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1 Introduction and highlights

The study of black holes in M(atrix) theory holds a treasure trove of insight into quantum

gravity and the nature of spacetime. As a non-perturbative formulation of M-theory, Matrix

theory [1, 2] can in principle access and potentially resolve many of the puzzles we associate

with black holes. Early attempts at staging Matrix black holes have consisted of promising

sketches [3]–[6] and numerical simulations [7]–[10]. We have learned that understanding

black holes is related to studying strongly coupled Yang-Mills at finite temperature [11]–

[13], and that there might be intricate non-local dynamics near the event horizon [14, 15].

More recently, we have learned that Matrix theory is characteristically chaotic [6, 16, 17],

and interactions can scramble initial value data at the fastest possible rate that is allowed by

the postulates of quantum mechanics [18]–[25] — as also expected from black hole physics.

In this work we ask if one can write a mean field coarse-grained description of the

strongly coupled microscopic dynamics of Matrix theory in a manner that captures the

essential features of black holes and informs us about the geometry near the event horizon.

To illustrate through an analogy, if M(atrix) theory is to black hole quantum mechanics as

BCS theory is to superconductivity, we are looking for the analogue of a Landau-Ginzburg

description of the quantum physics of black holes — with the underpinning element of

stochastic chaotic evolution.
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Figure 1. A cartoon of the effective model of the light-cone Schwarzschild black hole. The cells

represent Planck size marginally bound D0 branes, about d per cell in d space dimensions. The

cells are glued together with a condensate of off-diagonal matrix modes that act as scaffolding and

do not carry information or entropy.

We know that Matrix theory is chaotic, and we know that one can often use the

language of random variables, or in this case Random Matrix theory (RMT) [25]–[6, 33], to

capture chaotic dynamics. We also know that RMT is closely related to the strong damping

regime of Fokker-Planck stochastic evolution [26, 34–36] whereby a statistical description

of ergodic motion is effectively described with macroscopic variables. The suggestion is

then to formulate a description of Matrix black holes where the entries of the Matrices are

described through particles moving in a mean field potential — one that is obtained by

coarse-graining over microscopic degrees of freedom that are engaged in ergodic motion.

In this work, we show that such an effective description of black holes is indeed possible

using Matrix theory. In the process of developing this effective model, we settle on a

microscopic picture of Matrix black holes that is both intuitive and complex. Entries on the

diagonal of the matrices incorporate the thermodynamics and encode information. These

can be thought of as particles that mostly hang around near the surface of the would-

be horizon. They are subject to a mean field potential whose shape we determine. An

additional ‘goo’ of off-diagonal matrix entries glue these particles into clusters, effectively

acting like bound states. These clusters contain around d particles each, for a black hole in

d space dimensions. Figure 1 depicts a cartoon of the model. In the figure, the clusters are

depicted as cells. The configuration is far from static, and in fact we expect that the cells

continuously exchange particles and rearrange themselves. The rest of the matrix degrees of

freedom, which constitute the overwhelming majority of the total, condense in a quantum

ground state. It is possible that they should be thought of as a membrane stretched at the

horizon, without any associated thermodynamics or entropy. Thermal energy is distributed

in the dynamics of the cells as they slide near the horizon and interact with each other.

We develop this model in detail, matching with all expectations from the dual M-theory

supergravity description of a Schwarzschild black hole in the light-cone frame. In particular,
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Hawking evaporation [37]–[40] is reproduced and information loss is demonstrated to arise

from the process of coarse-graining over otherwise unitary dynamics. It becomes clear

that dynamics near the horizon has a non-local component when explored at short enough

timescales, while being local at the longer timescales associated with Hawking radiation.1

Most interestingly, we demonstrate that non-unitary evolution and information loss arise at

the timescales for which the Matrix dynamics is strongly coupled and spacetime geometry

is expected to be emergent in the dual supergravity language. This suggests that Hawking

information loss is inherently tied to the premise that geometry near the horizon of a large

black hole is smooth and well-defined. The microscopic degrees of freedom underlying

black hole dynamics are Planck sized bits that are interacting chaotically over Planckian

timescales. Any description of the physics over timescales larger than the Planck time

involves coarse graining over stochastic dynamics in a manner that leads to an effective

quantum picture that is non-unitary. The notion of spacetime geometry arises at around

those Planckian timescales, implying the breakdown of the geometrical picture of black

hole evaporation as we approach the horizon. Put differently, the Hawking computation is

robust when applied in smooth spacetime backgrounds over large enough timescales, yet

the evaporation should still be regarded as unitary because the notion of geometry and

spacetime is lost at the event horizon at short timescales.

The outline of the text is as follows. In the first section, we present a brief overview

of Matrix theory, followed by a review of Fokker-Planck dynamics and the light-cone

Schwarzschild black hole in supergravity. We then systematically develop the effective

model for the Matrix black hole, matching and checking against expectations on the dual

low energy M-theory side. In the second section, we focus on the time evolution of infor-

mation within the Matrix black hole. We track information encoded in the polarization

states of the low energy M-theory supergravity multiplet, and we write an effective qubit

time evolution operator that is based on the stochastic model developed earlier. We show

how the evolution becomes non-unitary at longer timescales because of the coarse-graining

over chaotic dynamics, and correlate this with the emergence of spacetime geometry in the

dual M-theory language. For short timescales, we write a unitary time evolution operator

that describe the weakly coupled qubit dynamics near the event horizon. Finally, in the

discussion section, we reflect on the implications and future directions.

2 The effective model

2.1 M(atrix) theory overview

The M(atrix) theory action is the dimensional reduction of 10 dimensional Super Yang-

Mills (SYM) to 0 + 1 dimensions and is given by

S =

∫
dt Tr

[
1

2R
Ẋ2
i +

R

2λ3
[Xi, Xj ]

2 +
1

2
ΨΨ̇ +

R

2λ3/2
ΨΓi[Xi,Ψ]

]
. (2.1)

1To clarify, this non-locality arises at the Planck scale. At energy scales below the Planck scale, we see

no evidence for non-locality. This is the same non-local phenomenon typically associated with D0 brane

scattering.
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The gauge group is U(N), with theXis (i = 1, . . . , 9) and the Ψ in the adjoint representation

of the group. In our conventions, we have

R = gs`s , λ = 2π `2s , (2.2)

where gs is the string coupling and `s is the string length.2 The Yang-Mills coupling is

g2
YM =

gs
`3s
. (2.4)

The length dimensions of the various quantities are: X ∼ `1, t ∼ `1, and ψ ∼ `0.

The theory is purported to be a non-perturbative formulation of M-theory in the light-

cone frame in the following scaling limit3

gs , `s → 0 with g2
YM =

gs
`3s

= fixed and
X

`s
= fixed . (2.5)

This corresponds to focusing on energies that scale as E ∼ gs/`s . It is sometimes convenient

to introduce alternate M-theory variables ε, τ , and ξ that remain fixed in the scaling regime

of interest

E = g2/3
s ε , t = g−2/3

s τ , X = `sξ . (2.6)

For example, the corresponding light-cone M-theory energy scale is ε ∼ R/`2P = fixed.

In the map onto light-cone M-theory, N/R is interpreted as total light-cone momentum.

Light-cone energy scales inversely with light-cone momentum, hence as (R/N)×mass2. De-

pending on the coupling regime, the number of active degrees of freedom of a configuration

scales as Nk, where k = 2 in the weakly coupled regime, and k = 1 at strong coupling.

Compactifying light-cone M-theory to d space dimensions, we can describe it through

Matrix theory with d of the 9 Xi matrices removed from the dynamics, assuming that

the compact directions are small enough that associated modes are too heavy to excite.

Alternatively, one can use d+ 1 dimensional SYM for a full description of the compactified

theory, obtained from the current setup via a T-duality map.

The relation between light-cone M-theory and Matrix theory is known to hold for

N → ∞, but the correspondence is valid for finite N as well — between Discrete Light-

Cone Quantized (DLCQ) M-theory and finite N matrix theory, where N is mapped onto

units of M-theory discrete light-cone momentum [44]. In this work, we will work at finite

but large N in trying to describe an M-theory black hole that is large enough to have small

curvature scales at its horizon.

2Matrix theory is sometimes written in Planck scale conventions, related to the one we use by X → Y/
√
R

and t→ τ/R. Using units such that 2π `3P = 1 where `P is the eleven dimensional Planck length, the action

takes the form

S =

∫
dτ Tr

[
1

2R
Ẏ 2
i +

R

2
[Yi, Yj ]

2 +
1

2
ΨΨ̇ +

R

2
ΨΓi[Yi,Ψ]

]
, (2.3)

where Ẏ = dY/dτ . In this alternate convention, the length dimensions of the various quantities become

X ' `3/2, ψ ∼ `0, t ∼ `2, R ∼ `. Note that if Y ∼ `3/2P , then X = `s , given that `P = g
1/3
s `s .

3This scaling limit corresponds to the decoupling regime for holographic duality [11, 41–43] — as applied

to D0 branes. The Matrix theory conjecture is thus in the same class of gravity-SYM correspondences that

give rise to the AdS/CFT map.
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2.2 From chaos to a stochastic evolution

Recently, Matrix theory has been demonstrated to be highly chaotic [6, 16, 17], with

dynamics that can scramble initial value data in a time that scales logarithmically with

the entropy [20–23, 25] — as opposed to the more common power law behavior. This

allows one to capture Matrix theory physics, in the appropriate setting, by treating the

matrix entries as random variables. Describing a non-extremal black hole is certainly a

good candidate setup for exploring chaos in Matrix theory [25, 33, 45]. And techniques

from the well-established field of Random Matrix Theory (RMT) [26–30] can then be used

to tackle the problem. RMT is most powerful when one is dealing with a theory with a

single matrix; it then allows a robust statistical treatment of the eigenvalues of this matrix.

In our setup, we will be interested in studying a configuration of matrices in Matrix

theory that represents a d dimensional Schwarzschild black hole in the dual light-cone

M-theory. We will assume from the outset that we work with spherically symmetric con-

figurations, where the different Xi matrices are chaotic and uncorrelated in different space

directions. Hence, each matrix entry in the d matrices Xi, with i = 1, . . . , d, is random

and not correlated with any other matrix entry. This configuration is to be mapped onto

a black hole in the dual M-theory — with a fixed temperature and associated Hawking

evaporation phenomenon. The fermionic matrix entries of Ψ in (2.1) will be treated as a

component of the thermal soup — in equilibrium with the bosonic matrix entries. At finite

temperature, we will hence mostly focus on the bosonic sector with a mirror image at play

in the fermionic sector being implied. However, we do need to incorporate the one-loop

quantum contribution of the fermionic degrees of freedom to the mean field potential for

the bosonic stochastic variables. Furthermore, later on, we will use the fermionic variables

as probes to track information evolution in this thermal soup.

We start by noting that RMT is closely related to stochastic physics. In particular,

since the work by Dyson [26], it has been demonstrated that RMT dynamics can be properly

captured by the strong damping regime of Fokker-Planck evolution. We present here a quick

overview of the subject.

In RMT, each matrix entry can be thought of as a stochastic particle evolving in an

mean field potential. For a particle with position r and velocity v in d space dimensions,

we can study it through the probability function

p(r,v, t) ddrddv , (2.7)

which represents the probability of finding the particle at time t within r and r + dr and

v and v + dv. In our setup, we will consider matrix configurations that are spherically

symmetric in d dimensions. We will then focus on probability profiles where

p(r,v, t)→ p(r, v, t)
∏
i

δ(vθi) . (2.8)

Here, the vθi are d− 1 components of v in the angular directions, and v = vr. Correspond-

ingly, the mean field potential is spherically symmetric4

V (r)→ V (r) (2.9)

4The model we develop involves time averaging over stochastic, chaotic dynamics. The cluster tiling
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and the Fokker-Planck equation takes the form

∂p(r, v, t)

∂t
=

(
−v ∂

∂r
+

1

m

∂V

∂r

∂

∂v
+ γ d+ γ v

∂

∂v
+
γ

m
T

1

vd−1

∂

∂v

(
vd−1 ∂

∂v

))
p(r, v, t) ,

(2.10)

where T is the temperature of the environment, γ is a damping parameter, and m is the

mass of the particle. This then allows us to study the evolution of the matrix entry in a

statistical framework. The spherically symmetric Fokker-Planck equation is solved by the

equilibrium time-independent profile

peq = C exp

[
− 1

T

(
1

2
mv2 + V (r)

)]∏
i

δ(vθi) . (2.11)

C here is a normalization constant. Note that this non-relativistic treatment is consistent

with Matrix theory since light-cone M-theory has Galilean symmetry with dispersion rela-

tion ELC = p2/2pLC, where the light-cone momentum pLC ∼ 1/R plays the role of Galilean

mass.

As mentioned above, the relation between RMT and stochastic physics arises in the

regime of strong damping

γ &

√
−V

′′(0)

m
. (2.12)

Focusing on this regime, we also write the probability profile as

p→
∫

ddv p (2.13)

integrating over all velocities. The resulting evolution equation is known as the Smolu-

chowski equation

∂p(r, t)

∂t
=

1

mγ

(
1

rd−1

∂

∂r
rd−1V ′(r) +

T

rd−1

∂

∂r
rd−1 ∂

∂r

)
p(r, t) . (2.14)

The radial probability current that follows from (2.14) takes the form

jr = − 1

mγ

(
T
∂

∂r
+ V ′(r)

)
p(r, t) , (2.15)

which we will use later in understanding evaporation through stochastic diffusion.

Our goal is to develop an effective model for strongly coupled chaotic Matrix theory,

using the Smoluchowski equation with r representing matrix entries in the bosonic matrix√∑
iX

2
i ∼ Xi of (2.1) — since different directions in space are statistically uncorrelated.

We then need to identify the relevant mean field potential V (r), mass m, temperature T ,

and damping parameter γ.

of figure 1 is not rigid and very dynamical over timescales shorter than the Hawking timescale. It is then

reasonable to expect that, at timescales larger than the characteristic timescale associated with cluster

dynamics, an approximate spherical symmetry sets in. Of course, going beyond this coarse model one

needs to consider the possible breaking of the spherical symmetry [31, 32].
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It is worthwhile noting that an alternate and equivalent approach is to track the evolu-

tion of moments of random matrix entries. If χ represent any matrix entry, then the Smolu-

chowski equation with a quadratic potential is equivalent to stochastic fluctuations given by

〈δχ〉 = −V
′′(0)r

mγ
δt ,

〈
δχ2
〉

=
2T

mγ
δt , (2.16)

which then imply the differential equations for the moments

d

dt
〈χ〉 = −V

′′(0)

mγ
〈χ〉 , (2.17)

d

dt

〈
χ2
〉

= −2V ′′(0)

mγ

〈
χ2
〉

+
2T

mγ
, (2.18)

The timescale of stochastic evolution can then be easily read off as

tT ∼
mγ

V ′′(0)
. (2.19)

It is important to note that this is not the timescale over which one coarse-grains the ran-

dom motion to arrive at a mean field potential for stochastic variables. This other timescale,

which we call the stochastic timescale tstoch, must be shorter than the thermal timescale,

tstoch < tT , and is determined from the process of averaging over microscopic dynamics.

We next need to determine the parameters of the model. We will build this effective

description of strongly coupled chaotic Matrix theory by using knowledge of the gravity

dual, and of the microscopic string theory dynamics that underlies Matrix theory.

2.3 The light-cone Schwarzschild black hole

We start by reviewing the dual gravity picture of the Matrix theory setup of interest — a

light-cone M-theory Schwarzschild black hole [46]. The corresponding geometry is obtained

by Lorentz boosting a d dimensional Schwarzschild black hole in the light-cone direction

with a boost factor given by rh/R, where rh is the radius of the black hole horizon. While

the horizon geometry is unchanged and the entropy or area in Planck units remains the

same, the Hawking temperature is red-shifted

Th =
R

r2
h

. (2.20)

The Hawking radiation flux from evaporation takes the form

Ptot ∼
rd−1
h

rd+1
h

=
1

r2
h

(2.21)

in general d dimensions. The thermal timescale associated with the Hawking temperature

is then

th ∼
1

Th

∼ r2
h

R
. (2.22)

The entropy is related to the black hole mass Mbh as usual S ∼Mbh rh , and the evaporation

process can be described by [47, 48]

dMbh

dt
=
R

r3
h

. (2.23)
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Hence, the black hole lifetime is given by

tlife ∼ thS . (2.24)

Beside the timescale th and tlife, the shorter scrambling timescale

tscr ∼ th lnS (2.25)

determines the timescale over which the black hole scrambles information. We have written

all these relations in forms that can be compared to the Matrix theory stochastic model in

the choice of units presented earlier. In our SYM choice of units, the entropy of the black

hole is written as

S ∼ rd−1
h

`d−1
s

. (2.26)

For a large black hole, we see that we must require

rh � `s (2.27)

leading to small curvature scales at the black hole horizon.

The task next is to model an effective Matrix theory stochastic system that reproduces

these properties of a light-cone Schwarzschild black hole.

2.4 A conjecture for an effective model

In a perturbative regime, Matrix theory consists of ∼ N2 degrees of freedom as all matrix

entries participate in the dynamics. In early models of a Schwarzschild black hole in Matrix

theory, the authors of [3–5] noted however that, to reproduce the correct equation of state

of a light-cone black hole, one must have the entropy proportional to N at strong coupling,

not N2

S ∼ N . (2.28)

This implies that only N of the entries in each matrix Xi are to participate in the ther-

modynamics of the Matrix black hole; that is, most degrees of freedom must be ‘frozen’,

given that N � 1 follows from (2.26) and (2.27). Inspired from the works of [3–5], we then

propose that the thermodynamics of the Matrix black hole is carried by the N diagonal

entries of the Xi matrices. Information in the black hole would also be carried by diagonal

degrees of freedom only. These entries can be sometimes interpreted as coordinates of the

corresponding D0 branes underlying Matrix theory. Entropically, these order ∼ N degrees

of freedom would like to spread to infinity — the theory even admits flat directions for this

purpose. However, perturbatively there can be an initial cost in energy in doing so from

strings stretching between the D0 branes — i.e. off-diagonal modes of the matrices. Pre-

sumably, taking strong coupling effects into account, the configuration forms a metastable

ball of size rh , the black hole radius, along with decay channels that implement the process

of Hawking evaporation. As a diagonal matrix entry random walks its way out, a bit of the

black hole evaporates away [10]. If N diagonal degrees of freedom are to spread in a volume

rdh , average inter-brane spacing is generically parametrically much larger with N than if

– 8 –
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d-1

d-1

2

4

4

2

Figure 2. (a) A shaded sub-block of a matrix that describes a cluster of d − 1 D0 branes. The

δXs refer to the off-diagonal entries spanning clusters; the off-diagonal entries within a cluster are

in the shaded block, denoted by δx. (b) General structure of non-zero entries in the matrices for

different space dimensions d. The d− 1 labels refer to the number of active columns or rows in the

first row or column, respectively. The shaded diagonals start within the shaded square in (a).

they are spread over an area rd−1
h . And since inter-brane spacing is costly in energy, we

can start seeing that the proper model of a Matrix black hole would involve the diagonal

entries of the matrices spread on the surface of a would-be black hole horizon. Figure 1

shows a cartoon of the setup.

Figure 2(a) shows a cartoon of a matrix Xi, focusing on a sub-block associated with

a group of ‘nearest-neighbor’ branes.5 Using the permutation subgroup of U(N), we can

always arrange to sort the matrix entries as depicted. We expect that a certain number of

branes, of order d− 1, whose coordinates appear as x in the figure, would be close enough

that corresponding matrix off-diagonal modes, labeled δx in the figure, can be light. This

still would not affect the S ∼ N requirement as the number of such modes would be

independent of N . Branes much farther away, over a distance scale rh , would be much

heavier. We propose that beyond the d× d sub-block, all other off-diagonal modes would

be too heavy to excite and would freeze or condense in a Bose-Einstein (BE) condensate.

Indeed, if we look at the critical condensate temperature Tc, we would expect6

N ∼ N2

(
Th

Tc

)d/2
, (2.29)

5Note that the permutation symmetry requires that the additional d2 off-diagonal entries in the top right

and bottom left of each matrix are active as well. This is a detail in the description, in the large N � d

limit, we assume has subleading effect on the larger picture.
6The right hand side is the expression for the number of degrees of freedom in a Bose condensate in d

dimensions.
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which we can quickly see to be much larger than the Hawking temperature

Tc ∼
R

r
2/d
h

� Th (2.30)

for d ≥ 2. It is possible that this BE condensate describes a membrane-like configuration

stretching at the black hole horizon [3–5, 49, 50]. In a coarse-grained effective language,

we would set these heavy off-diagonal modes, the δXs in the figure, to zero. Interestingly,

fuzzy spheres of various dimensions in Matrix theory have been shown to necessitate the

activation of more off-diagonal modes that spread away from the diagonal [51, 52]. For

example, a 2-sphere (d = 3) is realized through SU(2) representations, which activate 3

diagonal lines along the matrix diagonals; and a 4-sphere (d = 5) activates 7 diagonal lines.

In general, one has d− 1 rows/columns in a diagonal band for a total of 2 d− 3 diagonals.

Our model then fits well with this pattern. Figure 2(b) shows the general scheme.

The diagonal entries within the d × d sub-block of matrices would be spread out

from each other at a distance that is around the Planck scale and might naturally involve

marginal bound state physics. In M-theory language, this would correspond to supergravity

excitations carrying ∼ d units of light-cone momentum. These marginal bound states are

conjectured to exist in Matrix theory and are a necessary ingredient for the dictionary be-

tween Matrix theory and M-theory [1]. The off-diagonal modes δx in these sub-blocks would

remain relatively light and participate in making the physics of these clusters non-local,

at around the Planck scale. They would correspond to strings joining nearest neighbor

branes, and henceforth we refer to the δxs as ‘off-diagonal nearest neighbor modes ’.7

Our stochastic model would then involve writing an effective theory of all the modes

that remain active — diagonals x and nearest neighbor modes δx — while integrating out

all other δX modes. We need to provide two separate stochastic treatments, one for the x

modes on the diagonal, and another for the off-diagonal nearest neighbor modes δx. The

first would describe the coarse-grained thermal state of the black hole; the second would

describe finer cluster physics within each matrix sub-block. We will next demonstrate

how these two sectors effectively decouple and can reliably be treated through stochastic

methods due to a hierarchy in the relevant timescales.

In the Matrix theory scaling regime time scales as gs/`s ; this allows us to measure

timescale through the effective Yang-Mills coupling geff(τ)2 defined as

gs
`s
t =

g1/3
s

`s
(g2/3

s t) = (g2
YM)1/3τ ≡ (geff(τ)2)1/3 , (2.31)

which remains finite in the scaling regime. Hence, larger effective coupling corresponds to

longer times since 0+1 SYM is super-renormalizable. In this language, the first timescale th
from (2.22) arises from the thermodynamics of the diagonal modes, of order N in number;

7Our treatment explicitly picks out a ‘frame’ or gauge where the diagonal and off-diagonal matrix entries

have very different physical roles. We expect that this setup corresponds to a description of the Matrix black

hole from the perspective of the outside observer. U(N) gauge transformations would naturally change the

perspective, while mixing the roles of diagonal and off-diagonal entries. More on this in the Discussion

section.
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this gives

gs
`s
th = (geff(τh)2)1/3 ∼

(
rh
`s

)2

� 1 . (2.32)

The scrambling timescale tscr of (2.25) is then given by

gs
`s
tscr = (geff(τscr)

2)1/3 ∼ lnN

(
rh
`s

)2

� 1 . (2.33)

The lifetime of the configuration tlife from (2.24) should correspond to

gs
`s
tlife = (geff(τlife)

2)1/3 ∼
(
rh
`s

)2

N � 1 . (2.34)

These statements follow from the expected black hole physics on the dual side of the

correspondence. Note that all three timescales correspond to regimes where the Matrix

theory SYM is strongly coupled.

On the SYM side, perturbatively, we know that off-diagonal modes have dynamics

given by8

E ∼ 1

R
δẋ2 +

R

`6s
∆r2δx2 , (2.35)

where ∆r is the distance between the corresponding diagonal entries; this gives a frequency

of

ωδx ∼
R

`2s

∆r

`s
. (2.36)

We can then easily see that if ∆r ∼ `s for nearest neighbor off-diagonal modes, δx modes

can be treated as heavy and can hence be integrated out over time scales

ωδxt > 1⇒ t > to with
gs
`s
to = 1⇒ (geff(τ)2) > 1 . (2.37)

This is the strong coupling transition point for the SYM, a regime that we typically asso-

ciate with emergence of geometry on the dual M-theory side. The relevant strong coupling

benchmark is given by geff(τ)2 ∼ 1, instead of the one using the ’t Hooft effective coupling

geff(τ)2N ∼ 1, because the dynamics in question is that of individual partons in the black

hole soup, as opposed to the interaction of the black hole as a whole. More on the interplay

between these two couplings and the emergence of a valid geometrical description can be

found in the Discussion section.

Next, looking at off-diagonal modes δX that straddle diagonal modes separated by a

large distance of order ∆r ∼ rh , we see from (2.36) that these can be integrated out for

timescales

ωδXt� 1⇒ t� tstoch with
gs
`s
tstoch = (g2

eff(τstoch))1/3 =
`s
rh
⇒ (geff(τ)2)1/3 � `s

rh
. (2.38)

This is the shortest of the timescales and determines the regime where a stochastic treat-

ment is valid: it corresponds to timescales where integrating out the δX’s leads to a
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Stochastic regime

Strong coupling, emergence of geometry

Hawking evaporation

Scrambling

Local physicsPartial
non-locality

High
non-locality

Figure 3. The hierarchy of timescales for event horizon dynamics. Timescales t < to are associated

with non-local physics within D0 brane clusters, but timescales t > tstoch allow a local description

for coarser inter-cluster dynamics.

stochastic mean field potential for the diagonal modes. Note also that, for rh � `s , part of

this regime overlaps with weak coupling in the Matrix SYM.

Figure 3 summarizes the various timescales and clarifies the range of validity for the

effective model that we propose. The stochastic formalism with a mean field potential for

the diagonal modes requires coarse graining over time scales longer than tstoch. For t > tstoch,

δX’s are frozen in a BE condensate. We can then incorporate the effect of the δX’s into

a mean field potential for the modes on the diagonal. The nearest neighbor off-diagonal

modes, the δx’s, cannot be integrated out at these timescales. We leave them part of the

degrees of freedom participating in the physics of cluster formation. For timescales t > to,

the nearest neighbor modes are heavy as well and are associated with high frequency dy-

namics that can be coarse grained and described through a stochastic treatment. However,

the δX modes will always have a much higher frequency (for rh � `s) and hence will still

determine the mean field potential for the diagonal modes. Finally, thermal timescales, th ,

tscr, and tlife are all much longer and live well within the regime of a stochastic treatment

that coarse grains physics faster than tstoch.

We then list in one place the set of observations underlying our model:

• We have a stochastic effective description for diagonal modes for t > tstoch, or

(geff(τ)2)1/3 � `s
rh

. We integrate out the off-diagonal modes that straddle widely

separated modes on the diagonal.

• Strong coupling corresponds to timescales t > to, or (geff(τ)2)1/3 � 1. In this regime,

all off-diagonal modes are heavy, but the effect of nearest neighbor off-diagonal modes

on diagonal modes is sub-leading. We associate emergence of geometry on the dual

M-theory side with the onset of strong coupling in Matrix theory [2, 53]. At timescales

8The total energy receives an important contribution from fermionic zero modes which will be taken into

account when developing the mean field potential. At this stage, we use the bosonic sector only to simply

identify relevant dynamical scales. Note also that, at finite temperature, supersymmetry would be broken.
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tstoch < t . to, we might be able to write a stochastic effective description of D0 brane

cluster dynamics. We expect that at around t ∼ to, the degrees of freedom of Matrix

theory organize in clusters of about d nearest neighbor branes moving in the larger

thermal soup.

• Hawking evaporation physics sets in at t & th , or (geff(τ)2)1/3 ∼
(
rh
`s

)2
� 1, well

within the regime of validity of the stochastic treatment.

It is useful to write some of these timescales in M-theory Planck units. Using (2.6),

and the fact that light-cone time is boosted by a factor of `P/R, we find

τo =
`P
R
`P → `P , (2.39)

τstoch =
`P
R
`P
`P
rh
→ `P

`P
rh
� `P , (2.40)

and

τh =
`P
R
`P

(
rh
`P

)2

→ `P

(
rh
`P

)2

� `P . (2.41)

Hence we see that τo correspond to Planck scale time in M-theory language. As we

shall see, all this means that the chaotic microscopic dynamics that underlies black hole

horizon physics is associated with a characteristic timescale that is given by the Planck

scale. A well-defined notion of spacetime geometry necessitates coarse graining over longer

timescales.

Our next task is to develop the stochastic effective descriptions of diagonal and near-

est neighbor off-diagonal modes — the first describing black hole thermodynamics and

evaporation, the second giving us a crude peak into brane cluster/bound state dynamics.

2.5 Modes on the diagonal

In this section, we propose a mean field stochastic potential for diagonal modes, valid over

timescales t > tstoch. Using spherical coordinates, we posit

V (r) = −V0

(
r2

r2
0

− 1

)2

θ(r0 − r) , (2.42)

writing r2 = x2
i , where xi is any diagonal mode of Xi. The potential is parametrized by

two scales, r0 and V0, and we need to determine these two parameters by comparing the

resulting dynamics to that of a light-cone black hole. Note also that we have incorporated

quantum effects that we know would arise from the fermionic sector of Matrix theory: the

θ(r0 − r) flattens the potential so as to model the expected flattening of the potenial from

supersymmetry-based cancellations of zero mode energies.9

9The potential is not strictly flat but comes with an 1/rd−2 fall-off at one loop order. For the purposes

of the approximate stochastic description, we treat this as flat since no aspect of the model explores the

region far away from the black hole.
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We start by noting that the only scale near the horizon of the Schwarzschild black hole

is given by rh .10 We then start by setting

r0 = rh (2.43)

fixing the size of the stochastic diagonal fluctuations to within the would-be horizon size.

The temperature of the soup should naturally be the Hawking temperature in the light-cone

frame

T = Th '
R

r2
h

. (2.44)

The mass of a stochastic particle should be set to the mass of a D0 brane

m =
1

R
. (2.45)

This leaves us with determining the damping parameter γ and the potential scale V0. We

start by looking at evaporation flux from the thermal soup. Following [62], we arrange for

a steady state scenario for the probability distribution given by

p = C f(u) exp

[
− 1

T

(
1

2
mv2 + V (r)

)]
, (2.46)

where u = r − r0 and C is a normalization constant to be determined. We need to find

f(u) given the boundary conditions

f(−r0) = 1 and f(0) ' 0 , (2.47)

where the first one follows from matching with the equilibrium configuration at r = 0,

while the second one amounts to absorbing the evaporation flux at r = r0, corresponding

to evaporation to infinity. The Fokker-Planck equation at strong damping then leads to

κu f ′(u) + f ′′(u) = 0 , (2.48)

where

κ = −V
′′(r0)

T
=

8V0

T r2
0

> 0 (2.49)

for the mean field potential at hand. The solution is given by the error function

f(u) =
erf((r − r0)

√
κ/2)

erf(−r0

√
κ/2)

. (2.50)

10This might prejudice the discussion in favor of black hole complementarity [58]–[61] as opposed to a

firewall scenario at the horizon [54]–[57]. Nevertheless, we still need to map onto geometry on the dual

M-theory side. We have tried to develop a model with an additional scale in the mean field potential set at

the Planck scale near the horizon, and it seems that this does not lead to a picture that is consistent with

Hawking evaporation. While we cannot rule out the possibility of finding an alternate model that includes

the Planck scale — as we have not explored all possibilities — we note however that the simple model given

in the text works very well without the need of a Planck scale at the horizon.
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Integrating over the velocities we have

p = C f(u)e−V (r)/T

(
2π T

m

)d/2
, (2.51)

which then leads to the current

jr = −C T

mγ

(
2π T

m

)d/2√2κ

π
e−V (r)/T e−

κ
2

(r−r0)2

erf(−r0

√
κ/2)

. (2.52)

We will see below that

r0

√
κ

2
'
√
V0

T
' 1 , (2.53)

when we find that V0 ∼ Th . We then note that

erf(−r0

√
κ/2) ' −1 . (2.54)

For erf(−x), the function near x & 1 is very well approximated by −1 with corrections

suppressed exponentially as e−x
2
/x. We determine the normalization factor C using

1 =

∫
ddr p(r, t) . (2.55)

For this, we write

f(r − r0) ' 1 +
2√
π

√
κ

2
r e−r0

√
κ/2 (2.56)

near r ' 0, and

f(r − r0) ' 2√
π

√
κ

2
(r − r0) (2.57)

near r ' r0. We then get

1 ' C T d

md/2
eV0/T rd0

V
d/2

0

(2.58)

up to a numerical factor. The probability current near r0 takes the form

j(r0) ' C T

mγ

(
2π T

m

)d/2
e−V (r0)/T , (2.59)

which then leads to the evaporation flux

F ' j(r0)rd−1
0 ' T−(d−1)/2V

(d+1)/2
0

mr2
0γ

, (2.60)

which we can then match with Hawking evaporation at temperature Th
11

F = Fh '
R

r2
0

. (2.62)

11If we want to include the kinetic energy of the evaporated bit, we would get

F ' T−(d−1)/2V
(d+1)/2
0

mr2
0γ

e−(ω+V0)/T , (2.61)

with ω being the kinetic energy, giving the standard black body spectrum.
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This gives one of the two conditions we need to determine γ and V0. The other condi-

tion comes from the well-known one-loop effective potential of a probe D0 brane in the

background of N D0 branes. Using M-theory Planck units, we have [49]

V ' N `d−1
P v4

R3rd−3
, (2.63)

where v is the relative velocity of two partons at a separation r ∼ rh . While this is a

perturbative result in the Matrix SYM, it is know to lead to an exact match with the dual

M-theory scenario [49] implying that it is valid at strong coupling as well.12 Remembering

that the black hole entropy is given by

S ' rd−1
h

`d−1
P

∼ N (2.64)

in Planck units, and saturating the Heisenberg uncertainty bound for each parton [3–5]

v ∼ R

rh
, (2.65)

we get the scale of the potential energy at the size of the horizon

E ' R

r2
h

. (2.66)

Rescaling to SYM units using (2.6) gives the same relation (rh → rh
√
R, E → E/R). We

then naturally identify this energy scale with the depth of the mean field potential

V (0) ' E ⇒ V0 =
R

r2
h

= Th . (2.67)

Finally, from F = Fh , we then get

γ ' R

r2
h

. (2.68)

The latter relation implies that

mγ ' 1

r2
0

, (2.69)

which corresponds to a borderline strong damping regime (2.12) — needed for consistency

with RMT.

We can now look at the quantum and thermal vacuum expectation values of a mode

x on the diagonal, given by

〈
x2
〉
th
∼ T

V ′′(0)
,

〈
x2
〉
qu
∼

√
R

V ′′(0)
. (2.70)

For the given potential and parameters, we have〈
x2
〉
th
'
〈
x2
〉
qu
∼ r2

h , (2.71)

12There have been suggestions that a non-remormalization theorem perhaps underlies this finding [2].
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leading to borderline thermal regime, which implies that the diagonal modes are barely ex-

cited above the ground state. We also note that odd moments vanish at equilibrium, so that

〈x〉 = 0 . (2.72)

We then have succeeded in developing a stochastic model for diagonal mode dynamics

that matches with Hawking evaporation. As a result, a consistency check shows that this

stochastic evolution has characteristic timescale given by (2.19)

tT ∼
mγ r2

h

V0
=
r2
h

R
= th (2.73)

as required.

2.6 Off-diagonal nearest neighbor modes

At timescales t ∼ to, where Matrix theory enters the strongly coupled realm, we have the

possibility to describe clusters of d nearest neighbor branes through stochastic means. The

clusters are marginally held together and we expect this dynamics to be a delicate one, given

their natural overlap with the physics D0 brane marginal bound state formation. Neverthe-

less, we will use the methods of stochastic dynamics to try to describe the problem, bearing

in mind that we aim only to identify scaling relations of what is most likely a very subtle

cluster formation process. We model the potential for the nearest neighbor off-diagonal

modes Vδx with a simple quadratic confining form, and the only relevant scale is the curva-

ture V ′′(0). For nearest neighbor diagonals, we expect an inter-brane separation of ∆r ∼ `s ,
leading to a perturbative potential for the corresponding off-diagonal modes given by

V ′′δx(0) ∼ R

`6s
∆r2 ∼ R

`4s
=
gs
`3s

= g2
YM . (2.74)

This is a perturbative result but we extend it to t . to as a scaling relation. The thermal

and quantum vacuum expectation values are

〈
δx2
〉
th
∼ T

V ′′(0)
=

T

g2
YM

,
〈
δx2
〉
qu
∼

√
R

V ′′(0)
=

√
R

g2
YM

, (2.75)

where in the thermal expression, we want to think of T as a scale for kinetic energy within

the bound system. We would expect ground state physics, implying

〈
δx2
〉
th
∼
〈
δx2
〉
qu
⇒ T 2

g2
YM

∼ R , (2.76)

which identifies

Tδx ∼
R

`2s
(2.77)

as the expected scale for kinetic energy in the cluster. The mass parameter would still be

given by

mδx =
1

R
. (2.78)
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Finally, we propose that the strong damping bound needed by RMT should be valid, and

at worst saturated

(mγ)2 ∼ mV ′′(0)⇒ mγ ∼ 1

`2s
, (2.79)

identifying the damping parameter γ for cluster dynamics. As a sanity check, we can verify

that the associated characteristic timescale for the stochastic dynamics is

Timescale ∼ mγ

V ′′(0)
∼ `s
gs

= to , (2.80)

which again matches well with our expectations that the relevant dynamics is at the onset

of strong coupling in the SYM theory. Finally, the expected size of the cluster becomes

Size2 ∼ T

V ′′(0)
∼ `2s , (2.81)

which also syncs well with our expectation that one thermal parton is to occupy one Planck

area at the black hole horizon.13

3 Quantum information

In this section, we want to describe how information evolves in the stochastic model we

developed above. For this purpose, we need to look more closely at the fermionic degrees

of freedom of the Ψ matrix in (2.1). It is known that these correspond to the polarizations

of the light-cone M-theory supergravity multiplet — the graviton, the gravitino, and the

3-form gauge field [1]. That is, in the low energy regime, we can think of an entry on

the diagonal in the Xi’s as the coordinate of a supergravity particle whose flavor and

polarization state is determined by the corresponding entry in the Ψ matrix. We can

expect that information in an M-theory black hole can be encoded in the polarization

states of a thermal soup of supergravity excitations. We would then want to study the

time evolution of the Ψ matrix within the effective model we have developed. Note that

the quantum contribution from the fermionic modes in their ground state has already been

taken into account in the shape of the mean field potential for the diagonal bosonic modes.

In the spirit of RMT, the equilibrium dynamics of the fermionic and bosonic matrix

entries are treated as statistically uncorrelated. This justifies working with the bosonic

sector by itself as we have done so: it is assumed that a corresponding thermal state is

also set up in the fermionic sector as the two sectors are in thermal equilibrium. Our

goal now is to track how information encoded in the polarization states evolves when

this equilibrium configuration is slightly perturbed. We could for example consider one

particularly interesting scenario, the emission of a supergravity particle from the stochastic

soup, as a matrix entry of Xi ventures off to large distances. We would choose a particular

matrix configuration that can describe this situation, and analyze the evolution of the

corresponding bit of quantum information in Ψ.

13Note that in M-theory Planck units, this translates to Size ∼ `P as expected, given that X → X/
√
R.
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3.1 Qubit dynamics and M-theory polarizations

We start by considering a d = 3 matrix configuration that looks like14

X =

 Xbh δxbh 0

δxbh xbh δx

0 δx x

 , Ψ =

 Ψbh δψbh 0

δψbh ψbh δψ

0 δψ ψ

 , (3.1)

where Xbh and Ψbh are a (N−2)×(N−2) sub-blocks representing part of the black hole, and

the remaining xbh/ψbh and x/ψ represent 1×1 entries that are bits of the black hole that will

participate in an emission process. The particle with coordinate x and polarization state ψ

has perhaps ventured outside the black hole via ergodic motion. The δx mode is a nearest

neighbor off-diagonal, implying that xbh and x are part of a cluster. The rest of the matrix

entries start off in an equilibrium state at temperature Th . Note that δxbh and δψbh are

N − 2 component vectors. The fermionic part of the Matrix theory action is given by (2.1)

Sferm[X,Ψ] =

∫
dt

1

2
ΨΨ̇ +

R

2λ3/2
ΨΓi [Xi,Ψ] . (3.2)

Quantizing the fermionic matrix entries, we have{
Ψabα,Ψ

†
ab β

}
= 2 δαβ , (3.3)

where α and β are 10 dimensional spinor indices, α, β = 1, . . . , 16, remembering that the

matrix entries Ψab are Majorana-Weyl in 10 spacetime dimensions. Applying this quanti-

zation to the matrix configuration (3.1), we get for the off-diagonal modes{
δψα, δψβ

}
= 2 δαβ , (3.4)

while the diagonal entries lead to a Clifford algebra

{ψα, ψβ} = 2 δαβ . (3.5)

The latter means that we can introduce new raising/lowering spinors on the diagonal by

ψ±α =
1

2
(ψα ± i ψα+8) (3.6)

where we now restrict α = 1, . . . , 8. We then have{
ψ+
α , ψ

−
β

}
= δαβ (3.7)

as needed. In general, the fermionic sector then consists of 8N (N − 1) qubits from off-

diagonal modes and 8N qubits from the diagonal modes for a total of 8N2 qubits corre-

sponding to 28 = 256 polarization states of the M-theory supergravity multiplet — one for

each of the N2 matrix degrees of freedom.

14The ∆Xs in this expression are set to zero to leading order in the computation as they are fast modes

frozen in the vacuum and their effect is already incorporated in the mean-field potential. The expectation

values 〈δX〉 in the vacuum scales inversely with the large frequency.
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Using (3.1), we can then expand the action (3.2) treating all matrix entries as stochastic

variables. Furthermore, given spherical symmetry, we expect all spatial directions to be

statistically equivalent so that we can write xi → x for all i. We get the action

Sferm =
2
√
d

(2π)3/2

R

`3s

[(
(x− xbh) δψ Γδψ + δx δψ Γ(ψ − ψbh)− δψ Γ(ψ − ψbh) δx

)
(3.8)

+
(
δΨbh Γ(Xbh − xbh)δΨbh − δΨbh Γ(Ψbh − ψbh) δXbh − δXbh (Ψbh − ψbh) ΓδΨbh

)]
where we define

Γ ≡ 1√
d

∑
i

Γi . (3.9)

Throughout, we use a symmetric representation for the Γis. Note that Γ2 = 1 and Tr Γ = 0

so that the eigenvalues of Γ are ±1. We will then choose the convenient representation

where

Γ =

(
18×8 08×8

08×8 −18×8

)
. (3.10)

Taking the thermal vacuum expectation value of (3.8), we see that the thermal average

of the action 〈Sferm〉 vanishes at equilibrium given that we know

〈x〉 = 〈xbh〉 = 〈δx〉 = 〈Xbh〉 = 〈δXbh〉 = 0 . (3.11)

This is simply the statement that, once equilibrium is achieved, we have two separate

systems — a bosonic and a fermionic one — that can be treated as two thermal components

in equilibrium at the same temperature. The interesting physics arises when we consider a

perturbed configuration, for example one corresponding to x−xbh being momentarily large

— describing the process of evaporation of a bit of the Matrix black hole. The subsequent

relaxation process would be driven by the couplings in (3.8) between bosonic modes and

qubits. We can analyze this physical setup by looking at the stochastic effective action of

the qubits provided we arrange proper boundary conditions where x and δx are initially

perturbed away from equilibrium. In the next section, we develop this method of tracking

qubit information evolution.

3.2 Qubit action

We expect that a small perturbation should not affect the whole system appreciably on

short enough timescales. This means that if we were to perturb x and δx in (3.1) off-

equilibrium, Xbh and δXbh (as well as Ψbh and δΨbh) would remain in equilibrium as long as

N � 1. Using techniques from [63], given a stochastic variable χ coupling to other degrees

of freedom F (t) via S =
∫
dt χF , we can write an action

i Sq = ln

∫
Dχ e−Sstoch[χ]+i

∫
dt χF (t) , (3.12)

where χ would be x or δx from earlier, and where the Stochastic action is

Sstoch[χ] =

∫
dt

[
imγ

4T

(
χ̇+

V ′(χ)

mγ

)2

− i

2mγ
V ′′(χ)

]
(3.13)
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T is the temperature to which the perturbed χ relaxes to, and the path integration involves

boundary conditions corresponding to the quenching process of interest. The potential V ,

the damping parameter γ, and the mass m are all determined from our previous discussion

in section 2. F (t) can be obtained from (3.8) and is bilinear in the qubit variables. It can

easily be shown that the Smoluchowski equation for χ given by (2.14) follows from Sstoch [63].

To evaluate the path integral, we start with the classical equations of motion

imγ

2

1

T
χ̈− i

2

mγ

T
Ω2χ = F , (3.14)

where

Ω ≡ V ′′(0)

mγ
. (3.15)

If χ represents a radial coordinate
√
x2
i in a spherically symmetric setup as given by (2.42)

we get instead

Ω2 =
V0

(mγ)2 r2
0

(
16
V0

r2
0

+ 8 (d+ 2)
T

r2
0

)
. (3.16)

Since V0 ∼ T for any of the bosonic perturbations of interest, Ω has then the same scale

irrespective of symmetry. We solve the sourceless classical equation

χ̈− Ω2χ = 0 , (3.17)

and we easily find

χcl(t) =
1

sinh Ω(ti − tf )
[χi sinh Ω (t− tf )− χf sinh Ω(t− ti)] , (3.18)

with F = 0, where χi is an initial off-equilibrium configuration, and χf is an equilibrium

configuration χ relaxes towards. The classical contribution to the action is then

Sclq =

∫ tf

0
dt F (t)χcl(t) , (3.19)

where we take the initial time ti = 0. The quantum contribution is given by

Squeff = −i T

mγ

∫ tf

0

∫ tf

0
dt dt′ F (t)

δ(t− t′)
∂2
t − Ω2

F (t′) , (3.20)

with the associated Green’s function

G(t, t′) =
2

Ω

eΩ (ti+tf )

e2 Ω ti − e2 Ω tf
×
[

sinh Ω(t− tf ) sinh Ω(ti − t′)θ(t− t′)

+ sinh Ω(t− ti) sinh Ω(tf − t′)θ(t′ − t)
]

(3.21)

In summary, we arrive at an action for the qubit variables — hidden in the F (t) — of the

form

Sq =

∫ tf

0
dt F (t)χcl(t)− i

T

mγ

∫ tf

0
dt

∫ tf

0
dt′ F (t)G(t, t′)F (t′) , (3.22)

describing the evolution of the relevant qubits as the bosonic stochastic variable χ relaxes

— after a quench described by the boundary conditions χi and χf . Note that the second
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part of (3.22) is imaginary and this implies that the qubit evolution would be in general

non-unitary. This piece involves quartic qubit interactions and would be responsible for

scrambling information away as the background evolves stochastically. This is not sur-

prising yet an important observation: we are then able to associate information loss in

Hawking radiation to the scheme of coarse-graining over short timescales that results in an

effective model of what otherwise is microscopic unitary evolution of information. That is,

we see how averaging over chaotic dynamics in Matrix theory is responsible for information

loss in the dual low energy M-theory or supergravity. Below, we will see that when this

non-unitary piece of the effective dynamics becomes important, we expect the emergence

of geometry on the dual M-theory side. Our goal next is to consider scenarios where χ, or

x and δx, are perturbed away from equilibrium, and then we want to track the evolution

of the qubits described by ψ and δψ.

3.3 Long timescales

Consider the qubit couplings given by (3.8) where x and δx are arranged to start off in an

off-equilibrium configuration. Neglecting the back reaction of this perturbation onto the

black hole, we can take

〈Xbh〉 = 〈xbh〉 = 〈δXbh〉 = 0 (3.23)

so that we have

Sferm →
2
√
d

(2π)3/2

R

`3s

[
x δψ Γδψ + δx δψ Γ(ψ − ψbh)− δψ Γ(ψ − ψbh) δx

]
(3.24)

We want to develop the action of the qubits using (3.12), which then gives (3.22) where χ

represents x or δx, and F (t) can be read off from (3.24). Before looking at the details, notice

that the second term in (3.22), which is quartic in the qubits, is imaginary and renders the

evolution non-unitary. The term is the result of coarse-graining over the stochastic variables

x and δx and naturally leads to information loss. The scale for this non-unitary piece is

non-unitary coupling ∼ T

mγ
F 2 t2G ∼ T

mγ

(
R

`3s

)2 t

∂2
t − Ω2

(3.25)

given that the propagator G(t, t′) scales as δ(t− t′)/(∂2
t −Ω2) and the fermions are dimen-

sionless. Irrespective of whether χ represents x or δx, we have

T

mγ
' R . (3.26)

From (2.67) and (3.15), we have

Ωx ∼ V0 ∼
R

r2
h

=
1

th
, (3.27)

when χ is identified with x; while from (2.74) and (3.15) we instead have

Ωδx '
gs
`s

=
1

to
, (3.28)
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when χ is identified with δx. Hence, for t . to, the non-unitary coupling scales as

non-unitary coupling ∼
(
R

`2s

)3

t3 ∼
(
t

to

)3

= geff(τ)2 (3.29)

whether χ represents x or δx. We then see that this coupling, and hence information loss,

sets in for timescales of order t ∼ to, where the effective dimensionless Yang-Mills coupling

becomes order unity and Matrix theory starts describing emergent spacetime geometry in

the dual formulation. For shorter timescales, t � to, the evolution is effectively unitary,

given by the first semi-classical term in (3.22). Note however, that for tstoch < t � to,

the dynamics is non-local, given by the Planck scale cluster physics and the light nearest

neighbor off-diagonal modes δx of the matrices.

3.4 Short timescales

Let us first start by writing the full qubit action (3.22) that follows from using (3.24).

When χ is identified with the diagonal coordinate x of (3.1), we have

Sq =

∫ tf

0
dt f(t)xcl(t)− i

T

mγ

∫ tf

0
dt

∫ tf

0
dt′ f(t)

δ(t− t′)
∂2
t − Ω2

f(t′) , (3.30)

and

f(t) = − R

(2π)3/2`3s

√
d
(
δψ · δψ − δψ′ · δψ′

)
(3.31)

obtained from (3.10) and (3.24), and where δψ′α ≡ δψα+8 with α = 1, . . . , 8. The ‘dot’

represents a sum over 8 qubits, i.e. δψ · δψ ≡
∑

α δψαδψα. As mentioned above, the second

non-unitary piece is negligible for t � to. Looking at the first term of (3.30), we can see

that it provides mass to the δψ and δψ′ qubits, and it scales as

xcl

R

`3s
t ∼ xcl

`s

t

to
. (3.32)

For early times where t < to, this term is important only if xcl is large. This, for example,

would be the case if the matrix entry labeled by x would evaporate away, xcl & rh . If

the initial perturbation for the stochastic variable x is such that xi ∼ rh , the subsequent

stochastic evolution is in a flat potential given the form of (2.42). This evolution, described

by (2.17) and (2.18) — or equivalently (3.18), results in xcl(t) growing to infinity.15 We

then conclude that the effective qubit dynamics that arises from a perturbation on the

diagonal — that corresponds to x evaporating away — is described by

S
(I)
eff =

∫ to

o

dt f(t)xcl(t) , (3.33)

with xcl ∼ rh initially and growing larger thereafter. This is the statement that the off-

diagonal qubits δψ and δψ′ become heavier and heavier and condense as the bit evaporates

away.

15To account for the flat direction in (2.42), we can for example take Ωx → 0, which gives from (3.18)

xcl(t)→ xi + (t/to)(xf − xi), where xi ∼ rh .
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For the off-diagonal coordinate δx in (3.24), the resulting action takes the form

Sq =

∫ tf

o

dt (δxcl(t)F + δxcl(t)F )− i R
∫ tf

o

dt

∫ tf

o

dt′ F ∗(t)
δ(t− t′)
∂2
t′ − Ω2

F (t′) , (3.34)

where

F (t) =
R

(2π)3/2`3s

√
d×

[
(ψ+ − ψ+

bh) · (δψ + i δψ′) + (ψ− − ψ−bh) · (δψ − i δψ′)
]

(3.35)

In arriving at this expression, we have used a complexified version of the action (3.12)

where χ is complex as is δx — since the integrated modes are most naturally represented

by complex variables. We also have used the diagonal qubit operators ψ± and ψ±bh defined

in (3.6). Once again, as described above, the second non-unitary piece is negligible for

t � to. The first term in (3.34) term provides a coupling between qubits ψ, ψbh , and δψ

and it scales as

δxcl

R

`3s
t ∼ δxcl

`s

t

to
. (3.36)

As the bit x evaporates away, equations (2.17) and (2.18) — or equivalently (3.18) — tell

us that the initial value of δxcl decays exponentially to zero on timescale given by to, as

the mode becomes heavy.16 At short times t� to, we write

S
(II)
eff =

1

2

∫ to

o

dt (δxcl(t)F + δxcl(t)F ) . (3.37)

In summary, the qubit action is given by S
(I)
eff + S

(II)
eff , or

Sq =

∫ τo

o

dτ
[
g ξcl(τ)

(
−δψ · δψ + δψ

′ · δψ′
)

+g δξcl(τ)
(
(ψ+ − ψ+

bh) · (δψ + i δψ′)− (δψ − i δψ′) · (ψ− − ψ−bh)
)

+g δξcl(τ)
(
(δψ − i δψ′) · (ψ− − ψ−bh)− (ψ+ − ψ+

bh) · (δψ + i δψ′)
) ]
, (3.38)

where we have switch from time t, x, and δx to scaled variables τ , ξ, and δξ (see equa-

tion (2.6)), and the effective coupling g is defined as

g =
`sg
−2/3
s R

(2π)3/2`3s

√
d =

(g2
YM)1/3

√
d

(2π)3/2
(3.39)

which has units of length such that g τ is the effective dimensionless coupling. In total, the

system describes 8× 4 qubits: 8× 2 off-diagonals ones denoted by δψα and δψ′α, and 8× 2

on the diagonal denoted by ψα and ψbhα. The stochastic relaxation from a quench is given

by the classical profiles ξcl(τ) = xcl(τ)/`s and δξcl(τ) = δxcl(τ)/`s that follow from (3.18).

We now elaborate on the implications of the qubit evolution action (3.38), restricting

our attention to early times tstoch < t . to — before the onset of dissipation and emergence

of geometry. For the remaining discussion, we will use the coherent state representation of

16The easiest way to see this is to note that, using (2.17), we have d(δxcl)/dt = −Ωδxδxcl .
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the qubits, which we first briefly review. For a qubit with states |0〉 and |1〉, a representation

over a coherent state |η〉 looks like [64]

〈η|0〉 = 1 , 〈η|1〉 = η , (3.40)

where η is a Grassmanian. A general state |Φ〉 is then a function over the Grassmanians

〈η|Φ〉 ≡ Φ(η). A Bell state

|B〉 =
1√
2

(|0〉 |1〉 − |1〉 |0〉) (3.41)

is then represented as

〈η1η2|B〉 =
1√
2

(η2 − η1) . (3.42)

The expectation value of an operator gets a form of a function over Grassmanians

O(η, η′) ≡
〈
η|O|η′

〉
=

∑
m,n=0,1

ηm 〈m|O|n〉 η′n . (3.43)

The path integral measure is such that

〈η|O|Φ〉 =

∫
dη′dη′e−η

′η′O(η, η′)Φ(η′) . (3.44)

For a Hamiltonian of qubits referenced by the operators ψ±, we would write ψ+ → η and

ψ− → η. For a simple bilinear and time-dependent structure with sources, we have

H = A(t) ηη − J(t)η − ηJ(t) . (3.45)

The unitary evolution operator as a function over Grassmanians takes the form

U(η′′,η′; t′′, t) =

∫ η(t′′)=η′′

η(t′)=η′
Dη(t)Dη(t)exp

[
η′′η(t′′)+ i

∫ t′′

t′
dt (iη(t)η̇(t)−H(η(t),η(t), t))

]
,

(3.46)

which, for a Hamiltonian of the form (3.45), then leads to

U(η′′, η′; t′′, t) = exp

[
η′′e−i

∫ t′′
t′ A(t)dtη′

+i η′′
∫ t′′

t′
dt J(t)e−i

∫ t′′
t′ ds θ(s−t)A(s) + i

∫ t′′

t′
dt J(t)e−i

∫ t′′
t′ ds θ(t−s)A(s)η′

−
∫ t′′

t′
dt

∫ t′′

t′
ds J(t)D(t, s)J(s)

]
(3.47)

where the propagator is given by

D(t, s) ≡ θ(t− s)ei
∫ t
s A(t′)dt′ . (3.48)

We can then use this approach to write the unitary evolution operator for the qubits given

by (3.38). The Grassmanian variables will be labeled as δψ, δψ′, ψ−, ψ−bh , and their complex
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conjugates — in correspondence with the respective operators. We then seek the evolution

operator written as

U(ψ+(τ), ψ−(0), ψ+
bh(τ), ψ−bh(0), δψ(τ), δψ(0), δψ′(τ), δψ′(0); τ, 0) (3.49)

that acts on the qubit wavefunction Φ(ψ+(0), ψ+
bh(0), δψ(0), δψ′(0)). We have the evolution

of a 8 × 4 qubit system, half on the matrix diagonal and the other half off-diagonal; all

32 qubit are part of a cluster. The time evolution is obviously sensitive to the details of

the quench, given by xcl(t) and δxcl(t). The initial wavefunction Φ is another input to

the problem. Cluster formation dynamics might naturally involve the delicate physics of

D0 bound state formation — akin to Cooper pair formation in superconductivity. The

dynamics of the marginal bound states in Matrix theory is a complicated strong coupling

problem that remains an open issue, and we will not be able to tackle the full problem here.

Instead, given the spirit of an effective approximate scaling analysis, we will next engage in

a speculative analysis that is inspired by a recent toy model of black hole qubit evaporation

due to Osuga and Page [65]. We will argue that the Matrix theory qubit evolution operator

has the hallmarks of the toy model presented in [65], under a series of assumptions.

In [65], a toy model was proposed whereby the black hole Hilbert space is augmented

to a tensor product that involves the black hole qubit sector and two other sectors, one for

in-falling and another for outgoing radiation modes just inside and just outside the event

horizon. Each black hole qubit is paired with two qubits that are in the singlet Bell state.

The latter is proposed to represent the vacuum for the radiation pair of modes that assures

smooth spacetime near the horizon. As a black hole qubit evaporates away, [65] proposes

a unitary evolution operator that essentially exchanges the black hole qubit with a qubit

of outgoing radiation, leaving the black hole sector qubit entangled in a Bell state with

the qubit of incoming radiation. The result of this is that one qubit of information leaves

the black hole (into the outgoing radiation sector), and a vacuum Bell state of two qubits

(black hole and incoming radiation sectors) is left behind that is now to be interpreted as

part of a bit of new empty spacetime created just outside a black hole as the latter shrinks

in size. The key assumptions in this model are: interactions in the black hole qubit sector

are non-local at the Planck scale, and a Bell vacuum state for black hole and incoming

radiation qubits is tantamount to shrinking the black hole or equivalently expanding the

vacuum space outside of it. The motivation for this toy example is to present a proof of

concept model of black hole evaporation consistent with black hole complementarity.

In our setup, we have an explicit quantum theory of gravity that dictates the qubit

evolution operator. The partons of the matrix black holes are clusters of diagonal and

off-diagonal matrix qubits, about 8 × (d − 1)2 qubits in d space dimensions. For d = 3,

that’s 32 qubits. We propose that each cluster of qubits, a 32-qubit system, carries 8 qubits

worth of information only — corresponding to the 256 supergravity states that can encode

information; the remaining 24 qubits are scaffolding that are in a highly entangled Bell-like

vacuum state that is the result of cluster dynamics. These represent the halo at around the

event horizon. Naturally, the information is on the diagonal qubits, say in ψbh in the specific

setup we have been considering. That means that δψ, δψ′, and ψ start off in a maximally

entangled vacuum Bell state of 24 qubits representing radiation or ‘membrane goo’ near
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the horizon. We then propose that the unitary evolution operator from (3.49) and (3.38) —

given a perturbation of the stochastic variables xcl(t) and δxcl(t) that describes the evap-

oration of the x matrix entry — results in having the qubit of information ψbh transfered

to ψ which exits the Matrix black hole. The end result leaves behind a vacuum Bell state

of qubits for δψ, δψ′, and ψbh that is to be interpreted as the production of a bit of new

spacetime outside the black hole. As a result, the matrix black hole shrinks in size from N

to N − 2. Looking at the form of (3.38), we see a structure that has the right general form

to potentially generate such an evolution of qubits. The analogue of the exchange operator

from [65] in our language takes the form exp
[
i α t (ψ+ − ψ+

bh)(ψ− − ψ−bh)
]
. Our effective

Hamiltonian involves in addition the mediation of the light δψ modes in combinations of

the form ∼ (ψ+ − ψ+
bh)δψ− and its complex conjugate.

Bell states with 24 qubits are very difficult to study and even determine in their own

right. Added to this complication is the fact that (3.38) is in general non-local due to the

light off-diagonal modes. As a result, it is a very challenging task to determine the evolution

of the qubits using the action (3.38). To see this, note that the non-local couplings in (3.47)

have scale given by ∫ τ0

0
dτ ′g χcl(τ) ' (χi + χf )× g τ0 ∼ (χi + χf ) (3.50)

where we used (3.18). For χ→ ξcl � 1, given that rbh � `s . For χ→ δξcl ∼ 1, given that

the cluster length scale is `s . In any scenario, the relevant dynamics is highly non-local.

Noting some of the general similarities between the model of [65] and ours, we leave the

analysis of the significantly more complex dynamics of our system for future work.

4 Discussion and outlook

The analysis in this work is a first attempt to develop a quantum gravity-centric, bottom

up picture of black hole event horizon physics. The results can be summarized through

two main conclusions:

1. We have determined that near horizon dynamics is non-local in space and time at

the Planck scale. The thermal degrees of freedom of the black hole are ‘cells’ of

around d particles, for a black hole in d space dimensions; each cell spans a size

of order the Planck scale. One can think of each cell carrying bits of information,

encoded in the polarization states of the fermionic variables of Matrix theory — or

equivalently the polarization states of the supergravity multiplet on the dual side.

The dynamics of black hole degrees of freedom is non-local and chaotic for short

Planckian timescales, in a regime where the Yang-Mills theory is hovering just below

strong coupling. At longer timescales and larger distances, the dynamics is effectively

local both in time and space, while being strongly coupled. This is when and where

an effective geometrical picture is possible.

2. When describing evaporation, one is dealing with a chaotic system near the would-be

event horizon with a characteristic timescale given by the Planck scale. To describe
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the evaporation via a top down approach, i.e. via Hawking’s approach, one needs

to average chaotic dynamics over super-Planckian timescales. Where a spacetime

description is valid, one is necessarily left with a non-unitary effective picture for the

evaporation arising from coarse graining over Planckian chaotic motion. The sugges-

tion is that the resolution of the black hole information loss paradox cannot lie in any

framework that relies on a well-defined smooth spacetime geometry at the event hori-

zon. This is a plausibility argument: we demonstrated that, through a rather simple

stochastic model with a single input scale, one can understand how Hawking evopo-

ration is inherently non-unitary — naturally due to stochastic, chaotic UV physics.

This simplest of settings necessitates however the breakdown of smooth geometry

at the horizon. This obervation, together with other independent evidence towards

a breakdown of geometry at the horizon, constitute strong evidence that one most

likely needs to look for resolutions of the information paradox in models involving

a new perspective on near horizon geometry. The geometrical description of black

hole evaporation is inherently non-unitary as it arises from averaging over Planckian

timescales that characterize the chaotic physics of the underlying degrees of freedom.

A couple of footnotes are in order. First, we identify emergent geometry at the bench-

mark of strong effective Yang-Mills coupling geff(τ)2, as opposed to strong effective ’t Hooft

coupling geff(τ)2N , which is the natural coupling for large N . The subtlety here is that the

coupling that governs the microscopic event horizon dynamics is one that arises from the in-

teraction of ‘order one’ matrix entries on the diagonal. At most groups of order d2 particles

participate in the dynamics, hence the relevant effective coupling is not the N dependent ’t

Hooft coupling. In describing the gravitational interaction of the whole black hole with en-

tropy S ∼ N , the relevant effective coupling is indeed the ’t Hooft coupling; but microscopic

event horizon dynamics does not involve the participation of all N degrees of freedom.

The second footnote has to do with implicit connections to the issue of black hole

complementarity [58]–[61] . In modeling the mean field potential for the degrees of freedom

of the Matrix black hole, we note that there was no need to introduce a separate Planck

scale near the horizon: the entire potential can be modeled using a single scale, the radius of

the event horizon.17 This is not surprising since we were modeling the physics in a manner

to match against expectations on the dual supergravity side. We also noted that the qubit

action we arrived at has some of the features of the qubit evolution toy model proposed in

the work of Osuga and Page [65]. The latter consisted of a proof-of-concept system that

circumvents the need of a firewall by positing non-local interactions at the horizon and an

exchange mechanism of qubits within a direct product of three Hilbert spaces. All these

ingredients of this toy model emerge naturally from our Matrix theory discussion. However,

our action is more complicated than the one in [65], and we leave a detailed analysis of the

dynamics for future work. Nevertheless, these similarities between the two systems, ours

17Our model builds from the outset on the premise that Hawking evaporation is a single scale phenomenon,

at least to leading order. This does not allow capturing new UV physics through this model that might

still exist and correct Hawking evaporation. Yet, the point is that such additional scales are not needed to

understand why Hawking evporation is inherently non-unitary.
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and that of [65], might be hints that a firewall is not needed at the event horizon after all,

and black hole complementarity prevails. This is consistent with [14, 15, 54] given the non-

local nature of the interactions near the event horizon in Matrix theory — at the level of D0

brane clusters. There is however a significant conceptual challenge to this argument. Black

hole complementarity is a statement about the perspective of an in-falling observer. This

means that one needs to understand how a change of perspective between the observer at

infinity and the one in-falling past the horizon is realized in the language of Matrix theory.

Presumably, this involves a Matrix transformation in U(N) since one expects that local

spacetime coordinate invariance is embedded in the gauge group of the theory. This in turn

requires a more precise map between emergent geometry and metric, and matrix degrees

of freedom. Without this critical missing ingredient, we cannot conclusively understand

how the firewall paradox is addressed by our effective model.

Related to this last point, we also note that our treatment explicitly chooses a frame

for describing the black hole, presumably corresponding to the perspective of an outside

observer. This creates a clear separation between the roles of diagonal and off-diagonal

matrix entries. The residual gauge freedom is the group of permuting diagonal entries,

a subgroup of U(N). The more interesting transformations would mix diagonal and off-

diagonal entries, and we believe these correspond in part to switching the perspective of

the observer. Very little is known or understood about this part of the Matrix-supergravity

duality, and it seems a full treatment of the quantum black hole would necessitate progress

in this direction.

This work is a step towards unravelling the microscopic details of black hole horizon

physics within a theory of quantum gravity that is fully embedded in string/M-theory. The

effective model approach opens up new directions for a range of possible investigations and

extensions that can only add to our understanding of black holes and quantum gravity. We

hope to report on some of these in future works.
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