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Abstract

Motivated by the rapid rise in statistical tools in

Functional Data Analysis, we consider the Gaus-

sian mechanism for achieving differential privacy

(DP) with parameter estimates taking values in

a, potentially infinite-dimensional, separable Ba-

nach space. Using classic results from probabil-

ity theory, we show how densities over function

spaces can be utilized to achieve the desired DP

bounds. This extends prior results of Hall et al.

(2013) to a much broader class of statistical esti-

mates and summaries, including “path level” sum-

maries, nonlinear functionals, and full function

releases. By focusing on Banach spaces, we pro-

vide a deeper picture of the challenges for privacy

with complex data, especially the role regulariza-

tion plays in balancing utility and privacy. Using

an application to penalized smoothing, we high-

light this balance in the context of mean function

estimation. Simulations and an application to dif-

fusion tensor imaging are briefly presented, with

extensive additions included in a supplement.

1. Introduction

New studies, surveys, and technologies are resulting in ever

richer and more informative data sets. Data being collected

as part of the “big data revolution” have dramatically ex-

panded the pace of scientific progress over the last several

decades, but often contain a significant amount of personal

or subject level information. These data and their corre-

sponding analyses present substantial challenges for pre-

serving privacy as researchers attempt to understand what

information can be publicly released without impeding sci-

entific advancement and policy making (Lane et al., 2014).

One type of big data that has been heavily researched in the

statistics community over the last two decades is functional

*Equal contribution 1Department of Statistics, Pennsylvania
State University, State College, PA, USA. Correspondence to:
Matthew Reimherr <mreimherr@psu.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

data, with the corresponding branch of statistics called func-

tional data analysis, FDA. FDA is concerned with conduct-

ing statistical inference on samples of functions, trajecto-

ries, surfaces, and other similar objects. Such tools have

become increasingly necessary as our data gathering tech-

nologies become more sophisticated. FDA methods have

proven very useful in a wide variety of fields including eco-

nomics, finance, genetics, geoscience, anthropology, and

kinesiology, to name only a few (Ramsay & Silverman,

2002; 2005; Ferraty & Romain, 2011; Horváth & Kokoszka,

2012; Kokoszka & Reimherr, 2017). Indeed, nearly any data

rich area of science will eventually come across applications

that are amenable to FDA techniques. However, functional

and other high dimensional data are also a rich source of

potentially personally identifiable information (Kulynych,

2002; Erlich & Narayanan, 2014; Schadt et al., 2012).

Related Work: To date, there has been very little work

concerning FDA and statistical data privacy, in either Statis-

tical Disclosure Limitation, SDL or Differential Privacy, DP.

SDL is the branch of statistics concerned with limiting iden-

tifying information in released data and summaries while

maintaining their utility for valid statistical inference, and

has a rich history for both methodological developments

and applications for “safe” release of altered (or masked)

microdata and tabular data (Dalenius, 1977; Rubin, 1993;

Willenborg & De Waal, 1996; Fienberg & Slavković, 2010;

Hundepool et al., 2012). DP has emerged from theoretical

computer science with a goal of designing privacy mecha-

nisms with mathematically provable disclosure risk (Dwork,

2006; Dwork et al., 2006b). Hall et al. (2013) provide the

most substantial contribution to statistical privacy with FDA

to date, working within the DP framework and the Gaus-

sian mechanism for releasing a finite number of point-wise

evaluations, with applications to kernel density estimation

and support vector machines. They provide a limiting argu-

ment that establishes DP for certain sets of functions. One

of the major findings of Hall et al. (2013) is the connec-

tion between DP and Reproducing Kernel Hilbert Spaces,

which we extend more broadly to Cameron-Martin Spaces.

Recently, Aldà & Rubinstein (2017) extended the work of

Hall et al. (2013) by considering a Laplace (instead of a

Gaussian) mechanism and focused on releasing an approx-

imation based on Bernstein polynomials, exploiting their

close connection to point-wise evaluation on a grid or mesh.
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Other related contributions include Alvim et al. (2018) who

consider privacy over abstract metric spaces assuming one

has a sanitized dataset, and Smith et al. (2018) who examine

how to best tailor the mechanism from Hall et al. (2013).

Our Contribution: In this work, we move beyond Hall

et al. (2013), Aldà & Rubinstein (2017) and Smith et al.

(2018) by developing a DP mechanism for functional data

much more broadly. We first show that the Gaussian mecha-

nism achieves DP for a large class of linear functionals and

then show that this mechanism offers seemingly complete

protection against any summary imaginable, covering any

“path level” summaries (such as integrals and derivatives),

nonlinear transformations, or even a full function release,

though the later is usually not computationally feasible with-

out some additional structure (e.g., continuous time Markov

chains). Such extensions are critical for working with trans-

formations that are not simple point wise evaluations, such

as basis expansions, norms, and derivatives or when the

objects exhibit complex nonlinear dynamics. We also pro-

vide an interesting negative result, that shows that not all

Gaussian noises are capable of achieving DP for a particular

summary, regardless of how the noise is scaled. In particular,

we introduce a concept called compatibility, and show that

if a particular summary is not compatible with a Gaussian

noise, then it is impossible to achieve DP with that particular

process. To establish the necessary probabilistic bounds for

DP we utilize functional densities via the Cameron-Martin

Theorem. This is also of independent interest in FDA as den-

sities for functional data are rarely utilized due to the lack

of a natural base measure (Berrendero et al., 2018). Most

attempts at utilizing or defining densities for functional data

involve some work-around to avoid working in infinite di-

mensions (Delaigle & Hall, 2010; Dai et al., 2017). Lastly,

we demonstrate these tools by considering mean function

estimation via penalized smoothing, where we also provide

guarantees on the utility of the sanitized estimate.

One of the major findings of this work is the interesting

connection between regularization and privacy. We show

that by slightly over smoothing, one can achieve DP with

substantially less noise, thus better preserving the utility of

the release. This is driven by the fact that a great deal of per-

sonal information can reside in the “higher frequencies” of a

functional parameter estimate, while the “lower frequencies”

are typically shared across subjects. To more fully illustrate

this point, we demonstrate how a cross-validation for choos-

ing smoothing parameters can be dramatically improved

when the cross-validation incorporates the function to be

released. Previous works concerning DP and regularization

have primarily focused on performing shrinkage regression

in a DP manner (e.g. Kifer et al., 2012; Chaudhuri et al.,

2011) and model selection with linear regression (e.g., Lei

et al. (2018)), not exploiting the regularization to recover

some utility as we propose here.

Organization: The remainder of the paper is organized as

follows. In Section 2 we give the necessary background on

DP and FDA. In Section 3 we present our chief results con-

cerning releasing a finite number of linear functionals fol-

lowed by full function and nonlinear releases. Section 4 has

an application on penalized smoothing for mean estimation,

which is especially amenable to our privacy mechanism. In

Section 5 simulations highlight the role of different param-

eters, while Section 6 contains an application of Diffusion

Tensor Imaging of Multiple Sclerosis patients. In Section 7

we discuss our results and present concluding remarks.

2. Background

2.1. Differential Privacy

Differential Privacy, DP, was introduced in Dwork et al.

(2006b). Let D be a (potentially infinite) population of

records, and denote by D the collection of all n-dimensional

subsets of D. Throughout we let D and D′ denote elements

of D. Notationally, we omit the dependence on n for ease

of exposition. We work with (ε, δ)-DP, where ε ∈ R
+ and

δ ∈ R
+ are parameters representing the privacy budget with

smaller values indicating stronger privacy; when δ = 0 one

has pure or ε-DP. DP is a property of the privacy mechanism

applied to the data summary, in this case θD := θ(D), prior

to release. For simplicity, we will denote the application of

this mechanism using a tilde; so θ̃D := θ̃(D) is the sanitized

version of θD. Probabilistically, we view θ̃D as a random

variable indexed by D (which is not treated as random).

This criteria can be defined for any probability space.

Definition 2.1 (Dwork et al. (2006b); Wasserman & Zhou

(2010)). Let θ : D → Ω, where (Ω,F) is some measurable

space. Let θ̃D be random variables, indexed by D, taking

values in Ω and representing the privacy mechanism. The

privacy mechanism is said to achieve (ε, δ)−DP if for any

two datasets, D and D′, which differ in only one record, we

have

P (θ̃D ∈ A) ≤ P (θ̃D′ ∈ A)eε + δ,

for any measurable set A ∈ F .

In Section 3.1 we take Ω = R
N , corresponding to releasing

N linear functionals of a functional object, while in 3.2 we

consider a real separable Banach space when Ω = B. In Hall

et al. (2013), they consider the space of real valued func-

tions over Rd, i.e., the product space Ω = R
T with T = R

d

(or some compact subset), by clever limiting arguments of

cylindrical sets; they thus considered DP over RT equipped

with the cylindrical σ-algebra (i.e. the smallest σ-algebra

that makes point-wise evaluations measurable). However, in

most cases we are actually interested in a subspace of RT ,

such as the space of continuous functions, square integrable

functions, differentiable functions, etc. It turns out that

the resulting σ-algebras (and thus the protection offered by
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DP) are in general quite different, and that working directly

with R
T can result is some fairly glaring holes. Chapter

7 of Billingsley (2008) or Section 3.1 of Bogachev (1998)

discuss these issues, but it is interesting to note that the

cylindrical σ-algebra on R
T is missing the sets of linear

functions, polynomials, constants, nondecreasing functions,

functions of bounded variation, differentiable functions, an-

alytic functions, continuous functions, functions continuous

at a given point, and Borel measurable functions. To avoid

this issue, we work directly with the Borel σ-algebra on

the function space of interest, which in our case is always

a Banach space, though in principle this approach can be

extended to handle any locally convex vector space.

At a high level, achieving (ε, δ)−DP means that the object

to be released changes relatively little if the sample on which

it is based is perturbed slightly. This change is related to

what Dwork (2006) called sensitivity. Another nice feature

is that if θ̃D achieves DP, then so does any measurable

transformation of it; see Dwork et al. (2006a;b) for the

original results, Wasserman & Zhou (2010) for its statistical

framework, and Dwork & Roth (2014) for a more recent

detailed review of relevant DP results.

2.2. Functional Data Analysis

Much of FDA is built upon the Hilbert space approach to

modeling, viewing data and/or parameters as elements of

a complete inner product space (most commonly L2[0, 1]
after possibly rescaling). However, we take a more gen-

eral approach by allowing for arbitrary separable Banach

spaces, i.e., a complete normed vector space, which will

dramatically increase the application of our results, while

requiring only a small amount of more technical work. All

of the concepts/tools from this section are classic probabil-

ity theory results that might be of interest in the FDA and

privacy communities. We refer the interested reader to Bo-

gachev (1998) for a nearly definitive treatment of Gaussian

measures. Throughout we let B denote a real separable Ba-

nach space; we always implicitly assume that B is equipped

with its Borel σ-algebra, which is the smallest σ-algebra

containing the open sets.

Let θ : D → B denote the particular summary of interest

and for notational ease, we define θD := θ(D). In Section

3.1 we consider the case where the aim is to release a finite

number of linear functionals of θD, whereas in Section

3.2 we consider releasing sanitized versions of the entire

function or some nonlinear transformation of it (such as a

norm or basis expansion).

The backbone of our privacy mechanism is the same as in

Hall et al. (2013), and is used extensively across the DP

literature. In particular, we add Gaussian noise to the sum-

mary and show how the noise can be calibrated to achieve

DP. A random process X ∈ B is called Gaussian if f(X) is

Gaussian in R, for any continuous linear functional f ∈ B
∗

(Bogachev, 1998, Def. 2.2.1). Throughout we use ∗ to de-

note the corresponding topological dual space. Equipped

with the norm ‖f‖B∗ = sup‖h‖B≤1 f(h), the dual space

is also a separable Banach space. The pair (B, ν) is often

called an abstract Weiner space (Bogachev, 1998, Sec. 3.9),

where ν is the probability measure over B induced by X .

Every Gaussian process is uniquely parametrized by a mean,

µ ∈ B, and a covariance operator C : B∗ → B, which for

every f ∈ B∗ satisfies

E[f(X)] = f(µ), C(f) = E[f(X − µ)(X − µ)]

(Laha & Rohatgi, 1979). One can equivalently identify C as

a bilinear form C(f, g) = Cov(f(X), g(X)), and we will

use both notations whenever convenient. It follows that

f(X) ∼ N (f(µ), C(f, f)),

for any f ∈ B
∗. We use the short hand notation N to denote

the Gaussian distribution over R, but include subscripts for

any other space, e.g., NB for B.

A key object concerning privacy will be the Cameron-

Martin space (Bogachev, 1998, Sec. 2.4) of X (or equiva-

lently of (B, ν)). Using C one can equip B
∗ with an inner

product

〈f, g〉K :=Cov(f(X), g(X))

=

∫

f(x− µ)g(x− µ) dν(x).

However, B∗ is no longer complete under this inner product;

denote the completed space as K. Finally, consider the set

of all h ∈ H ⊂ B such that the mapping, f → f(h), is

continuous in the K topology. Intuitively, these functions

are ones that are ”nicer” than arbitrary elements of B. In

particular, they must be regular enough to ensure that f(h)
is finite for any f ∈ K, which are much ”uglier” functionals

than those in B
∗. By the Riesz representation theorem, we

can associate each element h ∈ H with a Th ∈ K such

that 〈Th, f〉K = f(h). The set H equipped with the inner

product

〈x, y〉H = 〈Tx, Ty〉K,

is called the Cameron-Martin Space, and is itself a separable

Hilbert space. Note that, slightly less abstractly, we have

C(Th) = h (Bogachev, 1998, Lemma 2.4.1). One can

also view K as being a type of Reproducing Kernel Hilbert

Space (Bogachev, 1998, pg. 44) in a very broad sense since

we have 〈Th, f〉K = f(h), for any f ∈ K. In infinite

dimensions the Cameron-Martin space does not contain the

sample paths of X , but they can be thought of as ”living at

the boundary” of H. While the Cameron-Martin space is

introduced via Gaussian processes, it is determined entirely

by the covariance operator C.
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2.3. Hilbert Space Example

While working with a general Banach space allows for a

broader impact, it is also conceptually much more challeng-

ing. We can gain additional insight by considering what

happens when B = H is a Hilbert space. By the Riesz

Representation Theorem, which characterizes continuous

linear functionals, H is isomorphic to H
∗ so we can always

identify H
∗ with H and de-emphasize the linear functionals.

We can obtain very convenient expressions if we take a basis

{vi : i = 1, 2, . . . } of H consisting of the eigenfunctions of

C (recall in Hilbert spaces C must be nonnegative definite

and trace class). In this case we have that

C(vi) = λivi where λi > 0.

Assuming that that there are no zero eigenvalues (λi 6= 0),

define ei = λ
−1/2
i vi, then these form an orthonormal basis

of K as

〈ei, ej〉K = λ
−1/2
i λ

−1/2
j Cov(〈vi, X〉H, 〈vj , X〉H) = δij ,

where δij is 1 if i = j and zero otherwise. The space K
consists of all linear combinations of the ei whose coeffi-

cients are square summable. The inner product on Cameron-

Martin space, H, is given by

〈x, y〉H =
∑ 〈x, vi〉H〈y, vi〉H

λi
,

so that

H :=

{

x ∈ H :

∞
∑

i=1

〈x, vi〉
2
H

λi
< ∞

}

. (1)

In other words, those elements of H are the functions whose

coefficients in the vi basis decrease sufficiently quickly.

Note that the case where some λi are actually zero (meaning

C has a nontrivial null space) can be easily handled by

restricting H to the range of C.1

The space H is a Hilbert space when equipped with the

inner product 〈x, y〉H =
∑

λ−1

i 〈x, vi〉〈y, vi〉. When H =
L2[0, 1] and C is an integral operator with continuous ker-

nel c(t, s), then H is isomorphic to a Reproducing Kernel

Hilbert Space, RKHS (Berlinet & Thomas-Agnan, 2011)

(one has to be slightly careful as L2 consists of equivalence

classes), meaning ct(s) ∈ H for all t when viewed as a

function of s and 〈ct, f〉H = f(t) for all f ∈ H.

3. Privacy Enhanced Functional Data

In this section we present our main results. The mechanism

we use for guaranteeing DP is to add a Gaussian noise before

1In fact, such a game can be played quite broadly as any Radon
measure over a Fréchet space will concentrate on a reflexive sepa-
rable Banach space (Bogachev, 1998, Thm 3.6.5).

releasing θD; our release is based on a private version θ̃D =
θD+σZ, where Z is a Gaussian process and σ is a constant

determined by the sensitivity and privacy budget. However,

it turns out that not just any Gaussian noise, Z, can be used.

In particular, the options for choosing Z depend heavily on

the summary θ. This is made explicit in Definition 3.1.

Definition 3.1. We say that the summary θ is compatible

with a Gaussian noise, Z ∼ NB(0, C), if θD := θ(D)
resides in the Cameron-Martin space of Z for every D ∈ D.

Intuitively, this means that the noise must be “rougher” than

the summaries. Our next definition is a generalization of

one from Hall et al. (2013), which focused on functions in

RKHS only.

Definition 3.2. The global sensitivity of a summary θ, with

respect to a Gaussian noise Z ∼ NB(0, C) is given by

∆2 = sup
D′∼D

‖θD − θD′‖2H,

where D′ ∼ D means the two sets differ at one record only,

and ‖ · ‖H is the norm on the Cameron-Martin space of Z.

The global sensitivity (GS) is a central quantity in the theory

of DP; the amount of noise, σZ, depends directly on the

global sensitivity. Here we focus on the global sensitivity

that typically leads to the worst case definition of risk under

DP; for a detailed review of DP theory and concepts, includ-

ing other notions of “sensitivity”, such as local sensitivity,

see Dwork & Roth (2014). If a summary is not compatible

with a noise, then it is possible to make the global sensitivity

infinite, in which case no finite amount of noise would be

able to preserve privacy in the sense of satisfying DP. Inter-

estingly, sensitivity is computed with the Cameron-Martin

norm, which can be convenient as it is a Hilbert space norm

and avoids the original Banach space norm.

Theorem 3.1. If a summary θ is not compatible with a noise

Z ∼ NB(0, C) then for any σ > 0, θ̃D := θD + σZ will

not satisfy DP.

Proof. This is a direct consequence of the Cameron-Martin

Theorem, which characterizes the equivalence/orthogonality

of Gaussian measures. Two measures are said to be equiv-

alent if they agree on sets of measure zero and orthogonal

if they concentrate on disjoint sets. If the summary is not

compatible with the noise, then there exists a D ∼ D′ such

that ‖θD − θD′‖H = ∞, which implies that the distribu-

tions θ̃(D) and θ̃(D′) are orthogonal. Since the measures

are orthogonal, it means that there exists a set A such that

P (θ̃(D) ∈ A) = 1 and P (θ̃(D′) ∈ A) = 0, which means

that θ̃D is not differentially private for δ < 1.

Intuitively, if the summary is not compatible with the noise,

then one can pool even small amounts of information from



FDA Privacy

across an infinite number of dimensions to produce a disclo-

sure. An example where one would have ‖θD−θD′‖H = ∞
would be if B = L2[0, 1], θD only possessed one derivative,

but the paths of Z possessed two derivatives. However, we

stress that this is very specific to Gaussian processes; other

privacy mechanisms may have other forms of compatibility

and sensitivity that become critical in infinite dimensions.

3.1. Releasing Finite Projections

We begin with the comparatively simpler task of releas-

ing a finite vector of linear functionals of θD. In particu-

lar, we aim to release f(θD) = {f1(θ), . . . , fN (θD)}, for

fi ∈ K ⊃ B
∗ and some fixed N . While placed in a more

general context, the core concepts involved are the same as

in Hall et al. (2013) (they focused on point-wise evaluations,

which are continuous linear functionals over an appropriate

space). Since we are using the Cameron-Martin space, we

can actually release more than just continuous linear func-

tionals; we can release any functional from K, which is, in

general, much larger than B
∗.

Theorem 3.2. Assume θ is compatible with Z ∼ N (0, C),
ε ≤ 1, and define

θ̃D = θD + σZ with σ2 ≥
2 log(2/δ)

ε2
∆2.

Now define f(θD) = {f1(θ), . . . , fN (θD)} and f̃(θD) =
{f1(θ̃D), . . . , fN (θ̃D)}, for {fi ∈ K}Ni=1. Then f̃D
achieves (ε, δ)-DP in R

N .

Theorem 3.2 can be viewed as an extension of Hall et al.

(2013) who focus on point-wise releases. If B is taken to

be the space of continuous functions with an appropriate

topology, then Theorem 3.2 implies point-wise releases are

protected as well. However, this theorem allows the release

of any functional in K. This dramatically increases the

release options and applications as compared to Hall et al.

(2013) or Aldà & Rubinstein (2017).

3.2. Full Function and Nonlinear Releases

While Section 3.1 covers a number of important cases, it

does not cover all releases of potential interest. In particu-

lar, full function releases are not protected and neither are

nonlinear releases, such as norms or derivatives. A full

function release is not often practically possible. However

in some situations, such as continuous time Markov chains,

full paths can be completely summarized using a finite num-

ber of values, but these values are not simple point-wise

evaluations or linear projections and thus not covered under

Hall et al. (2006); Aldà & Rubinstein (2017) or our results

from Section 3.1. Still, there is a certain comfort in knowing

that one has a complete protection that holds regardless of

whatever special structures one might be able to exploit or

new computational tools that might become available. In

addition, one can obtain a great deal of insight by consid-

ering the infinite dimensional problem, as it highlights the

fundamental role smoothing plays when trying to maintain

utility while achieving DP.

To guarantee privacy for these types of releases, we need

to establish (ε, δ)-DP for the entire function, not just finite

projections. This means that in Definition 2.1, the space is

taken to be B, which is infinite dimensional. Previous works,

e.g., Dwork et al. (2014); Hall et al. (2013), establish the

probability inequalities as in Definition 2.1, using bounds

based on multivariate normal densities. This presents a seri-

ous problem for FDA and infinite dimensional spaces as it

becomes difficult to work with such objects (there is very

little FDA literature that does so). For example, Delaigle

& Hall (2010) define densities only for finite “directions”

of functional objects, and Bongiorno & Goia (2015) define

psuedo-densities by carefully controlling “small ball” prob-

abilities. Both works claim that for a functional object the

density “generally does not exist.” However, this turns out

to be a technically incorrect claim, while still often being

true in spirit. The correct statement is that, in general, it

is difficult to define a useful density for functional data. In

particular, to work with likelihood methods, a family of

probability measures should all have a density with respect

to the same base measure, which, at present, does not appear

to be possible in general for functional data.

The difficulty in defining densities in infinite-dimensional

spaces comes from the fact there is no common base or ref-

erence measure (Cuevas, 2014), such as Lebesgue measure,

however our goal in using densities is more straightforward.

We require densities (with respect to the same base mea-

sure) for the family of probability measures induced by

{θD + σZ : D ∈ D}, where Z is a mean zero Gaussian

process in B with covariance operator C. It turns out that

this is in fact possible because we are adding the exact same

type of noise to each element. We give the following lemma,

which is a rephrasing of the classic Cameron-Martin formula

(Bogachev, 1998, Corollary 2.4.3).

Lemma 3.1. Assume that the summary θ is compatible

with a noise Z. Denote by Q the probability measure over

B induced by σZ, and by {PD : D ∈ D} the family of

probability measures over B induced by θD + σZ. Then

every measure PD has a density over B with respect to Q,

which is given by

dPD

dQ
(x) = exp

{

−
1

2σ2

(

‖θD‖2H − 2TθD (x)
)

}

,

Q almost everywhere. Recall that θD = C(TθD ) and that

the density is unique up to a set of Q measure zero.

At this point we stress that the noise is chosen by the user; it

is not a property of the data. The primary hurdle for the user

is ensuring that the summary is compatible with the selected
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noise. As we will see in Section 4, one can accomplish this

by using specific estimators. Lemma 3.1 implies that, for

any Borel measurable set A ⊂ B we have

PD(A) =

∫

A

dPD

dQ
(x) dQ(x),

which we exploit in our proofs later on.

Now that we have a well defined density we can establish

differential privacy for entire functions.

Theorem 3.3. Assume θ is compatible with a noise Z and

that ε ≤ 1, then θ̃D := θD + σZ achieves (ε, δ)-DP over B

(with the Borel σ-algebra), with σ defined in Theorem 3.2.

We also have the following simple corollary, which is a

consequence of the post-processing inequality (Dwork &

Roth, 2014).

Corollary 3.1. Let θ be compatible with a noise Z, and let

f be any measurable transformation from B → S , where S
is a measurable space. Then f(θD+σZ) achieves (ε, δ)-DP

over S , where σ is defined in Theorem 3.2.

Together, Theorem 3.3 and Corollary 3.1 imply that the

Gaussian mechanism gives very broad privacy protection

for functional data and other infinite dimensional objects,

as nearly any transformation or manipulation of the pri-

vacy enhanced release is guaranteed to maintain DP; this

is known as a post-processing property (e.g., see Dwork &

Roth (2014)).

4. Privacy for Mean Function Estimation

In this section we consider the problem of estimating a mean

function µ from a sample X1, . . . , Xn that are iid elements

of H with EXi = µ ∈ H and ‖Xi‖H ≤ τ < ∞ for all i.
We derive a bound on the global sensitivity as well as utility

guarantees. In Section 5 and in the Supplemental we will

illustrate how to produce private releases of mean function

estimates based on RKHS smoothing in more specific set-

tings. In Hall et al. (2013) one can also find examples for

kernel density estimation and support vector machines.

As is usual in the DP literature, we assume that the data

is standardized so that it is bounded, usually with τ =
1. In this case, the sample mean µ̂ = n−1

∑n
i=1

Xi is

root-n consistent and asymptotically normal (Kokoszka &

Reimherr, 2017). There are a multitude of methods for

estimating smooth functions, however, a penalized approach

is especially amenable to our privacy mechanism. In this

case we define a penalty using the covariance of the noise, C.

However, the penalty and noise kernels need not be exactly

the same, and in particular, we assume that penalty uses Cη

for some η ≥ 1. Here Cη has the same eigenfunctions as

C, but the eigenvalues have been raised the power η. This

allows for greater flexibility in terms of smoothing and it

is helpful for deriving utility guarantees. We define the

penalized estimate of the mean µ

µ̂ = argmin
m∈H

1

N

N
∑

i=1

‖Xi −m‖2
H
+ φ‖m‖2η,

where φ is the penalty parameter. The norm ‖ · ‖η is

defined as the Cameron-Martin norm of Cη. While the

most natural candidate is η = 1, taking something slightly

larger can actually help with statistical inference as we

will see later on. Here, we can see the advantage of a

penalized approach as it forces the estimate to lie in the

space H which means that the compatibility condition, as

discussed in theorems 3.1 and 3.2, is satisfied. A kernel

different from the noise could be used, but one must be

careful to make sure that the compatibility condition is met.

If (λj , vj) are the eigenvalue/function pairs of the C and

{Xi =
∑∞

j=1
xijvj : i = 1, . . . , N}, with xij = 〈Xi, vj〉H,

then the estimate can be expressed as

µ̂ =
1

N

N
∑

i=1

∞
∑

j=1

λη
j

λη
j + φ

xijvj , (2)

We then have the following result.

Theorem 4.1. If the H norm of any element of the popula-

tion is bounded by a constant 0 < τ < ∞ then the GS of µ̂
for η ≥ 1 is bounded by

∆2
n ≤

4τ2

N2
sup
j

λ2η−1

j

(λη
j + φ)2

or more simply

∆2
n ≤

τ2

N2φ1/η

[

(2η − 1)2−1/η

η2

]

≤
4τ2

N2φ1/η
.

The resulting bound is practically very useful. Data can be

rescaled so that their H bound is, for example, 1, and then

the remaining quantities are all tied to the used noise/RKHS.

Thus, the bound can be practically computed and the corre-

sponding releases are guaranteed to achieve DP.

We conclude with a final theorem that provides a guarantee

on the utility of µ̂+σZ. One interesting note is that in finite

dimensional problems, the magnitude of the noise added for

privacy is often of a lower order than the statistical error

of the estimate. However, in infinite dimensions, this is no

longer true unless η > 1. This is driven by the fact that the

squared bias is of the order φ, and thus φ must go to zero

like N−1 if it is to balance the variance of µ̂. However, in

that case the magnitude of the noise added for privacy is of

the order σ2 � N−2+1/η. If η = 1, then σ2 is also of the

order N−1, while if η > 1, then it is of a lower order and

thus asymptotically negligible. We remind the reader that

the noise and thus C is arbitrary, so η can be chosen in a

way that is appropriate for µ by using a rougher noise.
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Theorem 4.2. Assume the Xi are iid elements of H with

norm bounded by τ < ∞. Define

µ̃ := µ̂+ σZ,

where

σ2 =

[

2 log(2/δ)

ε2

]

×

[

τ2(2η − 1)2−1/η

N2φ1/ηη2

]

.

If the tuning parameter, φ, satisfies φ ∝ N−1 and if ‖µ‖η <
∞ then we have

E ‖µ̃−µ̂‖2
H
= o(N−1) and E ‖µ̃−µ‖2

H
= O

(

N−1
)

,

while µ̃ achieves (ε-δ) DP in H.

5. Empirical Study

Here we briefly present simulations with B = L2[0, 1] to

explore the impact of parameters on the utility of sanitized

releases. We consider the problem of estimating the mean

function from a random sample of functional observations

using RKHS smoothing, as discussed in Section 4.

For the RKHS, H, we consider the Gaussian (squared expo-

nential) kernel :

C1(t, s) = exp

{

−|t− s|2

ρ

}

(3)

We simulate data using the Karhunen-Loeve expansion, a

common approach in FDA simulation studies. In particular

we take

Xi(t) = µ(t) +

m
∑

j=1

j−p/2Uijvj(t) t ∈ [0, 1], (4)

where the scores, Uij , are drawn iid uniformly between

(−0.4, 0.4). The functions, vj(t), are taken as the eigen-

functions of C1 and m was taken as the largest value such

that λm was numerically different than zero in R (usually

about m = 50). All of the curves are generated on an

equally spaced grid between 0 and 1, with 100 points and

the RKHS kernel and the noise kernel will be taken to be

the same (i.e. η = 1). The range parameter for the kernel

used to define H is taken ρ = 0.001 and the smoothness

parameter of the Xi(t) is set to p = 4 . The mean func-

tion, sample size and DP parameters will also be set as

µ(t) = 0.1 sin(πt), N = 25, (ε = 1, δ = 0.1), respectively.

We vary the penalty, φ, from 10−6 to 1 to consider its effect.

Note that we take τ = sup ‖Xi‖H for any i ∈ 1, . . . , N and

thus all qualities needed for Theorem 4.1 are known. The

risk is fixed by choosing the ε and δ in the definition of DP.

We thus focus on the utility of the privacy enhanced curves

by comparing them graphically to the original estimates.

Ideally, the original estimate will be close to the truth and

the privacy enhanced version will be close to the original

estimate. What we will see is that by compromising slightly

on the former, one can makes substantial gains in the latter.

In Figure 1 we plot all of the generated curves in gray, the

RKHS smoothed mean in green, and the sanitized estimate

in red. We can see that as the penalty increases, both es-

timates shrink towards each other and to zero. There is a

clear “sweet spot” in terms of utility, where the smoothing

has helped reduce the amount of noise one has to add to the

estimate while not over smoothing. Further simulations that

explore the impact of different parameters can be found in

the supplemental B.
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Figure 1. Original and private RKHS smoothing mean with Gaus-

sian Kernel (C1) for different values of penalty parameter φ

6. Applications

In this section we illustrate our method on an application

involving brain scans (diffusion tensor imaging, DTI) that

give fractional anisotropy (FA) tract profiles for the corpus

callosum (CCA) and the right corticospinal tract (RCST) for

patients with multiple sclerosis as well as controls; data are

part of the refund (Huang et al., 2016) R package. Each

profile/function consists of thickness measurements taken

along the tract of the corresponding tissue. This type of

imaging data is becoming more common and the privacy

concerns can be substantial. Images of the brain or other

major organs might be quite sensitive source of information,

especially if the study is related to some complex disease

such as cancer, HIV, etc. Thus it is useful to illustrate how

to produce privacy enhanced versions of function valued

statistics such as mean functions. We focus on the CCC

data, which includes 382 patients measured at 93 equally

spaced locations along the CCA.

Our aim is to release a sanitized RKHS estimate of the mean

function. We consider three kernels C1, C3 and C4 which

correspond to the Gaussian kernel, Matérn kernel with ν =
3/2, and the exponential kernel, respectively. Each kernel
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