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As a major staple food, maize (Zea mays) is critical to food security. Shifting
environmental pressures increasingly hamper crop defense capacities, causing
expanded harvest loss. Specialized labdane-type diterpenoids are key components of
maize chemical defense and ecological adaptation. Labdane diterpenoid biosynthesis
most commonly requires the pairwise activity of class Il and class | diterpene synthases
(diTPSs) that convert the central precursor geranylgeranyl diphosphate into distinct
diterpenoid scaffolds. Two maize class Il diTPSs, ANTHER EAR 1 and 2 (ZmAN1/2),
have been previously identified as catalytically redundant ent-copalyl diphosphate (CPP)
synthases. ZmANT is essential for gibberellin phytohormone biosynthesis, whereas
ZmAN2 is stress-inducible and governs the formation of defensive kauralexin and
dolabralexin diterpenoids. Here, we report the biochemical characterization of the two
remaining class Il diTPSs present in the maize genome, COPALYL DIPHOSPHATE
SYNTHASE 3 (ZmCPS3) and COPALYL DIPHOSPHATE SYNTHASE 4 (ZmCPS4).
Functional analysis via microbial co-expression assays identified ZmCPS3 as a (+)-CPP
synthase, with functionally conserved orthologs occurring in wheat (Triticum aestivum)
and numerous dicot species. ZMCPS4 formed the unusual prenyl diphosphate, 8,13-
CPP (labda-8,13-dien-15-yl diphosphate), as verified by mass spectrometry and nuclear
magnetic resonance. As a minor product, ZmCPS4 also produced labda-13-en-8-ol
diphosphate (LPP). Root gene expression profiles did not indicate an inducible role
of ZmCPS3 in maize stress responses. By contrast, ZmCPS4 showed a pattern of
inducible gene expression in roots exposed to oxidative stress, supporting a possible
role in abiotic stress responses. Identification of the catalytic activities of ZmCPS3 and
ZmCPS4 clarifies the first committed reactions controlling the diversity of defensive
diterpenoids in maize, and suggests the existence of additional yet undiscovered
diterpenoid pathways.

Keywords: diterpene synthase, diterpenoid biosynthesis, plant stress response, plant specialized metabolism,
Zea mays

Abbreviations: CPP, copalyl diphosphate; diTPS, diterpene synthase; GC-MS, gas chromatography mass spectrometry;
GGPP, geranylgeranyl diphosphate; KSL, kaurene-synthase-like; P450, cytochrome P450.
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INTRODUCTION

Plant labdane-related diterpenoids represent a diverse group of
more than 7,000 metabolites with broad physiological functions
in plant development, defense, and ecological adaptation (Peters,
2010; Zerbe and Bohlmann, 2015). A few widely conserved
diterpenoid metabolites and the corresponding metabolic
enzymes are essential for gibberellin biosynthesis of general
metabolism (Richards et al., 2001; Zi et al., 2014). From these
ancestral diterpenoid pathways, the vast chemical space of
specialized diterpenoids has evolved (Zi et al., 2014), which
comprises common and species-specific diterpenoid blends with
distinct biological functions that range from pest and pathogen
defense to allelopathic and signaling activities (Keeling and
Bohlmann, 2006a; Chaturvedi et al., 2012; Schmelz et al., 2014;
Tholl, 2015).

Two of the most agroeconomically important grain crops,
maize (Zea mays) and rice (Oryza sativa), deploy distinct
networks of diterpenoids to mediate the plant response to biotic
and abiotic stress (for review, see Peters, 2006; Schmelz et al.,
2014). Rice produces a complex suite of diterpenoid phytoalexins,
including momilactones, oryzalexins, and phytocassanes, that
serve as major components of disease resistance and exhibit
allelopathic properties to suppress the growth of competing
weeds (Peters, 2006; Kato-Noguchi and Peters, 2013; Toyomasu
et al,, 2014; Lu et al., 2018). Similarly, maize produces related
yet distinct arsenals of bioactive diterpenoids that, to current
knowledge, include the kauralexin and dolabralexin groups with
demonstrated and predicted functions in maize chemical defense
(Figure 1; Schmelz et al., 2011; Vaughan et al., 2015; Christensen
et al.,, 2018; Mafu et al,, 2018). For example, pathogen-elicited
maize kauralexin and dolabralexin diterpenoids exhibit potent
antimicrobial efficacies in vitro and in vivo against several
pathogens (Schmelz et al, 2011; Christensen et al., 2018;
Mafu et al., 2018), including species of Fusarium as a major
causal agent of maize crop losses and mycotoxin contamination
(Mueller, 2012). In addition, kauralexins exhibit antifeedant
activity in response to herbivore attack by the European corn
borer (Ostrinia nubilalis; Dafoe et al., 2011; Schmelz et al,
2011). More recently, both kauralexins and dolabralexins have
been shown to accumulate under drought and below-ground
oxidative stress, consistent with a possible protective role of
diterpenoids in abiotic stress responses (Vaughan et al., 2015;
Mafu et al., 2018). Furthermore, a kauralexin- and dolabralexin-
deficient maize mutant an2 (anther ear 2) showed increased
susceptibility to both drought stress and pathogen attack
(Vaughan et al., 2015; Christensen et al., 2018). These findings
highlight the biological importance of diterpenoids in conferring
stress resilience, and underscore the need to better understand
the biosynthesis and chemical ecology of diterpenoids in cereal
crops.

In angiosperms, the structural diversity of labdane-type
diterpenoids is determined by the activity of class II and
class I diTPS enzymes that act sequentially to transform
the central precursor GGPP into different scaffolds (Peters,
2010; Zerbe et al, 2015). Class II diTPSs control the
first committed reaction, catalyzing the protonation-initiated

cyclization of GGPP into bicyclic labdadienyl/CPP intermediates
of distinct stereochemistry and/or regio-specific oxygenations
(Peters, 2010; Zerbe and Bohlmann, 2015). Class I diTPSs then
convert these intermediates via ionization of the diphosphate
group and a variety of possible downstream cyclization
and rearrangement reactions of the intermediary carbocation
(Peters, 2010; Zerbe and Bohlmann, 2015). Multi-gene diTPS
families of 9-31 members were identified in the genomes
of maize, rice, wheat (Triticum aestivum), and switchgrass
(Panicum virgatum; Harris et al., 2005 Xu et al, 2007a;
Wu et al.,, 2012; Zhou et al., 2012; Mafu et al., 2018; Pelot
et al., 2018). Functional characterization of class II diTPSs in
these species demonstrated the formation of both common
and distinct CPP stereoisomers. All species produce ent-CPP
as a precursor for gibberellin phytohormones, as well as
specialized diterpenoids at least in rice and maize (Schmelz
et al., 2014). In addition, wheat forms the enantiomeric
(+)-CPP en route to pimarane and abietane diterpenoids,
whereas rice and switchgrass form syn-CPP en route to, for
example, rice oryzalexins and momilactones (Xu et al.,, 2004,
2007a; Wu et al, 2012; Zhou et al, 2012; Pelot et al,
2018). The switchgrass class II diTPS family appears to have
functionally diverged more extensively to also produce 8,13-
CPP (labda-8,13-dien-15-yl diphosphate) and the clerodane
diterpenoid precursor clerodienyl diphosphate (Pelot et al.,
2018). In maize, only two of the four class II diTPSs
present in the genome (B73 RefGen_v4), namely, ANTHER
EAR 1 (ZmAN1, Zm00001d032961) and ANTHER EAR 2
(ZmAN2, Zm00001d029648), have been functionally analyzed
and demonstrated to produce ent-CPP (Bensen et al., 1995;
Harris et al., 2005). Despite their catalytic redundancy, ZmAN1
and ZmAN?2 serve different physiological functions in maize.
Knock-out mutants of Zmanl display characteristic gibberellin-
deficient phenotypes including dwarfism and anther formation
in ears that demonstrate a role of ZmANT1 in general metabolism
(Bensen et al.,, 1995). By contrast, ZmAN?2 is stress-inducible
and an2 mutants exhibit normal growth and reproductive
phenotypes, but display enhanced susceptibility to fungal disease
and environmental stress associated with the lack of kauralexins
and/or dolabralexins (Harris et al., 2005; Vaughan et al., 2015;
Christensen et al., 2018; Mafu et al., 2018). While these genetic
studies clarified the dependency of kauralexin and dolabralexin
metabolism on ZmAN?2 activity, knowledge of the downstream
class I diTPS reactions remains incomplete. Only KAURENE
SYNTHASE-LIKE 4 (ZmKSL4, Zm00001d032858) and the P450s
CYP71Z16/18 (Zm00001d014136/Zm00001d014134) have been
recently identified to catalyze the conversion of ent-CPP into
dolabradiene and downstream dolabralexins (Mafu et al., 2018).
These enzymes expand our knowledge of previously reported
maize ent-kaurene synthases (ZmKSL3, ZmKSL5, and ZmTPS1)
that convert ent-CPP into ent-kaurene en route to gibberellin
biosynthesis and possibly specialized diterpenoid metabolism (Fu
etal., 2016).

Herein reported is the biochemical characterization
of the two remaining class II diTPSs present in the
maize genome, COPALYL DIPHOSPHATE SYNTHASE 3
(ZmCPS3, Zm00001d024512) and COPALYL DIPHOSPHATE
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LPP, labda-13-en-8-ol diphosphate.

Known and predicted roles in environmental adaptation

FIGURE 1 | Class Il diterpene synthase functions in maize diterpenoid metabolism. Maize deploys functionally diverse families of class Il and class | diterpene
synthases (diTPSs) that act sequentially to form the core scaffolds of diverse biologically active diterpenoids that mediate plant growth and responses to both biotic
and abiotic stress. Among the four class Il diTPSs present in the maize genome, previous studies showed that ZmAN1 functions in gibberellin phytohormone
biosynthesis, whereas ZmAN2 controls the formation of kauralexin and dolabralexin diterpenoids as major components of the maize chemical defense system
(Schmelz et al., 2011; Mafu et al., 2018). ZmCPS3 and ZmCPS4 represent additional specialized class Il diTPSs that form (+)-CPP and 8,13-CPP as major products,
respectively, representing previously hidden precursors of maize specialized diterpenoid metabolism. GGPP, geranylgeranyl diphosphate; CPP, copalyl diphosphate;

.

Unknown specialized diterpenoids

SYNTHASE 4 (ZmCPS4, Zm00001d048874), to delineate the
scope of yet unknown specialized diterpenoid pathways in
maize. Unlike ZmAN2, interrogation of transcriptomic and
proteomic datasets did not support a role of ZmCPS3 and
ZmCPS4 in highly inducible pathogen defenses. A pattern of
largely constitutive gene expression of ZmCPS3 and moderately
inducible expression of ZmCPS4 under root exposure to
abiotic stress may suggest more constitutive functions in maize
ecological adaptation.

MATERIALS AND METHODS

Gene Constructs

Full-length genes of maize ZmCPS3 (Zm00001d024512) and
ZmCPS4 (Zm00001d048874) were synthesized with support of
a Department of Energy Joint Genome Institute Community
Science Program grant (CSP#2568). Genes were inserted into
the second multiple cloning site of a pACYC-Duet plasmid also
carrying the GGPP synthase from Abies grandis (Morrone et al,,
2010) to form the constructs pACYC-Duet:AgGGPPS-ZmCPS3
and PACYC-Duet:AgGGPPS-ZmCPS4 (Supplementary
Table S1). Additional constructs used in co-expression assays

were described previously, including pACYC-Duet:AgGGPPS-
ZmAN2 (Zm00001d029648) (Z. mays ent-CPP synthase),
pET28b:ZmKSL3 (Zm00001d002349) (Z. mays ent-kaurene
synthase), pET28b:ZmKSL4 (Zm00001d032858) (Z. mays
dolabradiene synthase), pET28b:GrTPS1 (Grindelia robusta LPP
synthase), and pET15b:MvELS (Marrubium vulgare 9,13-epoxy
labd-14-ene synthase; Zerbe et al., 2013, 2014; Mafu et al., 2018).

Enzyme Functional Analysis

Functional co-expression of enzymes was carried out using an
engineered Escherichia coli platform for enhanced diterpenoid
production (Morrone et al., 2010) as previously described (Mafu
et al, 2018). The pACYC-Duet:AgGGPPS-ZmCPS3, pACYC-
Duet:AgGGPPS-ZmCPS4, or pACYC-Duet:AgGGPPS-ZmAN2
constructs were expressed alone or in combination with ZmKSL3,
or ZmKSL4. GrTPS1 was expressed in combination with pACYC-
Duet:AgGGPPS to form LPP and an additional combination
with pET15b:MVELS to form manoyl oxide for use as authentic
standards. In brief, cultures were grown in 50 mL Terrific Broth
(TB) medium to an ODggg of ~0.6 at 37°C. After cooling to 16°C,
cultures were induced with 1 mM isopropyl-thio-galactoside
(IPTG) and 25 mM sodium pyruvate and incubated for a further
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72 h. Enzyme products were extracted with 50 mL of hexane,
concentrated under air, and resuspended in 1 mL hexane for
GC-MS analysis.

GC-MS Analysis

Gas chromatography mass spectrometry analysis of enzyme
products was performed on an Agilent 7890B GC interfaced with
a 5977 Extractor XL MS Detector at 70 eV and 1.2 mL min~!
He flow, using an Agilent HP5-MS column (30 m, 250 pm i.d.,
0.25 pm film) with a sample volume of 1 pL and the following
GC parameters: pulsed splitless injection at 250 and 50°C oven
temperature; hold at 50°C for 3 min, 20°C min~! to 300°C, hold
3 min. MS data from 90 to 600 mass-to-charge ratio (m/z) were
collected after a 8 min solvent delay. Products were identified
using comparison to authentic standards or, where these were not
available, comparison to published mass spectra and the National
Institute of Standards and Technology (NIST version 2.0) mass
spectral library (Agilent).

NMR Analysis

Diterpenoids were produced via large-scale (12 L) enzyme co-
expression cultures as described above. Hexane extracts were
dried using rotary evaporation, resuspended in hexane, and
purified by silica column chromatography (230-400 mesh, grade
60) using a hexane:ethyl acetate gradient as the mobile phase.
Fractions were further purified on an Agilent 1100 series
HPLC with diode array UV detector and an Agilent ZORBAX
Eclipse Plus-C8 column (4.6 mm x 150 mm, 5 microns)
at a 0.5 mL min~! flow rate and H,O/acetonitrile gradient
as mobile phase. Product purity was verified using GC-MS
analysis as outlined above. Purified products were dissolved
in 0.6 mL deuterated chloroform (CDCls; Sigma-Aldrich)
containing tetramethylsilane (TMS). NMR spectra were acquired
at room temperature on a Bruker Avance III 800 spectrometer
equipped with a 5 mm CPTCI. Chemical shifts were calculated
by reference to known CDCl; (1*C 77.23 ppm, 'H 7.24 ppm)
signals offset from TMS. All spectra were acquired using standard
experiments on a Bruker TopSpin 3.2 software, including 1D 'H
and 1D '3C spectra (201 MHz).

Transcriptomics and Proteomics

Analysis

For analysis of class II diTPS gene and protein abundance,
publicly available transcriptome and proteome inventories were
investigated that represent a range of organs and tissues at
different developmental stages of healthy maize plants (Walley
et al,, 2016). All samples derive from B73, with the exception of
2 cm tassels, 1-2 mm anthers, and mature pollen (W23 inbred),
and 5-days-old primary root (Mo17 inbred) (Walley et al., 2016).
Transcript abundance (as fragments per kilobase of transcript per
million mapped reads, FPKM) and protein expression levels were
retrieved directly from this public resource (Walley et al., 2016),
and were scaled by color either individually by gene or absolute
across all four genes of interest.

Abiotic Elicitation of Maize Roots With
CuS0O4

Plant samples used for gene expression analysis were prepared
previously (Mafu et al., 2018). Briefly, maize (var. Golden Queen)
seed was germinated in the dark on wetted paper for 4 days
at 23°C. Seedlings were transferred and grown hydroponically
(Schmelz et al., 2001) for 12 days under 16/8 h light/darkness at
28°C, light intensity of 180 pmol photons m~2 s~!, and ~60%
relative humidity. A total of 1 mM CuSOy or the corresponding
water control was added to the hydroponic medium. Root
samples were collected at the time points indicated, with three
biological replicates per time point, and immediately frozen in
liquid nitrogen for further analysis.

Fungal Elicitation of Mature Maize Roots
Plants samples used for gene expression analysis were derived
from a previous study (Mafu et al., 2018). Maize (var. Mol7)
plants were grown in the greenhouse for 53 days in individual,
10 L pots and supplemented with 14-14-14 Scotts Miracle Grow
fertilizer. Large nodal roots (>2 mm dia) were punctured with
a 0.6 mm dia steel pin at 1 cm intervals and inoculated with
10 wL of 1 x 107 conidia mL™! of Fusarium verticillioides (F.v.),
Fusarium graminearum (F.g.), or water control at each wound
site. To avoid damage to other tissues not undergoing treatment,
sampling was limited to roots on the outer edge of the soil,
in contact with the vertical plastic pot wall. Root samples were
collected after 7 days and immediately frozen in liquid nitrogen
before further processing.

Quantitative Real-Time PCR (qPCR)

Gene expression analysis of ZmCPS3 and ZmCPS4 was
performed on the CuSOy-treated or pathogen-treated
root samples described above. Total RNA was isolated as
described elsewhere (Kolosova et al., 2004) and cDNA was
synthesized using SuperScript III First-Strand Synthesis
Kit (Invitrogen) according to manufacturers instructions.
Transcript abundance was measured using a BioRad C1000
Touch Thermo Cycler interfaced with a CFX96 Real-Time
System, and iTaq Universal SYBR Green Supermix (BioRad)
according to manufacturer’s protocols. Mean cycle threshold
(Ct) values of at least two technical and three biological
replicates were normalized using elongation factor EFla as
a validated reference gene (Schmelz et al., 2011), and fold
change values were calculated using the 2722C' method.
Gene-specific oligonucleotides used for qPCR analysis were
ZmCPS3  [forward: 5-TGACGTGTGGATTGGGAAGG-3/,
reverse:  5'-CGCTCTGTCTGGCTCAAAGA-3'], ZmCPS4
[forward: 5-CTCAGGCCAGCTTAACGAC-3, reverse:
5-CCTTGCCGATCCATACGTC-3'], and EFlo [forward:
5-TGGGCCTACTGGTCTTACTACTGA-3/, reverse: 5-ACA
TACCCACGCTTCAGATCCT-3'].

Sequence and Phylogenetic Analysis

Protein sequence alignments were generated using the CLCBio
software package (Qiagen), followed by manual curation.
Maximum likelihood phylogenetic analysis was performed using
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PhyML-aBayes version 3.0.1 beta (Guindon et al, 2010) with
four rate substitution categories, LG substitution model, BION]
starting tree, and 500 bootstrap repetitions.

RESULTS

Active Site Determinants Suggest
Distinct Functions of ZmCPS3 and
ZmCPS4

The maize genome (B73 RefGen_v4) contains four class II
diTPSs (Schmelz et al., 2014), which comprise the known ent-
CPP synthases ZmAN1 and ZmAN?2 located on chromosome 1
(Bensen et al., 1995; Harris et al,, 2005), and the previously
uncharacterized ZmCPS3 and ZmCPS4 positioned on
chromosomes 4 and 10, respectively. ZmCPS3 and ZmCPS4
share a protein sequence identity of 55% with each other and
46-56% with ZmANI1 and ZmAN?2. Phylogenetic analysis placed
ZmCPS3 and ZmCPS4 separate from most ent-CPP synthases
on a branch primarily consisting of class IT diTPSs that produce
prenyl diphosphates of specialized metabolism (Supplementary
Figure S1). Although this suggested a role of both enzymes
in specialized metabolism, the functional diversity of diTPSs
in this group did not allow inference of possible ZmCPS3 and
ZmCPS4 functions. Therefore, to inform biochemical analyses,
we interrogated key active site residues with known impact on
class II diTPS product specificity (Xu et al., 2007b; Mann et al.,
2010; Jia et al., 2016, 2017; Mafu et al., 2016; Potter et al., 2016a;
Pelot et al., 2018; Schulte et al., 2018). Previous studies identified
a His-Asn catalytic dyad that is widely conserved among ent-CPP
synthases, including ZmAN1 and ZmAN2, and was shown to
direct class IT diTPS catalysis toward ent-CPP formation (Potter
et al., 2014, 2016b; Cui et al., 2015; Pelot et al., 2016). Neither
ZmCPS3 nor ZmCPS4 possess a His-Asn catalytic dyad, but
instead feature a Leu-Phe residue pair (Figure 2). These residues
are consistent with a recently characterized 8,13-CPP synthase
from switchgrass (P. virgatum; Pelot et al., 2018). In addition,
presence of a Tyr residue in position 497 and 458 of ZmCPS3
and ZmCP$4, respectively, is consistent with known monocot
ent-CPP and (+)-CPP synthases, but contrasts known syn-CPP
synthases from rice and switchgrass that feature a His residue in
this position (Potter et al., 2016a; Pelot et al., 2018). Although
insufficient to allow an unambiguous functional annotation,
these active site characteristics disfavored an ent-CPP or syn-CPP
synthase activity, and supported a possible function of ZmCPS3
and ZmCPS4 as 8,13-CPP or (+)-CPP synthases or related
specialized class II diTPSs.

ZmCPS3 Functions as a (+)-CPP

Synthase

To test the predicted enzyme activity of ZmCPS3, a synthetic
full-length gene was co-expressed with a GGPP synthase from
A. grandis using an in vivo E. coli expression platform engineered
for diterpenoid production (Morrone et al, 2010). In vivo
expression of class II diTPS enzymes using this system readily
yields dephosphorylated products, presumably due to the activity

HN dyad
259 318 364/5 375 508

ent-CPP

ZmAN1 H N Cw DvVDD Y

ZmAN2 H N CW DVDD Y

OsCPS1 H N CW DVDD Y

OsCPS2 H C SY DIDD Y

TaCPS1 H C SH DIDD Y

TaCPS3 H N CW DVDD Y

TaCPS4 H N CW DVDD Y

HWCPS1T H N CW DVDD Y

(+)-CPP

TaCPS2 C AH DIDD Y

ZmCPS3 L F PA DVDD Y (497)

syn-CPP

PvCPS8 H C AH DIDD H (493)

OsCPS4 H C AH DIDD H (501)

8,13-CPP

PvCPS3 L F GF DIDD H

ZmCPS4 L F AY DIDD Y (458)
FIGURE 2 | Active site determinants of monocot class Il diterpene synthases.
llustrated is a protein sequence alignment highlighting key active site residues
with demonstrated impact on product specificity of known monocot class Il
diTPSs. ZmCPS3 and ZmCPS4 feature distinct residues in select active site
positions defining enzyme product specificity, thus suggesting a (+)-CPP
synthase, 8,13-CPP synthase, or other specialized class Il diTPS function for
ZmCPS3 and ZmCPS4. Residue positions are numbered in reference to
ZmAN2. Zm, Zea mays; Os, Oryza sativa; Ta, Triticum aestivum; Hyv, Hordeum
vulgare; Pv, Panicum virgatum.

of E. coli endogenous phosphatases and thus enables direct
hexane extraction and analysis of the corresponding diterpene
alcohols (Zerbe et al., 2013, 2015; Pelot et al., 2016; Mafu et al.,
2018). For clarity, structures depicted below represent the native
prenyl diphosphate products, but were detected via GC-MS
and NMR analysis as the corresponding alcohols. Expression of
ZmCPS3 resulted in a major product (compound 1; Figure 3)
with a retention time of 11.25 min and a fragmentation pattern
showing dominant mass ions of m/z 137, 257, and 275 that closely
matched the mass spectrum of copalol (i.e., dephosphorylated
CPP) produced by ZmAN2 (compound 8; Figure 3). Two
additional byproducts detected in the ZmCPS3 product profile
represented unconverted GGPP substrate (compound 2) and
an unidentified non-diterpenoid contaminant (compound 3;
Supplementary Figure S2).

Next we defined the stereochemistry of the ZmCPS3
product by co-expressing ZmCPS3 with characterized maize
class T diTPSs that display catalytic specificity toward CPP
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FIGURE 3 | Functional characterization of the maize diterpene synthase

ZmCPS3. Extracted ion chromatograms (EIC, m/z 257) and mass spectra of

reaction products resulting from E. coli co-expression assays of ZmAN2 and
(Continued)

FIGURE 3 | Continued

ZmCPS3 alone, as well as in combination with the ent-kaurene synthase
ZmKSL3 (Fu et al., 2016) or the dolabradiene synthase ZmKSL4 (Mafu et al.,
2018). (+)-copalol (i.e., dephosphorylated copalyl diphosphate, CPP) 1,
geranylgeraniol (i.e., dephosphorylated geranylgeranyl diphosphate, GGPP) 2,
plasticizer contaminant 3, pimara-8,14-diene 5, ent-copalol (i.e.,
dephosphorylated ent-CPP) 8, ent-CPP derivative 9, ent-kaurene 10,
dolabradiene 11, unidentified pimarane-type products 4, 6, and 7. Where
applicable, depicted structures represent the native prenyl diphosphate class
Il diTPS products, whereas spectra are derived from the corresponding
dephosphorylated compounds that are formed during enzyme co-expression
analyses by the activity of endogenous E. coli phosphatases.

substrates of different stereochemistries. ZmKSL3 converts ent-
CPP into ent-kaurene (Fu et al., 2016), whereas ZmKSL4 forms
dolabradiene from ent-CPP and pimarane-type diterpene olefins
with (+)-CPP as a substrate (Mafu et al., 2018). As controls,
we co-expressed ZmAN2 with either ZmKSL3 or ZmKSL4
to generate ent-kaurene (compound 10) and dolabradiene
(compound 11), respectively (Figure 3 and Supplementary
Figure S2). Co-expression of ZmCPS3 and ZmKSL3 did not
result in any detectable class I diTPS product (Figure 3). The
combined activity of ZmCPS3 with ZmKSL4 did not yield
dolabradiene, but resulted in several pimarane-related products
(compounds 4-7), the most abundant of which was identified
as pimara-8,14-diene (compound 5) by comparison to reference
mass spectra (Supplementary Figures S2, S3). These products
are consistent with the previously reported activity of ZmKSL4
with the established (+)-CPP synthase, A. grandis abietadiene
synthase variant D621A (Mafu et al., 2018). On the basis of these
results, ZmCPS3 was designated as a (+)-CPP synthase.

ZmCPS4 Produces 8,13-CPP and LPP
Escherichia coli co-expression of the full-length, synthetic gene
encoding ZmCPS4 with the A. grandis GGPP synthase yielded a
major product (compound 12) with a retention time of 11.26 min,
indicating a related but distinct compound as compared to (+)-
CPP and ent-CPP formed by ZmCPS3 and ZmAN2 in vitro,
respectively (Figure 4). Presence of signature mass ions of
m/z 275 and 257 in the fragmentation pattern of this product
indicated the expected labdane structure, but additional major
mass ions of m/z 205 and 149 suggested a structure distinct from
the common ent-CPP, (4)-CPP, or syn-CPP products observed
in monocot crops (Xu et al., 2004; Harris et al., 2005, Wu
et al., 2012). Indeed, the fragmentation pattern of compound 12
matched the product of a recently identified class II diTPS from
switchgrass that forms 8,13-CPP (Supplementary Figure S2;
Pelot et al., 2018). To further verify the identity of this ZmCPS4
product, nuclear magnetic resonance (NMR) spectroscopy was
performed. For this purpose, large-scale E. coli co-expression
cultures were used to produce an excess of 1 mg of the product,
which was then purified using silica column chromatography and
semi-preparative high-pressure liquid chromatography (HPLC).
For the purified product, 1D 'H and '*C NMR spectra were
acquired and validated the ZmCPS4 product as 8,13-CPP in
comparison to published spectra (Supplementary Figure S4;
Pelot et al., 2018).
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FIGURE 4 | Functional characterization of the maize diterpene synthase ZmCPS4. (A) Extracted ion chromatograms (EIC, m/z 257) of reaction products resulting
from E. coli co-expression assays of ZmCPS4 alone or in combination with the ent-kaurene synthase ZmKSL3 (Fu et al., 2016) or the dolabradiene synthase
ZmKSL4 (Mafu et al., 2018). Expression of the LPP synthase GrTPS1 (Zerbe et al., 2013) was used to produce a labda-13-en-8-al (i.e., dephosphorylated
labda-13-en-8-ol diphosphate, LPP) standard 13, and co-expression of GrTPS1 and the multi-functional class | diTPS MVELS (Zerbe et al., 2014) enabled the
formation of a manoy!l oxide 15 standard. (B) Mass spectrum of the ZmCPS4 product, 8,13-copalol (i.e., dephosphorylated 8,13-CPP) 12. (C) Structural
identification of the ZmCPS4 product as 8,13-CPP as verified by NMR analysis. Compounds 14, 16, and 17 represent unidentified LPP and 8,13-CPP derivatives.
(D) Comparison of mass spectra of the ZmCPS4 products, compounds 13 and 15 to those of authentic standards of labda-13-en-8-ol (i.e., dephosphorylated
labda-13-en-8-ol diphosphate, LPP) produced by GrTPS1 and manoyl oxide produced by combining GrTS1 and MVELS. Where applicable, depicted structures
represent the native prenyl diphosphate class Il diTPS products, whereas spectra are derived from the corresponding dephosphorylated compounds that are formed
during enzyme co-expression analyses by the activity of endogenous E. coli phosphatases.
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In addition to the primary 8,13-CPP product, a minor, more
polar, ZmCPS4 product with a retention time of 11.79 min
was also observed (compound 13; Figure 4). This product
was identified as labda-13-en-8-ol diphosphate (LPP) based on
comparison to the retention time and mass spectrum of LPP
produced by a known LPP synthase from G. robusta (GrTPSI;
Figure 4; Zerbe et al.,, 2013). Low abundance of this product
prevented further stereochemical analysis via NMR. Additional

byproducts (compounds 14-16) present in the ZmCPS4 product
profile represent manoyl oxide (compound 15) as based on
comparison to a manoyl oxide standard produced from the
coupled reaction of G. robusta GrTPS1 and MVELS from
M. vulgare (Zerbe et al., 2013; Pateraki et al., 2014), and a closely
related unidentified diterpenoid (compound 14; Figure 4 and
Supplementary Figure S2). These products are likely resulting
from rearrangement of the ZmCPS4 products 8,13-CPP and LPP
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after dephosphorylation by endogenous E. coli phosphatases, as
has been described for various related class II diTPSs (Zerbe
et al., 2015; Mafu et al., 2018; Pelot et al., 2018). To test for
possible downstream products of 8,13-CPP and LPP, ZmCPS4
was co-expressed with the currently known maize class I diTPS
functions, including the ent-kaurene synthase ZmKSL3 and the
dolabradiene synthase ZmKSL4 (Fu etal., 2016; Mafu etal., 2018).
No new products were detected when co-expressing ZmCPS4
and ZmKSL3 as compared to the expression of ZmCPS4 alone
(Figure 4). When combining ZmCPS4 with ZmKSL4, compound
15 identified as manoyl oxide was significantly increased and,
albeit at low abundance, an additional product (compound 17)
was formed that predictably represents a labdane diterpene olefin
as based on characteristic mass fragments of m/z 272 and 257
(Supplementary Figure S2).

ZmCPS3 and ZmCPS4 Show Distinct
Patterns of Tissue-Specific Gene

Expression

To further investigate the functions of ZmCPS3 and ZmCPS4,
we next examined their gene expression patterns using publicly
available transcriptome and proteome data across various organs,
tissues, and developmental stages of unstressed maize plants
(Walley et al., 2016). With the exception of 5-days-old primary
root (Mol7 inbred) and 2 cm tassels, 1-2 mm anthers, and
mature pollen (W23 inbred), all samples were from the B73
genotype (Walley et al., 2016). Detectable transcripts of ZmCPS3
were distributed across all organs and tissues with highest
abundance included germinating kernels (Figure 5A). Notably,
when specifically analyzing gene expression in roots, transcript
of ZmCPS3 was observed to be significantly more abundant
with expression levels 5-481 times higher as compared to
ZmANI, ZmAN2, and ZmCPS4 in the same tissue (Figure 5B).
Transcript of ZmCPS4 was detected at only trace levels and
present exclusively in primary and secondary root and root
cortex tissues (Figure 5). Consistent with observed transcript
abundance, query of public proteome data (Walley et al., 2016)
showed that protein levels of ZmCPS3 were highest in root tissues
(Supplementary Figure S5). ZmCPS4 protein was not detected
in the analyzed proteome.

ZmCPS3 and ZmCPS4 Show Distinct
Gene Expression Patterns in Response
to Biotic and Abiotic Stress

Previous studies demonstrated that ZmAN2 gene expression is
induced under both pathogen (F.g. and F.v.) and oxidative stress
in above- (Harris et al., 2005; Christensen et al., 2018) and
below-ground tissues (Mafu et al., 2018). In the context of these
findings, the relatively higher transcript abundance of ZmCPS3
in roots and the low but possibly root-specific expression of
ZmCPS4 suggested a role of these enzymes in belowground stress
responses. To investigate this hypothesis, we analyzed transcript
abundance of ZmCPS3 and ZmCPS4 using a previously reported
set of samples of 53-days-old maize Mol7 roots incision-
inoculated with fungal spores of F.v. and F.g. and harvested 7
days later (Mafu et al., 2018). Plants treated by incision-wounding
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FIGURE 5 | Gene expression of maize class Il diterpene synthases across

maize developmental stages and tissues. (A) Heat map showing

the individually scaled mRNA expression (FPKM) of class Il diTPS transcripts as
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FIGURE 5 | Continued

based on a publically available transcriptome data panel comprising various
maize tissue types and developmental stages (Walley et al., 2016). (B) Heat
map showing only root samples, scaled to an absolute (not individual) scale.
All samples are derived from maize genotype B73 with the exception of
5-days-old primary root (Mo17 inbred) and 2 cm tassels, 1-2 mm anthers,
and mature pollen (W23 inbred).

only were used as controls. QPCR analysis showed no significant
fold change in ZmCPS3 transcript abundance in roots exposed
to F.v. or F.g. as compared to wounded controls (Figure 6). On
average, gene expression of ZmCPS4 was significantly decreased
in response to F.v. and F.g. elicitation as compared to control
plants.

To examine ZmCPS3 and ZmCPS4 gene expression in
response to abiotic stress, qPCR analyses were performed on two-
week-old roots of maize (var. Golden Queen) plants that were
exposed to 1 mM CuSOy treatment (as a proxy for oxidative
stress), previously shown to induce diterpenoid biosynthesis
(Mafu et al.,, 2018). All treatments were compared to a water-
treated control at each time point using the 2744t method in
which the control has a fold change of 1. Transcript levels of
ZmCPS3 in CuSOj4-treated roots did not differ significantly from
those observed in the roots of water-treated control plants at 2
and 4 h post treatment, but were significantly reduced at the
24 h post treatment time point (Figure 6) Conversely, ZmCPS4
showed increased transcript abundance in CuSOy-treated roots
as early as 2 h post treatment and with an up to sixfold change
at 4 h, before decreasing again after 12 h, with a peak of sixfold
increase in transcript abundance (Figure 6).

DISCUSSION

Rapidly increasing biotic and abiotic pressures can overcome
the natural defense systems of plants, leading to substantial
harvest losses in major food crops (Chakraborty and Newton,
2011; de Sassi and Tylianakis, 2012). Given the proven
protective properties of crop-specific diterpenoid arsenals, a
deeper knowledge of their biosynthesis and biological functions
may aid new solutions to optimize crop stress resilience traits
and mitigate yield loss (Schmelz et al., 2014). Elucidation of
the enzyme activities of ZmCPS3 and ZmCPS4 completes the
functional range of the maize class II diTPS family, which
controls the early committed reactions responsible for the
diversity of maize diterpenoid pathways.

Advances in the discovery and mechanistic analysis of
diTPSs across the plant kingdom increasingly enable the
prediction of diTPS functions (Zerbe and Bohlmann, 2015), as
exemplified here for ZmCPS3 and ZmCPS4. However, accurate
computational annotation of diTPS activities remains to be
constrained by the vast sequence and functional space of the
enzyme family, thus necessitating biochemical characterization.
Modular co-expression assays with an expanding catalog of
diTPSs of known substrate/product-specificity can be leveraged
for efficient diTPS functional analysis, and were applied in this
study for the identification of ZmCPS3 as a (4)-CPP synthase

and ZmCPS4 as an 8,13-CPP synthase (Figures 3, 4). While
absent in rice (Xu et al, 2007a), a (+)-CPP synthase has been
identified in wheat, where (+)-CPP can be further converted
by class I diTPSs to form labdane structures, such as pimara-
8,15-diene, abietadiene, and isopimara-7,15-diene (Wu et al,
2012; Zhou et al., 2012). While corresponding end-products and
physiological functions have yet to be discovered in maize and
wheat, the wide distribution of (+)-CPP-derived diterpenoids
in both angiosperm and gymnosperm species suggests roles
in stress defense (Keeling and Bohlmann, 2006b; Zhou et al.,
2012; Zerbe and Bohlmann, 2015). Similar to the recently
demonstrated accumulation and predicted defensive functions
of dolabralexins in maize roots (Mafu et al., 2018), a possible
function of ZmCPS3 in belowground stress responses could be
hypothesized based on the higher transcript abundance in roots
as compared to ZmCPS4, ZmANI, and ZmAN?2. However, the
observed lack of elicited ZmCPS3 expression in maize roots
in response to Fusarium infection or oxidative stress did not
support an inducible defense role for ZmCPS3-derived pathways
and metabolites. Although ZmCPS3 and its protein product
were more highly expressed in roots as compared to other
healthy tissues, its broad tissue- and development-wide presence
may suggest a possibly more constitutive function. Tissue-wide
expression levels of ZmCPS3 suggest a conceptual parallel to
the high constitutive levels of benzoxazinoid pathway enzymes
and metabolites in maize seedlings, which have been shown to
be important for the maize biotic and abiotic stress responses
(Ahmadetal.,2011; Wouters et al., 2016). The largely constitutive
and moderately inducible role is supported by a separate yet
related study, where ZmCPS3 transcript levels displayed an
approximately twofold accumulation in the leaves of a resistant
maize recombinant inbred line two weeks after challenge with
gray leaf spot (Cercospora zeina; Meyer et al., 2017).

In addition to the (+4)-CPP synthase ZmCPS3,
characterization of ZmCPS4 as an 8,13-CPP synthase adds
an uncommon scaffold to the diterpenoid network of maize
(Bensen et al., 1995; Harris et al., 2005; Schmelz et al., 2014).
Mechanistically, the proposed ZmCPS4-catalyzed reaction
will proceed through terminal deprotonation of the common
(+)-labda-13E-en-8-yl™ diphosphate intermediate at C-9 to
yield 8,13-CPP, as opposed to the more typical deprotonation
of the carbocation at the exocyclic C-17 methyl to form the
(4)-CPP or ent-CPP isomers (Peters, 2010). ZmCPS4-catalyzed
formation of LPP as a minor product will require hydroxylation
at C-8 of the (+)-labda-13E-en-8-yl™ diphosphate intermediate
(Falara et al., 2010; Caniard et al., 2012; Zerbe et al., 2012). Dual
product activity is rarely observed in class II diTPSs (Caniard
et al,, 2012). Lacking available ZmCPS4 maize mutants to enable
in planta gene function studies, it can only be speculated if LPP
represents a native ZmCPS4 product or results from a possibly
reduced enzyme activity in vitro that could cause a slower
conversion of the intermediary carbocation and thus facilitate
water quenching toward formation of LPP. Notably, an 8,13-CPP
synthase was also recently discovered in switchgrass, where the
enzyme was characterized as a single product class II diTPS
(Pelot et al., 2018). By contrast, an 8,13-CPP synthase function is
absent in rice and wheat (Schmelz et al., 2014). Although a gene
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FIGURE 6 | Transcript abundance of ZmCPS3 and ZmCPS4 under biotic and abiotic stress. Transcript abundance was measured by gPCR and is depicted as
average fold change (2~ 2 2% of the transcript abundance of ZmCPS3 (A) and ZmCPS4 (B) in Mo17 roots incision-inoculated with live conidia, separately with
Fusarium verticillioides (F.v.) and F. graminearum (F.g.). Plants treated by incision and application of water only were used as controls. Treatments occurred in
53-days-old plants with tissue harvests 7 days later (n = 4). Average fold change (22 2t of the transcript abundance of ZmCPS3 (C) and ZmCPS4 (D) in Golden
Queen roots treated with 1 mM CuSO,4 and sampled over 24 h as compared to a water-treated control (n = 3). A fold change of one is equal to no change from the
control. Transcript abundance was normalized to the maize internal reference gene EF7a. Error bars represent propagated standard error of the mean fold change of
the biological replicates. Asterisks indicate significant change compared to control with P-value < 0.05 as measured with two-tailed Student’s t-tests. A Dunnett’s
test was used for fungal treated samples to compare to the single wounded control.

loss in these species cannot be excluded, this selective presence
of 8,13-CPP synthases indicates the independent evolution of
this function in maize and switchgrass. Similar to ZmCPS3, no
pathogen-elicited gene expression was observed for ZmCPS4;
in fact, transcript abundance was significantly decreased in
response to Fusarium infection (Figure 6). This contrasts the
well-established pathogen-elicited gene expression of ZmAN2
(Harris et al., 2005; Schmelz et al., 2011; Christensen et al.,
2018; Mafu et al., 2018), and may suggest that ZmAN2-derived
pathways are the predominant inducible mediators of pathogen
defense responses (Schmelz et al, 2011; Mafu et al, 2018).
Conversely, CuSO4-induced expression of ZmCPS4 in roots
points to a possible role in belowground plant-environment
interactions as also proposed for kauralexins and dolabralexins
(Vaughan et al., 2015; Mafu et al., 2018) (Figure 6).

The identity of predominant pathway end-products derived
from (+)-CPP, 8,13-CPP, and possibly LPP, as well as their

corresponding roles in plant-environmental adaptation will
require further investigation and ultimately the generation and
analysis of defined genetic mutants in future studies. Currently,
the biochemical characterization of ZmCPS3 and ZmCPS4
expands the known chemical landscape surrounding maize
diterpenoid metabolism and completes the characterization of
predicted class IT diTPSs in the maize genome. Modular pathway
networks composed of class II and class I diTPSs are likely
operating in maize to convert the ZmCPS3 and/or ZmCPS4
products into a broader spectrum of specialized diterpenoids.
In vitro formation of several labdane-type diterpenoids through
the sequential activity of ZmKSL4, but not the ent-kaurene
synthase ZmKSL3, with ZmCPS3 and ZmCPS4 support this
hypothesis. However, no (4)-CPP, 8,13-CPP or LPP derivatives
have yet been demonstrated in maize and the biological role of
ZmCPS3/4 pathway branches has to be demonstrated in planta.
Nevertheless, functional knowledge of all maize class IT diTPSs
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will now enable a detailed investigation of modular diterpenoid-
metabolic pathway branches in maize that are formed by class II
diTPSs and known or thus far uncharacterized class I diTPSs as
the biochemical foundation for maize diterpenoid diversity. Such
insight can be of substantial value to elucidate and ultimately
harness the genetic basis of crop stress resilience (Schmelz et al.,
2014; Jez et al., 2016).
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