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a b s t r a c t

Projection methods provide an appealing way to construct reduced-order models of large-scale linear
dynamical systems: they are intuitivelymotivated and fairly easy to compute. Unfortunately, the resulting
reducedmodels need not inherit the stability of the original system. Howmany unstablemodes can these
reduced models have? This note investigates this question, using theory originally motivated by iterative
methods for linear algebraic systems and eigenvalue problems, and illustrating the theory with a number
of small examples. From these results follow rigorous upper bounds on the number of unstable modes
in reduced models generated via orthogonal projection, for both continuous- and discrete-time systems.
Can anything be learned from the unstable modes in reduced-order models? Several examples illustrate
how such instability can helpfully signal transient growth in the original system.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Reduced-order models are an enabling technology for simula-
tion and design. One seeks simple low-order models that mimic
the dynamics of a system with a high-dimensional state space.
Asymptotic stability is themost fundamental property the reduced
system should capture, but several popular algorithms can con-
struct unstable reduced-order models for stable systems.

In this note, we investigate the potential instability of reduced-
order models (ROMs) derived from projection methods. For sim-
plicity of presentation, consider the standard continuous-time,
single-input, single-output (SISO) linear system

ẋ(t) = Ax(t) + bu(t) (1)
y(t) = c∗x(t) + du(t); (2)

here A ∈ Cn×n, b, c ∈ Cn×1, and d ∈ C (·∗ denotes the
conjugate-transpose). For details about projection-based reduced-
order modeling, see, e.g., [1].

Orthogonal projection algorithms restrict the state to evolve in
the k-dimensional subspace V ⊂ Cn, then close the system by
imposing a Galerkin condition: the reduced system’s misfit should
be orthogonal to the subspace V. While the choice of V is crucial to
the quality and properties of the resulting ROM,many of the results
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we discuss apply to any choice of V (including V derived from
moment-matching reduction ofmulti-input, multi-output (MIMO)
systems).

Let the columns of V ∈ Cn×k form an orthonormal basis for
V, so V∗V = I. To reduce the dimension of the system (1)–(2),
approximate x(t) ≈ V̂x(t) ∈ V. One cannot simply replace x(t)
by Vx̂(t) in (1), since in general AVx̂(t) + bu(t) ̸∈ V. To obtain a
well-determined equation, impose the Galerkin condition

V∗

(
V ˙̂x(t) −

(
AV̂x(t) + bu(t)

))
= 0, (3)

which yields the reduced system

˙̂x(t) = (V∗AV)̂x(t) + (V∗b)u(t) (4)
ŷ(t) = (c∗V)̂x(t) + du(t). (5)

(Oblique projection methods impose the orthogonality in (3)
against a different subspace; see Section 6 for details.)

For an effective ROM, one seeks a subspace V of smallest pos-
sible dimension k for which the reduced output ŷ(t) mimics the
true output y(t), i.e., to make ∥y − ŷ∥ small in an appropriate
norm. TakingV to be a Krylov subspace gives particularly appealing
properties, but the framework we describe also applies to the
Galerkin proper orthogonal decomposition (POD) method (see,
e.g., [2,3]) applied to a linear system; one might extrapolate some
insight about the behavior of POD for nonlinear systems.
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1.1. Moment-matching projection

The degree-k Krylov subspace generated by the matrix A ∈

Cn×n and vector b ∈ Cn is

Kk(A, b) = span{b,Ab, . . . ,Ak−1b}. (6)

Under mild conditions, dim(Kk(A, b)) = k. If we take V =

Kk(A, b) and let V have orthonormal columns, then the resulting
ROM matches the first k moments of the original model:

c∗Asb = (c∗V)(V∗AV)s(V∗b), s = 0, . . . , k − 1.

That is, the first k terms of the Taylor expansion of the transfer
function

H(z) := c∗(zI − A)−1b

match those of the reduced transfer function

Ĥ(z) := (Vc)∗(zI − V∗AV)−1(V∗b)

when expanded about z = ∞ [1, Section 11.2]. To better capture
the frequency response about some finite point µ ∈ C, one can
instead select

V = Kk((µI − A)−1, b)

to match moments at µ. (The oblique projection method based
on the bi-Lanczos method addressed in Section 6 gives ROMs that
match twice as many moments as these orthogonal projection
Krylov methods, but this extra measure of accuracy can come at
the cost of numerical challenges and additional unstable modes.)

This elegant moment matching gives a compelling motivation
for Krylov projection methods, but these techniques have a crucial
weakness: even when the matrix A is stable (all eigenvalues in the
left half-plane), the reduced model V∗AV can have eigenvalues in
the right half-plane: the original system is asymptotically stable
(all solutions to ẋ(t) = Ax(t) converge to zero), but the ROM
supports solutions that diverge as t → ∞.

In this note we investigate this phenomenon, drawing on re-
sults that have been developed to explain the behavior of iter-
ative methods for the solution of linear algebraic systems and
eigenvalue problems. After reviewing spectral properties associ-
ated with transient dynamics in Section 2, in Sections 3 and 4
we give upper bounds on the number of unstable eigenvalues the
reduced matrix V∗AV can have for continuous- and discrete-time
systems. Sections 5 and 6 describe adversarial constructions that
can producemany unstablemodes for orthogonal and oblique pro-
jection methods. Throughout these sections, we illustrate theory
with toy examples that are easy to analyze.

Are unstable modes merely a scourge? In Section 7 we argue
that unstable modes can actually give valuable insight about the
transient behavior of the original system, and efforts to tame these
unstable modes can result in stable ROMs that fail to accurately
model the short-term behavior of the original system.

Throughout, we use ej to denote the jth column of the identity
matrix (whose dimension should be clear from the context), and,
unless noted otherwise, ∥ · ∥ to denote the vector 2-norm and the
associated matrix norm.

2. Spectral preliminaries

Since we seek to understand the asymptotic and transient
behavior of dynamical systems (both full- and reduced-ordermod-
els), we review some helpful quantities associated with the spec-
trum. For more detailed descriptions and illustrative examples,
see [4].

Denote the spectrum (set of eigenvalues) of A by

σ (A) := {λ1, . . . , λn}.

Two scalar quantities dictate the asymptotic stability of
continuous- and discrete-time systems, the spectral abscissa α(A)
and the spectral radius ρ(A):

α(A) := max
λ∈σ (A)

Re λ, ρ(A) := max
λ∈σ (A)

|λ|.

The numerical range (or field of values)

W (A) := {v∗Av : v ∈ Cn, ∥v∥ = 1} (7)

is a closed, convex subset ofC that containsσ (A); for details, see [5,
Chapter 1]. We denote its maximal real extent and magnitude as
the numerical abscissa ω(A) and the numerical radius ν(A):

ω(A) := max
z∈W (A)

Re z, ν(A) := max
z∈W (A)

|z|. (8)

For any ε > 0, the ε-pseudospectrum of A,

σε(A) := {z ∈ C : ∥(zI − A)−1
∥ > 1/ε}

= {z ∈ σ (A + E) for some E ∈ Cn×nwith ∥E∥ < ε},

contains σ (A), but also potentially points that are a distance much
greater than ε from the spectrum. To analyze transient behavior of
solutions to ẋ(t) = Ax(t), we can use the ε-pseudospectral abscissa
αε(A) and the ε-pseudospectral radius ρε(A):

αε(A) := sup z ∈ σε(A)Re z, ρε(A) := sup
z∈σε (A)

|z|. (9)

A theorem of Stone (see [4, eq. (17.9)]) shows that the
ε-pseudospectrum cannot be more than ε larger than the numeri-
cal range:

σε(A) ⊆ W (A) + ∆ε,

where ∆ε = {z ∈ C : |z| < ε} is the open ball of radius ε.
(The definition of σε(A) permits general perturbations E ∈

Cn×n. If A is real valued, A ∈ Rn×n, might one gain insight by
restricting perturbations to E ∈ Rn×n? This question motivates
the study of structured pseudospectra, or spectral value sets [6–8].
Considering only real perturbations can significantly reduce the set
σε(A), but cannot improve the condition number of any eigenvalue
bymore than a factor of 1/

√
2 [9]. For analyzing transient behavior

of a linear system, Example (49.9) in [4] shows that complex
perturbations are necessary to reveal the potential for transient
growth of real-valued linear systems.)

We seek to use the sets σ (A), W (A), and σε(A) to gain insight
into projection-based ROMs. A class of matrices is worth singling
out for their clean properties: a matrix is normal provided A∗A =

AA∗. Equivalently, a normal matrix has a unitary basis of eigenvec-
tors. This latter property makes it easy to show that

A normal H⇒

{
W (A) = convex hull of σ (A);
σε(A) = σ (A) + ∆ε.

(Hermitian (A = A∗), skew-Hermitian (A = −A∗), and unitary
(A∗A = I) matrices are all normal.) We will refer to the ‘‘departure
from normality’’ as a gauge of how far a matrix is from the set of
normal matrices.

2.1. Potential for unstable modes

Weshall say that a continuous-time system is stable (i.e., asymp-
totically stable) provided

α(A) < 0,

i.e.,σ (A) is contained in the open left half of the complex plane. This
condition implies that all solutions x(t) = etAx(0) to ẋ(t) = Ax(t)
converge to zero as t → ∞. Similarly, a discrete-time system is
stable provided

ρ(A) < 1,
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i.e., σ (A) is contained in the open unit disk, so all solutions xk =

Akx0 to xk+1 = Axk converge to zero as k → ∞.
Where can eigenvalues of V∗AV fall, relative to these spec-

tral quantities associated with A? We begin with a fundamen-
tal property of non-Hermitian eigenvalue approximation; cf. [5,
Prop. 1.2.13], [10, Thm. 3.1].

Proposition 1. Suppose the columns of V ∈ Cn×k are orthonormal.
Then

σ (V∗AV) ⊆ W (A), (10)

and so any θ ∈ σ (V∗AV)must satisfy

Re θ ≤ ω(A), |θ | ≤ ν(A).

The proof of (10) is simple: if θ ∈ σ (V∗AV), there exists a unit
vector y such that (V∗AV)y = θ y. Then ∥Vy∥2

= ∥y∥2
= y∗y = 1

since V has orthonormal columns, and

(Vy)∗A(Vy) = y∗V∗AVy = θ y∗y = θ;

use the definition (7) to conclude that θ ∈ W (A).
It follows that if W (A) is contained in the left half-plane

(i.e., ω(A) < 0), then V∗AV is guaranteed to be stable. All stable
normal matrices satisfy this property: if σ (A) is contained in the
left half-plane, so too is its convex hull, which equals W (A) for
normal A.

Proposition 2. If A is stable and normal, then V∗AV is stable for any
choice of the subspace V.

Unfortunately, for many interesting stable models we find that
ω(A) > 0. These are the matrices in which we are primarily
concerned here.

2.2. Transient behavior

The numerical abscissa ω(A) does not simply bound the right-
most extent of θ ∈ σ (V∗AV), as in Proposition 1; it also signals
whether solutions etAx(0) to ẋ(t) = Ax(t) can initially exhibit
transient growth [4, Chapter 17]:

max
∥x(0)∥=1

d
dt

∥x(t)∥
⏐⏐⏐⏐
t=0

=
d
dt

∥etA∥
⏐⏐⏐⏐
t=0

= ω(A). (11)

The possibility for stable systems to grow on transient time scales
has important physical implications, especially for systems that
arise as linearizations of nonlinear systems; see [4, Part V] for
examples from fluid dynamics, and Section 7 for an example in-
volving a nonlinear heat equation.

The formula (11) based on the numerical range describes the
system’s performance near t = 0; pseudospectra give insight into
the maximum transient growth. The simplest result gives a lower
bound [4, Theorem 15.4]:

sup
t≥0

∥etA∥ ≥
αε(A, E)

ε

for all ε > 0. The sets W (A) and σε(A) generalize to matrix
pencils, informing the transient dynamics of differential–algebraic
equations and descriptor systems [11].

3. An upper bound on unstable modes for orthogonal projec-
tion ROMs (continuous time case)

Let A be a stable matrix with eigenvalues λ1, . . . , λn all satisfy-
ing Re λj < 0, and let

V∗AV ∈ Ck×k

denote an order-k ROM constructed via orthogonal projection.
The columns of V ∈ Cn×k are orthonormal, but we make no as-
sumptions about the projection subspace range(V); it could derive
from a Krylov method, POD, or any other algorithm. For example,
while we introduced moment matching model reduction for SISO
systems, the results in this section also apply to moment matching
for MIMO systems of the form

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),

where range(V) = range([B, AB, . . . ,Aℓ−1B]) is a block Krylov
subspace of dimension k.

We begin with a simple example that shows howW (A) can ex-
tend into the right half-plane, evenwhenA is stable. TheHermitian
part of A,

H :=
1
2 (A + A∗),

plays a critical role in stability theory. Even when a non-Hermitian
A is stable, H need not be. For example, for

A =

[
−1 4
0 −1

]
, H =

[
−1 2
2 −1

]
,

giving

σ (A) = {−1,−1}, σ (H) = {−3,+1};

and hence H is not stable despite the stability of A.
Since H is Hermitian, its eigenvalues are real. Label them in

decreasing order as

µ1 ≥ µ2 ≥ · · · ≥ µn.

Notice that µ1 = ω(A), the numerical abscissa (8) that describes
the rightmost extent of the numerical rangeW (A). To see this, take
any z ∈ W (A), for which there must exist some unit vector v ∈ Cn

such that z = v∗Av. Then

Re z =
z + z
2

= v∗

(
A + A∗

2

)
v = v∗Hv.

Thus the real part of any z in the numerical range of A is a Rayleigh
quotient for H. By the variational characterization of eigenvalues
of Hermitian matrices,

µn ≤ Re z ≤ µ1,

with equality attained when v is an eigenvector of H associated
with µn or µ1; see, e.g., [12, Theorem 4.2.6].

Via (11), the rightmost eigenvalue of H gives insight into the
initial behavior of solutions to ẋ(t) = Ax(t). Only recently has it
been appreciated that the interior eigenvalues of H help bound the
eigenvalues of V∗AV. We first state a result from [13, Theorem 2.1],
which was developed to support convergence analysis for the
restarted Arnoldi method for computing eigenvalues of large ma-
trices. Theorem 1 establishes vertical strips in the complex plane
where eigenvalues ofV∗AVmust fall.We follow the statementwith
a small example to illustrate its application.

Theorem 1. Denote the eigenvalues of V∗AV ∈ Ck×k by θ1, . . . , θk,
labeled by decreasing real part:

Re θ1 ≥ Re θ2 ≥ · · · ≥ Re θk.

Let M±j denote the arithmetic mean of the j largest and smallest
eigenvalues of H,

Mj :=
µ1 + · · · + µj

j
, 1 ≤ j ≤ n,

M−j :=
µn−j+1 + · · · + µn

j
, 1 ≤ j ≤ n,
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Fig. 1. Illustration of Theorem 1 applied to the matrix (13) in Example 1. The blue dots denote σ (A); the solid oval-shaped curve in the complex plane is the boundary of the
numerical range W (A); the dashed red line shows the imaginary axis. The theorem ensures that the eigenvalue θj of V∗AV falls within the associated jth gray subregion of
W (A). Since only the θ1 and θ2 regions extend into the right half-plane, V∗AV can have at most two unstable modes.

so M1 ≥ M2 ≥ · · · ≥ Mn and M−1 ≤ M−2 ≤ · · · ≤ M−n. Then for
1 ≤ j ≤ k,

M−k+j−1 ≤ Re θj ≤ Mj. (12)

Thus, the jth rightmost eigenvalue θj of V∗AV must fall in the
intersection ofW (A) with the vertical strip

M−k+j−1 ≤ Re z ≤ Mj.

Example 1. Consider the tridiagonal Toeplitz matrix

A =

⎡⎢⎢⎢⎢⎣
−2 2

1/2 −2
. . .

. . .
. . . 2
1/2 −2

⎤⎥⎥⎥⎥⎦ ∈ C8×8. (13)

This matrix is stable, with negative eigenvalues2

σ (A) = {−2 + 2 cos(jπ/9) : j = 1, . . . , 8}.

However,W (A) extends into the right half-plane; indeed,

σ (H) = {−2 +
5
2 cos(jπ/9) : j = 1, . . . , 8},

and so µ1 = ω(A) = 0.3492 . . . . Suppose we seek a ROM of
dimension k = 4. To five digits, we compute

M1 = 0.34923, M−1 = −4.34923,
M2 = 0.13217, M−2 = −4.13217,
M3 = −0.16189, M−3 = −3.83811,
M4 = −0.51288, M−4 = −3.48712.

Since only two values of Mj are positive, Theorem 1 guarantees
that no more than two eigenvalues of V∗AV can be in the right half-
plane. Fig. 1 illustrates W (A) (bounded by the oval curve), with
shaded regions indicatingwhere Theorem 1 permits θj to fall. Since
M1,M2 > 0, the theorem permits θ1, θ2 to be in the right half-
plane; sinceM3 < 0, all other eigenvalues θj for j > 2must be in the
left half-plane. (Computational experiments yield rare examples
where θ1 and θ2 = θ1 fall in the right half-plane.)

2 For eigenvalues of tridiagonal Toeplitz matrices, see [14, p. 59].

Corollary 1. Given the notation of Theorem 1, let p denote the largest
integer such that Mp ≥ 0, taking p = 0 if M1 < 0.

The orthogonal projection ROM V∗AV can never have more than p
unstable modes (i.e., eigenvalues with nonnegative real part).

Theorem 1 and Corollary 1 need not be sharp; they only give an
upper bound on the maximal number of unstable modes. We have
let A and V have general complex entries. Additional assumptions
on these matrices could lead to sharper bounds on the eigenvalues
of V∗AV. Most basically, if A and V have real entries, then complex
eigenvalues of V∗AVmust occur in conjugate pairs.

The following theorem uses the eigenvalues {µj} of the Hermi-
tian partA to get a lower boundon themaximal number of unstable
modes.

Theorem 2. Let q denote the number of positive eigenvalues of
H =

1
2 (A + A∗), with 0 ≤ q ≤ n.

If q ≥ 1, there exists a q-dimensional subspace of Cn, spanned by
the orthonormal columns of V ∈ Cn×q, such that all eigenvalues of
V∗AV are in the open right half-plane.

Proof. The proof follows from an explicit construction. Once again
denote the eigenvalues of H by µ1 ≥ µ2 ≥ · · · ≥ µn; label the
associated orthonormal eigenvectors by v1, v2, . . . , vn. Construct
the projection basis via

V := [v1 v2 · · · vq] ∈ Cn×q,

with V∗V = I. We seek to show that V∗AV ∈ Cq×q has q
positive eigenvalues. Each θ ∈ σ (V∗AV) has a unit eigenvector
y = [y1 · · · yq]T ∈ Cq with V∗AVy = θ y. Notice that

Vy =

q∑
j=1

yjvj

and

y∗V∗AVy = θ y∗y = θ.
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Use these expressions to compute the real part of θ :

Re θ =
θ + θ

2
=

1
2
y∗V∗(A + A∗)Vy

= (Vy)∗H(Vy) =

q∑
j=1

µj|yj|2,

where we have used the orthonormality of the eigenvector vj of H
for this last step. Since µ1 ≥ · · · ≥ µq > 0,

Re θ =

q∑
j=1

µj|yj|2 ≥ µq

q∑
j=1

|yj|2 = µq > 0.

Thus there exists V ∈ Cn×q with orthonormal columns for which
all q eigenvalues of V∗AV are positive. ■

This theorem suggests one way to design orthogonal projection
subspaces V that yield ROMs with unstable modes, when the Her-
mitian part of A has positive eigenvalues. In Section 5, we shall see
a different approach that takes V to be a Krylov subspace.

4. An upper bound on unstable modes for orthogonal projec-
tion ROMs (discrete time case)

A bound akin to Corollary 1 holds for orthogonal projection
ROMs for the discrete-time system

xk+1 = Axk + buk (14)
yk+1 = c∗xk + duk. (15)

Again let the columns of V ∈ Cn×k form an orthonormal basis for
the subspace V. Now assume that A is stable in the discrete-time
sense, i.e., the spectral radius ρ(A) is less than one. What can be
said of the spectrum of V∗AV?

In Section 3, arithmetic means of the eigenvalues of the Hermi-
tian part of A bounded the real parts of the eigenvalues of V∗AV.
Now, geometric means of the singular values of A will bound the
magnitudes of the eigenvalues of V∗AV.

Let s1, . . . , sn denote the singular values of A. We recall the
following result from [13, Theorem 2.3].

Theorem 3. Denote the eigenvalues of V∗AV ∈ Ck×k by θ1, . . . , θk,
labeled by decreasing magnitude:

|θ1| ≥ |θ2| ≥ · · · ≥ |θk|.

Let Gj denote the geometric mean of the j largest singular values of A,

Gj :=
(
s1 · · · sj

)1/j
, 1 ≤ j ≤ n. (16)

Then

|θj| ≤ Gj, 1 ≤ j ≤ n.

This theorem immediately gives a bound on the number of
unstable modes in a discrete-time ROM generated via orthogonal
projection.

Corollary 2. Given the notation of Theorem 3, let p denote the largest
index for which Gj ≥ 1, taking p = 0 if G1 < 1.

The orthogonal projection ROM V∗AV for the discrete-time sys-
tem (14)–(15) can never havemore than p unstablemodes (i.e., eigen-
values with magnitude at least one).

Example 2. To illustrate the bounds in Theorem 3 and Corollary 2,
consider the stable matrix

A =

⎡⎢⎢⎢⎢⎢⎣
1/2 γ

1/8 1/2 γ 2

1/8
. . .

. . .

. . . 1/2 γ n−1

1/8 1/2

⎤⎥⎥⎥⎥⎥⎦ (17)

with γ = 3/4 and dimension n = 128. This matrix is stable, with
ρ(A) = 0.94822 . . . , but the numerical range extends beyond the
unit disk, with the numerical radiusµ(A) = 1.09127 . . . .What can
be said of the stability of associated ROMs?

Label the eigenvalues of V∗AV ∈ Ck×k as θ1, . . . , θk, ordered by
decreasing magnitude:

|θ1| ≥ |θ2| ≥ · · · ≥ |θk|.

For each of these eigenvalues of V∗AVwe know

θj ∈ W (A) and |θj| ≤ Gj.

Fig. 2 shows the regions

Ωj := W (A) ∩ {z ∈ C : |z| ≤ Gj}

for j = 1, . . . , 4. By the monotonicity of the Gj values, these sets
are nested:

Ωk ⊆ · · · ⊆ Ω2 ⊆ Ω1.

To five digits, we compute

G1 = 1.13227
G2 = 0.99258
G3 = 0.90029
G4 = 0.83738.

SinceW (A) extends beyond the unit circle, it is possible that |θ1| >

1. However, since G2 < 1, Corollary 2 ensures that all other
eigenvalues θ2, . . . , θk of V∗AV must be contained within the unit
disk: V∗AV can have at most one unstable mode.

5. Orthogonal projection: adversarial construction

The last two sections describe how, for a given A, one can
get rigorous limits on the number of unstable modes in a ROM
constructed using orthogonal projection from a generic subspace.
Here we describe a construction for probing extreme limits of
instability, provided one is content to only fix the eigenvalues of A
but let the departure from normality vary. This result was proved
byDuintjer Tebbens andMeurant [15, Corollary 2.3], a contribution
to the convergence theory for Arnoldi’s algorithm for computing
eigenvalues; it builds on earlier work of Greenbaum, Pták, and
Strakos [16,17].

Theorem 4. Let Σ = {λ1, . . . , λn} ⊂ C denote a collection of
desired eigenvalues, and specify any values for

Σ1 := {θ
(1)
1 };

Σ2 := {θ
(2)
1 , θ

(2)
2 };

Σ3 := {θ
(3)
1 , θ

(3)
2 , θ

(3)
3 };

...

Σn−1 := {θ
(n−1)
1 , θ

(n−1)
2 , . . . , θ

(n−1)
n−1 }.

There exists a matrix A ∈ Cn×n and a vector b ∈ Cn such that

σ (A) = Σ = {λ1, . . . , λn}
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Fig. 2. Illustration of Theorem 3 and Corollary 2 applied to the matrix (17). In each plot, the black oval shows the boundary ofW (A); the gray region shows Ωj , which must
contain θj; the blue dots show the eigenvalues of A, and the red dashed line shows the boundary of the unit disk. Since Ωj is contained in the unit disk for j > 1, Corollary 2
ensures V∗AV has at most one unstable mode.

and, for k = 1, . . . , n − 1,

σ (V∗

kAVk) = Σk = {θ
(k)
1 , . . . , θ

(k)
k },

where the columns of Vk form an orthonormal basis for the Krylov
subspace range(Vk) = Kk(A, b).

We can use this theorem (and its constructive proof) to build
stable A and corresponding b for which all eigenvalues of the or-
thogonal projection ROMs V∗

kAVk from the Krylov subspace Kk(A, b)
fall at any desired location in the right half-plane, for k = 1, . . . , n−1,
despite the fact that these ROMs all match k moments. The next
example illustrates this point.

Example 3. Using the construction described by Duintjer Tebbens
and Meurant [15, Proposition 2.1], we form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 −362880
1 2 0 0 0 0 0 −1451520

1 3 0 0 0 0 −1693440
1 4 0 0 0 −846720

1 5 0 0 −211680
1 6 0 −28224

1 7 −2016
1 −64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix Awas constructed to have the stable spectrum

σ (A) = {−1,−2, −3, −4, −5, −6, −7, −8}.

The form of A and b makes it easy to write down the associated
Krylov subspace,

range(Vk) = Kk(A, b) = span{e1, . . . , ek},

so that V∗

kAVk is the k × k principal submatrix of A. Since these
submatrices are lower triangular, one can easily read off their
eigenvalues:

σ (V∗

kAVk) = {1, . . . , k}.

Though the kth order ROM matches k moments of the stable
system, all k modes are unstable. Fig. 3 contrasts these unstable
modes with the stable eigenvalues of A.

Fig. 3. Comparison of the eigenvalues of A (blue dots, in the left half-plane) to
those of V∗

kAVk of order k = 1, . . . , 7 for the system in Example 3, generated using
orthogonal projection onto Krylov subspaces. These ROMs are entirely unstable,
even through the kth order ROM matches k moments of the original system.

This construction can deliver such startling results because we
only specify the eigenvalues of A. One might suspect that the A
this construction producesmight have a significant departure from
normality, corresponding to transient growthof the dynamical sys-
tem and eigenvalue instability. Indeed, Fig. 4 confirms this depar-
ture from normality. The numerical range W (A) extends beyond
106 into the right half-plane (ω(A) ≈ 1.211× 106), signaling rapid
growth of ∥etA∥ for small t; see (11). The ε-pseudospectra reveal
that A is close to an unstable system: since σε(A) extends into the
right half-plane for ε = 10−4, there exist matrices E ∈ C8×8 with
∥E∥ < 10−4 that make A + E unstable.

In short, this pathological example corresponds to a special
A with unusual dynamics and a fragile spectrum. (Our Σ and
Σk are inspired by an ill-conditioned pole placement example of
Mehrmann and Xu [19, Example 2].)
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Fig. 4. The numerical rangeW (A) (top) and ε-pseudospectra σε(A) (bottom) for the
stable A from Example 3. SinceW (A) extends far into the right half-plane, solutions
to ẋ(t) = Ax(t) can exhibit significant transient growth before asymptotic decay.
In the bottom plot (computed using EigTool [18]), the lines show the boundaries of
σε(A), with colors corresponding to log10(ε). For ε = 10−4 , σε(A) clearly extends
into the right half-plane: there exist nearby matrices A + E that are unstable, with
∥E∥ < 10−4 . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

6. Oblique projection: adversarial construction

Like the orthogonal projection methods addressed in the pre-
vious sections, oblique projection methods approximate the true
state vector x(t) ≈ V̂x(t) ∈ V, for some k-dimensional subspace
range(V) = V. Oblique projection methods replace the orthogo-
nality constraint (3) with the Petrov–Galerkin condition

W∗

(
V ˙̂x(t) −

(
AVx̂(t) + bu(t)

))
= 0, (18)

where range(W) = W is some (generally different) k-dimensional
subspace. The bases for V and W stored in the columns of V and
W are now constructed to be biorthogonal: W∗V = I. The Petrov–
Galerkin constraint (18) gives the reduced system

˙̂x(t) = (W∗AV) x̂(t) + (W∗b)u(t). (19)

The balanced truncation method (see, e.g., [1, Chapter 7], [20,
Chapter 7]) fits this template, and generates models that are guar-
anteed to preserve stability. However, to compute the balancing
biorthogonal bases V and W one must solve two Lyapunov matrix
equations (typically at considerable computation expense, though
algorithmic improvements make this increasingly tractable for
large-scale problems; see, e.g., [21–24]).

The bi-Lanczos algorithm provides an inexpensive alternative
for constructing oblique projection models. This method has the
advantage that the biorthogonal bases can be computed using

three-term vector recurrences that only require multiplication by
A and A∗ to construct biorthogonal bases forKk(A, b) andKk(A∗, c)
(that form the columns of V andW).

The resulting order-k bi-Lanczos ROM matches 2k moments
of the transfer function, while orthogonal projection onto the
Krylov subspace Kk(A, b) produces a ROM that only matches k
moments [1, Section 11.2]. Moreover, the three-term recurrence
behind bi-Lanczos makes the bases V and W quicker to compute
than the orthonormal basis for V required by the orthogonal pro-
jectionmethod (which uses long recurrences in the Gram–Schmidt
process).

Despite these advantages, the bi-Lanczos method often suffers
from significant numerical instability. While the bases that form
the columns of V and W are biorthogonal, the columns of these
two matrices might themselves be quite ill-conditioned bases for
Kk(A, b) and Kk(A∗, c). In extreme cases, the method can break
down. More often the iterations come close to failure, exhibiting
numerical instabilities; see, e.g., [25]. The problem is apparent even
when k = 1. Suppose that c∗b = 0, as could easily occur in a
physical system where the input occurs at a point far from the
outputmeasurement. In this case there exist no biorthogonal bases
for V = K1(A, b) = span(b) and W = K1(A∗, c) = span(c).

When the bi-Lanczos procedure succeeds without breakdown,
it produces the factorizations

AVk = VkTk + γkvk+1e
∗

k (20a)

A∗Wk = WkT
∗

k + βkwk+1e
∗

k; (20b)

premultiplying (20a) by W∗

k and using the biorthogonality of the
bases yields

W∗

kAVk = Tk =

⎡⎢⎢⎢⎢⎣
α1 β1

γ1 α2
. . .

. . .
. . . βk−1

γk−1 αk

⎤⎥⎥⎥⎥⎦ ∈ Ck×k.

The tridiagonal structure is inherited from the three-term recur-
rence relations at the heart of the bi-Lanczos process. Indeed, the
jth columns of Eqs. (20a)–(20b) give

γjvj+1 = Avj − αjvj − βj−1vj−1, (21a)

βjwj+1 = A∗wj − αjwj − γj−1wj−1 (21b)

for j = 1, . . . , k, with β0 = γ0 = 0 and v0 = w0 = 0. (We assume
γj ∈ R, a natural choice in bi-Lanczos codes.)

6.1. Greenbaum’s theorem

Few concrete results are known about the spectra of ROMs gen-
erated using the bi-Lanczos process. The most substantial insight
comes from Greenbaum [26, Theorem 3] (motivated by the study
of bi-Lanczos-based iterative methods for solving Ax = b). We
will interpret this result in the context ofmoment-matchingmodel
reduction.

Suppose we are given a system of order n,

ẋ(t) = Ax(t) + bu(t),

for which we seek a ROM of order k ≤ n/2. (The output vector c
will be constructed later.)

Choose any parameters

α1, . . . , αk, (22)

β1, . . . , βk−1, (23)
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Fig. 5. Comparison of the eigenvalues of A (blue dots) in the left half-plane to those
of the ROMs of order k = 1, . . . , 8 from Example 4, generated using the bi-Lanczos
algorithm thatmatches 2kmoments. Despite the fact thatA is stable andHermitian,
all of these ROMs are highly unstable. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

and construct γ1, . . . , γk−1 by running the recurrence

v̂j+1 := Avj − αjvj − βj−1vj−1 (24a)

γj := ∥̂vj+1∥ (24b)

vj+1 := v̂j+1/γj, (24c)

for j = 1, . . . , k, with v1 = b/∥b∥, v0 = 0, and β0 = 0; this
recurrence is obviously meant to mimic (21a).

Theorem 5. Consider the parameters {αj}
k
j=1, {βj}

k−1
j=1 , and {γj}

k
j=1

from (22), (23), and (24b), and the vectors v1, . . . , vk+1 from (24),
with k ≤ n/2. Suppose c ∈ Cn satisfies

c ⊥ span{v2, . . . , vk+1,Avk+1, . . . ,Ak−1vk+1}. (25)

Then either the bi-Lanczos process breaks down, or it runs to comple-
tion and creates the ROM

W∗

kAVk =

⎡⎢⎢⎢⎢⎣
α1 β1

γ1 α2
. . .

. . .
. . . βk−1

γk−1 αk

⎤⎥⎥⎥⎥⎦ ∈ Ck×k.

The cases of breakdown in Theorem 5 correspond, for example,
to scenarios where βj = 0 or γj = 0, since these values are used
to normalize wj+1 and vj+1 in the Lanczos algorithm. (We shall
not concern ourselves with look-ahead procedures (see, e.g., [25])
here, which can provide a work-around to many instances of
breakdown.)

As Greenbaum evocatively describes it, Theorem 5 essentially
says that the bi-Lanczos process can be viewed as executing an
arbitrary recurrence for the first n/2 steps, provided one is free to
select an appropriate left-starting vector c. Since these recurrence
coefficients are essential elements of the resulting ROM, Theorem5
suggests a way to design cases where benign choices of A (even
stable, normal or Hermitian matrices) lead to unstable ROMs. The
next example gives an extreme illustration.

Example 4. Consider a stable continuous-time system with Her-
mitian matrix

A =

⎡⎢⎢⎢⎢⎣
−2 1

1 −2
. . .

. . .
. . . 1
1 −2

⎤⎥⎥⎥⎥⎦ ∈ C16×16,

and input vector b = [1, 0, . . . , 0]T ∈ C16. The eigenvalues of A
are all negative real numbers:

σ (A) =

{
−2 + 2 cos

(kπ
17

)
: k = 1, . . . , 16

}
.

Since A is Hermitian, W (A) is the convex hull of the spectrum,
and any orthogonal projection method must produce a stable ROM.
Greenbaum’s theorem shows that oblique projection methods can
produce much more exotic results.

Suppose we seek a ROM of order k = 8, and specify the bi-
Lanczos recurrence parameters

α1 = · · · = α8 = 2,
β1 = · · · = β7 = 1.

(These parameterswere selected to give a reduction thatwas likely
to be unstable.) From the three-term recurrence (24) we compute
(to five digits)

γ1 = 4.12311, γ2 = 3.68474,
γ3 = 4.12603, γ4 = 4.31536,
γ5 = 4.43571, γ6 = 4.52257,
γ7 = 4.58628.

The vector c is then constructed, consistent with Theorem 5, by
orthogonally projectingAb onto the orthogonal complement of the
span in (25).

Fig. 5 shows the eigenvalues of the matrix W∗

kAVk from the
resulting ROM for k = 1, . . . , 8. Despite the fact thatA is Hermitian
and stable, each of the models of order k = 1, . . . , 8 is unstable;
e.g., the ROMs of order k = 7 and k = 8 both have five unstable
modes.

In closing this section, we emphasize a fundamental distinction
between the adversarial construction in Theorem 4 for orthogonal
projection methods, and its counterpart in Theorem 5 for oblique
projection. In the orthogonal case, the user can only specify the
eigenvalues of A; the construction obtains pathological results by
building A with large departure from normality, along with a
corresponding b. In the oblique case, the user supplies the entire
matrix A and input vector b. The construction in no way influences
the departure of A from normality; it achieves its ends only by
designing the output vector c. Thus the oblique construction is
more troubling, as it can produce startling results for apparently
benign A.

7. The unsung merits of unstable ROMs

Conventionally, an unstable ROM seems to be a poor approxi-
mation to a stable dynamical system, regardless of its other virtues
(e.g., transfer functions that match moments). Missing the asymp-
totic character of the model is a fundamental shortcoming. Before
dismissing unstable ROMs entirely, one should note that they can
still give insight into the original system, especially regarding tran-
sient dynamics. We warn that efforts to suppress the instability
can have the unintended consequence of compromising transient
accuracy to obtain long-term qualitative agreement. We illustrate
these points with two examples.

Example 5.
This example begins with a benchmark problem for the control

of a flutter condition in a Boeing B-767 aircraft, contributed by
Anderson, Ly, and Liu to the collection [28]. This 55 × 55 ma-
trix, call it A0, is unstable, having a complex-conjugate pair of
eigenvalues in the right half-plane. Burke, Lewis, and Overton [29]
used an eigenvalue optimization algorithm to design a low-rank
perturbation that stabilizesA0. It is this stableA thatwe investigate
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Fig. 6. Evolution of a solution x(t) to ẋ(t) = Ax(t) for the Boeing B-767 matrix in
Example 5 (top), and the analogous plot for the solution operator etA (bottom). The
unstable ROM provides a much more accurate impression of the dynamics at early
t than does the stabilized model (both of order k = 20).

here; we will refer to it as the ‘‘original model’’ when comparing it
to the ROMs we derive from it.

This A has spectral abscissa α(A) ≈ −0.07877, but the nu-
merical range W (A) extends far into the right half-plane, with
numerical abscissa

ω(A) ≈ 8.4560 × 106.

As evident from (11), solutions to ẋ(t) = Ax(t) must initially
exhibit strong growth, although the system is asymptotically sta-
ble; Fig. 6 provides confirmation. The top plot in Fig. 7 shows
ε-pseudospectra of A, which were previously investigated in [4,
Chapter 15].

It suffices to simply consider ẋ(t) = Ax(t) here, rather than the
full input–output system (1)–(2). We let the initial condition

x(0) := x0 = [1, 1, . . . , 1]T/
√
55 ∈ C55

play the role that the input vectorb normally doeswhen construct-
ing Krylov-based ROMs.

We select the dimension k = 20 for our ROMs. (The qualitative
results shown here are not particularly sensitive to the choice
of k and x0.) First we construct an orthogonal projection model
using the Krylov subspace V = Kk(A, x0). The resulting V∗AV is
unstable: it has 5 eigenvalues in the right half-plane, as can be
seen in the bottom-left plot in Fig. 7. Of course, as Fig. 6 shows, the
unstable model diverges from the stable model as t → ∞, but at
earlier times, it does an excellent job of signaling the system’s transient
growth on the scale of 103. Such growth could be significant for a
motivating application, e.g., warning that a linearizedmodelmight
be a poor approximation of an underlying nonlinear system.

Fig. 7. For the Boeing B-767 model, σε(A) for the full order model (top), compared
to the unstable ROM (bottom left) and its stabilized variant (bottom right), both
with k = 20. (All plots use ε = 10−1, 10−1.25, . . . , 10−4 , and were computed with
Eigtool [18].) The stabilization procedure repels eigenvalues near the origin and re-
duces the departure from normality. (These models have a few eigenvalues beyond
these axes, which do not have a major influence on the transient dynamics.) For
a general investigation of the use of orthogonal Krylov projection to approximate
pseudospectra, see [27].

Still, the instability in V∗AV is unappealing, and one might
naturally prefer a stable ROM. To obtain stability, we follow a
general approach of Grimme, Sorensen, and van Dooren (in the
context of the bi-Lanczos algorithm [30]). To build an orthonor-
mal basis for Kk(A, x0) we use the Arnoldi algorithm [31]. After
constructing the order-20 unstable model, we restart the Arnoldi
algorithm [32], replacing the starting vector x0 with a ‘‘filtered’’
starting vectorφ1(A)x0, whereφ1 is the degree-5monic polynomial
with roots at the unstable eigenvalues of V∗AV. We then use V =

Kk(A, φ1(A)x0) to construct a new ROM, which now only has only
3 unstable modes. Repeat the process: let the cubic polynomial
φ2 have roots at the 3 new unstable modes, and add φ2(A) to the
filter. The next space V = Kk(A, φ2(A)φ1(A)x0) has just 1 unstable
mode, whichwemake the root of the linear polynomial φ3. Finally,
V = Kk(A, Φ(A)x0) delivers a stable order-20 ROM, where Φ(z) :=

φ3(z)φ2(z)φ1(z) has roots at all the previously encountered unsta-
ble modes.

The relevant eigenvalues of this new stabilized ROMcan be seen
in the bottom-right plot of Fig. 7. Notice that the polynomial filter,
with its roots at the unstable eigenvalues (including the 5 unstable
modes in the bottom-left plot of Fig. 7), effectively deters the ROM
from having modes near the origin. Moreover, the stabilization
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Fig. 8. Evolution of a solution u(x, t) to the nonlinear heat model and its lineariza-
tion from Example 6 (top), and the analogous plot for the solution operator etA for
the linearized operator and two linear ROMs derived from it (bottom). Again, the
unstable ROM provides a more accurate impression of the dynamics at early t than
does the stabilized model (both of order k = 40).

process has suppressed the departure from normality, as reflected
in a diminished numerical abscissa:

original model: ω(A) ≈ 8.45603 × 106;
unstable ROM: ω(V∗AV) ≈ 2.24872 × 106;
stabilized ROM: ω(V∗AV) ≈ 8.90589 × 104.

The stabilized systemstill exhibits transient growth for some initial
conditions (see the bottom plot of Fig. 6), but far less than the
original model.

Example 6. Consider the nonlinear heat equation

ut (x, t) = uxx(x, t) + ux(x, t) +
1
8u(x, t) + u3(x, t), (26)

posed on the domain x ∈ (0, ℓ) ⊂ R and t ≥ 0, with homogeneous
Dirichlet boundary conditions u(0, t) = u(ℓ, t) = 0. We are
interested in initial conditions u0(x) = u(x, 0) ∈ H1

0 (0, ℓ) that are
small in norm. Eq. (26) was studied by Sandstede and Scheel [33],
who analyzed stability properties of the trivial solution u ≡ 0 on
the finite domain x ∈ (0, ℓ) versus the infinite domains x ∈ (0, ∞)
and x ∈ (−∞, ∞). (On finite domains, sufficiently small initial
conditions u0 give solutions u(x, t) for which ∥u(·, t)∥H1

0 (0,ℓ)
→ 0

as t → ∞; in contrast, u ≡ 0 is unstable on the infinite domains
x ∈ (0, ∞) and x ∈ (−∞, ∞). This discrepancy suggests that
moderately small values of u0 can exhibit interesting behavior
on finite domains. Galkowski generalized this model, drawing a
connection between the dynamics and pseudospectra of the linear
part of the model [34].)

Fig. 9. For the linearized heat model, the rightmost part of σε(A) for the full order
discretization (top) and order k = 40 ROMs (middle and bottom). (All plots use the
same scale ε = 100, 10−0.5, . . . , 10−6 , and were computed with EigTool [18].) The
dashed black curves denote the boundaries of the numerical range; the stabilization
procedure drives both eigenvalues and W (V∗AV) too far to the left .

We take a domain of length ℓ = 30 and discretize the sys-
tem (26) using a Chebyshev pseudospectral collocation method,
based on codes and techniques from Trefethen [35]. Fig. 8 shows
the evolution of ∥u(·, t)∥L2(0,ℓ) for the initial condition

u0(x, t) = 10−5x(x − ℓ)(x − ℓ/2),

along with the solution of the analogous linear problem that omits
the u3 term in (26). The linear model is stable, but experiences
transient growth; this growth gradually increases the contribution
of the u3 term in the nonlinear model, leading to apparent diver-
gence. Fig. 9 shows σε(A) (in the L2(0, ℓ) norm) for this discretized,
linearized operator of order n = 127. To obtain a ROM for this lin-
earizedpart of the problem,we transformcoordinates so the vector
Euclidean norm approximates the L2(0, ℓ) norm, then compute the
associated Krylov orthogonal projection ROM. The resulting order
k = 40 ROM has a complex conjugate pair of unstable eigenvalues.
Following the stabilization procedure described in Example 5, one
iteration of the restarted Arnoldi method with a filtered starting
vector yields a stabilized model. As with Example 5, the unstable
ROM does a better job of capturing the transient growth of the lin-
ear system. While the unstable ROM does not qualitatively match
the asymptotic behavior of the linear system, it is more consistent
with the apparent divergence of the true nonlinear system.
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8. Conclusion

This note has collected a number of results that give insight into
the unstable modes that can arise in projection-based reduced-
order models. The illustrative examples have been intentionally
small in scale tomake simple points, but the implications for large-
scale systems are evident. While the bounds in Theorems 1 and 3
limit the location and number of unstablemodes, these bounds can
undoubtedly be sharpened with further analysis.
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