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Abstract

The exponential mechanism is a fundamental tool

of Differential Privacy (DP) due to its strong pri-

vacy guarantees and flexibility. We study its ex-

tension to settings with summaries based on infi-

nite dimensional outputs such as with functional

data analysis, shape analysis, and nonparametric

statistics. We show that the mechanism must be

designed with respect to a specific base measure

over the output space, such as a Gaussian process.

We provide a positive result that establishes a

Central Limit Theorem for the exponential mech-

anism quite broadly. We also provide a negative

result, showing that the magnitude of noise intro-

duced for privacy is asymptotically non-negligible

relative to the statistical estimation error. We de-

velop an ε-DP mechanism for functional princi-

pal component analysis, applicable in separable

Hilbert spaces, and demonstrate its performance

via simulations and applications to two datasets.

1. Introduction

Data privacy and security have become increasingly critical

to society as we continue to collect troves of highly individ-

ualized data. In the last decade, we have seen the emergence

of new tools and perspectives on data privacy such as Dif-

ferential Privacy (DP), introduced by Dwork et al. (2006),

which provides a rigorous and interpretable definition of pri-

vacy. Within the DP framework, numerous tools have been

developed that achieve DP in a variety of applications and

contexts, such as empirical risk minimization (Chaudhuri

et al., 2011; Kifer et al., 2012), linear and logistic regression

(Chaudhuri & Monteleoni, 2009; Zhang et al., 2012; Yu

et al., 2014; Sheffet, 2017; Awan & Slavković, 2018), hy-

pothesis testing (Vu & Slavkovic, 2009; Wang et al., 2015;
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Gaboardi et al., 2016; Awan & Slavković, 2018; Canonne

et al., 2018), network data (Karwa et al., 2016; Karwa &

Slavković, 2016), and density estimation (Wasserman &

Zhou, 2010), to name a few.

One of the most flexible and convenient DP tools is the

exponential mechanism, introduced by McSherry & Talwar

(2007), which often fits in naturally with estimation tech-

niques from statistics and machine learning. Many estima-

tion procedures can be described as maximizing a particular

objective or utility function:

b̂ = argmax
b∈Y

ξ(b), where ξ : Y → R,

or, equivalently, minimizing a loss function such as least

squares or a negative log-likelihood. The exponential mecha-

nism provides a sanitized version of b̂ by using the objective

function directly to add noise. The sanitized estimate, b̃, is

drawn from a density, f(b), that is proportional to

f(b) ∝ exp
{ ε

2∆
ξ(b)

}
,

where ∆ captures the sensitivity of the objective function to

small perturbations in the data, and ε is the desired privacy

budget (details in Sections 2 and 3). The idea behind this

mechanism is to assign higher density values to regions

with higher utility. The constant ∆/ε adjusts the spread of

the density; as the sensitivity increases or as the privacy

budget decreases (meaning a decreased disclosure risk), the

variability of b̃ increases. A major advantage of such an

approach is its use of the objective function from the non-

private estimate, b̂, which naturally promotes perturbations

with higher utility and discourages those with poor utility.

In this paper we study the exponential mechanism, espe-

cially as it pertains to functional data analysis (FDA), shape

analysis, and nonparametric statistics, where one has a (po-

tentially) infinite dimensional output. Advances in technol-

ogy and data collection as part of the ”big data era” have

made such structures more common across a wide vari-

ety of fields including economics, genetics, anthropology,

and kinesiology, to name a few. For instance, when study-

ing growth trends in children, one can more fully leverage

longitudinal information through FDA by treating growth

measurements as trajectories or functions rather than using



DP FPCA

cross-sectional or summary measurements. Such deeply

characterized information naturally leads to privacy con-

cerns, though there is currently very little work concerning

FDA and statistical data privacy.

We show that the exponential mechanism can be applied

in such settings, but requires a specified base measure over

the output space Y . We propose using a Gaussian process

as the base measure, as these distributions are well studied

and easy to implement. We derive a Central Limit Theorem

(CLT) for the exponential mechanism quite broadly, mean-

ing we establish asymptotic normality of the mechanism

and show it produces O(1/
√
n) noise. However, this result

also implies that the magnitude of the noise introduced for

privacy is of the same order as the statistical estimation

error. In particular, we show that in most natural settings

the exponential mechanism does not add an asymptotically

negligible noise, even in finite dimensions.

Using our approach, we develop an ε-DP mechanism for

functional principal component analysis (FPCA), extending

the method of Chaudhuri et al. (2013) to separable Hilbert

spaces. FPCA is one of the most widely used tools for FDA

largely due to the need for dimension reduction when ana-

lyzing infinite dimensional data and parameters. Addition-

ally, FPCA characterizes the dominant modes of variation

around an overall mean trend function that can be used for

exploratory analysis. We show that a Gaussian process base

measure enables us to modify the Gibbs sampling proce-

dure of Chaudhuri et al. (2013) to this functional setting.

We illustrate the performance of our private FPCA mechan-

sim through simulations, and apply our mechanism to both

the Berkeley growth study from the fda package (Ram-

say et al., 2018) and the Diffusion Tensory Imaging (DTI)

dataset from the refund package (Goldsmith et al., 2018).

Related Work: This work most directly builds off of Hall

et al. (2013) and Mirshani et al. (2017), which develop the

first techniques for producing fully functional releases under

DP. Another work in this direction is Alda & Rubinstein

(2017), in which they use Bernstein polynomial approxi-

mations to release functions. Recently, Smith et al. (2018)

applied the techniques of Hall et al. (2013) to privatize Gaus-

sian process regression. In their setup, they assume that the

predictors are public knowledge, and use this information

to carefully tailor the sanitization noise.

There have been a few accuracy bounds regarding exponen-

tial mechanism, which can be found in Section 3.4 of Dwork

& Roth (2014). However, these results bound the loss in

terms of the objective function, rather than in terms of the

private release. Wasserman & Zhou (2010) also develop

some accuracy bounds for the exponential mechanism, fo-

cusing on mean and density estimation. They show that in

the mean estimation problem, the exponential mechanism

introduces O(1/
√
n) noise. Both Wang et al. (2015) and

Foulds et al. (2016) demonstrate the asymptotic normality

of the exponential mechanism, when it is of the form of a

posterior distribution by using the tools of the Bernstein-von

Mises theorem. Our asymptotic analysis of the exponential

mechanism agrees in these settings, and extends this result

to a large class of objective functions.

Our application to FPCA extends the private PCA method

proposed in Chaudhuri et al. (2013). There have been other

approaches to private multivariate PCA. Blum et al. (2005)

were one of the first to develop a DP procedure for principal

components, which is a postprocessing of a noisy covariance

matrix. Dwork et al. (2014) follow the same approach and

develop bounds for this algorithm; they also develop an

online algorithm for private PCA. Jiang et al. (2013) modify

this approach by both introducing noise in the covariance

matrix as well as to the projection. Imtiaz & Sarwate (2016)

also add noise to the covariance matrix, but use a Wishart

distribution rather than normal or Laplace noise.

Organization: In Section 2, we review the necessary back-

ground of Differential Privacy. In Section 3, we recall the

exponential mechanism and give asymptotic results for the

performance of the exponential mechanism in both finite

and infinite dimensional settings. In Section 4 we show

how the exponential mechanism can be applied to produce

Functional Principal Components, and in Section 5 we give

a Gibbs sampler for this mechanism. In Section 6, we study

the performance of the private principal components on

both simulated data and on the Berkeley and DTI datasets.

Finally, we give our concluding remarks in Section 7. Tech-

nical details and proofs are in the Supplementary Material.

2. Differential Privacy

In this section we provide a brief overview of differential

privacy (DP). Throughout, we let X denote an arbitrary set,

which represents a particular population, and let Xn be the

n-fold Cartesian product, which represents the collection of

all possible samples that could be observed. We begin by

defining the Hamming Distance between two databases.

Definition 2.1 (Hamming Distance). The bivariate function

δ : Xn × Xn → Z, which maps δ(X,Y ) := #{i | Xi 6=
Yi}, is called the Hamming Distance on Xn.

It is easy to verify that δ is a metric on Xn. If δ(X,Y ) = 1
we call X and Y adjacent.

Since we are focused on infinite dimensional objects, we

define Differential Privacy broadly for any statistical sum-

mary. In particular, suppose that f : Xn → Y represents

a summary of Xn, and let F be a σ-algebra of subsets of

Y so that the pair (Y,F ) is a measurable space. From a

probabilistic perspective, a privacy mechanism is a family

of probability measures {µX : X ∈ Xn} over Y . We can

now define what we mean when we say the mechanism sat-
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isfies ε-DP. While DP was originally introduced in Dwork

et al. (2006), Definition 2.2 is similar to the versions given

in Wasserman & Zhou (2010) and Kifer & Lin (2010).

Definition 2.2 (Differential Privacy: Dwork et al., 2006). A

privacy mechanism {µX : X ∈ Xn} satisfies ε-Differential

Privacy (ε-DP) if for all B ∈ F and adjacent X,X ′ ∈ Xn,

µX(B) ≤ µX′(B) exp(ε).

From Definition 2.2, we see that, for an ε-DP mechanism,

µX and µX′ must be equivalent measures (i.e., they agree

on sets of measure zero) if δ(X,X ′) = 1. By transitivity,

it follows that µX and µY are equivalent measures for any

X,Y ∈ Xn. By the Radon-Nikodym Theorem, we can

always therefore interpret DP in terms of densities with

respect to a common base measure, ν (if needed, one can

always take ν = µX for an arbitrary X ∈ Xn).

Proposition 2.3. Let M = {µX | X ∈ Xn} be a privacy

mechanism over a measurable space (Y,F ). Then M

achieves ε-DP if and only if there exists a base measure

ν such that µX � ν for all X ∈ Xn and the densities

{fX : X ∈ Xn} (Radon-Nikodym derivatives) of the µX

(with respect to ν) satisfy

fX(b) ≤ fX′(b) exp(ε),

ν-almost everywhere and for all adjacent X,X ′ ∈ Xn.

Proof Sketch. The reverse direction is in Hall et al. (2013).

For the other direction, suppose that there exists a set B and

adjacent databases X,X ′ such that fX(b) > fX′(b) exp(ε)
for all b ∈ B and that ν(B) > 0. This implies that

µX(B) > exp(ε)µX′(B), a contradiction.

Interpreting DP in terms of densities is common in the DP

literature (e.g., Dwork & Roth, 2014; Kifer et al., 2012),

however, we could not find a reference for the precise state-

ment and proof, especially for the reverse implication.

3. Exponential Mechanism

One of the earliest mechanisms designed to satisfy ε-DP, is

the exponential mechanism, introduced by McSherry & Tal-

war (2007). It uses an objective function, which can be the

same objective function used for a (non-private) statistical

or machine learning analysis, making it especially easy to

link DP with existing inferential tools. A simple proof for

Proposition 3.1 can be found in McSherry & Talwar (2007).

Proposition 3.1 (Exponential Mechanism: McSherry &

Talwar, 2007). Let (Y,F , ν) be a measure space. Let {ξX :
Y → R | X ∈ Xn} be a collection of measurable functions.

We say that this collection has a finite sensitivity ∆ξ, if

|ξX(b)− ξX′(b)| ≤ ∆ξ < ∞,

for all adjacent X,X ′ and ν-almost all b. If∫
Y
exp(ξX(b)) dν(b) < ∞ for all X ∈ Xn, then the collec-

tion of probability measures {µX | X ∈ Xn} with densities

fX (with respect to ν) satisfying

fX(b) ∝ exp

[(
ε

2∆ξ

)
ξX(b)

]

satisfies ε-DP.

We call the set {ξX | X ∈ Xn} the Objective Function,

used in the exponential mechanism. Note that in Proposition

3.1, if ν is a finite measure, ∆(ξ) < ∞, and ξX(b) is

bounded above for all X ∈ X ′ and ν-almost all b, then one

immediately has
∫
exp(ξX(b)) dν(b) < ∞. We will exploit

this fact later on as our base measures in infinite dimensions

will actually be taken from Gaussian processes, not from

any form of Lebesgue measure.

The exponential mechanism offers a general approach to

building DP mechanisms, and in fact, a DP mechanism can

be expressed as an instantiation of the exponential mecha-

nism, by taking the objective function to be the log-density

of the mechanism (McSherry & Talwar, 2007). We remark

that the factor of 2 in the exponential mechanism can some-

times be removed (e.g., location families).

Since the solution to many statistical problems can be ex-

pressed as the optimizers of some expression, it is natural

to set the objective function in the exponential mechanism

to this expression. Often such expressions can be expressed

as empirical risks, such as the MLE/MAP estimate (Wang

et al., 2015), principal component analysis (Chaudhuri et al.,

2013), and quantiles of one-dimensional statistics (Smith,

2011). The following result shows that for objective func-

tions of such forms, the noise added by the exponential

mechanism is asymptotically normal.

The intuition for the conditions in Theorem 3.2 is to ensure

that the objective function has a unique maximizer, can be

well approximated by a quadratic form near its maximum,

and that the minimizers and objective functions converge to

a some well-behaved quantities.

Theorem 3.2 (Utility of Exp Mech). Assume the observed

record, X1, . . . , Xn, and corresponding sequence of objec-

tive functions ξn(b) := ξX(b), for b ∈ R
p satisfy

1. −n−1ξn(b) are twice differentiable convex functions

and there exists a finite α > 0 such that the eigenvalues

of −n−1ξn(b)
′′ are greater than α for all n and b ∈

R
p;

2. the minimizers satisfy b̂ → b? ∈ R
p and

−n−1ξn(b̂)
′′ → Σ−1 where Σ is a p× p positive defi-

nite matrix;

3. ξn has finite sensitivity ∆, which is constant in n.
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Assume the base measure has a bounded, differentiable den-

sity g(b) which is strictly positive in a neighborhood of b?.

Then the sanitized value b̃ drawn from the exponential mech-

anism with privacy parameter ε is asymptotically normal

√
n(b̃− b̂)

D→ Np

(
0,

(
2∆

ε

)
Σ

)
.

Proof Sketch. The proof is based on a second order Taylor

expansion of ξX(b) about b̂. The linear term vanishes, as

ξ′X(b̂) = 0, and the error term is o(1). In the limit, we are

left with the density of a normal distribution.

Theorem 3.2 shows that under common conditions (of-

ten satisfied by convex empirical risk functions, and log-

likelihoods), the noise added by the exponential mecha-

nism is of order O(1/
√
n). We know by the theory of

M-estimators and estimating equations (Hardin & Hilbe,

2002) that the non-private solution to the objective func-

tions b̂ also converges at rate O(1/
√
n). So, we have that

the use of the exponential mechanism in such cases pre-

serves the 1/
√
n convergence rate, but with a sub-optimal

asymptotic variance. This means that asymptotically, to

achieve the same performance as the non-private estima-

tor, the exponential mechanism requires k times as many

samples, where k is some constant larger than 1, depending

on ε and ∆. However, for many problems, it is possible

to construct DP mechanisms that only introduce O(1/n)
noise, thus having equivalent asymptotics to the non-private

estimator (e.g., Smith, 2011; Awan & Slavković, 2018).

Next, we extend Theorem 3.2 from R
p to Hilbert spaces.

However, we currently only consider base measures that are

Gaussian processes.

Theorem 3.3 (Utility of Exp Mech). Suppose that the ob-

served record, X1, . . . , Xn, and objective function ξX(b),
for b ∈ H satisfy

1. −n−1ξn(b) are twice differentiable convex functions

and there exists a finite α > 0 such that the eigenvalues

of −n−1ξn(b)
′′ are greater than α for all n and b ∈ H;

2. the minimizers satisfy b̂ → b? ∈ H and

−n−1ξn(b̂)
′′−1 → Σ where Σ is positive definite nu-

clear operator (and convergence is wrt this space);

3. ξn has finite sensitivity ∆, which is constant in n.

Assume the base measure is taken to be a Gaussian process,

ν ∼ NH(0, C), such that Σ−1C is Hilbert-Schmidt, Σ−1C
is bounded with respect to the Cameron-Martin space (CMS)

of C, and b̂ lies in the CMS of C for all n. Then the sanitized

estimate b̃ is asymptotically normal

√
n
(
b̃− b̂

)
D→ NH

(
0,

2∆

ε
Σ

)
.

Proof Sketch. The proof strategy is the same as for Theorem

3.3. However, care is taken to ensure that the approximating

densities, after the Taylor expansion, are probabilistically

equivalent to the base Gaussian process as otherwise the

densities are not well defined. Checking limits also becomes

more delicate since matrices are replaced with operators.

Remark 3.4. The requirement that Σ−1C is Hilbert-

Schmidt can be interpreted as requiring that the base mea-

sure be “smoother” than the asymptotic distribution of b̂, and

ensures the base measure places mass near b̂. The second

assumption concerning ξ′′X also implies that the sequence of

distributions is tight. In particular, if one assumed only that

Σ was bounded, then the sequence of measures need not be

tight and thus one does not get convergence in the “strong

topology” in H (Billingsley, 2013; Chen & White, 1998,

Remark 3.3). However, one could still obtain convergence

of properly normalized continuous linear functionals.

Example 3.5. Consider X1, . . . , Xn ∈ H are drawn iid

from a Gaussian process with mean µX and covariance

operator CX . Consider estimating µX using the smooth and

convex target function

−ξX(b) =

n∑

i=1

‖Xi − b‖2.

Assume that the ‖Xi‖ ≤ 1 and thus we need only consider

‖b‖ ≤ 1. In that case, the sensitivity is bounded by 4.

However, for this target function the exponential mechanism

will not be asymptotically Gaussian (in the strong topology).

If we consider the second derivative we have −ξ′′X(b) =
2nI, and thus (−ξ′′X(b)/n)−1 = (1/2)I , which is not a

nuclear operator in infinite dimensions. However, if instead

we consider the penalized version

−ξX(b) =

n∑

i=1

‖Xi − b‖2 + nλ‖b‖2Ω,

where Ω is a positive-definite nuclear operator and ‖b‖2Ω =
〈b,Ω−1b〉, then the sensitivity is the same, but the second

derivative is now −ξ′′X(b) = 2nI + 2nλΩ−1, whose eigen-

values are bounded from below, as required by Theorem 3.3.

In this case,

Σ =
(
2λΩ−1 + 2I

)−1
=

1

2
(λI +Ω)

−1
Ω,

which is nuclear as long as Ω is. By choosing a Gaussian

process base measure with mean zero, and covariance C
such that Σ−1C is Hilbert-Schmidt and bounded with re-

spect to the CMS of C, we have by Theorem 3.3 that the

noise from the exponential mechanism with privacy param-

eter ε is asymptotically a mean zero Gaussian process with

covariance 8
ε
Σ.
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We stress that, in finite samples, there is no issue regard-

ing privacy even when ξ′′X(b)−1 is not nuclear since we are

assuming the mechanism is defined using a probability dis-

tribution as the base measure. What the previous results and

this example illustrate is that there is a price to pay for using

such a flexible mechanism. In the “good” case, when the

assumptions of Theorem 3.3 are met, one has asymptotically

non-negligle noise, but in the ”bad” case, the noise can be

even larger, since the covariance operator can blow up.

4. DP Functional Principal Components

In this section, we apply the exponential mechanism to the

problem of private functional principal component analysis

(FPCA). Traditionally, one estimates the principal compo-

nents, PCs, by first estimating the covariance operator/ma-

trix and then using an eigen decomposition (Kokoszka &

Reimherr, 2017). Covariance operators reside in the Hilbert

space of Hilbert-Schmidt operators, meaning we can apply

Theorem 3.3 to obtain a sanitized covariance estimate and

its corresponding utility. Traditional eigenfunction inequal-

ities (Hsing & Eubank, 2015) can then be combined with

the post-processing inequality (Dwork & Roth, 2014) to

obtain corresponding results for the eigenfunctions. How-

ever, we take a different approach here based on Chaudhuri

et al. (2013), allowing us to sample the principal component

projection more directly. While the privacy guarantees carry

over, the utility gains over estimating the covariance directly

require a deeper analysis on the manifold of projection op-

erators, which we leave as an open problem.

Let (H, 〈·, ·〉) be a Hilbert Space. Let X ∈ Hn be such that

its components satisfy ‖Xi‖ ≤ 1 for all i = 1, . . . , n. Call

Ŝ(X) the k-dimensional subspace of H given by the span of

the first k principal components of X . Let P
Ŝ(X) : H → H

denote the projection operator of H onto Ŝ(X). We can

write P
Ŝ(X) as the solution to the optimization problem

P
Ŝ(X) = arg min

P∈Pk

n∑

i=1

‖Xi − PXi‖2, (1)

where Pk is the set of projection operators P : H → H of

rank k. Equivalently, we can write

P
Ŝ(X) = arg max

P∈Pk

n∑

i=1

‖PXi‖2.

More specifically, we develop a set of probability measures

M on Pk, indexed by Hn, which satisfy ε-DP, such that a

random element P from µX ∈ M is “close” to P
Ŝ(X).

Our approach follows that of Chaudhuri et al. (2013).

Our objective function is ξ : Xn × Pk → R, defined

by ξX(P ) =
∑n

i=1‖PXi‖2. Note that ∆ξ = 1, since

‖PXi‖2 ≤ ‖Xi‖2 ≤ 1 for any P ∈ Pk and any

i = 1, . . . , n. Since
∑n

i=1‖PXi‖2 ≤ n, for any proba-

bility measure ν on Pk, the class of densities on Pk with

respect to ν given by

fX(P ) ∝ exp

(
ε

2

n∑

i=1

‖PXi‖2
)
, satisfies ε-DP.

If H is finite dimensional, then Pk is a compact subset of

the space of linear operators (e.g. matrices when H = R
p).

In that case, there exists a uniform distribution on Pk. In

Chaudhuri et al. (2013), they implement the exponential

mechanism as above, with respect to the uniform distribu-

tion on Pk.

For arbitrary H, Pk is not compact, so we must find an-

other base measure on Pk. To understand our proposed

construction, we again consider the finite dimensional H.

Let P ∼ Unif(Pk), that is P is drawn from the uniform

distribution on Pk. Let V1, . . . , Vk
iid∼ N(0, I), be iid

multivariate normal with mean zero and identity covari-

ance matrix. Then P
d
= Projection(span(V1, . . . , Vk))

(since Vk is invariant under rotations). From this factor-

ization, a natural extension for arbitrary H becomes clear.

Let V1, . . . , Vk
iid∼ NH(0, C), be iid Gaussian processes

in H with zero mean and covariance operator C. Note

that C must be positive definite and nuclear, which ex-

cludes the identity when H is infinite dimensional (Bo-

gachev, 1998). We can also tailor C to instill certain

properties such as smoothness or periodicity. Then set

P = Projection(span(V1, . . . , Vk)). This procedure in-

duces in a probability measure on Pk, which we call ν.

Theorem 4.1. Let H be a real separable Hilbert Space and

Pk the collection of all k-dimensional projection operators

over H. Let ν be the probability measure over Pk induced

by the transformation Projection(span(V1, . . . , Vk)), where

Vi ∈ H are iid Gaussian process with mean 0 and covari-

ance operator C. Let X ∈ Hn be such that its components

satisfy ‖Xi‖ ≤ 1 for all i = 1, . . . , n. Let M be the class

of probability measures on Pk with densities

fX(P ) ∝ exp

(
ε

2

n∑

i=1

‖PXi‖2
)

with respect to ν. Then M satisfies ε-DP.

Theorem 4.2. Let H be a Hilbert Space, k < n be two

positive integers, and X ∈ Hn be such that its compo-

nents satisfy ‖Xi‖ ≤ 1 for all i = 1, . . . , n. Define M

as the class of probability measures on Hk with densities

fX(V1, . . . , Vk) proportional to

exp

(
ε

2

n∑

i=1

‖Projection(span(V1, . . . , Vk))Xi‖2
)

with respect to ν (the measure induced by the Gaussian

distribution Nk(0, C)) on Hk. Then M satisfies ε-DP.
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The proofs of Theorems 4.1 and 4.2 are simple applications

of Proposition 3.1, found in the Supplementary Materials.

Theorem 4.2 can be interpreted as outputting an arbitrary

basis for a k-dimensional subspace S̃ of H, which can then

be assembled into a projection operator.

Remark 4.3. Often, C can be interpreted as instilling some

particular structure on P or the Vi. For example, if H =
L2[0, 1], then C could be defined using the kernel of an

RKHS, chosen so that S̃ have a certain number of derivatives

(as many Sobelev spaces are RKHS as well (Berlinet &

Thomas-Agnan, 2011)), which is often a natural assumption.

5. PCA continued: Sampling

In the previous section, we developed a set of ε-DP probabil-

ity measures for arbitrary Hilbert Spaces. In this section we

specify an efficient method to sample from these distribu-

tions. As is common in FDA (Ramsay & Silverman, 2005;

Kokoszka & Reimherr, 2017), we use finite dimensional

approximations via basis expansions for computation.

Let b1, b2, . . . be an orthonormal basis for H. We will work

in the m-dimensional subspace Hm = span(b1, . . . , bm).
Given our observed values Xi ∈ H, call Xij = 〈Xi, bj〉 for

i = 1, . . . , n and j = 1, . . . ,m. Note that this is simply a

computational convenience as we have, by assmption, that

‖Xi‖2 =

∞∑

i=1

〈Xi, bj〉2 =

m∑

i=1

〈Xi, bj〉2 +
∞∑

i=m+1

〈Xi, bj〉2,

meaning that m can be selected such that an overwhelming

majority of the variation in the Xi is captured by b1, . . . , bm.

A subsequent FPCA would then substantially reduce the

dimension while controlling information loss. We arrange

these real values in an n×m matrix X = (Xij).

Next, let C be a nuclear covariance operator on H. Write

Cij = 〈bi, Cbj〉 for i, j = 1, . . . ,m. We put these val-

ues in an m × m matrix C = (Cij), which is a posi-

tive definite matrix in R
m×m. In this setup, we then draw

(V1, . . . , Vk) ∈ Hm. Call Vij = 〈Vi, bj〉, and arrange these

values into a real-valued matrix V = (Vij) We then draw

from the density f(V ), with respect to Lebesgue measure

on R
k×m, which is proportional to

exp
( ε
2
tr(X>XV (V >V )−1V > − V >C−1V ))

)
.

In fact, we can obtain a more convenient form for sampling.

Since we only need the span of V , we can condition on

the columns of V being orthonormal. The density f(V |
orthonormal), with respect to the uniform measure on the

set of orthonormal matrices in R
m×k, is proportional to

exp
( ε
2
tr
(
V >

(
X>X − C−1

)
V
))

,

Figure 1: Plot of 100 curves generated for the simulation.

(a) Average ratio of variance explained between the private
and non-private principal components.

(b) Average subspace norm of private principal components.

Figure 2: Average performance measurements in simulation

scenarios over sample sizes ranging from n = 100 to 1000.

Standard error bars are provided at each point.

which is an instance of the Matrix-Bingham-Von-Mises

distribution, for which an efficient Gibbs sampler is known

(Hoff, 2009; Hoff & Franks, 2018).

6. Numerical Studies

In this section we assess the numerical performance of the

private FPCA method, developed in Sections 4 and 5.

6.1. Simulation Study

For our simulation study, we generated data on a grid of 100
evenly spaced points on [0, 1] using the Karhunen-Loeve

expansion with Gaussian noise added:

Xi(tik) = µ(tik) +

p∑

j=1

1

j2
Uijuj(tik) + εik,

for i = 1, . . . , n, k = 1, . . . , 100. The uj(t) are the true

functional principal components, εik are independent errors

sampled from the Gaussian distribution N(0, 1), and scores

Uij are sampled from N(0, 0.1). Note that for each scenario

we re-scale the Xi so that ||Xi||2 < 1 for i = 1, ..., n.

The uj(t) are comprised of Fourier basis functions and to
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(a) One instance of the simulation where n = 500 and ε = 1.

(b) One instance of the simulation where n = 5000 and ε = 1

Figure 3: Comparisons between the private estimate, non-

private estimate, and true first functional principal compo-

nent. The last 100 Gibbs updates for the private estimate are

provided to demonstrate the variability of the mechanism.

fully explore the effectiveness of this approach, we vary the

sample size n, privacy budget ε, and repeat each scenario

10 times. Data is generated using p = 21 true components

and additional weights were placed on the fourth term in

the Fourier expansion, creating the overall shape shown in

Figure 1. We release only k = 1 components.

We also specify m, the number of orthonormal basis func-

tions bi, when restricting the functional observations to a

finite dimensional space and C, a nuclear covariance oper-

ator on H. It is common to take m to be some sufficiently

large value, usually around 40-50, so that results are not

sensitive to the truncation. For our simulation scenarios

we took m = 40 which explained, on average, more than

99% of variation in X . We chose C, to be a diagonal ma-

trix with Cii = i−3, which forces the Vi to be continuous.

Given that the data is periodic, we use the Fourier basis

functions as bi. Finally, we use the efficient Gibbs sampler

of the Matrix-Bingham-Von-Mises distribution (Hoff, 2009),

implemented in the rstiefel package (Hoff & Franks,

2018) in R. This requires a fixed number of iterations as

burn-in prior to starting the procedure. Following the com-

putational experiments in (Chaudhuri et al., 2013), we used

20,000 iterations and had similar convergence results.

We provide two measurements of performance to compare

the resulting space of orthogonal projection operators. The

first compares the ratio of variability accounted for between

the private and non-private estimates of the k functional

principal components. More explicitly,

0 ≤ ||XT P̃X||2F
||XT P̂X||2F

≤ 1,

where || · ||F is the Frobenius norm, P̃ is the projection onto

the span of V drawn from the mechanism in Theorem 4.2,

and P̂ the the non-private solution to (1).

The second measure gives an indication of how close the

range of P̃ is to P̂ :

0 ≤ 1

2
||P̃ − P̂ ||2F ≤ k.

If the range of P̃ and P̂ agree in h dimensions and are

orthogonal in k − h dimensions, then this measure gives

the value k − h. So this can be interpreted as roughly the

number of dimensions that P̃ and P̂ disagree.

We summarize the results in Figures 2a and 2b over a range

of sample size n and privacy budget ε. As expected, larger

sample sizes preserve utility (in terms of the two measure-

ments described previously) for stricter privacy require-

ments. Additionally, we plot a sanitized curve for the first

principal component with a sample size of n = 500, and

n = 5000, seen in Figures 3a and 3b. The last 100 Gibbs

updates are also shown to demonstrate the variability. Even

with a privacy budget of ε = 1 and relatively low sam-

ple size, the overall shape is captured, but the variance is

reduced when n = 5000.

6.2. Applications

We applied our private FPCA procedure to two data sets,

the Berkeley growth study from the fda package (Ramsay

et al., 2018), and Diffusion Tensor Imaging (DTI) from the

refund package (Goldsmith et al., 2018). The Berkeley

data has the heights of 93 children at 31 time points with

ages between 1-18. DTI gives fractional anisotropy (FA)

tract profiles for the corpus callosum (CCA) the right corti-

cospinal tract (RCST) for patients with Multiple Sclerosis

and for controls. We study the cca data, with 382 patients

measured at 93 equally spaced locations of the CCA.

Results are summarized in Tables 1 and 2 when releasing

1-3 principal components across a range of privacy budgets

and averaging the performance measurements over 100 rep-

etitions of our procedure. For each data set we selected the

Gaussian kernel for C with a smoothness parameter that

requires m = 5 eigenvalues to explain >99% of variation.

Its corresponding eigenfunctions were selected for the or-

thonormal basis bi. Our approach is more effective over

the DTI data set, which may be due to the true variation

explained by the non-private components. For DTI the cu-

mulative variation is .77, .86, and .93 for the top 1, 2, and 3

components respectively, while Berkeley has 0.82, 0.95, and

0.98. When things are too “simple”, necessary deviations

for privacy show more loss in variation explained compared

to the non-private estimates. Overall, this still demonstrates

the effectiveness of our procedure under different types of

real data with smaller sample sizes.
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Table 1: Average performance for private principal compo-

nents from the Berkeley growth and DTI data sets. Standard

errors are provided in parenthesis for reference.

No. of Components (k)

1 2 3

Berkeley Variance Ratio

1/8 0.264 (.024) 0.494 (.023) 0.672 (.020)

1/4 0.343 (.024) 0.523 (.023) 0.681 (.020)

1/2 0.408 (.025) 0.523 (.022) 0.729 (.019)

1 0.550 (.025) 0.680 (.018) 0.775 (.015)

2 0.743 (.018) 0.787 (.012) 0.855 (.010)

DTI (cca) Variance Ratio

1/8 0.372 (.025) 0.569 (.024) 0.727 (.018)

1/4 0.497 (.026) 0.676 (.021) 0.811 (.011)

1/2 0.726 (.020) 0.812 (.014) 0.876 (.009)

1 0.879 (.009) 0.885 (.007) 0.910 (.005)

2 0.933 (.006) 0.928 (.004) 0.939 (.003)

7. Discussion

In this paper, we studied the exponential mechanism in the

setting of separable Hilbert spaces. We showed that gen-

erally when the objective is an empirical risk function, the

exponential mechanism has a CLT implying that asymptot-

ically non-negligible noise is introduced. Since the expo-

nential mechanism is popularly used, this result demands

the following question: what properties of the objective

function guarantee asymptotically negligible noise?

Our asymptotic results extended those in (Wang et al., 2015),

which study posterior sampling to achieve DP. In particu-

lar, an exponential mechanism can always be viewed as a

posterior sample, but often related to a misspecified model.

Using this connection, there is a close relationship between

Bayesian limit theorems (such as Bernstein-Von Mises)

and Theorems 3.2/3.3. However, posterior CLTs often do

not hold in arbitrary Hilbert spaces, and the arguments are

very delicate (Freedman, 1999). For instance Castillo et al.

(2013) avoid densities by working with “nice” projections.

Furthermore, posterior CLTs usually require that the likeli-

hood is correct, whereas the exponential mechanism need

not correspond to a reasonable model. In contrast, Theorems

3.2/3.3 do not assume any model for the data.

Through our simulations and applications, we found that the

choice of C can have a significant impact on the result of

the private FPCA analysis. In particular, C can be rescaled

by any positive constant, which affects the smoothing but

does not change the interpretation in terms of number of

derivatives. While our approach requires that C is chosen

before seeing the data, it would be preferable to have a

method of learning C within the DP procedure. Future

Table 2: Average performance for private principal compo-

nents from the Berkeley growth and DTI data sets. Standard

errors are provided in parenthesis for reference.

No. of Components (k)

1 2 3

Berkeley Subspace Norm

1/8 0.776 (.025) 1.115 (.036) 1.100 (.034)

1/4 0.701 (.025) 1.046 (.035) 1.135 (.030)

1/2 0.633 (.027) 1.063 (.033) 1.066 (.030)

1 0.484 (.027) 0.883 (.031) 0.962 (.032)

2 0.275 (.020) 0.770 (.032) 0.938 (.035)

DTI (cca) Subspace Norm

1/8 0.679 (.026) 1.098 (.035) 1.074 (.030)

1/4 0.544 (.029) 0.976 (.027) 1.079 (.029)

1/2 0.296 (.021) 0.861 (.027) 0.982 (.030)

1 0.131 (.010) 0.770 (.026) 0.940 (.035)

2 0.073 (.006) 0.640 (.030) 0.758 (.035)

researchers should investigate effective methods of tuning

parameters under DP.

In the data applications, we found that our DP FPCA ap-

proach performs better when there is more variability in the

data. This may be because our measures of performance are

comparing the DP estimates to the non-private estimates,

and the variability hurts both. It would be worth while to

investigate this further to better understand how variability

in the data affects the performance of DP methods.

As we used a Gibbs sampler to draw approximate samples

from our exponential mechanism, it is possible that the

Markov chain has not properly mixed, and that the samples

are not from the correct distribution. While we know that

the Gibbs sampler converges rapidly (Hoff, 2009) and we

verified convergence using common heuristics, this is still a

potential privacy concern, as the sampling distribution may

not satisfy ε-DP. This is a problem often encountred when

sampling from a non-trivial exponential mechanism. It has

been noted that if the sample is drawn from a distribution

within a specified total variation of the ε-DP distribution,

then the sample satisfies (ε′, δ′)-DP for some ε′ and δ′ (see

Shen & Yu, 2013, Lemma 5.2 and Wang et al., 2015, Propo-

sition 3). Foulds et al. (2016) provide a different analysis,

measuring the privacy cost of Gibbs samplers in particu-

lar. Developing rigorous sampling tools for the exponential

mechanism is an open problem with on-going research.
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