimates are not optimal
in either ¢ or (v).

Lemma 6.1 Let h : [0, Tgoot) X R3x R > RbeaC® function. Then for every
t € [0, Tpoor), the following estimate holds:

Ihllzeorse S [ Whlz2zz + D N0%hl22 | | Do M08l L2
oe|=4 |B|=4

Proof Without loss of generality, we assume that 2 = 0 (for otherwise the estimate is

trivial).
Standard Sobolev embedding in R® gives

Mhliere S > 10%0P Rl .
la|+|Bl+]|o|<4

An easy argument (for instance using Plancherel’s theorem) allows us to control the
RHS with only the lowest and the highest derivatives, i.e.

Mhllzeorse S Il2z2 + D 108kl 22 + Y 108RI242. (6.1)
|o|=4 |B|=4

We scale & in the v-variable, i.e. introduce, for A > 0,

iy (x, v) := h(x, 2" '),
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One then computes that

3
Ihallgere = Mhllere. Mhall2ie = 22 1Rl 2.2,
o 3 o B -3 B
Do Nahallzz =2 Y Noghl 2. D 19 hall 2 =272 Y ol hll 2 2.
|o|=4 |or|=4 1B1=4 1B1=4

Applying (6.1) to &, and using the above computations then imply that for any A > 0,

3 _3
Ihllzsorse S A3 WAz + Y 108kl 2p2 | +272 D 08hl 202 (6.2)
Joe|=4 |B1=4

1

_1 1
Leth = (||h||L%L% + Y ||8§‘h||L%L%> : <Z|B|=4 ||a{?h||L3L%)“.(We can do this
since h # 0.) By (6.2),

ool
o0l

Mhlrerse S | Rlp2zz + Y M08kl || D0 108hI2. |
lor|=4 |B1=4

as claimed. O
We apply Lemma 6.1 in our context to estimate the derivative of g.
Proposition 6.2 For |a| + |8 + |o| < Mmax — 4,
1 (x — 1oy M 51013038 Y g | oo oo (1) S €3 (1 + 1) H1A,
Proof The goal is to apply Lemma 6.1 to
h = (x — rp)Mmaxt3=lol(Gaghyo gy (6.3)

For the rest of the proof, we fix & as in (6.3). We now compute the derivatives of / (in
terms of weighted derivatives of g). The d, derivatives are easier to compute: since
|09 (x — tv)Mmaxt3=lol) < (x — ppyMmaxH5-lol=le] for |/ | < 4, we have

SRS D (- ) MmectSololle ey g
jo'|=4 o<l |-+4

< D = ) MmetSTlelge gy gy,

lo”| <|a|+4

(6.4)
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For the 9, derivative, note that when 9, acts on (x — tv)MmaXJrS""', we get a power
of t,1.e. |9F (x — tv)Mmat5—lol| < ¢l (x — py)Mmax+5-1o1=18'l for | 8’| < 4. Hence,

Z |81/15 h| < Z 18 ‘(x _ tv>Mmax+5_|(7|_|ﬁ ||3§353 Yg|
|8'1=4 |B”1+1B"|<|B|+4
< Y P g5l ey o g
IB”1+1B"|<IB1+4

(6.5)

Applying Lemma 6.1 to & and using (6.4), (6.5) and the bootstrap assumption (4.7),
we obtain

e — vy Mmat3711 (9298 Y7 ) | oo Lo (1) = || Lo ree ()

o0lw

3
8

S W22+ Y0 108kl | [ D2 108 hll22(0)
lo'|=4 |p'|=4
8
SO0 e — )Mol By gy 2 (1)
o |<|ee|+4
3
8
x Do P — )Mt QE Y g) 122 (1)
1B”1+I8"1<IB]+4
3 5181 318" 318”1 S8l 3181, 3-
< el 4nF Yo T4 | ST
|B"1+IB"1<IBl+4
—ei(l 403,
as claimed. O

6.2 The Maximum Principle

The goal of this subsection is to establish a general maximum principle; see Proposi-
tion 6.3. Before we precisely state the maximum principle, let us already give some
remarks:

1. Despite the various technicalities, the main point of Proposition 6.3 is to get a
bound for the solution 4 to the equation (6.8). The bound that we derive (see (6.9)
and (6.11)) is such that we either gain two powers in (v) and lose (1 + §)-power
in (1 4 ¢), or we have no gain in (v) and lose exactly one power of (1 + ¢).

Such a statement is straightforward if (6.8) is replaced by the transport equation

h+v;0,h+ % (v)2h = H.The key point of Proposition 6.3 is therefore to

ensure that the term —a;; 831, v h on the LHS of (6.8) does not destroy the transport
estimate.
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2. In order to carry out the argument, we need some a priori control on %; see (6.6).
This is a very weak bound which can have very bad dependence on ¢ (compare
this with the conclusion of Proposition 6.3, which gives a much stronger bound),
but importantly for every fixed ¢ we need the estimate to be uniform in x and v so
as to control various cutoffs we introduce.

3. In additional to an estimate on s, we also need an a priori bound on d,4; see
(6.7). This is a technical condition necessary to carry out a cut-off argument. The
bounds that we need are sufficiently weak to be consistent with the descent scheme
(see Section 6.3.3).

The following is our main general maximum principle. The reader can keep in mind
that Proposition 6.3 will be applied for # being appropriate derivatives of g.

Proposition 6.3 (Maximum principle) Let N € N with N < Mpax + 5. Let h :
[0, Tgoot) X R3xR3 - RbeaC® function such that the following four conditions
hold for some py € [1,2), rg > —1 —6,and Cy > 1:

1. hisbounded on compact subintervals of [0, Tgoot): Forevery T € [0, Toot), there
exists a constant Ct > 0 such that for every (t, x,v) € [0, T] x R3 x R3,

(x —tv)N|h(t, x, v)| < Cr. (6.6)

2. Oy h satisfy the following estimate: for i = 1,2,3 and for every (t,x,v) €
[0, Tgoot) x R? x R,

(x — t0)V13y, h(t, x, V)| < Ced (o)MMPH =27 PH=1) (] 4 pyrat2tminy. 1)

6.7)
3. h satisfies the following equation:
8lh+Uiaxih+m<v) h—a[javivjh:H, (68)
where H : [0, Tpoot) X R3 x R3 is a smooth function satisfying the bound
(x — )N HI(t, x, v)
_ | Cre)Pr+ 0 + Cre(W)PH2(1 + 0)'HHS ifry +8>0
T | Cre{u)Pr (A + 1) ifru+8e[—1,0)
(6.9)
4. The initial data for h satisfy the bound
() ()R, x, v) < Cpe. (6.10)

Then for € is sufficiently small (depending only on y and dy, and in particular
independent of Ct, Cy, py and ry above), the following estimate holds for all
(t,x,v) € [0, Tgoor) x R® x R3:
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6
[(x — t)N R, x,v) < (3 + ﬂ) Cre)P"2(1 + 1)1+, (6.11)
0

Proof Step 1: Deriving an equation with weights Define

>Ne—d(t)<v>2

wy(t, x,v) := (v){x —tv s (6.12)

and ~
hn(t, x,v) = (wyh)(t, x, v). (6.13)

We now derive an equation for ZN (t, x, v) (see already (6.16)). To simplify the
notations, let us suppress the explicit dependence on (¢, x, v) when there is no risk of
confusion.

We first compute

WN By = By Iy — (3, logwn)hy,

which implies

wNafl_vjh
= 0, (ijﬁN — (dy; log wn)hy) — (3y, log wN)(avjf[N — (3, log wn)iiN)
= 2,1y — (3, logwy) By, i)
— (0, log wn) @y hn) — [(8vzl,,,j logwy) — (3, logwn) (9, log wy) 1y
= 02, /in — (3, logwy)wn (B, h)

— (3, log wy)wy By h) — [(3,,, log w) + (3y; log wi) (By; log wy) Ty

(6.14)
On the other hand, we have
dod 2
(9 + v 0y;)logwy) = m(w
so that
wy (0 + v;0x, )h = (0 + v; Oy, )N — m(v) hy. (6.15)
By (6.8), (6.14) and (6.15), and using a;; = a;;, we obtain
8t]'~lN + v; axi?lN — aijafivjﬁ;v = —ZEziij(avih)(avj log wN) — ﬁijZN[aivj log wWN
+ (9y; logwy)(3y; logwy)] +wy H.
(6.16)

Step 2: Cutoff at infinity In order to avoid the difficulty with applying the maximum
principle in non-compact domains, we cut off the function 4. Introduce a smooth cutoff
function x : R — R>g such that x (x) = 1 for |x| < 1, x(x) = 0 for [x| > 2 and
lx'llzee, lx” lLee < 10. We cut off &y and define
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~ |x|? lv|?
hy r(t, x,v) =X 76 )X\ Rz hy(t, x, v)

for R > 1 large and to be chosen. (Note that |x| is allowed to be much larger, with
|x| < R3, as opposed to |v|, for which the cutoff only allows |v| < R.)

Fixanarbitrary T € [0, T,,). We will allow our choice of R in the cutoffs to depend
on 7. In order to emphasize that the implicit constant depends on 7" (in addition to dy
and y), we will use the convention <T

Our next goal will be to estimate |8,hN R+ v; 8xth R — Gjj0 U vj hN r|(t, x,v). To
this end, we will use (6.16) and estimate all the error terms arising from differentiating
the cut-off functions.

We first note the following simple estimate which we will repeatedly use. Since

d(t) > do, it follows that e=¢®®” () < 1. Therefore, by (6.6), we have
Ilin (2, x,v) Sr 1. (6.17)

Now we compute

o x| vl? |x|* lvl®
Uiax,-hN,R=X(F X\ 7z vidg, Iy +2(v - x)R Oy’ =6 )X\ 7z hy.

Now on the support of the cutoff functions, we have |v-x| < R- R? = R*. Combining
this with (6.17), we obtain

~ |x|? v|? ~ L
[vidy Ay R(L, X, V) — X 26 X e Vo An(t, x,v)| St R™7. (6.18)

On the other hand, we compute

- 2 -~
aijav,-vth,R

_ (ﬁ) ('”'2) v +a (| |2)(25 R™2 ’(' |2)
= ajjX R6 X vvj N Faijx ij R2
v R ()i () (5o 20, o
= i B (e )
L R6 R2 Vivj aij R ij R2
doo R (Wi 445 () (20 k2 (w8, 1
+dvjv; Ry (Rz )iy +4ai x () X (S Jui R (wvdy,

+ (E)Uj log wN)hN).

We now control the difference a;;0 bt U]hN R—aijx( ‘R(, )x ( ‘lez )aivﬁN using (6.19).
First, by (6.17), Propositions 5.8 and 5. 12, we obtain
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g (55) @3 B2 () i o ()
<T Rmax{2+y,1}R—2 <T Rmax{—l,y}‘

(6.20)

To control the term with 9, i h, we use (6.7) and Proposition 5.12 to obtain
(kP 1
laij x (F x' =z JuiR wydy; hl 6.21)
<, CHG}Rmax{2+y,1}R—2Rmin{pH—2—y,pH—1} <, CHE%RpH—;

To handle the remaining term in (6.19), we compute

1 N
B, logwy = 50y, (log(1+ [v*)) + =y (log(1 + x — 1v]")) = 2d(0)v;

_ v; Nt(x — tv);
T4 L+ x—rv?

—2d(t)v;. (622)

Using (6.17), (6.22), Propositions 5.8 and 5.12, we obtain

_ (I v|? _ ~
|4a;; x (F x' = JuiR * (3y; logwy) |
_ |x|2> ,<|v|2) s
< max a; j v — — |R “|h
~T ( F ij 1))( ( R6 X R2 AN (6.23)
_ |x|? W2\
t+aijvivjx <F X' )R ?|h|

ST Rmax{2+y,1}—2 ST Rmax{—l,y}_

Combining (6.20), (6.21) and (6.23) and plugging the estimates into (6.19), we obtain
_ ~ _ x|? lv|? ~
|aij35,.vth,R(f, X, V) —ajx <— X 32 SN, x, v)]

RO R?
<cyT Rmax{=Ly,pp—2} (6.24)

~

Combining (6.18) and (6.24), we get that for any T € [0, Tgoot), there exists
C’. > 0 (depending on T, Cy in addition to dy and y) such that for every (¢, x, v) €

[0, T) x B(0, v/2R?) x B(0, v/2R)

- - o,
19N, R + vidx; AN R — G105, in RI(E, X, )

2 2 .
< x (%) X (%) x IRHS of (6.16)] + Cj R™"=17-71=2) " (6.25)
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At this point, we fix a sequence of cutoff parameters {R,};°,. For n € N, let
T, = TBoor — % We define R,, > 0 so that

mm{ Ly,pu— 2} 1 doé

2
Sana TBoat)lJr(S( v (620

Cr,R

Such a sequence of R, exists since y < 0 and py < 2. We assume moreover without
loss of generality that R, is increasing and R,, — 400 so that

[0, T,,] x B(O, R3 ~) x B(0, R,) C [0, T,,41] x B(O, RH)xB(O Rut1), Vn e N
(6.27)
and

e, ([o, T,1x B(0, R3) x B0, Rn)) = [0, Tpoo) x B3 x R, (6.28)

Step 3: Continuity argument and estimating x ( |R6 )X (| ) x (RHS of (6.16)). Let R,
be as in the previous step (so that (6.26), (6. 27) and (6 28) hold). Our goal in this
step is to bound x(‘x )x( ‘;2 ) x (RHS of (6.16)). To carry out these estimates, we

introduce a contlnulty argument
Define d : [0, +00) — R by

dt) =do(1 — (1 +1)7%, (6.29)

and define T, € [0, T,,] by

N 12
T, :=sup{t € [0, T, ]: |hn g, (s, X, V)| < (6+ ﬂ) Che

2pd(5)(v)? 6.30
e~dOW? ypu=1(] 4 gyrat+irs | 2 (6.30)

’

n
V(s, x,v) € [0, 1] x B(0,V2R>) x B(0, V2R,)}.

By (6.10) and the continuity of h N,R, (and the fact that we are only considering a
compact set), 7, > 0. Moreover, again using the continuity of h N.R, the following
estimate holds for (7, x, v) € [0, T/] x B(0, ~/2R}) x B(0, v/2R,):

- 12 240 (v)?
Ihn R, (, x, )| < (6 + ﬂ> Cree dOW (ypr=t(j 4 gyru+iss L 22

(6.31)

From now on until Step 7, we will carry out our estimates using the bound (6.31).

The goal will be to prove an estimate that is better than (6.31) so that we conclude by
continuity that 7, = T,.

In the remainder of Step 3, we bound y ( |R6 )X (| ) X |IRHS of (6.16)| using (6.31).
We first carry out preliminary calculations in Step 3(a) and then in Steps 3(b) to 3(e)
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we consider each of the terms on RHS of (6.16). Finally, we will combine everything
in Step 3(f) and show that under (6.31), the estimate (6.47) holds.

Step 3(a): Preliminary computations. Using (6.22), we compute

2 _ v; Nt(x — tv); .
8v,vj logwy = 81,]. <1 Y 1 Yy F— —2d(t)v;
8+ D) = 2vv;  NE2Si;(1+ |x — tv]?) — 2N (x — 1v)i(x — 1v);

(1+[v]?)? (1+|x —1v]?)?
— Zd(l‘)Sij.

(6.32)
Step 3(b): Estimating 2)(('"‘ )X(IU| )aijwy (dy;h)(3y; logwy). Using (6.22) and
bounding x < 1, we obtain

|x|? lv|?
12x = )& aijwy (3, h) (3y; logwy)| (£, x, v)

< (max |5lij|) wy |y At x, v) + |a;jvjlwy |0y, kI, x, V) (6.33)
J

+1(x — o)~ ! (max |Zzij|) wy |0y A(2, x, V).
j

The first two terms in (6.33) can be controlled in a similar manner: we use Propo-
sitions 5.8 and 5.12 to bound a;; and a;;v; respectively, and then use also (6.7) to
obtain

(m]?lX |C_lij|) Wy |0y | (2, x, V) + |a;jvjlwn|0y; kI, x, v)

3 2
< 61<v)mdx{2+711}(1 + t)_3 Lo dOW) (v) (6.34)
CHEZ (v >min{pH—2—y,pH—l}(1 4y Ht2Amin2+y. 1)

< CperedOW? (yypu+l(q 4 pyru—lFmin(24y.1),

For the last term in (6.33), we use instead Proposition 5.11 to bound (x — rv)~! |aj].
Combining Proposition 5.11 with (6.7), we obtain

Hx — 10)”! (max |c‘z,~,-|) w13y k(1. x, v)
J

<t €}< ymax(0, 14y} —min{l. 247} (1 4 1)=3 | —d(t)|v|2<v>

~

(6.35)
-CHG%( )mln{PH—2—%PH—1}(1 _|_I)VH+2+IH1H{2+%1}

< CHGZE d(t)(v)? (V)PH (1 4 1)'H
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Plugging (6.34) and (6.35) into (6.33), and estimating crudely, we obtain

2 2
12 <|R|6 ) X (|R|2 )auwmav,h)(av, logwy)|(r. x, v)

< Cpede dOW? (yputl( 4y (6.36)

Step 3(c): Estimating x(le ))((lR2 )a,]hNa log wy. By (6.32),

Ix Il X Ll Giihno2 logwy|(t, x,v) < max(a;||hy & (£, x, v)
RS R,% ijIIN Oy, v, gwy (7, X, N L ijIINN,R, I\, X,
+ 12 (x — 10)?aij 1w &, 11, X, V).
(6.37)
To handle the first term in (6.37), we use Proposition 5.8 and (6.31) to obtain

max |a;j||hn g, |, x, V)
L]

i ()2 3 402 | L el
< A1 4070 [ Cree W P14 pyratis
n

TedD()?
S CHG%e—d(t)w)z<v>pH+l+)/(1+t)r1.1—2+5+ €te <v>2+y(1+[)—3_

(6.38)
To bound the second term in (6.37), we will in fact prove an estimate when the ¢ and

(x —tv) weights are even slightly worse (since such a stronger estimate will be useful
later). By Proposition 5.11 and (6.31),

max (1 + ) (x — rv) V@ ||l g, (2, x, v)
L]

< t(1+1)- E%( >max{0,1+y}t—min{1,2+y}(1+t)—3

d()(v)
e
. <CH€e—d(l)<v>2 (U>PH—1(1 + Z‘)"1-1"1‘1-‘1-5 + - ) (639)

< CHE%e—d(T)(Wz(v)PH(l+t)r1-1—min{2+y,l}+8

dn)v
cle (1 gy~ I min(2y, 1) gy max(0, 14}

Taking the worse bounds from (6.38) and (6.39) and plugging into (6.37), we obtain

Jx|? v)?
|X F X R2 al‘]h[\/a long|(t’x7 U)
n

< CHE%E_d(tM )2 <U>PH+1(1+t)rH—min{2+y,1}+8
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d(6)(v)?
646 :
4! t)—l—mm{2+)/,1}<v>2+)/

7 2 1 E%eg(t)(l))Z 1=§ 2
< Cpete OV it (L oyt 4 —— (1407 0w)?, (6.40)
n

where in the last line we have used (4.1).

Step 3(d): Estimating. x("“‘ )x('”‘ )aij i (B, log wy) (3y,; log wy). By (6.22),

|x|? |v|?
Ix X atth(avl long)(av] logwn)I(z, x, v)

RS R2
< laijhn. g, (v, log wy) @y, log wy)|(t, x, v)
< <<ni13x&ij> + <mljax[1,-jvj> +Ez,~jvivj) |hn R, |(t, x, V) (6.41)

+t{x — tv)71 ((max&;,) + (maxc_lijvj>> |ﬁN,Rn|(t,x, v)
L] 1

+ 2 (x — tv) 2 <ma_xa,-j) N g, | (2, X, V).
L]

The first term on the RHS of (6.41) can be estimated in a similar way as (6.38), except
that we also apply Proposition 5.12 to bound (max; a;;v;) and a;;v;v;. We then obtain
a similar estimate as (6.38) (after accounting for the difference in (v) weights between
Propositions 5.8 and 5.12), i.e.

<<maxc_lij> + (maxc_z,-jvj) +c_l,'jv,-vj) lhn R, (2, X, V)
L]

CHGKe_d(m » <U>max{PH+1+)/J’H}(1 + ¢)rH—2H8 (6.42)
d(1)(v)?
n 643 (v )max{2+y,1}(1 —|-t)_3-
n

For the second term on the RHS of (6.41), we first use the simple bound (max; ; a;;) +
(max; a;jv;) S max; j |a;;|(v) and then apply (6.39) to obtain

tH{x — tv)_l <<maxé,]> + <max&,-jvj>) |ZN,Rn|(t,x, V)
i,j i

< CHG%e*d(l)(v)zw)pHH(l_i_t)rH*miH{ZH/,l}JrS (6.43)

d(t)(v)?
64€ (1 +t)—l—min{2+)/,1}(v>max{1,2+y}.
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The last term on the RHS of (6.41) can also be controlled by (6.39) so that we obtain

2 (x — 1v)~? (maxc'zij> 7R, (2, X, )
L]

S Cpede O0 ()Pa (1 4 pyrn—min2+7. 1145 (6.44)

d(t)(v)?

646 a +t)—l—min{2+y,l}<v>max{0,1+y}'

We now take the worse bounds in (6.42), (6.43) and (6.44) and plug them into (6.41)
to obtain

|x|? |v|?
Ix <F X R2 al]hN(aU, long)(avj logwpn)|(z, x, v)
n

< Cpetem@OW? (ymax(prt147.pi) (| . pyrn—min(2+7.1)+5
; (6.45)
c3edw)? (1 4 1)~ 1=minl2+y, 1) (g ymax(2+7,1)

; . ededOW)’
< Cpete 4O a4y = (14071 w)?,
n

where in the last line we have used (4.1).

Step 3(e): Estimating wy H. Using (6.12) and plugging in (6.9), we obtain

lwy HI(t, x, v)
Cee=dOW? () PHH(1 1 ) 4+ Cpee=dOW? ()PH=1 (144 HYS if ryp 18>0

= | cyee W2 ypa+1 1y ifry+8e[—1,0).
(6.46)

Step 3(f): Putting everything together. By (6.16) and the estimates (6.36), (6.40), (6.45)
and (6.46), after choosing € (and therefore also €) sufficiently small and using (4.1),
we obtain

xI? o2y [RHS of (6.16)|(z, x, v)
— — X,
X Rg X Rn

20y ee=OW (0)PHH (1 41)H +Cpree= O (o) Pr=1 (141yH+0
< +$ea7<z><u>2(v> (14113 ifryy+6>0
20 e 4D () PHA (1 41) H + 2L ADOW? ()21 45)=1-8 ifrgg+8e[—1,0).
(6.47)
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Step 4: The functions ux})’i. For every n € N, define u(") o+, : [0, T,] x B(O, \/_R3) X
B(0,v2R,) — Rby

(ﬂ) +

(t, x,v)
Tin g, (%, u)i&ﬂc € [1emd®W? () Put1 (1 4 5 ds
= +£2CyeedOW? (yPH=1(] 4 yrH+1+6 ifrg+68>0
Ry g, (t,x,0) £ L +£3Cpe e ¢ W ) PHH (1 45 H s ifry 46 € [—1,0).
(6.48)
We will apply the maximum principle (respectively, the minimum principle) to u(")

()+

(respectively, u ) in Step 5 (respectively, Step 6) below. In preparation for these

steps, we show that (a) uxl)’i satisfy appropriate differential inequalities, and (b)

gv) satisfy appropriate boundary conditions. This is carried out in Steps 4(a) and

4(b) below. Step 4(a) is further divided into Step 4(a)(i) and Step 4(a)(ii) according to
whetherry +68 <Qorry +68 > 0.

Step 4(a)(i): Differential inequalities for u%)’i when rg + 8 < 0. Assume now that
rug + 8 < 0. (This case is slightly simpler than the ry + § > 0 case.) Differentiating
(6.48) and recalling the definitions of d(¢) and d(¢) in (4.3) and (6.29), we have

( )£

(t X, v)+v,8xl (t X, v)—a,JB2

viv; (t,x,v)

= 3th,R,, (t, x,v) + via)qhzv,k,1 (t,x,v) — aijavivth,Rn (t,x,v)

=:h contribution

doe? g5 A ()?
e 0 2
+ P WM F—0 aijd(1)(28;; + 4d(t)v;v;)
=:good term, =:eIror term;

+3CheedOW? (yputl(] 4y

=:good term,

t
+3Cyea;(t, x, v)/ d(5)(26;; — 4d(s)v;v)e "W )P+ (1 4 5yH ds
0

=:error term,

t
+6CH(pu + 1)ea,-j(z,x,u)/ d(s)uivje*d“)w)z(v)l’H*l(l+s)’H ds
0

=:€ITOr term, »

t — 1 Sy
F3Cu(pn + l)ec’u;(t,x,v)/ i) +7(p”< );Ulv])e_d(s)<”>2(v)p’1_](l + ) ds .
. @ -

—:eITOor termsy 3

(6.49)

Let us first explain the strategy in handling RHS of (6.49). For the “h contribution”
term, we use the equation (6.16) and the estimates obtained in (6.47). We then have
two good terms, which are good in the sense that they are > 0 in the “+4” case and < 0
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in the “—” case. Finally, we have four error terms. We will show that the term “error
term;” can be controlled by “good term;”; while the terms “error termp ;”, “error
termy »” and “error termy 3” can all be controlled by “good term,”.
To carry this out, we first compare “good term;” and “error term;”. Noting that
d (t) < 2dp, estimating a;; and a;;v;v; by Propositions 5.8 and 5.12 respectively, we
obtain _
A ()?

3
lerror termy | < e (v)max2Hr g 4 )3,

Choosing ¢ sufficiently small (so that € is also small), we see that “good term;”
controls “error term;” and in fact

AOW? 4o ) 3dOW s )
(v)* — |error termy| > (v)

6.50
n (141t 4n (1 4+t (6.50)

Next, we compare “good termp”, “error termp;”, “error termp” and “error

termy 3”. For this purpose we first consider the integral fol e_d(s)<”>2(v)pH+3(l +
s)'Hds. Let us assume for the moment that ry + 1 + 8 # 0. Then since d’'(t) =
—(Hd;’% and d(¢) is monotonically decreasing, we obtain the following estimate
after integrating by parts:

t
CHE/ e~ dOW? (P31 4 gy g

0
= _C pats [ 14 _amup 1 "H g
re(v) A (d’(s)(v)2 ° J(1+9)" ds
< CH€<U>17H+1 te—d(S)(v)2 i(1+s)rﬁ+l+5 ds
dos 0 ds
(;Ha—e ()P (O (1 4 gyt 148 _ g=2do0)?)
0
t
< W(v)wﬂe*d(’)mz‘/ (14 5)#+ ds
o 0 (6.51)
ZH; <U)pH+le—d(t)<v)2(1 4 pyrHtIHS
0
00|rH
n ZH; (0)PHH1g=dOWP (1 4 pyru+1+
0
2Cge +1 —d(t)(v)? rg+1+6
< g e max {1, (1 4 0)/71+7}
0
< _25126 (v>py+le—d(t)(v)2(1 + t)’HHJ”S,
0

since rg + 1 +3§ > 0 by assumption. In the case ry + 1 + 6 = 0, we argue in a similar,
but simpler, way:
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t
Cpe / e dOW? (yPHF3 (1 4 gy g
0

! 1 d
= —Cpyev pH+3/ ———— R TS R T (6.52)
pev) Gomrs "Y1 +9)
_ Cue (p)PHH1=dOW? < 2Cue (u)PHHTg=dOW? () L pyru+1+5,
dod ~ dpé
We now estimate the terms “error termyp ;”, “error termp »” and “error termp 3” in

(6.49). Noting that d(¢) < 2dy for all + > 0, we apply Propositions 5.8 and 5.12,
(6.51) and (6.52) to obtain

|error termy 1| 4 |error termp 2| + |error termy 3|
t
7 . 2
< CHa/ e AW (yPHE3 (1 4 ) H ds
0

<CH6%<U)PH+1 —d(t)(v (1+t)’H+1+5

Choosing € (and therefore also €) sufficiently small, we can bound “error termp 17,
“error termp 7" and “error termp 3™ by “good termy” and in fact

_ 2
3CHee  dOW (P 4 1)"H _ |error termy, 1 |+ |error termy 2|+ |error termy 3|

> 2C1r.lee_d(’)<”>2 WYPEF (L 4 1)
(6.53)
We now consider the “+” case in (6.49). By (6.25), (6.47), (6.50) and (6.53), we
obtain

(n),+ (n) +

Btu(") +(t,x, V) +vidguy” (1, x,0) — a,]E)z

ed(z)(v)

(t,x,v)

> —2Cee 1 OW (uyPrtl (| 4 gy — )21 41710

_ ¢}, =12 (6.54)
3O s
dn (1 4+0)lt

5<v)2 +2CH€efd(t)(v)2<v>PH+l(1 +1)H

Now note that the first term on the RHS of (6.54) is < the last term on the RHS
of (6.54). For the remaining three terms, note that by (6.26), for any (¢, x,v) €
[0, Tgoor) x R3 x R3, we have

d(1)(v)? d(1)(v)?
e (I)(v) <U)2(1 + t)_l ) C/ mm{ 1 sVsPH— 2} + 36 (t)<U) dO(S
4n dn (1 41)l+d
AW gos 1 dos 5 dos

= 1+3 1, s (V)7 2 145
m (41 41 (1 + Tpoor) 4n(1 + Tpoor)

(v)?

(v)? —
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Putting all these together, we thus obtain

dod
(n) + 0
(t, x,v)> —4n(1 T
(6.55)

(e, x, v) v u T (@, x, v) = G0y, u

In a completely analogous manner, in the “—” case we obtain

(n),— 92 (ﬂ)

(t, x,v) +v;0y u(n) (t, x,v) —aijo, v U (t,x,v)
dod (6.56)
4n(1 + TBOot)H_(S ‘

8[”

Step 4(a)(ii): Differential inequalities for ug\';)‘i when rg + 8 > 0. We now consider
the case rg + 8 > 0. Our goal will be to show that (6.55) and (6.56) also hold in this
case.

To proceed, we carry out a computation as in (6.49), using (6.48), (4.3) and (6.29).
Note that in the ry 4+ § > 0 case that we are considering, there are a few more terms
arising from various derivatives of 2Cyee—dWW)? ()P (1 4 yra 143,

(n), £ (n),+

atuj\',')’i(t,x,v)-&-v,-&l (t, x, v)—a,jd,%v/uN (t, x,v)
= RHS of (6.49)

+2CHe(r + 8+ De dOW? (yPr=1(| 4 1)+ £2C pedyse D0 (yPr+ (1 4 pyrn

=:good term, =:good term,

+£2Cp€a;;2d(0)8;; — 4d(1))2v;v)e OW (uyPr=1 (] 4 pyritit]

—error termy,;
(P — D@ Oviv; +8j))  (pr — D(pa —33viv;
(v)? (v)*

—:eITor termy »

+2Cyed;j(— YemdOW? (ypn=L (| 4 pyn+dtl

(6.57)

We first treat the terms that arise in RHS of (6.49). Note that this can almost be

treated exactly as in (6.49), except that now since ry + & > 0, in the “h contribution”

term, we have an extra contribution on the RHS of (6.47), which is bounded in mag-

nitude by CHee_d(’)<”>2(v)”H_1(1 + 1)"#+%_ Now note that this can be absorbed by
“good term3” since when r + § > 0 we have

2CHe(r + 8 + 1)edOW (yPr=1(| L yru+8 _ CpeemdOW (ypr=1(q 4 qyru+s
> Cee dOW (yyPr=1(] 4 pyru+d,
The other terms on the RHS of (6.49) can be treated exactly as in Step 4(a)(i).
To handle the RHS of (6.57), it therefore remains to show the terms “error termy ;"

and “error termy 2" can be absorbed by “good termy”. Note that by Propositions 5.8
and 5.12 and (4.1),
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Cre @i + aijvv)e OV () Pa=1(1 4 gyrato+]

< Cye- 5% <v>max{2+l/,l}(1 + t)_3 . e—d(t)(v)2<v)pH—1(1 + t)rH+5+1
B 6.58
CHe%e—d(t)(v)z<v)pH—l+max{2+y,l}(1 +t)rH+5_2 ( )

S
< CHg%e—d(l)(v)zw)PH-H(l +1)H,

Now it is easy to observe that

lerror termy. 1|+ |error termy 2| < Crre(ai; +a;jvi vj)e*d(')(”)2 ()P (A pyratot],
(6.59)
It therefore follows from (6.58) and (6.59) that

)2

2Cedyse 1 OW ()yPEFYL (] 4 1)'H — |error termy, || — |error termy ;|

2 (6.60)
> Cyedoée_d(mv) <U>PH+1 (A 41)H.
Since all the other terms are exactly asin the rg +8 < 0 case, we therefore conclude
that both inequalities (6.55) and (6.56) hold also in the case rg + 6 > 0.

(n), £
N

Step 4(b): Boundary conditions for u . Since for every t € [0, T,], EN,R” (t,x,v)

is compactly support in B(0, ﬁR,%) x B(0,V2R,), ﬁN,Rn [9(B(0.V2R?) x BONIR))

(r) = 0. Noting also the obvious signs for the other terms in the definition of u%’)ki

in (6.48), we obtain that for every ¢ € [0, T, ],

(n),+

(n),—
UN"T ToBo,vaR) xBOV2R) O Z 00 UN" 350, V2R xBO,V3R,) () = 0-

(6.61)
Step 5: Maximum principle argument. We now apply the maximum principle to obtain

an upper bound for u;';)’_. To simplify notation, let D, := [0, T,,] x B(0, «/ERQ) X

B(0, V2Ry).
Our goal is to show that

sup  ul T, x, v) < Che. (6.62)
(t,x,v)€D,
Since D, is compact, u;’;)’_ achieves a maximum in D,. It is clearly sufficient to

(n),—
N

bound the maximum of u . At least one! of the following holds:

1. The maximum is achieved on the initial time slice D, N {(¢, x, v) : t = 0}.

2. The maximum is achieved on the set (0, 7,) x d(B(0, ﬁR;) x B(0, v/2R))).

3. The maximum is achieved at an interior point Dj.

4. The maximum is achieved in the interior of the future boundary D, N
{(T), x,v): |x| < V2R3> or [v] < V/2R,}.

15 9t is possible that more than one of the following possibilities hold since these sets are not disjoint and
moreover the maximum can be achieved at two distinct points.
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In Case 1, the estimate (6.62) is trivially true by (6.10).

In Case 2, the estimate (6.62) is also trivially true by (6.61).

We next argue that Case 3 is impossible. If there exists an interior maximum point
p of u{"~, it holds that " (p) = 3 ul T (p) = dyul T (p) = 0 fori
1,2,3, and a;; 82 " (p) < 0. Hence, (6.56) evaluated at p implies that 0 <
- M%, Wthh is a contradiction.

Finally, we argue that Case 4 is also impossible. Suppose there is a point p €
D, N{(T}, x, U) x| < «/—R3 or lv] < v/2R,} so that u (-~ assumes its maximum
at p. Then d,u\" " (p) = dy,u'l" ™ (p) = Ofori = 1,2, 3, andaljaz W= (p) <0.
Hence, (6. 56) evaluated at pomt p implies that

dyé

(n),—
9 <-— 7
N (p) N 4n(1 + TBoot)H_(S

As a consequence, by considering the Taylor expansion of ug\',’)’f at p, one concludes

that ug\',')’_ (p) is in fact not a maximum, contradicting the definition of p.
Combining the considerations in the four cases above, we have established (6.62).

Step 6: Minimum principle. In an entirely analogous manner as Step 5, but considering

instead the minimum of u( m).+ , we obtain
inf w1, x,v) > —Cpe. (6.63)
(t,x,v)€D,
Step 7: Completion of the continuity argument. By the definition of u(") *in (6.48),
the estimates (6.62) and (6.63), and the triangle inequality,
AN &, (£, x, V)]
AW ’ e—d©)©)? ()PEFL(145)H ds
< +2CHee dw)? o >PH Y14 ryrnt1+e if ry+8>0
Chet & L 3c e JEemdOW? (yputl (1 45y ds if ry+8€[—1,0)
(6.64)

for every (¢, x, v) € D,.
To proceed, we need to control the term 3Cy e fé e—d®))? (vyPETI(1 4 5)"H ds in
(6.64). By (6.51) and (6.52) (and multiplying by (v)~2), we obtain

6CH6
0o

t
3CH€f IO ()Pt () 4 gyh ds < ()P 1e=dOW? (1 | pyri+148,
0
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Plugging this into (6.64), we obtain

lhn g, (t, x, V)]

(3+d()5)CH€(U)pH Le=d W2 (g pyrat1+o L O e s

(1+d S)CHG( ypr =1 gmd W) (| pyrtis g <LON i if rip+8 € [~1,0).

(6.65)
for every (¢, x, v) € D,. Note that this improves the constant in (6.31).

We now complete the continuity argument initiated in Step 3; namely, we show
that for every n € N, T, = T, (where T, is as in (6.30)). Suppose not, then by (6.65)
and continuity of &y g,, (6.31) must hold for some short time beyond 7),. This then
contradicts the definition of 7).

Therefore, we have proven that D,, = [0, T,,] x B(O0, ﬁRﬁ) x B(0, ﬁRn) and

thus (6.65) holds in the whole region [0, 7;,] x B(0, v/2R3) x B(0, v/2Ry,).

Step 8: Putting everything together. Fix a point (f,x,v) € [0, Tgoor) x R3 x R3.
By (6.27) and (6.28), there exists ng € N such that (¢, x, v) € [0, T,,] x B(O, RZ) X
B(0, Ry,) for all n > ny.

By (6.65) and the fact that D, = [0, T,,] x B(0, v2R3) x B(0, ~/2R,), we know
that

~ ~ 6
Ay (t, x,v)| < |hN,Rn(t,x, v)| < <3+ ﬂ) Che(v )I’H 1 —d(t) (1 +t)FH+1+8
0

LA ()?
+

n

for every n > ng. Taking n — + oo, we thus obtain

~ 6
|hN(tv X, U)| =< <3 + d_8> CHG(U>PH*16711([)(U)2(1 + t)VH+1+6.
0

Recalling the definition of EN in (6.12) and (6.13), this implies
N 6 -2 rg+1+4
(x —tv) ||, x,v) 3+ﬂ Cre()P"—=(1 + )™,
0
Since (¢, x, v) is arbitrary, we have proven (6.11). O

6.3 The Hierarchy of L3°L>° Estimates and the Induction Argument

We now discuss the (hierarchy of) LS°L$° estimates that we will prove. Recall from
Section 1.1.6 that our L{°LS° estimates will be proved in a descent scheme in which
the estimates are better at lower levels of derivatives. In this section, we make precise
the numerology of the estimates (see Sections 6.3.1 and 6.3.2). We then initiate in
Section 6.3.3 an induction argument to prove these estimates.
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6.3.1 Definition of Mint

Define Mjy; by

Mo = [ (2% +4) | ify e (-2.-1]

My = My — ’V(IJ]/_I +4)—‘ ify e (=1,0)

(6.66)

The parameter Miy, is used to indicate an “intermediate” number of derivatives, below
which we have sharp Z estimates (i.e. with ¢ = 6 = 0 in (6.69); see Section 6.3.2 for
definitions). Note that by definition

Mmax + 2 = 2Min;. (6.67)
An easy computation shows that

Muax — Mine =7 %f]/ € (=2,-1] (6.68)
Max — Mine > 6 ify € (-=1,0)

Moreover, Mpax — Mipg — coasy — —2ory — 0.

6.3.2 Definition of the Z; ¢ g Norms

For ¢ € [0, %) and 0 € [0, 1), introduce also the following L°°-type norm:

Zieo(M) = Y A+ Pl)!=e
la|+|Bl+]o =k

(x — o) Mt L QBB Y @) || oo 10,7 L0 L0 (6.69)

Like the Ey norms (cf. (4.6)), the Zy ; ¢ norms have weights of (x —fv) dependent on
the number of Y derivatives and the norms become worse in ¢ for every 9, derivative.
Moreover, the Z; . 9 norms depend on two parameters ¢ and 6. The Z norms are
the strongest when ¢ = 6 = 0, and the parameters { and 6 exactly parametrize the
“loss” compared to the strongest case in the growth rate in ¢ and the weight in (v)
respectively. In addition, note that when 8 = 0, the Z norm is one (v) weight stronger
compared to the E norm.

The values of ¢ and 6 that we will use depend on & (in addition to y). We define
below ¢ and 6. Foreachk =0, 1, ..., My, —4, our goal will be to control Z ¢ g, -
(In the process of bounding the Zj ¢, ¢, , we will first need some weaker Zy ¢, g,, bounds
for m > k; see Section 6.3.3).

Suppose 0 < k < Mjy. Define
k=0 =0. (6.70)
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Suppose y € (=2, —1] and Miy + 1 < k < Mpax — 5. Define

3 32+vy)
=3 == Mu—4—k), 6 =0. (6.71)
Suppose y € (—1,0) and My + 1 < k < Mpax — 6. Define
=0, Opr=14+Mnax —4—5k)y. (6.72)

Suppose y € (—1,0) and k = M,x — 5. Define
3
Tk = 1 O =1+y. (6.73)
Suppose k = Mpax — 4. Define

3
Gk = > O = 1. (6.74)

6.3.3 The Induction Argument

In order to prove the desired estimates for the Z; ; 9 norms, we prove the following

statement with an induction (decreasing) inm = 0, 1, ..., Mmyax — 4:
3
Z <ei1 fork<m
kv{kﬂm ~ 3 —_ (675)
Zig.o Sex fork >m,

i.e. for k > m we prove the sharp estimates, while for k < m we prove estimates
corresponding to the sharp ¢ but with only a weaker (v) weight corresponding to 6,,,.

First, note that the base case of the induction, i.e. the m = Mpy,x — 4 case, holds
thanks to Proposition 6.2 and the bootstrap assumptions (4.8) and (4.9). We then carry
out the induction step below.

From now on until Section 6.6, we assume (6.75) holds for m = m, + 1 for some
m=0,1,..., Mpax — 5. Our goal will be to show that (6.75) holds also for m = m.
(In fact, we will show a slightly stronger estimate with e replaced by €.)

Before we proceed, observe that in the induction step it suffices to control 9% 8,’? Yog
for |a| + |B| + |o| < m, (since the required estimate when || + || + |o| > m is
tautologically part of the induction hypotheses).

6.4 Classifying the Inhomogeneous Terms in the Equation for 6,?65 Y%g
We continue to work under the induction hypotheses in Section 6.3.3.

Our goal in this subsection is to control |(d; + v;dy;, — ai,-agiuj)(agaf Y%g)| in
preparation to apply the maximum principle in Proposition 6.3.
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Proposition 6.4 Suppose |a| 4+ |B] + |o0| < Mmpax — 5. Let h = 8)‘2‘85; Y%g. Then,
under the assumptions of Theorem 4.1, (0; + v; 0y, — a;j 831, v,-)h obeys the following

estimates for all (t, x,v) € [0, Tpoor) X R3 x R3:

|3 + i, — @503, VhI(t, x, ) S (ISP 4 TIZPT 4 1110Pe
+ VIR 4 vebo L VISP (1, x, v),

where'©
190 = 3 r?ax|ag/35’y<’/&ij||3§”35”Y"”g|, (6.76)
o [+l [=latl, |B'|+|B" |=IB1+2
lo’|+10” |=lo
L<lo/|+1B'[+]o" | <la|+|BI+lo |
11367 = > max |99 98y (a;;vi) 102" 9" Y gl, (6.77)
o[+l |=la], [o”|+]0” | =] |
B1+1B"1=1B1+1, 1B'|<IB|
%P = N (020l Y ay| + (0 08 Y @juiv 1o ol v g,
o' |+l |=le|
IB1+18” =161
lo’|+lo”|=lo]|
(6.78)
1vebo = 3 9% af vy e 0 0l v g, (6.79)
lo |+l | =
|B+18" =8I
o’ |+l |=lo |
Ve = > vl (6.80)
o' |<lal+1, B1< 1811
o ._ _ W ey
VIEho = > T3 s WY sl (6.81)

IB'I=IBl, lo”|<lo]
1B’ +lo”|<|Bl+lo|-1

Here, by our convention (see Section 2), if |B| + |o| = 0, then the terms Vg’ﬂ’a and
Vlg’ﬂ’J are not present.

Proof Difterentiating (4.4) by 9 85 Y7, we obtain

8do _
30%9P Y7 g +v;8,0%0P Y g + m(z;)ZagafY“g — a0y, 00V g
ddy
= [0 + vidyy, 0°0P Y] g+ R (agg‘afY”((u)Zg) - <v>za§a§Y"g)

=:Term
=:Termy

16° A1l of the following terms are functions of (¢, x, v). We suppress the explicit dependence on (z, x, v)
when there is no risk of confusion.
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+ (0208 Y7 @07, 9) — ol 0200 Y7 ) ~00f Y Gig)
—_—

=:Term3 =Termy

— 4d(1)9% 0P Y (@jvidy, 8)

=:Terms

—2d(t)8fafyd((5,’j —2d(t)v,-vj)c_tijg). (6.82)

=:Termg

The terms Term;—Terms are commutator terms, while the terms Termy—Termg arise
from differentiating the RHS of (4.4).

We estimate each term on the RHS of (6.82).

For Term, note that both 9, and ¥ commute with the transport operator 9; + v; dy; .
Hence,

Term; = [, + v;dy,. 0005 Y g = > 0l 9%y
B+p"=p
181=1
Therefore,
|Term, | < > 10998y g|. (6.83)

le/[<la|+1, |B'[<IBl-1

This gives the contribution V) £7 0 (6.80).
For Term,, the commutator term arises from d,, or 79, + 9, acting on (v)z. We thus
have
< 8do anf vo!
Term;| < > m| v[[8%0F ¥7 g|

1
IB'1=<IBl. lo"|=<|o]| 1+
18’1+l ||l +lo|—1

8dy
E I B
+ (1+t)1+5|8°‘8 Yo gl.
1B'1<IBl. lo"|<|o]
1B’ |40’ |<IB]+]o |2

(6.84)

A very rough estimate then shows that this gives the contribution VI;’”S "“in (6.81).
For Terms, distributing the derivatives we get

Terms =y @Yl v apal, 02 0l v g
0{’—‘,—0{”:0{
B+B"=p
o'+o"=0

lo'|+]8"|+]0" =1

After relabeling the multi-indices, this gives the contribution I;”’B 7 (7.13).
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For Termy, we distribute the derivatives to get

Termal S ) 1920 v7'e)192 0 v gl. (6.85)
o' |+ |=le]
|81 +18 =161
lo’|+lo”|=lo]|

This gives the contribution / Vg £ in (6.79).
For Terms, since d(¢) is uniformly bounded, we distribute the derivatives to obtain

|Terms| < > max |99 98 Y @;;vn)|10% 98 Y g|,  (6.86)
o |+l |=lal, || +lo”|=lo]|

IB'1+18"1=181+1, 1811

which gives the contribution / Ig’ﬂ 7,
Finally, for Termg, using again the uniform boundedness of d(¢), it is easy to see
that

[Termg| S > (180 Y | + [0 0L Y (@yjvivp)Io 0f Y7 gl

lo' |+l |=|er]

1B'1+18" =181
lo’|+|o"|=lo]|
(6.87)
which gives the contribution 77 Ig’ﬁ 7, O

6.5 Controlling the Error Terms

We continue to work under the induction hypotheses in Section 6.3.3.
The goal of this subsection is to control the terms (6.76)—(6.79) in Proposition 6.4.

Proposition 6.5 Let m.. be as in the induction hypotheses in Section 6.3.3 and suppose
k = |a|+|B|+ 0| < my. Then for Ig’ﬂ’a as in (6.76) and for (t, x, v) € [0, Thoor) X
R3 x R3,

(.X' _ tv>Mmax+5—|O'|I[¢;¥7/3,0(t’ X, v) S E% <U)1+0”7* (1 + t)—1—6+§k+\ﬁ\_

Proof From now on, take o/, «”, B’, B”, o', o” whichobey |o'| +|a”| = ||, | 8| +
1Bl = 1Bl +2,l0'| +lo"| = lo], 1 < /| + 8| + |o'| < || + |B] + 0| =: k. We
will always silently assume that these conditions are satisfied.
Short-time estimates: + < 1. We first bound (x — tv)MmaXJ“S_“"I;”ﬁ’U(t,x, V)
when ¢ < 1. Estimating max; ; |8)‘§‘/8{,6 Y a i1 by Proposition 5.8 and bounding
|8§‘U85} Yo' gl(t, x, v) by the induction hypotheses, we obtain
(x — to)Mmax 510l max 109 98 Y a:110%" 08" Y g| (1, x, v)
J (6.88)

5 E%<v)2+y 3 6%<v>—l+9m*+1 S E%<v)l+y+9m*+1_
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To see that (6.88) implies the desired estimates when ¢ < 1, note that by (6.70)—(6.74),
‘9m*+1 + Yy = Qm*o

Long-time estimates: ¢ > 1. We now assume ¢ > 1. Notice that we have |a/| + |8'| +
|o’| > 1. We divide below into the (non-mutually exclusive) cases |o’| > 1 (Case 1)
and max{|c’|, |B’|} = 1 (Case 2).

Case 1: |o’| > 1. Since |0'| > 1, we have |0”| < |o| — 1. This implies (x —
toyMmaxt5=10] < gy Mmact5=l0"l gy =1

Since k < my < Mpyax—5,by (6.67), either |a’|+| 8’| +|0'| < Minc or o |+]8" |+
|6”| < Min. Term 1 below handles the situations where |a”| + || + |0”| < Mi,
while term 2 below handles the situations where |a'| + |B’| + |0/| < Miy. To obtain
term 1, we note that |a'| + | 8’| + |6”/| < k and apply Proposition 5.11 (to control (x —
tv) Y 8;‘/ 8{,5 / Y O/Ez,' 1) and the induction hypotheses (to control 8;‘” 8{,5 ! Yo' g). To obtain
term 2, we note that |a”| 4 |B”| 4 |o”| < k+ 1 and apply Proposition 5.11 (to control
(x — tv)~! |8)‘f/ a{?’w’a,-j |) and the induction hypotheses (to control 8};‘// 85”Y“Ng).

! / ’_ " " "
(x — tvyMma 3710l max 199 88 v a;;110% 88 Y7 g|(t, x, v)
L]

< (max(x — 1) 7Y 8P Y a2, x, v)) ((x — tv)MmatSlo 5o B y o
L]

gl, x, v))

< 3 (uymax0. 14} (1 gy =3-min24y DHGHE| L 3 (] gl

~

Case 1, Term 1

+ et (uymax01+7) () ) 3-min2er DB o3 (1 4 Sk 18]

Case 1, Term 2
_ e%(v)(l +t)_l_min{2+ysl}+§k+l+‘/3"

(6.89)
where in the last line we have used |8'| + |8”| < |8] + 2 and ¥ < 0. Now note that
by (6.70)~(6.74), {1 — & < min{3, 2ZH)) Therefore, combining this with (4.1),
we obtain

—1—min{2+y, 1} + 1 + 1Bl = =1 =8+ & + 1B (6.90)

On the other hand, note also that since by (6.70)—(6.74) 6,,, > 0, wehave 1 < 1+06,,,.
Hence, the estimate we obtained in (6.89) above is better than is required in the
statement of the proposition.

Case2: |o'| > lor|B'| = 1.By (6.67),¢ither |o”|+|B"|+|0"| < Min or || +|B'|+
|o’| < M. These are handled respectively as term 1 and term 2 below. In term 1, we
also have |o’|+|B’|+|0”| < k; while in term 2 we also have |o” |+|8" | +|o”| < k+1.
For each of these two terms, we bound 8;‘/85 /Y”/Ezi j using Proposition 5.9 or 5.10
(applicable since |8’| > 1 or |@’| > 1) and estimate 8;‘”8,’,3 "yo" g using the induction
hypotheses.
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(x — rv)Mmax 5710l max 199 08y 311109 98" Yo" g (2, x, v)
l’]
< (max 0% 08 a1 (1, x, v)) ((x — rv) M H371 g 9B Y g (1 x, )
l?]

S 6% <U)2+V(1 + t)737min{2+}/,1}+§'k+|ﬁ/| . 6% <U>71+9m*+1 (1 + l)‘ﬂ//l

6.91)
Case2, Terml

+ e% (v)2+y(l + t)—3—min{2+y,1}+lﬂ/| . e% (v) ™ HOmerr (] 4 t)§k+l+|,3//|

Case2,Term2
3 .
5 1 6, —1—min{2+y,1
< €2(v) TVt (1 4 1) in{2+y }+{k-¢-1-‘r|ﬂ|7

where we have used |8'|+|8”| < |B|+2. Now note that by (6.70)~(6.74), 0, +1+y <
Om, - Therefore, using also (6.90), we see that (6.91) is better than is required in the
statement of the proposition. O

Proposition 6.6 Let m. be as in the induction hypotheses in Section 6.3.3 and suppose
k= |a|+I|B8|+lo] < my,. Thenforllg’ﬁ’g asin (6.77) andfor (t, x, v) € [0, Tpoor) X
R3 x R?,

(x _ tv)Mmax+5*|U|[I;a/3,d(t, X, U) 5 6% (U)l+0m* (1 + l,)7178+§k+\ﬁ|.

Proof We can argue in a very similar manner as Proposition 6.5 so only the key points
will be sketched. From now on take o', «”, B/, 8", 0’ and 6" as in Ilg’ﬂ’g in (6.77).

First, for t < 1, we have a similar bound as (6.88) using Proposition 5.12 and the
induction hypotheses:

(x — rv)Mmax 5710l max 199 88y (@;;0:)110 08" Y g1(¢, x, v)
J

< el (uymax2Hr ) | ()T < @2 ()M Fona 1O} < 3 () 1H0ns
In the last step above, we have used
max{l + y + 0,41, Om.+1} < 1 + O, (6.92)

which can be checked using (6.70)—(6.74).
For the > 1, we argue as in Case 2 (i.e. the |o’| > 1 or |8’| > 1 case) in the proof
of Proposition 6.5. We note the following:

1. We have q;;v; instead of a;; so that we will use Proposition 5.12 in place of
Propositions 5.9 and 5.10. (Note that the application of Proposition 5.12 does not
require |o’| > 1 or |B/| > 1.)

2. By comparing Proposition 5.12 with Propositions 5.9 and 5.10, we see that the
estimates we obtain for max ; |0 ' 8{,3 Yo (a;jv;)| are different from those we obtain

in the || + |B’| = 1 case for max; |8§" 853/ Y"/Ezij| in the following ways:
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(a) We have (v)™2x2+7.1} jngtead of ()27, and
(b) we have a 7 rate that is (1 + £)™2+7.1} worse.

3. On the other hand, for the II;"’B’U terms, we have | 8’| + |8”| < |B8| + | instead of
18/ +18"] < |B] + 2 asin 13’5*". This gives a gain of (1 4 7)~!.

Combining all these observations and making the necessary changes of the proof in
Case 2 of Proposition 6.5, we obtain the following analogue of (6.91):

(x — tv)Mmaxt5=10l max 109 98 Yo" (@ ;0|10 08 Y g1(2, x, v)
J

< 6%<v>max{1+V+9m*+1,9m*+1}(1 + t)—2+§k+1+|ﬂ|_

Now using (6.92) and (6.90), we obtain the desired conclusion. O

Proposition 6.7 Let m, be as in the induction hypotheses in Section 6.3.3 and suppose
k = |la| + |B] + lo| < my. Then for III;"ﬂ’a as in (6.78) and for (t,x,v) €
[0, Tgoor) x RY x R,

<x _ tv)Mmax+5—‘U‘111gs}3,O'(t’ X, U) S G% (U>1+6m*(1 + t)—1—5+§k+|ﬂ|.

Proof The 11 I;‘”g " is even better behaved than the [ I %A% term. To see this, note
that by Propositions 5.8 and 5.12, 9¢ 8'3 Y°'a a;; and 9y a” Yo (ajjviv;) obey all the
estimates that 8)‘3‘/ 85 / Yo' (a;jv;) satisfy. Note moreover that for the 1/ I35 p o.p.o terms, we
have || + |8”| < |B] instead of |8'| + |B”| < |B] + 1 asin 113" which therefore
gives a better estimate in terms of (1 + ). Hence the term 77 I;"ﬂ @ obeys all the

.p.0 satisfy. The conclusion then follows from Proposition 6.6. 0O

estimates that /1,
Proposition 6.8 Let m.. be as in the induction hypotheses in Section 6.3.3 and suppose

= |a|+|B|+|o]| < my. ThenforIV;,%’ﬂ’(r asin (6.79) andfor (t, x, v) € [0, Tpoor) X
R3 x R?,

(.X _ tv)/VImal)H‘S*l(TlI‘/'pﬂfylgyﬂ’(t7 X, U) g 6%(1 + t)7]78+§k+|/3"

Proof In this proof, we will also take o', «”, 8/, B”, o/, ¢” as in the term IVO‘ Bro

ie. || + ]| < lal, |81+ 8" <|Bland |o’| + |o”| S o]

By (6.67), we have either |a” |+ |B” |+ 0| < Miy or |o'| + 8| +|0'| < Miy. We
treat these two cases respectively in term 1 and term 2 below. Note that in both terms
we also have |o’| + |8'| + |o’| < k and |a”| + |,8”| + |0”| < k.In each of these terms,
we use Proposition 5.13 to control |8“ 8U ye' ¢| and use the induction hypotheses to

control (x — fv)Mmun+5-10"1ga" 38" yo" o).
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(x — tv)Mmat5=lol 50 5B Yo a1 9" 3"y g (1, x, v)
< 100 Y7 82, x, v) ((x — o) MmO 3 9B Y o g 2, x, v)

< (14 )3 HUHBT i (1 gl

Terml1
Fei(1 403V HEL (1 4 pactlel

Term?2

< G%(l + t)—3—7+§k+\13\’

where in the last line we have used | 8’| 4 |8”| = | 8|. The statement of the proposition
hence follows from (4.1). m]

6.6 Concluding the Induction Argument

We continue to work under the induction hypotheses in Section 6.3.3. Our goal in this
subsection will be to conclude the induction argument.
Combining Proposition 6.4 and Propositions 6.5-6.8, we immediately obtain

Proposition 6.9 Let m.. be as in the induction hypotheses in Section 6.3.3 and suppose
k:=|a|+ |B| + |o| < my. Then for (t, x,v) € [0, Tpoor) x R3 x R?,

(x — ro)Mmat5=10l (5, 409, — a,-ja,ivj)(agaf)/“g)|(r, X, v)

< E%(v)1+9m*(1+t)*1*5+§k+\,5\+ Z (x — tU)Mmax+57|a||ag’35/Ygg|(t,x, v)

|| <|a|+1
18'I<1B1-1 (6.93)
(v) s oo
" 2 T & — g Y g1, x, v).
IB1=1B1, lo'|<lo|
IB'I+lo’ || Bl+lo]—1
Proof 1t suffices to bound the terms Ig’ﬁ 7 Vlg’ﬂ *? in Proposition 6.4. Proposi-

tions 6.5-6.8 exactly show that the terms Ig’ﬁ’g, IIS”S’U, Illg’ﬁ’a and IVg’ﬂ’U are
bounded above by the first term on the RHS of (6.93). Finally, the terms V;,x £ and
Vlg’ﬂ’” are exactly the last two terms on the RHS of (6.93). O

Proposition 6.10 Let m. be as in the induction hypotheses in Section 6.3.3 and suppose
k:=|a|+ 18|+ |lo| < my. Let h := aga{?yag. Then the assumptions 1, 2 and 4 in
Proposition 6.3 hold with (N, ry, pr) defined as follows (and depend on y, dy, |o],
|8l and |o):
N =Munax +5 — o],
rg = —1-38+&+1Bl,
pa =1+0y,,

and Cy > 1 some constant depending only on y and d.
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Proof Step 1: Verifying assumption 1. This is an immediate corollary of the preliminary
L estimate in Proposition 6.2.

Step 2: Verifying assumption 2. In view of the definition of (ry, pg), (6.7) and the
induction hypotheses in Section 6.3.3, we need to check that

Omer1 —1 =min{0y, — 1=y, 04}, G +1+1BI <186+
+min{2 + y, 1} + |B].

The first inequality can be checked explicitly using (6.70)—(6.74), while the second
inequality is equivalent to (6.90) that we have already checked.

Step 3: Verifying assumption 4. This is an immediate consequence of the assumptions
of Theorem 1.1. ]

Proposition 6.11 Let m, be as in the induction hypotheses in Section 6.3.3 and suppose
k:=|a|+ |8l + |o| < my. Then for (t, x,v) € [0, Tgoor) x R3 x R3,

(x — ro)Mmaxt5=101 19038y 0 g1 (1 x, v) < €(v) 1 H0m (1 4 1)SHIAL, (6.94)

Proof The idea of the proofis to use the maximum principle in Proposition 6.3 together
with the estimates established in Propositions 6.9 and 6.10. In Proposition 6.10, we
have checked assumptions 1, 2 and 4 of Proposition 6.3. We want to use Proposition 6.9
to verify assumption 3 of Proposition 6.3. The only remaining issue is to handle the
last two terms in (6.93). For this reason, we proceed by an induction argument on
1Bl + 1ol

Base case: |B| + |o| = 0 In this case, the last two terms on the RHS of (6.93) are not
present. Hence we simply have, for every |o| < m,,

- 3 11—
(r = 1) Mm@ 4 vidy, — iy, )OI X, v) S €2 () FIm (14 )T

Therefore, by Propositions 6.3 (with (N, rg, pr) = (Mmax +5—o|, =1 =8+ ¢k +
IBl. 1 + 6n,)) and 6.10, we obtain

(x — t0)Mmt390% (1, x, v) < e(v) O (1 4 1)%,

as desired.

Induction step. Assume as an induction hypothesis that there exists B € N such that
if |¢| + |B] + |o| <my and |B| + |o| < B — 1, then (6.94) holds.

We now take «, B8, o such that |«| + |8] + |o| =: k < m, and |B| + |o| = B. Our
goal is to show that (6.94) holds for this choice of («, 8, o).
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It is easy to see that after plugging in the estimates in the induction hypothesis into
(6.93) in Proposition 6.9, we obtain

(x = )Mo @) 00, — a0y, )Y Y7 @)1, %, v)

3 (V)1 F0m (1 41)~1=3+8HBl e ()= 1H0me (1 1)~ 1H8HBl e (p)0me (1 40)~1=3+5-1+1B1 i 1] > 1
3 (w) 1+ (14£) 71705 e (p) e (1 4£) =1 =348 if |B]=0

< [€<v)|+9/n* (1 + 1)~ 10HaHIBl e ()= 40me (1 4 1)~ 1HGHIBL if 18] > 1

S @)+ (1 4 1y-1-saH if |8]=0"

(6.95)

Using the estimate in (6.95) and the bounds in Proposition 6.10, we now apply
the maximum principle in Propositions 6.3 (again with (N, rg, pg) = (Mpax +5 —
o], =1 =6+¢k+ 18], 14+6,,)). Note that when | 8| > 1, we have §; 4+ || > 0 so we
can allow the second term on the last line of (6.95). This yields the desired estimates
(6.94) for |a| + |B| + |o| < my and |B] + |o| = B.

By induction on |8| + |o|, we have thus proven (6.94) for all «, B, o such that
loa| + Bl + o] < my. m|

Proposition 6.11 concludes the induction argument (on m,) initiated in Sec-
tion 6.3.3. As a consequence, (6.75) holds for all 1 < m < M, — 4. Moreover,

our arguments showed that (6.75) holds with e% replaced by €. This in turn implies
that (6.94) holds for all k := || + |B] + |o] < m with 1 < m < Mp,x — 5. We
summarize this in the following corollary:

Corollary 6.12 Let k := |a| + |B| + |o| with 1 < k < Muax — S. Then for (t, x,v) €
[0, TBoor) X R3 x R3,

<)C _ tv)Mmz\x+5*‘U‘|a§tal/)3yﬂg|(t’ X, U) S E<U)*1+9k(1 + l){k+|5|.

6.7 Recovering the Bootstrap Assumptions (4.8) and (4.9)
The L{°L:P estimates obtained in Corollary 6.12 in particular improve the constants in
the bootstrap assumptions (4.8) and (4.9). We record this in the following proposition.
Proposition 6.13 If |a| + |B| + |0| < Mmax — 4 — max{2, r%w }, then for every
t €0, TBoot):

[ {x — royMmactS571oTg 9By o el oo (1) S €(1 + )P, (6.96)

If Minax — 3 — max{2, [5351) < la| + |B] + |o| =t k < Mmax — 5, then for every
t € [0, Tgoot),

. 302+y)
e — o) Mt g 5B Y T ) o (1) S €(1 4 1) 3~ M=k mini, S5 4171,
(6.97)

Proof This is an immediate consequence of Corollary 6.12: first, note that —1+6; < 0
so that we can drop the (v) weights; then compare the definition of ¢ in (6.70)—(6.74)
with the ¢-rates in (6.96) and (6.97). O
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7 Energy Estimates

We continue to work under the assumptions of Theorem 4.1.

In this section, our goal is to prove L%L% for g and its derivatives. We begin in
Section 7.1 by obtaining some preliminary estimates which will later be used to control
some error terms. In Section 7.2, we prove our main energy estimates, and classify the
error terms that arise. In Section 7.3, we control all the error terms from Section 7.2.In
Section 7.4, we then put together the estimates in Sections 7.2 and 7.4 and conclude
the energy estimates using an induction argument. Finally, in Section 7.5, we complete
the proof of Theorem 4.1.

7.1 Preliminary Estimates
Lemma 7.1 ForT € [0, Tgoot) and || + |B| + |o]| < Mmax,
3
I(L+ 07272 Py (x — o) Mmt5=1010208 Y7 g1 210 71212 S €7
Proof We can assume that T > 1 for otherwise the inequality is an immediate conse-
quence of the bootstrap assumption (4.7).

We split the integration in time into dyadic intervals. More precisely, let k =
[log, TT + 1. Define {T,-}i.‘:0 with Tp < T < Tp < --- < Ty, where Ty = O,
T; =2~ wheni =1,...,k—1and Ty = T. Note that by the bootstrap assumption
@.7),foranyi =1,...,k,

1 F)
I(14+ )72 73 (o (x — 1) Mt 51015098yl ) S €211

Therefore,

I+ 072 F 8 ) o — )Mo TS0 0By 7 g 11212

D=

1

A

k
S (Z 1A+ 0723 Py - tv)M'““*+5_'”3?35Y“gIIiz([Ti_l,T;];L%L@)

k 2
i—Si _l_3 5
ZZ 2\,3|l i ”(1 + t) 22 (U)(-x - tU)Mde+5 Ulagaf}’gg”iz(mLT’.];LEL%))
1
< €1 (Zz—Zﬂli—éi _22ﬁ|i> 1 (Zz 51) < Eg’
i=1
which is what we claimed. O

We next prove an interpolation estimate for the lower order (i.e. with |« |+|8|+|o| <
M) norms, which is an immediate consequence of Proposition 6.11 and Lemma 7.1.
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Proposition 7.2 Let |a|+ | 8|+ |o| < Min: (where My is as in (6.66)). Then for every
T € [Os TB()(JI);

NI

1
11+~ 272 Bl (x — tv)MmaX+5_|G|8g355Yoglle([O,T];LgoL%ngoLgo) <ed.

(7.1)

As a consequence, for any p € [2, o], the following holds for every T € [0, Toor)

_l_g_ Mmax+5— 3
1+ 727w = )Mt 98B ) 1y e naiendy S €

(7.2)

Proof For the remainder of the proof take || 4 | 8] + |0 < M.

Step 1: Proof of (7.1). By definition, it suffices to prove this estimate separately for
the L%([0, T'1: Li"L%) norm and the L2([0, T']; L$°LS°) norm.

To control the Lz([O, TI; L)?OL%) norm, let us in fact prove an estimate for the
stronger norm Lz([O, TI; L%L)‘?o). For each (t,v) € [0, T] x R3, standard Sobolev

embedding in R? (for the x variables) yields

1
(14672727l (x — o) Mma 371719258y o oo (£, v)
S )18 (1402 Pl ) (x — o) Mt S5 58y g) o (1, v)
le/|<2

S Y A+ ) (x — ) Mt Sl lg 9By g (1, v)

~
lo”|<|e]+2

Taking the L2 norm and then the L([0, T]) norm on both sides, and using Lemma 7.1
(which is applicable, since if |a| + |B]| + |0 | < Min, then |a| + |8+ |o ]| +2 < Mmax
by (6.68)), we obtain

NI

||(1 =+ l‘)_%_a_lﬁuv)(x _ tv)MmaX_FS_lGlagafYgg”Lz([()‘T];L%LCYX?) S €1,

Next we control the L2([0, T'1: LS°LS°) norm. Using Corollary 6.12 and the fact
that ¢y = 6 = 0 when k < Mjy; according to (6.70), we obtain

1
11+ 67275 Bl w) (x — o) M5 19058y 0 210 1. poo .0
_1_
Seld+D72 2q0.0p) S €

This concludes the proof of (7.1).

Step 2: Proofof (7.2).(7.2)is animmediate consequence of (7.1) and Holder’s inequal-
ity. O

@ Springer



11 Page720f 101 J. Luk

7.2 Main Energy Estimates

In this subsection, we prove the main energy estimates. We first prove a general energy
estimate for solutions to equation of the form

ddp

2 ~..92 _
m(l)) h—al‘ja h=H.

ViV,

3;h + v; 8x,-h +

This estimate will be then be applied to g and its derivatives; see Proposition 7.4.

Proposition 7.3 Ler ¢ € NU{0}, £ < Myax+5. Suppose h : [0, Tgoor) x R3 xR — R
is a C* solution to

&dp

m<v>2h a,,32 h=H, (7.3)

dih + vidyh +

with (x —tv)th e L%L%for allt € [0, Tgoor), and (x —tv)t H : [0, Tgoor) X R? x R3
is a C* function such that (x — tv)*H € L*([0, Tgoor); L%L%).
Then for any T € [0, Tpoot),

_1_9
1 = 1) Rl T o0 73 1202) + 1A+ 07272 ) = 10) Rl 20 71212

/ / (x — tv)%hH(t,x, v)dvdx|dt
R3 JR3

Proof Let T be as in the statement of the proposition and take 7, € (0, T] to be
arbitrary. The idea is to multiply (7.3) by (x — rv)%‘h, integrate in [0, T,] x R x R3,
and integrate by parts. First note that we have

(% + vi%> ((x - w)”) —0.

Hence, performing the integration discussed above and integrate by parts in ¢ and x,
we obtain

T
snm%@%®+ﬁ

/ / — To0)* (T, x, v)dvdx——/ / x)2h%0, x, v)dvdx (7.4)
R3 JR3

/ //x—tv 8o 2 2kt x, v) du dx dr (7.5)
r3 JR3 (l-i-f)H"S

T,
+/ / / (x —tv) a,]ha h(t x,v)dvdxdr (7.6)
0 R3 JR3
T
/ / f (x — tv)*nH (¢, x, v) dv dx dr. (7.7
0 R3 JR3
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For the term (7.6), we integrate by parts in v (multiple times) and use that a;; is
symmetric to obtain

T,
/ //(x—tv)ze&ijhag,vjh(t,x,v)dvdxdz
0o JrR3JR3 !

T
- _/ / / A, ((x —fv)zec_lijh)avjh(t,x,v) dvdx dt
0 ]R3 ]R3
T
= —f / / (x — IU)ZEéij(avih)(avjh)(l‘yX, v)dvdxdt
0 R3 R3
T
+/ / / £(x — lv)M—zt(x,' _ tvi)éi/'aujhz(t,x, vy dv dx dr
0 R3 JR3 .
1 [T
2 (x — 102y, )0y A% (2, x, v) dv dx di
2 Jo Jr3JR3 i j
T
— —/ / / (x — tv)2€a,’j(3v,-h)(av-h)(t,x, v)dvdx dr (7.8)
0 R3 JR3 Jj

T,
+z/ [/zza,-j(x—zv)”*zzzijhz(r,x,v)dvdxdr (7.9)
0 R3 JR3

T,
+2e(e—1)/ fz/3(x—m>2€—412(xi—zui)(xj—tvj)aijhz(z,x,v) dv dx dr
0 R JR

(7.10)
T,
—26/ /f<x—zv)2“2t(xl-—rvi)(avja,-j)hz(z,x,u)dvdxdz (7.11)
0 R3 JR3
T,
+1/ f / (r — 10)2402 , a;)h? (1, x, v) dvdx dr. 7.12)
2 0 R3 JR3 iVj

We now analyze each of (7.8)—(7.12). For (7.8), we simply note that
(7.8) <0.

For (7.9), we apply Holder’s inequality and Proposition 5.11 to obtain

T
791 < /O Pl = 10) 2 0) G g g Ol (W) (x = 1) Rl T2 2 (1) dr

T .
Set [ 407D ) (v — ) hI2, (1) di
O X v

For (7.10), we argue similarly as for (7.9), since clearly |(x — 1) — tvp)(x; —

tv j)| < (x — tv)?*=2. We therefore apply Holder’s inequality and Proposition 5.11 to
obtain
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T
1(7.10)] s/o 1 = 10) 72 ) g llzge e (O 1) (x = 10) Rl 72 (1) de
T

Set [T TR ) — 1) R, 5 00 dr.

0

For (7.11), first note that (x — rv)2¢~2|x; — rv;| < (x — rv)?¢~!. Therefore, applying
Holder’s inequality and Proposition 5.11, we obtain

T
|7.11)) sfo r(Z ||<x—rv>—1<v>—la§ai,-||Lchge(t>) vy — 1) hll 22 (1) dt
|BI=1

T, .
(1 4+~ = ) (v — 10) R o (1) dr

w

<e

eS|

0

For (7.12), there is no gain in (x — tv) factors for an application of Proposition 5.11.
Instead, we take advantage of the 9, derivatives on a;;. More precisely, we apply
Holder’s inequality and Proposition 5.9 to obtain

T
(7.12)] S / D) 0 llLserse (0) | 1) (x — t0) Rl 22 (1) de

0 \p=2

EN[N)

Ty )
Se / (107 7R D ) (x — 1) Rl 22(1) 2.
A ;

This concludes the discussion on the term (7.6).
Finally, we look at the term (7.7), which can easily be controlled by

Ty
7.7 < /
0

Returning to the main identity (7.4)—(7.7), we therefore obtain

/ / (x — tv)*hH (¢, x, v) dv dx| dr.
R3 JR3

_1_9
= Tev) Rl T2 o (T + 8doll (1 + 17272 () = 10) h(t, 2. 0) 1720 7, 1212,

<RI, (0) + € [[(1 417373 M D ) (v — )

Ty
+ /“

Note that since 6 < min{2 + y, 1} (see (4.1)), by choosing €¢ sufficiently small (and
therefore € sufficiently small), the second term on the RHS can be absorbed into the
second term on the LHS. Using also T, < T, this gives

L1012
220, 7,:0212)

/ / (x—tv)zehH(t,x,v) dvdx|dr.
R3 JR3
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_1_2
lx = T0) hl 72 2 (T + 8o | (1407272 () — 1) Rt x, VT2 0 721212

T
5nm%@%@+ﬁ

/ / (x —tv)zehH(t,x,v)dvdx dz.
R3 JR3

Finally, taking the supremum over all 7, € (0, T'], we obtain the desired estimate. O

Proposition7.4 Let |o| + |B| 4+ |o| < Mmax. Then the following estimate holds for
all T € [0, Tpoor):

Mmax+5— 2
1 — )Mot o8By 7 g1 o 0,71 12.12)

_1_3 _
+ 1L+ 07272 () (x — o) M5 LBy g2, o)

< e+ (18P + 112P 4 1112P0 4 JvePo 4 yebe
+VIZPT L VIIZPT 4 VIIIZFPo) (T),

ua ua "
199 .= max > [{x — rv)y2Mmat10=2lol|gaT 587y o o

o1+ le |+l | <2l

IB'I+18" 118" |<2181+2

o'|+lo" |+|o" =20
1B o ol B+
1<le’ | +1B | Hlo| <la|+1 | +o |
lo"|+1B" [+l | <lel+1Bl +o |

|09 90 Y a0 0f Y7 glligoryeiely, (7.13)

" 111 "
1197 .= max Z £ (x — rv)2Mmax+9=2l01 5o 5By o o)
Y e |<2lal
IB/|+1B" 1+ |<2I Bl-+1
(o’ |+10”|+o | <2l |
I’ |-+ 8" |+1o"" |=lal -+ Bl +lo |
lo|-+18|+lo”|=1

<[00 Y aijllof 0f Y gl o rinh)s (7.14)

11125 = max > [[¢x — pv)2Mmaxt10=210 gogBy o g

J
lo'|+|o"|=]ot|

1B'1+18"|=1B]+1
lo'|+]0"|=lo|
1<|o/|+[B'|+]o" | <ler|+]Bl+]o|
o |+1B" | +|0" | <let|+] Bl +|o |

x[02 8P Y7 (a;;vl8 8f v glliqo.ryeiehys (7.15)
[veho i=max e (x — tv)?Mmax =219l 150 58y 7 g|a; 010508 Y gl 1 o, 71 11 1)

(7.16)

17 For the sake of brevity, we suppress the arguments (¢, x, v) of g, a, ¢ and their derivatives.
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v

VIPT = N |(x — )Mt 10=20 e pf g

lo/|+|o” | <[e|
IB'1+18”|=IBI

lo’|+10”|<lo]|
<[00 Y aill9g 9 Y gllliqo.ryLint)
2A”max 10-2 ! ! o
+ Y i — )M 1072 By o o192 98 Y (G viv;) |
o' |+l | <]

1B'1+18" =<8l

lo’|+lo"|<lo]

<0 08 Y glll Lo, ry:ni L)y (7.17)
VIEPT = 3" |(x — o) M H1020l 5By o g

o[+ <Je]

1B'1+18"1<IB]

lo’|+lo"|<|o]

<[00 Y elloy 0l Y7 gllliqo,reinlys (7.18)
VIIEPo = > [[(x — rv)>Mmact10=2101 ga By o |
le/|<leel+1, |8/|<IB1-1
x|a% 0f Y78l qo,ry:LiL)) (7.19)
and
(v)?
v _
VII®PO = > ||m(x — 1p)?Muax+10=2l0 1| ga gy o
1B'I<IB1. 1o’ |<lo |
|8/ [+10"|<IB+lo|—1
< 10908 Y7 gl 1o ryLiLt)-
(7.20)

Here, by our convention (see Section 2), if |B| + |o| = O, then the terms VII:Z"B’{7 and
a,f,0
VI, are not present.

Proof In view of the general estimate in Proposition 7.3 and the data bound in the
assumption of Theorem 1.1, it suffices to show that!8

T
/
is bounded by the terms I, through VI1,.

Consider each term on the RHS of (6.82).

f f (x — tv)Mmxt10=2l0lga 5By o o\ (RHS of (6.82)) dvdx| dr
R3 JR3

Step 1: Controlling Term;. By (6.83), the contribution from Term; can be bounded
by the term V11, in (7.19).

18 We remark that technically at the top level, i.e. when ||+ | 8|+ |0| = Mmax, our bootstrap assumptions
by themselves are not strong enough to ensure that the RHS is in L2([0, T; L)zc L%) to apply Proposition 7.3.
Nevertheless, by a standard argument which approximates the initial data with slightly more regular data
and proves that higher regularity persists, this can be justified. We omit the details.
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Step 2: Controlling Term;. By (6.84), the contribution from Term; can be bounded
by the term V111, in (7.20).

Step 3: Controlling Terms. To handle this term requires additional integrations by
parts. (This is in contrast to the L> estimate in Proposition 6.4, since we now cannot
lose derivatives.)

Consider first the case (||, |8'], |o/]) = (1, 0, 0). In this case, 8)‘?‘/ = 0y, for some
Cand 8% 8 Yo =8, 89 = 3,,0%", 8 = af v =v°.

We now carry out the (two) integrations by parts. To simplify notation, let us not
write the integrals, but use the notation =~ to denote that the equality holds after
integrating with respect to dv dx.

(x — o) M 1020050y 0 (3, aij)a, 9% Y g

~ —(x — tv)?Mmact 1020015 5 50758y 0 (0,,a:1)0,,0% 0P Y7 g

J

4 (Max 4+ 5 — |o]) (xi — 1) (x — tv)2Mmact8=2lolgeybyo
x g (Bx,aij) 3y, 0% 98 Y g

J
— (x — o) Mt 102015058y o 0 (3, 5, a;:)d

1 " "
~ S — tp) M t10=200lg 50750 Y7 (07, i) 0y, 0% 0P Y g

3¢ 0Pyo g

Vji%x

J
+ 2(Mmax + 5 — |0]) (v — rve) (x — 10)2Mnax 8200, 5a"3Byo
X g (85, i)y,0% 95Y g
+ 4 (Mpax + 5 — o) (i — tv;) (x — rv)?Mmaxt8=2lolgagB yo
X g (85, i7)0y,0% 95V g
— (x — rv)? M H10=200 15058y 7 03, 8, a7)8,, 0% 00 Y7 g.

Take the L! ([0, T]; L }CLll)) norm of each of these terms. The first, second and fourth
terms can be bounded by I, while the third term can be bounded by 1 /,.
Next, we consider the case (|¢’|, |8’], |o’]) = (0, 1, 0). In this case, 3¢ = 9y, for

some ¢ and 99 8 Yo' = ,,, 8% = 92, 8 = 8,07 v = v°.

ver Yx
As above, > means that two expressions are equal after integrating with respect to
dvdx.

(o — pw) M 102000050y 7 g 8,107, 070 Y7 g
~ (o — ) M1, 528, 0 Y g 3,10, 07 0] V7 g
41 (Minax + 5 — |0]) (x; — 107) (x — rv)2Mmax+8=2lo | ga By o
8(3y, i) 3y, 0200 Y ¢
— (x — tv>2Mmax+10—2\a\agagyag(avi Buy@ij)dy, a)tcxaf”yag

] " "
~ Sl — tp) M t1072001g 50087y 7 (37 aij)dy, 0290 YO g
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— 21 (Minax + 5 — [01) (xe — 10) (x — 10)2Mmax #8211 56" yo
8(3x, 1) 3y, 0208 Y7 g

41 (Mpax + 5 — |0 (x; — 107) (x — rv) M t8=2le[gagfyo o
(80,d1))dy,0%08 Y7 g

— (x — to) Mo 1020019058y 0 (5 5, @), 0995 Y7 g.

vji¥x Yv

Take the L! ([0, T]; L }CL})) norm of each of these terms. The first and fourth terms can
be bounded by I, while the second and third terms can be bounded by 7/,.
Finally, we consider the case (||, |B'], |6’]) = (0,0, 1). In this case, YY =
tdy, + 0, =: Yy for some £ and 8)‘3‘/8{,3/Y"/ =Yy, 8)‘3‘// =07, 8{?” = 3}?, Y? = YgY"N.
As above, > means that two expressions are equal after integrating with respect to
dvdx.

(x — rv) M 102200 gy 0y g (v, 080 Y g
> —(x — rv)2Mmt 102001y GaoBy, vy o (Veai)a,, 0208 Y g
+ 4t (Minax + 5 — o) (x; — tv;) (x — r)?Mmaxt8=2lolgaghyo
2(Yediyj)y;0%0F Y ¢
— (x — tv) M 10210150 3By 0.5 Vya;)0,.0% 0P Y g

J X v
1 _ " - "
~ Sl — t) M t10=2001g 5050y g(Yia;;)d,, 000 Y7 g
+ 4t (Mimax +5 — [0 ) (x; — rv7) (x — tv) M t8=2l0lgagfyo
g(Yei})dy, 0208 Y7 g

— (x — rv)2 M H10=2l0[50 58y 7 (3, Yeai;)a,, 029577 g

X v

Take the L1 ([0, TT; L}CL,]J) norm of each of these terms. The first and third terms can
be bounded by I, while the second term can be bounded by I 1,.

Step 4: Controlling Termy. For Termy, it is straightforward to see that (6.85) implies
that the corresponding contribution is bounded by V I&#% in (7.18).

Step 5: Controlling Terms. For Terms,
A(d (1)) 92 0L Y (@ijvidy, 8)
=4d0)* Y @YY @iv)) (3,02 0F g)

o'+’ =a
B+B"=B (7.21)
o'+o"=0

|/ [+1B|+lo"| =1
+4(d(1))?aijvidy, 0200 Y7 g.

The first term in (7.21) gives a contribution of the type 111, in (7.15).
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For the second term in (7.21), we need an integration by parts in dy;:

’/1; /R} 4(d(t))2(x _ tv)ZMmaﬁ'lO—Z\U\(a;lafy(rg)c—ll_jvi(avj agafyag) dv dx

< 2(d))?|(x — tv)ZM'"“XJr]H'”'3?3,’,3Y"g(avj (&ijvi))3gafYUg||L})L}
+ 4(Mmax + 5 - |O'|)(d(t))2||<x - tv>2Mmi\x+8*2‘U\

(xj — 0Ll Y7 g(aijui)ag ol Yo gl
(7.22)
After bounding (d(1))* < 1, |x; —tvj| < (x — tv), and integrating over ¢ € [0, T'],
the first term on the RHS of (7.22) gives a contribution of the type /11, in (7.15) and
the second term on the RHS of (7.22) gives a contribution of the type IV, in (7.16).

Step 6: Controlling Termg. By (6.87), Termg can be bounded by V%% in (7.17). o

7.3 Controlling the Error Terms

Proposition 7.5 Let |a|+|B|+|0| < Mmax. Then the term 157 in (7.13) is bounded
as follows for every T € [0, Tpoot):

1277 <1+ 1)

. . qapo
Proof From now on we take a particular term in /I, b , and assume that o/, «”, &’
. .. . . o, B,0
B, B", B",o’,0” and o obey the required conditions in the sum in I, b,

Short-time estimates: 7 < 1. We first consider the estimates for 7 < 1. We will
consider separately the cases |o'| + |B'| + |0/| < My and |o'| + | 8| + |07| > Miy.

Case 1: || + |B'| + |o/| < Miy. By Holder’s inequality, Proposition 5.8 and
Lemma 7.1,

IMo. 10—2 " " " / / /_ ” /" ”
max || (x — ro)2Mmas H10=21 e gy o™ gy 1ae 5Ty gy 110% 0 Y gl o o1 1)

s

M 5_ n n n n
< max || (v) (x — rv) Mt Sl g0 5y o ) o 0 1 212)

~

L]

_ N P A
x ) =202 0l Y7 a1l oo o, 71; L0150y X 1) (x — rvyMaax+5=lo”]

" /" ”
o o0 Y g0k

3 3 3 9
S €4 xed xed =¢€hd,

Case 2: |o/| + |B'| + |0’| > Miy. Note that in this case |a”| + |8”| + |6”| < Min.
By Holder’s inequality, Propositions 5.21 and 7.2,

" " " / 4 ’
ma | (x — rv) M 02001 55y o g o) v

; aijllog ol Y gl 1o,y 01 1)

" " "
< max [[(v) fx — ro) Mma 510" 150" 5

~

O,///
na Y™ gllzqo, ez
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_ r B ’_ ) R
X 10) 208 00 Y @il oo g0, 720y X 1(0) (x — ) Mman 37107
" ’3” "
o & Y7 gll2qo,rieL)

3 3 9
X €4 X €4 =€4.

FNI

< e

Long-time estimates: 7 > 1. We now move to the estimates for 7 > 1. Again, we
separately consider the cases |a'| + | 8| + |0/| < Miy and |&’| + |8| + |0/| > Mint.

Case 1: |o'|+|B'|+ 0’| < Miy. Inthis case, we control 8;‘/ BE/Y"/&U- in LLS® (with
appropriate weights). Since Mip < Mpax —4—max{2, (%1 }, we can apply the lower

order LY L° estimates for 8;‘,85 / Y?'a; j without a loss. It is crucial in our estimate to
also exploit the fact |o’| 4+ |B’| + 0’| > 1, so that we have L LY estimates which are
better than that in Proposition 5.8 (which would have incurred a logarithmic loss). To
use this, we separately consider the (non-mutually exclusive) subcases |0’ > 1 and
max{|a’[, |8’|} > 1 below.

Case 1(a): |&'| + |B'| + |6'| < Min and |6’ > 1. The key point for |o’| > 1
is that |0”'| + |6”| < 2|o| — 1. As a consequence, (x — tv)>Mmaxt10=2lo]
(x — tv) Mmax 510" (x _ o) Mmaxt5-10"1 (x _14)=1 Note also that | 8’|+ 8" |+|8"|
2|8] + 2. With these bounds, we use Holder’s inequality, Proposition 5.11 and
Lemma 7.1 to obtain

S
<

" n " ’ / ’
max | (x — rv)2Mmaxt10=2101 ga" 5Ty o™ o1 503 yo

L]

1 " "
< max(1+ TP+ 0727371 () (x — ) Mimax 5=l
]

_ " /! "
a1 f ve glliLrqo, 7Lty

" ﬁ”’ "
0 0y Y7 gll2qo 2y
(14 D120 =2 (0 — 10y 18¢ 8 Y a0, 7 Lo )
1 s yan e " " "
X 114072727 ) G — o) M 557170 5y 0 0 1)
3 3 ’ : ’ 3
S A+l x e x ( sup €3 (1 + 0! F2=IFI2(q 4 gy =3-mini2Hy I+B I) X €4
tel0,T]

—ed (14 1),

where in the last line we have used that 26 < min{2 + y, 1} (by (4.1)).

Case 1(b): |o'| + |B'| < My and max{|c’|, |8’|} > 1. In this case, we do not have a
gain in the (x — rv) weight as in Case 1(a). Nevertheless, since |8'| > 1 or |&| > 1,
we can take advantage of the improvement in Propositions 5.9 or 5.10. Let us note as
in Case 1(a) that |8'| + |B”| + |8”"| < 2|B| + 2. Hence, using Holder’s inequality,
Propositions 5.9, 5.10 and Lemma 7.1, we obtain
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_ " " " / 4 ’_ " 4 "
max I — o) PMmacH10=210 5o 7y o 110 0 v 1102 8 Y @l go, 7y, 1
1 " mn
S max(1+ DHP(1 40727071 ) (x — o) M t3 107
2]

" " "
o7 ol Y gl aqor2n2)
/ / / /
x4 B2 0y =209 08 ¥ gy oo o7 150 L)

1 " " " " "
X ”(1 +l‘)_7_8_|ﬂ ‘(U)(.X —l‘U)MmaX+57|d ‘8? 81}? Ya g”LZ([O’TJ;L%L%)

N

a+ T)Z“S‘ X 6% X ( sup 6%(1 +t)1+23—|,3’|+2(] +t)—3—min{2+y,l}+|ﬁ/|) y 6%
tel0,T]

1+ 1),

where in the last line we used that 26 < min{2 + y, 1} (by (4.1)).

Case2: |o'|+|B'|+|0'| > Miy. Recall again that in this case |a” |+ |8”|+|0”| < Min
and thus we control 8;”” 353 ! gin L? ([0, T1; L)?OL{Y,7 ) (for suitable p and with appropriate
weights).

Before we proceed, one checks that by definition Mj,; > 3. Hence, by the pigeon
hole principle, we must have |o’| > 2 or |8/| > 2 or |o’| > 2. We separate into these
three (non-mutually exclusive) subcases.

Case 2(a): |a'| + |B'| + |6'| > Minc and |o’| > 2. In analogy with case 1(a), we
take advantage of |o’| > 2 by using that it implies |o”’| + |0”| < 2|o| — 2. Hence
(x — tv)2Mmax+10-2001 < gy Mmax+5=10" 1y gy Mmaxt5=10"1(x _ 14)=2 Note
also that | 8’|+ |B”| +|B""| < 2|B8|+ 2. By Holder’s inequality, Propositions 5.24 and
7.2, we obtain

" " " / / " " " "
max | (x — ro)2Mmax 10210l ga™ §f Ty o™ o jge 5y o g 182" 9 vy gl

o (0.75;LLLY)

_ 1l o yam i 161w " "
S max(1 4 11472 PP ) e — ruy M50 e 5y g 0 710202)

_p _ a0 B " _
s (1 4 )PP ) =2y ) =299 8 yo ijl oo (0.7 L2 15 4 L2L0%%)

_1_s_18" 1o o B "
x 11+ 07270 ) (¢ — oy Mimax 510" 1ga" gy 0" 2pes
L2 ([O,T]; LPLINLPL Prx—2 )

3 3 16 3
<+ T)2Al x €7 x ( sup e (l +t)1+257\/3/\+2(1 +t)mm{5.5+}/}+|ﬂ/|> NPT
1€[0,T]

9
=ei(1+ 1),

where in the last line we used that 2§ < min{2 + y, %} (by (4.1)).
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Case 2(b): |o'| + |B'| + |o'| > Minc and |B’] > 2. In this case, we take advantage of
|B’| > 2 and use Proposition 5.22. More precisely, after noting |8’| + |8”| + |8”| <
2|B| + 2, we use Holder’s inequality, Propositions 5.22 and 7.2 to obtain

" u " 4 / / 7" 4 "
max || (x — ro) M H 10211905y o g ot ol v 1108 0 Y gl

i [0.7}LLLY)

_1_ o yam : e m g "
S max(1 4+ DA+ 072 PP ) (x — o) Mmax 51l Ty g o 0 7 0202)

_p 9nd - !/ ! _
x |(1 +t)1+25 |8 H_2<U> 20;! 0]/)3 Y° aij”Loo([O T],LZLP**)
’ L e )

1 7 "
x (140727971871 () (x — py) Mmax 510" g 5B yo" g 2
L2q0,TELPLY™ )
3 3 - (16 3
< +T)2\ﬂ| < e x ( sup €3(l +t)1+28—\ﬂ’|+2(1 +I)—mm{5,5+yl+|ﬂ/> oy
t€(0,T]

—ea(1+ 1),

where in the last line we again used that 2§ < min{2 + y, %} (by (4.1)).

Case 2(c): |&'| + |B'| + |o'| > Min and |a’| > 2. In this case, we take advantage of
|a’| > 2 and use Proposition 5.23. More precisely, after noting || + |8”| + |8”| <
2|B] + 2, we use Holder’s inequality, Propositions 5.23 and 7.2 to obtain

7 1 " ’ 4 / "
max || (x — rv)2Mmax+10=2l01 90" 5By o™ g 50’ 5By o', 92" of

" O_//
Y
e Sl oyt

< 2|[3| _%_5_“3///' _ Mmax+5*|<7w| 0/” /3’// o
< max(1+ DM + 1) (v)(x — 1v) W0 Y7 gl 2g0ry202)

! /
1 142618142y =290 9B yo' o
x40 ) 70 B Y7y ”LOO([O,T];L§L8°+L§L%)

1 " " n g ”
1l 5 ; - ,
s 1(1 4 1) 27071 ) (x — ppyMmax+5-10" 5o 3B yo 8l 20,750 2L 150

3 16 3
< (14128 <3 X( sup 62(1+l)1+285’|+2(1+Z)m1n{15,5+y}+|/3/> o
1€[0,T]

=301+ 1),
where in the last line we again used that 26 < min{2 + y, %} (by (4.1)). m]

Proposition 7.6 Let ||+ |B|+|0| < Mumax. Then the term I157° in (7.14) is bounded
as follows for every T € [0, Tpoor):

119Po(T) < €21+ T)%P1,

Proof Take o/, o”, &”, B/, B”, B"”, o', 0" and o’ satisfying the required conditions
in the sum of 77277 In particular, since |&'| + |8'| + |o’| = 1, we can put the
8)‘3/ af'Y“’a,-,- term in L°([0, T]; L LS°). We will also make crucial use of the fact
that the (x — rv) weight is one power better than the maximal weight. Finally, note

that || + [B"| + 8" < 2|B] + 1.
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Hence, by Holder’s inequality, Proposition 5.11 and Lemma 7.1, we obtain

" " " /
max [|¢ (x — tv)2Mmaxt9=2l01 5o gB Ty o) 5a’y

L]

: m "
< max(1 + T2 (1 + )= 2 7818”1 (v) (x — rpyMmax+5 10"
L]

/ /_ " " "
1/)3YU aij||3g 35; Ye g|||L1([O,T];LiL$)

" ‘3”/ "
o Y7 gl2qo,rL2e?)
/ _ _ / / ’_
) N1+ 0220y =2 (0 10) 7102 80 Y a1 0,7y 10150
1 s yan R " " "

X (1 + 07270 ) — o) M t5 71750 0y )2 0 71 212)

< (14 T)2IF! XGg X( sup ei(l+Z)1+25—|5/|+2(1+I)—3—min{2+}/,l}+|ﬂ/|) Xf%
1€[0,T]

—ei(14+T)2H,

where in the last line we used that 2§ < min{2 + y, 1} (by (4.1)). m]

Proposition 7.7 Let |a| + |B| + |0 < Mmax. Then the term 1T115P in (7.15) is
bounded as follows for every T € [0, Tpoot):

[T1%P(T) < 2(1 4+ 1)L,

Proof Take o/, @”, B’, B”, o’ and o satisfying the required conditions in the sum of
111ePe,

We will consider separately the 7 < 1 and the T > 1 estimates.
Short-time estimates: 7 < 1. This is exactly the same as the proof of the 7" < 1
estimates in Proposition 7.5, except that we replace the use of Propositions 5.8 and
5.21 by Propositions 5.12 and 5.25 respectively; we omit the details.

Long-time estimates: 7 > 1. We will divide into the cases |a'| + |B'| + |0/| < Min
and |&'| + [B'| + o] > Min.
Case 1: |a'| + |B'| + |6/| < Miy. In this case, we control 3;‘/35/YJ/(EIUU,‘) in

L*>([0, T1; L LSP) with appropriate weights. Recall that |8'| + |8”] < 8] + 1.
Hence using Holder’s inequality, Proposition 5.12 and Lemma 7.1, we obtain

max || (x — tp)2Mmaxt10-2l0] ga B yo o) 5ayF yo!

J
1

< max(1 + TP 40727878l (0) (x — o) M50 10008y g o 10 702

] xX~v

_ n g’ "
@jello" o Y gl qo.ry 1)

x (14 B ) =200 50y @ v e o, 71250 19)

_1_c ypr A ” /" "
X 11+ 7277 ) (= ) Mt 5058y ) 10 g2

A

3 3 3
(1 + T2l 5 e x ea ( sup (140! T2=1F+1( +r)—3+|ﬁ/|) x €1
t€[0,7T]

_dasrom,
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where in the last line we have used 26 < 1 (which follows from (4.1)).

Case 2: |a'|+|B'| +|o'| > Min. In this case, we must have |o”| + |8”| + 0" | < Myt

and hence we can bound 8;‘//8,’)3 ”Y””g in L§°L5 (with weights and with p > 2).
Since M, > 3, by the pigeon hole principle, we have either |a’| > 1 or |8/| > 1
or |o’| > 2. We consider below the (non-mutually exclusive) subcases |o’| > 2 and
max{la'], |B']} > 1.

Case 2(a): |&'| + |B'| + |o'| > Minc and |o’| > 2. First note that since |o/| > 2, we
have |6”| < |o| — 2. As a consequence,
(x _ tv)ZMmax+10_2|U| S (X _ tv>Mmax+5_|U|<x _ tv>Mmax+5_|5”|<x — fU>_2.
(7.23)

! 4 / - . . . . . .
In this case, we simply estimate 0 8,’,3 Y? (a;jv;) using the trivial pointwise esti-
mate

10208 Y @jv1)| < (v) (n;a;x |a,‘z"af/Y“’a,-j|)

+ > <12ax|ag aP'y® ai,|).
BI<IBL 15 I<I0"]
1B+ 15 1=1 14101

Together with Proposition 5.24, this then implies that'®
max | (0) 2 0r — 10) 20 0 Y @iy vi) | 2 o g2 e ()

— min/{ 16 '
<ed1 4 B (7.24)

~

Recall now also that |8’| + |8”| < |B| + 1. Therefore, using (7.23), (7.24), Holder’s
inequality and Proposition 7.2, we obtain

max | (x ~ to) M 1020 5@ 58y 7 o102 08 Y (@jv)l 102 0 Y glllpqo.ry ity

1_ %

S max(1+ TP+ 0727 ) (o — rv) Mt 5710190 58" Yo | 210 71212

X 114 )FRTIEIF )y =2 — rp) 299 9P v (@ijvi)ll oo 0,73 L2 o0+ L2107

1 " " " 1 "
$ (1407277 ) (x — o) MmeF3T Ty g 2pes
L2 <[0,T];L;0L30L§0LJ’***2)

/ _ minl 16 /
< + 728l « E% « < S[‘O‘pf%(l T+ BB (] 4y mm{ L ,5+y}+lﬁ ) « ég
te[0,T

— i1+ 1),

19 Note that in fact the stronger estimate with (v)_2 replaced by (v)_l on the LHS holds.
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where in the last line we used that 2§ < min{3 + y, g} (by (4.1)).

Case 2(b): |a&'| + |B'| + |0'| > Min and max{|a’|, ||} > 1. While in this case we
have no gain in (x — tv) powers, we use the improvement in Proposition 5.25 when
max{la’[, [B']} > 1.

Note that |8’| + |8”| < |B| + 1. Hence, by Holder’s inequality, (5.29) in Proposi-
tion 5.25 and Proposition 7.2, we obtain

7 !
2Mmax+1072|cr|Iagall?yog”ag 855 Ycr’

_ P /3// o
m;,lx [[{(x —tv) (aijvi)Hax oy Y g'”Ll([O,T];L}CL},)

1
< max(l + T)Y2B (1 4 173737 1Bl ) (x — pv) Mimax+5-lol g B Y78l 2073 0212)

_ R _ ’ 4 o
X N4+ @) 208 Y @i o 0,7 12 0 422180

1 ” ” ” " ”
x (1 4+ 072708 () (x — oy Mmaxt5=10" 1@ g By g 2
L2<[0,T];L;°L%OL§°LU”*_2>

< A+ TP x et x < sup €3 (14 1)1 +20-1F1+1(y +t)—min{lsl~4+y}+|ﬁ/) x €
tel0,T]

=l
where in the last line we used that 2§ < min{2 + y, %} (by (4.1)). O

Proposition 7.8 Let |a| + |B| 4+ |o| < Mmax. Then the term IVea’ﬁ’a in (7.16) is
bounded as follows for every T € [0, Tpoot):

V&P (1) < (14 1)
Proof By Holder’s inequality, Proposition 5.12 and Lemma 7.1, we obtain

mjax e (x — tU)ZMma*+972|U||3g3{)3YUg||C_lijUi||33353Y(rg|||L1([O,T];L}.L5)

1_

S max(+ DM 4+ 0727 W) v = ) MG g0 7121

x 111+ 02 ) 2G50, [l oo g0, 77: L0 120

S U+ 5 (€1)2 xei sup (14+0F2H (1403 =i (14 1)2H,
t€l0,7T]

where in the last line we have used 2§ < 1 (by (4.1)). O

Proposition7.9 Let|a|+|B|+|0| < Mmax. Then the term V:"ﬂ’or in (7.17) is bounded
as follows for every T € [0, Tgoor):

vebo(ry < e+ 1)L
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Proof The term V#% contains two sums, one with @;; and one with aijviv;. To
simplify the exposition, let us just estimate the terms with a;;v;v;. When we handle
these terms, we will only use Propositions 5.12 and 5.25 to control g;;jv;v; and its
derivatives. Now note that since by Propositions 5.8 and 5.21, a;; and its derivatives
obey all the analogous estimates for a;;v;v; and its derivatives in Propositions 5.12
and 5.25, the exact same argument will also apply the to terms with a;; instead of
c_zl-j Viv;.

Now take o', @”, B’, B”, o’ and 0" satisfying the required conditions in the sum of
VP9 We divide into the cases [@/| + 8’| + 0| < Minc and ||+ |8+ 0| > Mint.

Step 1 || + |B'| + |o/| < Min. By Holder’s inequality, Proposition 5.12 and
Lemma 7.1, we obtain

o — o) Mt 10=20 0y 7 g0 9 ¥ 7 (@ijuiv AT 0] Y glllLiqo,reieyy
<+ T)Z\/S\ (1 + t)—%—fs—lﬂ\(v)(x _ tv)Mmax-i-S—IUIaga{?yﬁg”Lz([O’ﬂ;L}%L%)
x 1(1+ 02 ) =282 98 Y (@0 v)) | Lo o, 71 L0 L)

_1_s_18” i e " " "
< |(1 407277 ) (x — ) MBI 5Ty g 100 7212

< (14 T1)2P1 i x el ( sup (1 + 1) +2-1F +t)_3+’3/|> x €i
t€l0,T]

= 31412,

where in the last line we have used 2§ < 2 (by (4.1)).

Step 2 |a'| + || + |0'| > Miy. Note that in this case |a”| + |8”| + |6"] < Mmax.
Hence, by Holder’s inequality, Propositions 5.25 and 7.2, we obtain

1x — rv)*Mmat10=210 1508y 7 o100 9F Y @ijvv)110% 08 Y7 glll 1o 21 ey
S A+ TP+ 0727w (v — o) Mms 51010208 Y7 g1 20,7021
X [|(1 4 )21 Ty =299 58 y o (@ijvivillpe(o,17:L2L5)

_1_ s 18" e " " "
< (4407377 ) (x — o) Mt 31T 0 Y e 210 7 102

< A+ x €i x el ( sup (141! +25-1F1¢ +t)_%+|ﬁ/|> x €i
1€[0,T1

=t (14 1),
where in the last line we have used 26 < % (by (4.1)). O

Proposition 7.10 Let |a| + |B] + |0| < Mumax. Then the term VIZP7 in (7.18) is
bounded as follows for every T € [0, Tpoot):

VISPo(T) < 21+ T)2P

@ Springer



Stability of Vacuum for the Landau Equation with... Page 87 0of 101 11

Proof Take o/, o”, B/, B”, o’ and o” satisfying the required conditions in the sum of
VI%P7 We divide into the cases |o’|+|'|+|0'| < Mincand [/ |4+|8'|+]0"| > Minax.

Case 1: |o'| + |B'| + |6'| < Min. By Holder’s inequality, Proposition 5.13 and
Lemma 7.1, we obtain
1 — rv)?Mmat10=210l 15058y 7 o110 0F Y ¢[00 9 Y glll L1 o,r1:21 )
_1l_5_ _
< (1+ T)2|ﬂ|||(1 +1)72 s |ﬁ|<x _ tv>Mmax+5 ‘Ul3)?35Y08||L2([0,T];L§L%)
x I(1 4+ 1) 208 YT 8l Lo 0,71, L0 L)

_l_s_18” e " " "
< (141727 e — ) Mt 08Ty O g 210,71, 1212)

5 (1 + T)2|ﬂ| % 6% X 6% ( sup (1 _’_t)1+25*|/3’|(1 +t)3y+/3’|> X 6%
t€l0,7T]

=i (1 4+ 1),

where in the last line we have used that 26 < 2 4 y (by (4.1)).
Case 2: |a'| + |B'| + |o’| > Miy. Note that in this case |a”| + |B”| + |0”| < Mmax.
Hence, by Holder’s inequality, Propositions 5.26 and 7.2, we obtain
1(x — rv)2Mmax 1020 By e o115 98 v 1192 0" Y gl 11 o, 1,1 1)
S A+ TP 4072707 — gy Mot Slolg@ By g o 0 722,

x |(1 40! T2-1F g gh ye cllpooqo, 12200

X (14 1) 7270718 ) MimantS—l0” e gy g ( 2,
L2[ [0, T}, Lo L~ )
’ — minl & /
< (1 + T)2#! XE% XE% sup (1 40+ 4+ 1) mln{5,3+y}+|ﬂ| xe%
t€l0,T]
=31+ 1),
where in the last line we have used that 26 < min{2 + y, %} (by (4.1)). O

The terms V11, PO and VI I -9 are linear in g2 (or the square of the derivatives
of g). As a consequence, we will not have enough smallness if we just apply the
bootstrap assumptions to control them. Therefore unlike the previous terms, we will
still keep track of the precise terms on the RHS.

Proposition 7.11 Let |a| + |B] + |0| < Mmax- Then for every n > 0, there exists a
o, B0

constant Cy; > 0 (depending on n in addition to dy and y ) such that the term V11,
in (7.19) is bounded as follows for every T € [0, Tpoot):
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VIIZP(T) < nlltx — ro) e300y o1 0 22

+C T Y fx — ro) Mt o199 §b vy

o' [<[er|+1
18'1<181-1

g”Lm( 0,7]; L2L2)

Proof By Holder’s inequality,

> 1 — rv)?Mmat10=21001590 58y 2 01192 00 Y2 g1l 1 o,79:1 21
lo'|<le|+1, |B'[<]Bl-1
S D Tl — )Mt 08 Y Tl o 7 212)

lo/|<lo|+1
1B1=IB1-1

Mmax 5_ ! !
1x = o)M=V 55 g oo 10,71 1222) -

The conclusion then follows from an application of Young’s inequality. O

Proposition 7.12 Let || + |B] + |0| < Mmax- Then for every n > 0, there exists a
constant C;, > 0 (depending on n in addition to dy and y ) such that the term V111, xp.o
in (7.20) is bounded as follows for every T € [0, Tpoot):

D')

bl Mmax 5_
VIII“’S"(T)<r;||(1+t) T2 () (x — rp)Mmaxct3Tlolgaghyo

+C, 3 I(1 41272

Iﬁ'\i\/ﬂ\, lo’|<lo]
1B’ |+lo’|<IBl+]o|—1

(V) (x — o) MBIl GG By o g2,

2
820,71, 2212)

(0,T1;L2L2)"

Proof This is an easy consequence of the Cauchy—Schwarz inequality and Young’s
inequality. O

We have therefore estimated all of the terms on the RHS in the estimate in Propo-
sition 7.4.

7.4 Putting Everything Together
Combining Proposition 7.4 with the estimates in Propositions 7.5-7.12, we obtain
Proposition 7.13 Let |a| + |B] + |0| < Mmax. Then for every n > 0, there exists a

constant C,; > 0 (depending on n in addition to dy and y ) such that the following
estimate holds for all T € [0, Tpoot):
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_L_é
1w = 1) Mt TaR 0 Y g 1] 10 7y 1212) I HD 7272 ()

Mmax+5—
(x — tv) 710t 0l Y a0,y 0212)

< CEA+ DM T2 N — py) M3l gy e
lo'|<|a|+1
1B'I=1B1-1
_,_é N ’ ’
+ > (1457273 (v) (x — )Mt 2 50y g 7,

Ilﬂ’lilﬂl, lo’|<lo]
1B +lo’|<|Bl+]o|—1

+nll(x — r)MmatS—lolgagByo

2
8l oo, 73 1222)
(0.73:22L2)

2
8l oo o, 7y 1222)
+ll(L 07373 () — )M ST g By g2,

We can control the terms with an 1 coefficient on the RHS of the estimate in Proposi-
tion 7.13 to obtain the following stronger bounds:

Proposition 7.14 Let || + |B] + |0| < Mmax. Then the following estimate holds for
all T € [0, Tgoor):

8
e — ro) M5l g2 oBy g2 ppranzy I DT ()

Mmax+5—
(x - tv) ‘UlagafYa-g||L2([0yT];L§L12})

S A+ 412 37 (- py) M3l lgegB y e
o' | <ler]+1
I81<181-1

_ _ﬁ R ’ ’

+ ) I+ 07272 ) (o — 1) M358 Y7 g7 6 7 1212)-

I/ﬁ/\s\/ﬂ\, lo’|<lo|
18" +lo’|=IBl+]o]—1

2
8llzeqorr2212)

Here, by our convention (see Section 2), if |B| 4+ |o| = O, then the last two terms on
the RHS are not present.

Proof Apply Proposition 7.13 with n = % We then subtract

1 Mmax+5— 2
2 <”(x — o)t lalag&fYUgHLOO([o,T];LEL%)

1 _3 _
(L +1)7272 (W) (x — ) MmactS ""8?85Y"g||iz<[o,n;LgLa>)

from both sides of the equation. Now that n is fixed, Cj; is simply a constant depending
on dy and y. We have thus proven the desired inequality. O

We now set up an induction argument to obtain the final energy estimates from
Proposition 7.14.
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Proposition 7.15 Let |a| + |B] + |0| < Mmax. Then the following estimate holds for
all T € [0, Tgoor):

Mumax+5— 2
I0x = 0S990 Y g 2y

1 _9 _
+ 10+ 07272 ) (x — 10) MmNV g 1T, 1 1 s212)

< 1 +1)%PL

Proof We induct on || + |o].

Step 1 Base case: |B| + |o| = 0. Applying Proposition 7.14 when |B| 4 |o| = 0, the
last two terms on the RHS are not present. Hence we immediately obtain
” (X - tv)MmaX+58ag||L00( 0,71: LZLZ)

s
IO+ 073 ) — )M S5, s <6

for all || < My, as desired.

Step 2 Induction step. Assume as our induction hypothesis that there exists a B € N
such that whenever |«| + |8] + |0 < Mmax and |B| 4+ |o] < B — 1,

[ (x — [U>Mmax+5*|‘7|a(¥3f3 Y(Tg”iw([O,T];L%L%)

,é ’ _
I+ DT ) — 1) MGl

< 1 +1)%PL

Now take some multi-indices «, 8 and o such that |a| + |B8] + |o| < Mpmax and
|B| + |o| = B. Our goal will be to show that the estimate as in the statement of the
proposition holds for this choice of («, 8, o).

By Proposition 7.14 and the induction hypothesis,

Mmax+5— 2
”(X _tv> + la‘aaafYag”Loo([O’T];Lgl‘%)

,L,é ’ _
I +D7273 ) b — )Mt Y g 17 1 12

S EA+DII LT N |(x — pp)MmactIlolye gF yo
o[ <[e|+1
1B'1<1B1—-1

+ > 1+ 07275 () (x — o) Mot Sl o By g2, )

Iﬂ’ls\/ﬂ\,\a’ls\al
IB'1+lo’ <181+l -1

2
8o 0,71, 2212)

sea+nee | Y rPa+nM [ S a+n)
B1<IBI-1 11
S+

By induction, we have thus obtained the desired estimate. O
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7.5 Proof of Theorem 4.1

Combining Propositions 6.13 and 7.15, we have now completed the proof of Theo-
rem4.1.

8 Putting Everything Together (Proof of Theorem 1.1)

We now complete the proof of Theorem 1.1:

Proof of Theorem 1.1 We assume throughout that €, < €( so that Theorem 4.1 applies.
Let

Tmax = sup{T € [0, +00) : there exists a unique solution f : [0, T] x R3
x R to (1.1)1.1) withf > 0, f [=0)= fin and satisfying (3.4) for
k= Mpax and N = Mpax + 5
such that the bootstrap assumptions (4.7), (4.8) and (4.9) hold}.

Note that by Corollary 3.4, Tpax > 0.

We will prove that Tip,x = +00. Assume for the sake of contradiction that Tiax <
+00.

It follows from the definition of Ty« that the assumptions of Theorem 4.1 hold for
TBootr = Tmax.- Therefore, by (the |o| = 0 case in) Theorem 4.1,

2
D0 = )M o2 aB (O 1) (1, x, v) 0, ey £212) S € (8.1)
‘O‘H"lg‘SMmax

Take an increasing sequence {#,}7° | C [0, Tiax) such thatt, — Tinax. By the uniform
bound (8.1) and the local existence result in Corollary 3.4, there exists Tsman € (0, 1]
such that a unique solution exists [0, #;, + Tsman] X R3 x R3. In particular, taking n
sufficiently large, we have constructed a solution beyond the time Tpax, Up to, say, time
Trax + %Tsmall- The solution moreover satisfies (3.4) fork = My and N = My +5

Our next goal will be to show that in fact the estimates (4.7), (4.8) and (4.9) hold
slightly beyond Tinax. Our starting point is that by the bootstrap theorem (Theorem 4.1),

the estimates (4.7), (4.8) and (4.9) in fact all hold in [0, Tiyax)
with 6% replaced by Cy, €. (8.2)

By the local existence result in Corollary 3.4, for |«| + |8] < Mmax, (x —
to)yMmat59958 01 x 1) € CO([0, Tnax + STamanl; L2L2). Since Y = 13y + dy,
for all o] + |B] + |o| < Mmax, we also have (x — tv)Mmax+5—|<’|agafY0g(t, X,v) €
CO([O, Tmax + %Tsmall]; L%L%). Using also (8.2), it follows that after choosing ¢,
smaller (so that € is sufficiently small) if necessary, there exists Text,0 € (Tmax, Tmax +
%Tsmall] such that (4.7) holds up to time Ty 0. It thus remains to prove that the esti-
mates (4.8) and (4.9) hold beyond Tpax.-
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Claim 1: There exist Rp > 0 and Text,1 € (Tmax, Text.0] such that
Yo =yt Y o1, X V) a2 e ez < € F Tina)
let|+1B1<Mmax

forevery t € [Tmax, Text,1]-
Proof of Claim 1. We showed above that (4.7) holds up to time Tex; o. In particular,

> 1Bl | <M | (X — Tax ) Mmax+5-10 152 8 y o o (T, x v)| 1212 is finite. Hence
there exists R;, > 0 such that

Z 1 — Tinaxv)ma 371019988 Y7 0 (Tinax, . O L2 L2xR+1v2= (R)2)
lae|+Bl+]o | = Mmax
€ _
< S0+ Tna) ™
(8.3)

Let x : R? x R? — R be a smooth cut-off function satisfying 0 < x < 1 with
x(x,v) = 1when |x|>+[v[*> > (Rj+ 1)? and x (x, v) = O when |x|*+|v]* < (R})>.
By the continuity-in-time of the Li L% normin local existence resultin Corollary 3.4,

lim Do = )Mty 0)at ol Y (g 0k, v)
17T ja | B1+H0| < Minas
— &(Tmax, X, U))”L%L% =0. (8.4)

Let Ry = R, + 1. The claim follows from (8.3) and (8.4).

Claim 2: Given Tex,1 as in Claim 1, there exists Tox,2 € (Tmax, Text,1] such that for
every 1 € [Timax, Text2l, when [ar| + |B] + |0/| < Max — 4 — max{2, [},

1 3
[ — tv)MmaF3710Tg@ 8B Yo oy oo oo (1) < 5630 + 1)lAl; (8.5)

and when Mpax — 3 — max{2, r%w} <la|+ |8l + || =: k < Mmax — 5, then

_ 1 3 3 (Mypax —4—K) min| 3, 3¢
[ r—ro) M 51000 Y gl o2 1) < 5ed (1407 ymin{ 3,252 161

(8.6)

Proof of Claim 2. We first prove (8.5) and (8.6) for |x|? + |v|? > (Ro + 1)?, where

Ro is as in Claim 1. Let x : R? x R? — R be a smooth cut-off function’” satisfying

0 < x < 1 with x(x,v) = 1 when |x|?> + [v|*> > (Rop + 1)? and x(x, v) = 0 when
x>+ [v* < RZ.

20 Note that this cut-off function is slightly different from that in Claim 1.
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We use the Sobolev embedding in Lemma 6.1 to control the L$°LS® norm
X8§‘8{?Y"g for t € [Tmax, Text,1]

sup > 1 — o) Mma 57101 538 Y 7 g oo oo
1€ Tmax Text.1] || 4|8 |10 | < Mmax—5

S w Y Y

1€ max Text 1] a1 40| < Minax =S o' | +18'] <4

19807 ((x — tv)Mmat37191 ) 5258y 7 g)[| 122

4
,S sup (1 + TBO(J[) Z
t€[Tmax, Text,1] lat|+1B]+|o | <Mmax—1

Minax +5—
[H e = rw) e m8535’/08”L%L%(ux\%w@zRS) Se

where in the last estimate we have used Claim 1. By the properties of x, we have thus
proven (8.5) and (8.6) for |x|2 + |v|2 > (Ro + 1)2 for every t € [Tmax, Text,1]-

It remains to prove (8.5) and (8.6) for |x|?> + [v|> < (Ro + 1)%. Note that this
is a spatially compact set, and we already have the estimate (8.2). Therefore, by the
smoothness of g, after choosing €, smaller if necessary (so that € is also sufficiently
small), (8.5) and (8.6) hold in the region |x|*> + [v|> < (Ro + 1)? for every ¢ €
[Tmax, Text,2] for some Texe 2 chosen to be sufficiently close to Tiax.

Combining the estimates for x>+ |v|®> = (Ro+ D)% and x> + |v]* < (Ro+ 1)?,
we have proven Claim 2.

Claim 2 therefore established that the estimates (4.8) and (4.9) can be extend beyond
Tmax- Together with the extension of (4.7) beyond Tax that we established earlier,
we have obtained a contradiction with the definition of Tax. It thus follows that
Tinax = +00.

Finally, the statements of uniqueness, smoothness and positivity of f follow from
Theorems 3.2 and 3.3. |

9 Long-Time Asymptotics

In this final section we prove the results about long-time asymptotics of solutions in
the near-vacuum regime. In Section 9.1, we prove Theorem 1.3, in Section 9.2, we
prove Corollary 1.4, and finally in Section 9.3, we prove Theorem 1.6.

In the rest of this section, we will work under the assumptions of Theorem 1.1 and
use the estimates established in the proof of Theorem 1.1.

9.1 Existence of a Large Time Limit (Proof of Theorem 1.3)

Lemma 9.1 Assume the conditions of Theorem 1.1 hold and suppose f is a solution
given by Theorem 1.1. Define f* as in (1.8).

Given 0 < Ty < T, and £ € NU{0}, the following estimate holds for some implicit
constant depending only on dy, y and ¢ (and is independent of Ty and T>):
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o) oy Mo 2 £(Ty x, v) — f2 (T, 3 w)llzgerge S €3 (1 Ty~ minh247),
Proof Using the definition of f¥ in (1.8) and the Landau equation (1.6), we obtain
B fht, x,v) = O f + vidy, £)(t, x + 1, 0) = (a,-,-afl_ujf —cf)(t,x +tv,v).

This implies
(@ ((0) () Mo £9)) (1, 2, v) = () ) Mt (@00, f = Ef) (@ x + 1v,v).
Integrating in ¢ from ¢ = T to t = T3, we thus obtain

() ) Mma 4 £2(Ty x, v) — AT, x, )|l Looree

T

< / () ) Mmst 413500, F1( x + 10, 0) | Lerge dr ©.1)
T
Ip)

+ / 1) ey Mmast412 £1(2, x + tv, V)| o0 dt. 9.2)
T

To bound the terms (9.1) and (9.2), we use the fact that sup, g3 sup,cps =
SUP, _;peRr3 SUP,er3- To control (9.1), we first use Lemma 5.4 to obtain
1(9.1)]

< (I{n}x ”(1+t)3+min{l,2+y}<v>—(2+y)<x_[v>—min{l,2+y}ﬁij([’x’v)”LOO([Tl,TZJ;L;CLgC)>

x (Z 1+ 072 ) — ro)Mmaxt558 £r,x, v>|Lm<[T,,T2J;LgoLgo))
1B1=2

X ”(l + t)_l_min{l’z_H/}HLl([TIYTZD

< (r?é}x (1 +t)3+min{1,2+1/}(U>7(2+y)<x —tv)*mi“{l’Hy}&ij(hxaU)||L°°([T1,T2];L$°L8°))

) ( D2 I+ 07— )Mo g1, U)”LZ([TLTQ];L)Z(L%)) e

|B1=2
9.3)
Now by Propositions 5.8 and 5.11 (used for t+ < 1 and r > 1 respectively), the

first factor is bounded above by et By (6.70), the second factor is bounded by ei.
Combining, we see that

19.1)] < |RHS of (9.3)] < €2 (1 4 17)~ minll:2+7],
We next bound (9.2). Using Lemma 5.4, Proposition 5.13 and (6.70), we obtain

1921 SN+ Ly i I+ 0PV EE, x, V)l Loqr, 1ol Lo L20)

3 _
x () (x — to)yMmet £ (1 x v) | ooy i nereey S €2 (14 Tp)~@H).
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Finally, using the estimates for (9.1) and (9.2) above, we obtain the desired
estimate. O

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3 By Lemma 9.1, for any £ € N and for any sequence
t, — oo, { fﬁ(tn,x, v)}zo1 is Cauchy in the Banach space with the norm

[| {(v)* (o) MmaxF4 () || oo oo Therefore there exists a unique 2R3 xR® - Rsuch
that for any £ € N U {0},

lim () (o) Mmet4) £2,x, v) — f5 0, )z = 0.
t—>—+00

Using the estimate in Lemma 9.1 again, it then follows that

sup(l 4 £)MEZE | ()€ ey Mt (£ v) — G )l psoroe () S €3,
t>0

which is what we wanted to prove. O

9.2 Large Time Asymptotics for Macroscopic Quantities (Proof of Corollary 1.4)

We will prove slightly more general estimates than Corollary 1.4. The following propo-
sition gives the main estimates.

Proposition 9.2 Assume the conditions of Theorem 1.1 hold and suppose f, f(fo are
as given by Theorems 1.1 and 1.3 respectively.

For any £ € N U {0}, the following estimate holds for all t € [0, +00) with an
implicit constant depending on dy, vy and £:

3 .
I £ (2, x,0) = frole = v, V)l geopy S €7 (1403 7mnb20r) (9.4

and
1) f 2, 0oy S e+, ©.5)

Proof Using Lemma 5.2, then noting sup,cp3 SUP,cp3 = SUP,_;peRr3 SUPycRr3, and
finally using Theorem 1.3, we obtain

H) 1 f (. x.,v) = foolx — 0. v)ll oo
< A+03UWHH FE xv) — fa — 1o, 0)lllzere
) — ) x,0) = (e — 1v, vl re)
= L+ D)2 x0) — fro vllzere
F I A x, v) — frole Wllzere)
< 6%(1+t)—3—min{l,2+y}.
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This proves (9.4).
Now using a similar argument as above, we obtain

1) fo(x = 10, V) oo
S A+D3AH L — v, )l e + 1) (x — 10)* £l = v, V)0 10)
S U+ L 0 vl

+ 1 ) 0, vl r20).
(9.6)
To proceed, note that applying the estimate in Theorem 1.3 with = 0, we obtain, for
every £/ € NU {0},

[SI[%)

1) ) Mot (fr (x, v) — flo(x, ) llzeeree < €.

Combining this estimate with the assumptions on fi, in Theorem 1.1 and using the
triangle inequality, we in particular have

Hw) (x)* flo (v, V) llzeere S €

Plugging this into (9.6), we then obtain

1) foox = 10, V)l ooy S €1+ ©.7)
Combining (9.7) with (9.4) and using the triangle inequality yields (9.5). O
Using Proposition 9.2, we can immediately prove Corollary 1.4:

Proof of Corollary 1.4 Note that (1.9) is an immediate corollary of (9.5); while (1.10)
is an immediate corollary of (9.4). O

9.3 The Large Time Limit is in General Not a Traveling Global Maxwellian (Proof of
Theorem 1.6)

In this final subsection, we prove Theorem 1.6. The reader may find it useful to recall
Definition 1.5.

Proof of Theorem 1.6 By Lemma 9.1 (with £ = 2), given initial data fi, with

2
Do )Mt g2l (@O0 £ 2y
lae|+IB1+0 | = Mmax

+ > ) Mt ) 92 08 (20 0+ f ) oo < €
lee|+[Bl+]0|<Mmax —5
9.8)
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(where € € (0, ] with €5, Mpyax, do as in Theorem 1.1), there exists Coo > 0
(depending only on dj and y) such that the unique solution arising from fi, satisfies

3 S
()2 x)21 fH(T1, x, v) — fH(To, x, W)l gerse < Cooe2 (1 + Ty)~ Mintl24+v)

for all 0 < 71 < T5. In particular, taking 771 = 0 and 7> — 400, and using the
definition of fgo, we obtain,

0202 finr, v) — foo@ )22 < Cooe?.

In view of the above inequality, in order to prove the present proposition, it suffices
to exhibit a function fi, such that for some € € [0, €p], the following two conditions
are simultaneously satisfied:

1. (9.8) holds, and
2. inf pqean [1(v)*(x)?] fin(x, v) = MEx, )]l 1272 > Cooe

To show that such an fi, exists, take an arbitrary “seed function” f : R? x R3 —
R. ¢ which

e satisfies

w

[~}

M, 5 2do(14]v]?
[l (x) ‘max+ 8;[8{)5(6 o (1+|v| )fin)”LgL%
le|+[Bl+]0 | < Mmax

+ Z ”(X)Mmax‘f'S(v)a)lCXal/? <e2do(1+\v|2)fin) o0 9.9
loe|+[Bl+]0 | <Mmax —5
<C <40

for some C > 0, and
e is not M°* for any global Maxwellian.

Note that there must exist a constant ¢ > 0 such that

Jnf 1@ 0% (£ (6, ) = MEGe u)llgagg = € > 0, 9.10)

(This is an easy consequence of the fact that global Maxwellians are parametrized
by a finite dimensional space of parameters. More precisely, if (9.10) were not
true, then there exists a sequence of global Maxwellians M, parametrized by
(€. o, On. M, By) such that limy,—. oo [1()* (0)2(f (x. v) = M3 (e, 01213 = 0.
This convergence in particular implies that all the second moments of f are bounded.
Hence (o, B, on, my, By) staysinacompactset of Rx R xR x R x R3*3, Therefore
there exists a convergent subsequence which converges, i.e. (&, B, on, My, By) —
(«, B, 0, m, B). This then implies fi,(x, v) = M for some M € N, contradicting
our assumptions.)
For > 0 to be chosen below, we now let

Sin = ni.
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Given (9.9) and (9.10), and noting that the family of global Maxwellians 97 is invariant
under rescaling (i.e. M € M < AM € M, VA > 0), the conditions (1) and (2)
above for fi, therefore translates to the two conditions

Cn<e, cn>Coel.

for some € € [0, €g]. It is then easy to see that this can be satisfied if we take € = Cn

and 1 < min{ 23 O

_£
c2.c®’

Remark 9.3 We have in fact proven slightly more. Given any function f which does

not correspond to M? for any M e 9, there exists 79 > 0 depending on J such that
if n € (0, ng), then the solution arising from f;; = nf does not converge to a zero
solution or a traveling global Maxwellian.
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