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ABSTRACT: We develop an microscopic model of the M-theory Schwarzschild black hole
using the Banks-Fischler-Shenker-Susskind Matrix formulation of quantum gravity. The
underlying dynamics is known to be chaotic, which allows us to use methods from Ran-
dom Matrix Theory and non-equilibrium statistical mechanics to propose a coarse-grained
bottom-up picture of the event horizon — and the associated Hawking evaporation phe-
nomenon. The analysis is possible due to a hierarchy between the various timescales at
work. Event horizon physics is found to be non-local at the Planck scale, and we demon-
strate how non-unitary physics and information loss arise from the process of averaging over
the chaotic unitary dynamics. Most interestingly, we correlate the onset of non-unitarity
with the emergence of spacetime geometry outside the horizon. We also write a mean
field action for the evolution of qubits — represented by polarization states of supergrav-
ity modes. This evolution is shown to have similarities to a recent toy model of black
hole evaporation proposed by Osuga and Page — a model aimed at developing a plausible
no-firewall scenario.
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1 Introduction and highlights

The study of black holes in M(atrix) theory holds a treasure trove of insight into quantum
gravity and the nature of spacetime. As a non-perturbative formulation of M-theory, Matrix
theory [1, 2] can in principle access and potentially resolve many of the puzzles we associate
with black holes. Early attempts at staging Matrix black holes have consisted of promising
sketches [3]-[6] and numerical simulations [7]-[10]. We have learned that understanding
black holes is related to studying strongly coupled Yang-Mills at finite temperature [11]—
[13], and that there might be intricate non-local dynamics near the event horizon [14, 15].
More recently, we have learned that Matrix theory is characteristically chaotic [6, 16, 17],
and interactions can scramble initial value data at the fastest possible rate that is allowed by
the postulates of quantum mechanics [18]-[25] — as also expected from black hole physics.

In this work we ask if one can write a mean field coarse-grained description of the
strongly coupled microscopic dynamics of Matrix theory in a manner that captures the
essential features of black holes and informs us about the geometry near the event horizon.
To illustrate through an analogy, if M(atrix) theory is to black hole quantum mechanics as
BCS theory is to superconductivity, we are looking for the analogue of a Landau-Ginzburg
description of the quantum physics of black holes — with the underpinning element of
stochastic chaotic evolution.



Figure 1. A cartoon of the effective model of the light-cone Schwarzschild black hole. The cells
represent Planck size marginally bound DO branes, about d per cell in d space dimensions. The
cells are glued together with a condensate of off-diagonal matrix modes that act as scaffolding and
do not carry information or entropy.

We know that Matrix theory is chaotic, and we know that one can often use the
language of random variables, or in this case Random Matrix theory (RMT) [25]-[6, 33], to
capture chaotic dynamics. We also know that RMT is closely related to the strong damping
regime of Fokker-Planck stochastic evolution [26, 34-36] whereby a statistical description
of ergodic motion is effectively described with macroscopic variables. The suggestion is
then to formulate a description of Matrix black holes where the entries of the Matrices are
described through particles moving in a mean field potential — one that is obtained by
coarse-graining over microscopic degrees of freedom that are engaged in ergodic motion.

In this work, we show that such an effective description of black holes is indeed possible
using Matrix theory. In the process of developing this effective model, we settle on a
microscopic picture of Matrix black holes that is both intuitive and complex. Entries on the
diagonal of the matrices incorporate the thermodynamics and encode information. These
can be thought of as particles that mostly hang around near the surface of the would-
be horizon. They are subject to a mean field potential whose shape we determine. An
additional ‘goo’ of off-diagonal matrix entries glue these particles into clusters, effectively
acting like bound states. These clusters contain around d particles each, for a black hole in
d space dimensions. Figure 1 depicts a cartoon of the model. In the figure, the clusters are
depicted as cells. The configuration is far from static, and in fact we expect that the cells
continuously exchange particles and rearrange themselves. The rest of the matrix degrees of
freedom, which constitute the overwhelming majority of the total, condense in a quantum
ground state. It is possible that they should be thought of as a membrane stretched at the
horizon, without any associated thermodynamics or entropy. Thermal energy is distributed
in the dynamics of the cells as they slide near the horizon and interact with each other.

We develop this model in detail, matching with all expectations from the dual M-theory
supergravity description of a Schwarzschild black hole in the light-cone frame. In particular,



Hawking evaporation [37]-[40] is reproduced and information loss is demonstrated to arise
from the process of coarse-graining over otherwise unitary dynamics. It becomes clear
that dynamics near the horizon has a non-local component when explored at short enough
timescales, while being local at the longer timescales associated with Hawking radiation.!
Most interestingly, we demonstrate that non-unitary evolution and information loss arise at
the timescales for which the Matrix dynamics is strongly coupled and spacetime geometry
is expected to be emergent in the dual supergravity language. This suggests that Hawking
information loss is inherently tied to the premise that geometry near the horizon of a large
black hole is smooth and well-defined. The microscopic degrees of freedom underlying
black hole dynamics are Planck sized bits that are interacting chaotically over Planckian
timescales. Any description of the physics over timescales larger than the Planck time
involves coarse graining over stochastic dynamics in a manner that leads to an effective
quantum picture that is non-unitary. The notion of spacetime geometry arises at around
those Planckian timescales, implying the breakdown of the geometrical picture of black
hole evaporation as we approach the horizon. Put differently, the Hawking computation is
robust when applied in smooth spacetime backgrounds over large enough timescales, yet
the evaporation should still be regarded as unitary because the notion of geometry and
spacetime is lost at the event horizon at short timescales.

The outline of the text is as follows. In the first section, we present a brief overview
of Matrix theory, followed by a review of Fokker-Planck dynamics and the light-cone
Schwarzschild black hole in supergravity. We then systematically develop the effective
model for the Matrix black hole, matching and checking against expectations on the dual
low energy M-theory side. In the second section, we focus on the time evolution of infor-
mation within the Matrix black hole. We track information encoded in the polarization
states of the low energy M-theory supergravity multiplet, and we write an effective qubit
time evolution operator that is based on the stochastic model developed earlier. We show
how the evolution becomes non-unitary at longer timescales because of the coarse-graining
over chaotic dynamics, and correlate this with the emergence of spacetime geometry in the
dual M-theory language. For short timescales, we write a unitary time evolution operator
that describe the weakly coupled qubit dynamics near the event horizon. Finally, in the
discussion section, we reflect on the implications and future directions.

2 The effective model

2.1 M(atrix) theory overview

The M(atrix) theory action is the dimensional reduction of 10 dimensional Super Yang-
Mills (SYM) to 0 + 1 dimensions and is given by

1 . R 1.
= [dt Tr |—X?+ —_[X;, X:]>+ -0
s / 1r[2Rl+2/\3[ RO

337 U X;, U] . (2.1)

'To clarify, this non-locality arises at the Planck scale. At energy scales below the Planck scale, we see
no evidence for non-locality. This is the same non-local phenomenon typically associated with DO brane
scattering.



The gauge group is U(N), with the X;s (i = 1,...,9) and the ¥ in the adjoint representation
of the group. In our conventions, we have

R=yg/,, A =2m %, (2.2)

where g, is the string coupling and ¢, is the string length.? The Yang-Mills coupling is

9s
g\2(M = 3 (2'4)

The length dimensions of the various quantities are: X ~ (%, ¢ ~ ¢!, and ¢ ~ 0.
The theory is purported to be a non-perturbative formulation of M-theory in the light-
cone frame in the following scaling limit?

gs X
5= fixed and = fixed . (2.5)

s
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This corresponds to focusing on energies that scale as E' ~ g, /¢,. It is sometimes convenient
to introduce alternate M-theory variables €, 7, and £ that remain fixed in the scaling regime
of interest

E= 93/36, t= 9:2/37' , X =/((. (2.6)

For example, the corresponding light-cone M-theory energy scale is € ~ R/{? = fixed.
In the map onto light-cone M-theory, N/R is interpreted as total light-cone momentum.
Light-cone energy scales inversely with light-cone momentum, hence as (R/N) x mass?. De-
pending on the coupling regime, the number of active degrees of freedom of a configuration
scales as N*, where k = 2 in the weakly coupled regime, and k = 1 at strong coupling,.

Compactifying light-cone M-theory to d space dimensions, we can describe it through
Matrix theory with d of the 9 X; matrices removed from the dynamics, assuming that
the compact directions are small enough that associated modes are too heavy to excite.
Alternatively, one can use d 4+ 1 dimensional SYM for a full description of the compactified
theory, obtained from the current setup via a T-duality map.

The relation between light-cone M-theory and Matrix theory is known to hold for
N — 00, but the correspondence is valid for finite N as well — between Discrete Light-
Cone Quantized (DLCQ) M-theory and finite N matrix theory, where N is mapped onto
units of M-theory discrete light-cone momentum [44]. In this work, we will work at finite
but large N in trying to describe an M-theory black hole that is large enough to have small
curvature scales at its horizon.

2Matrix theory is sometimes written in Planck scale conventions, related to the one we use by X — Y/vR
and t — 7/R. Using units such that 2w £3 = 1 where ¢p is the eleven dimensional Planck length, the action
takes the form

_ Ly By Loy Bypiny
S_/dTTY{QRYZnLQ[YZ,YJ} +2\II\I/+2\I/F[K,\1/] , (2.3)

where Y = dY/dr. In this alternate convention, the length dimensions of the various quantities become
X ~ 032 4p ~ 00 t ~ €2, R~ L. Note that if Y ~ £3/* then X = £,, given that £p = gi/%(,.

3This scaling limit corresponds to the decoupling regime for holographic duality [11, 41-43] — as applied
to DO branes. The Matrix theory conjecture is thus in the same class of gravity-SYM correspondences that
give rise to the AdS/CFT map.



2.2 From chaos to a stochastic evolution

Recently, Matrix theory has been demonstrated to be highly chaotic [6, 16, 17], with
dynamics that can scramble initial value data in a time that scales logarithmically with
the entropy [20-23, 25] — as opposed to the more common power law behavior. This
allows one to capture Matrix theory physics, in the appropriate setting, by treating the
matrix entries as random variables. Describing a non-extremal black hole is certainly a
good candidate setup for exploring chaos in Matrix theory [25, 33, 45]. And techniques
from the well-established field of Random Matrix Theory (RMT) [26-30] can then be used
to tackle the problem. RMT is most powerful when one is dealing with a theory with a
single matrix; it then allows a robust statistical treatment of the eigenvalues of this matrix.

In our setup, we will be interested in studying a configuration of matrices in Matrix
theory that represents a d dimensional Schwarzschild black hole in the dual light-cone
M-theory. We will assume from the outset that we work with spherically symmetric con-
figurations, where the different X; matrices are chaotic and uncorrelated in different space
directions. Hence, each matrix entry in the d matrices X;, with ¢ = 1,...,d, is random
and not correlated with any other matrix entry. This configuration is to be mapped onto
a black hole in the dual M-theory — with a fixed temperature and associated Hawking
evaporation phenomenon. The fermionic matrix entries of ¥ in (2.1) will be treated as a
component of the thermal soup — in equilibrium with the bosonic matrix entries. At finite
temperature, we will hence mostly focus on the bosonic sector with a mirror image at play
in the fermionic sector being implied. However, we do need to incorporate the one-loop
quantum contribution of the fermionic degrees of freedom to the mean field potential for
the bosonic stochastic variables. Furthermore, later on, we will use the fermionic variables
as probes to track information evolution in this thermal soup.

We start by noting that RMT is closely related to stochastic physics. In particular,
since the work by Dyson [26], it has been demonstrated that RMT dynamics can be properly
captured by the strong damping regime of Fokker-Planck evolution. We present here a quick
overview of the subject.

In RMT, each matrix entry can be thought of as a stochastic particle evolving in an
mean field potential. For a particle with position r and velocity v in d space dimensions,
we can study it through the probability function

p(r,v,t) drdiv, (2.7)

which represents the probability of finding the particle at time ¢ within » and r + dr and
v and v + dv. In our setup, we will consider matrix configurations that are spherically
symmetric in d dimensions. We will then focus on probability profiles where
p(r,v,t) — p(r,v,t) H d(ve,) - (2.8)
i
Here, the vg, are d — 1 components of v in the angular directions, and v = v,. Correspond-
ingly, the mean field potential is spherically symmetric?

V(r) —V(r) (2.9)

4The model we develop involves time averaging over stochastic, chaotic dynamics. The cluster tiling



and the Fokker-Planck equation takes the form

9 v
= - d — + LT
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(2.10)
where T is the temperature of the environment, v is a damping parameter, and m is the
mass of the particle. This then allows us to study the evolution of the matrix entry in a
statistical framework. The spherically symmetric Fokker-Planck equation is solved by the

equilibrium t ime—independenl proﬁle
peq eXp 27”7} + L T i (5 U@i N 211

C here is a normalization constant. Note that this non-relativistic treatment is consistent
with Matrix theory since light-cone M-theory has Galilean symmetry with dispersion rela-
tion B c = p?/2pLc, where the light-cone momentum prc ~ 1/R plays the role of Galilean
mass.
As mentioned above, the relation between RMT and stochastic physics arises in the
regime of strong damping
NS GON (2.12)
m

Focusing on this regime, we also write the probability profile as

p— /ddvp (2.13)

integrating over all velocities. The resulting evolution equation is known as the Smolu-
chowski equation

ap(r,t) 1 (1 )

rd—1 9r

d—1y,/ L0 419
ot my " V(T)ﬂm r )p(r,t). (2.14)

The radial probability current that follows from (2.14) takes the form

Jr = —mlfy <T§T + V’(r)> p(r,t), (2.15)
which we will use later in understanding evaporation through stochastic diffusion.

Our goal is to develop an effective model for strongly coupled chaotic Matrix theory,
using the Smoluchowski equation with r representing matrix entries in the bosonic matrix
\/>2; X2 ~ X; of (2.1) — since different directions in space are statistically uncorrelated.
We then need to identify the relevant mean field potential V' (r), mass m, temperature T,
and damping parameter 7.

of figure 1 is not rigid and very dynamical over timescales shorter than the Hawking timescale. It is then
reasonable to expect that, at timescales larger than the characteristic timescale associated with cluster
dynamics, an approximate spherical symmetry sets in. Of course, going beyond this coarse model one
needs to consider the possible breaking of the spherical symmetry [31, 32].



It is worthwhile noting that an alternate and equivalent approach is to track the evolu-
tion of moments of random matrix entries. If y represent any matrix entry, then the Smolu-
chowski equation with a quadratic potential is equivalent to stochastic fluctuations given by

V"(0)r 2T
0 = s 2y = 20
mry mry

which then imply the differential equations for the moments

5t (2.16)

d V" (0)

G0 =200 (2.17)

d , 2V"(0) , , 2T
a@>:—m7Qw+E? (2.18)

The timescale of stochastic evolution can then be easily read off as
mry

tp ~ ——— . 2.19
T V”(O) ( )

It is important to note that this is not the timescale over which one coarse-grains the ran-
dom motion to arrive at a mean field potential for stochastic variables. This other timescale,
which we call the stochastic timescale ..., must be shorter than the thermal timescale,
tsoen < tr, and is determined from the process of averaging over microscopic dynamics.

We next need to determine the parameters of the model. We will build this effective
description of strongly coupled chaotic Matrix theory by using knowledge of the gravity
dual, and of the microscopic string theory dynamics that underlies Matrix theory.

2.3 The light-cone Schwarzschild black hole

We start by reviewing the dual gravity picture of the Matrix theory setup of interest — a
light-cone M-theory Schwarzschild black hole [46]. The corresponding geometry is obtained
by Lorentz boosting a d dimensional Schwarzschild black hole in the light-cone direction
with a boost factor given by r, /R, where r, is the radius of the black hole horizon. While
the horizon geometry is unchanged and the entropy or area in Planck units remains the
same, the Hawking temperature is red-shifted

R
T, =—. (2.20)
Ty
The Hawking radiation flux from evaporation takes the form
d—1
T, 1
Py, ~ ’r‘ngl = 7% (2.21)

in general d dimensions. The thermal timescale associated with the Hawking temperature

is then

2
1 T

fy o~ b 2.22
TR (2.22)

The entropy is related to the black hole mass M,, as usual S ~ M,, r,, and the evaporation
process can be described by [47, 48]

dM,, R
. 2.2
dt ry (2.23)




Hence, the black hole lifetime is given by

tige ~ 1S . (2.24)
Beside the timescale t, and ¢, the shorter scrambling timescale

teer ~ 1, InS (2.25)

determines the timescale over which the black hole scrambles information. We have written
all these relations in forms that can be compared to the Matrix theory stochastic model in
the choice of units presented earlier. In our SYM choice of units, the entropy of the black
hole is written as

Tffl
For a large black hole, we see that we must require
> L, (2.27)

leading to small curvature scales at the black hole horizon.
The task next is to model an effective Matrix theory stochastic system that reproduces
these properties of a light-cone Schwarzschild black hole.

2.4 A conjecture for an effective model

In a perturbative regime, Matrix theory consists of ~ N? degrees of freedom as all matrix
entries participate in the dynamics. In early models of a Schwarzschild black hole in Matrix
theory, the authors of [3-5] noted however that, to reproduce the correct equation of state
of a light-cone black hole, one must have the entropy proportional to N at strong coupling,
not N2

S~ N. (2.28)

This implies that only N of the entries in each matrix X; are to participate in the ther-
modynamics of the Matrix black hole; that is, most degrees of freedom must be ‘frozen’,
given that N > 1 follows from (2.26) and (2.27). Inspired from the works of [3-5], we then
propose that the thermodynamics of the Matrix black hole is carried by the N diagonal
entries of the X; matrices. Information in the black hole would also be carried by diagonal
degrees of freedom only. These entries can be sometimes interpreted as coordinates of the
corresponding D0 branes underlying Matrix theory. Entropically, these order ~ N degrees
of freedom would like to spread to infinity — the theory even admits flat directions for this
purpose. However, perturbatively there can be an initial cost in energy in doing so from
strings stretching between the DO branes — i.e. off-diagonal modes of the matrices. Pre-
sumably, taking strong coupling effects into account, the configuration forms a metastable
ball of size r,, the black hole radius, along with decay channels that implement the process
of Hawking evaporation. As a diagonal matrix entry random walks its way out, a bit of the
black hole evaporates away [10]. If N diagonal degrees of freedom are to spread in a volume

d

re, average inter-brane spacing is generically parametrically much larger with N than if



Figure 2. (a) A shaded sub-block of a matrix that describes a cluster of d — 1 DO branes. The
60X s refer to the off-diagonal entries spanning clusters; the off-diagonal entries within a cluster are
in the shaded block, denoted by dz. (b) General structure of non-zero entries in the matrices for
different space dimensions d. The d — 1 labels refer to the number of active columns or rows in the
first row or column, respectively. The shaded diagonals start within the shaded square in (a).

they are spread over an area r?~!'. And since inter-brane spacing is costly in energy, we

can start seeing that the proper model of a Matrix black hole would involve the diagonal
entries of the matrices spread on the surface of a would-be black hole horizon. Figure 1
shows a cartoon of the setup.

Figure 2(a) shows a cartoon of a matrix X;, focusing on a sub-block associated with
a group of ‘nearest-neighbor’ branes.” Using the permutation subgroup of U(N), we can
always arrange to sort the matrix entries as depicted. We expect that a certain number of
branes, of order d — 1, whose coordinates appear as = in the figure, would be close enough
that corresponding matrix off-diagonal modes, labeled dx in the figure, can be light. This
still would not affect the S ~ N requirement as the number of such modes would be
independent of N. Branes much farther away, over a distance scale r,, would be much
heavier. We propose that beyond the d x d sub-block, all other off-diagonal modes would
be too heavy to excite and would freeze or condense in a Bose-Einstein (BE) condensate.
Indeed, if we look at the critical condensate temperature 7., we would expect®

L (T, /2
N~N(Z) (2.29)

®Note that the permutation symmetry requires that the additional d? off-diagonal entries in the top right
and bottom left of each matrix are active as well. This is a detail in the description, in the large N > d
limit, we assume has subleading effect on the larger picture.

5The right hand side is the expression for the number of degrees of freedom in a Bose condensate in d
dimensions.



which we can quickly see to be much larger than the Hawking temperature

R
Ty

for d > 2. It is possible that this BE condensate describes a membrane-like configuration
stretching at the black hole horizon [3-5, 49, 50]. In a coarse-grained effective language,
we would set these heavy off-diagonal modes, the §Xs in the figure, to zero. Interestingly,
fuzzy spheres of various dimensions in Matrix theory have been shown to necessitate the
activation of more off-diagonal modes that spread away from the diagonal [51, 52]. For
example, a 2-sphere (d = 3) is realized through SU(2) representations, which activate 3
diagonal lines along the matrix diagonals; and a 4-sphere (d = 5) activates 7 diagonal lines.
In general, one has d — 1 rows/columns in a diagonal band for a total of 2d — 3 diagonals.
Our model then fits well with this pattern. Figure 2(b) shows the general scheme.

The diagonal entries within the d x d sub-block of matrices would be spread out
from each other at a distance that is around the Planck scale and might naturally involve
marginal bound state physics. In M-theory language, this would correspond to supergravity
excitations carrying ~ d units of light-cone momentum. These marginal bound states are
conjectured to exist in Matrix theory and are a necessary ingredient for the dictionary be-
tween Matrix theory and M-theory [1]. The off-diagonal modes dz in these sub-blocks would
remain relatively light and participate in making the physics of these clusters non-local,
at around the Planck scale. They would correspond to strings joining nearest neighbor
branes, and henceforth we refer to the dzs as ‘off-diagonal nearest neighbor modes’.”

Our stochastic model would then involve writing an effective theory of all the modes
that remain active — diagonals z and nearest neighbor modes §dz — while integrating out
all other . X modes. We need to provide two separate stochastic treatments, one for the x
modes on the diagonal, and another for the off-diagonal nearest neighbor modes dx. The
first would describe the coarse-grained thermal state of the black hole; the second would
describe finer cluster physics within each matrix sub-block. We will next demonstrate
how these two sectors effectively decouple and can reliably be treated through stochastic
methods due to a hierarchy in the relevant timescales.

In the Matrix theory scaling regime time scales as g,/{,; this allows us to measure
timescale through the effective Yang-Mills coupling g.q(7)? defined as

g 91/ 5 2/3 2 \1/3 2\1/3

B = T (g201) = (6307 = (gur(r)D) P, (231)
which remains finite in the scaling regime. Hence, larger effective coupling corresponds to
longer times since 041 SYM is super-renormalizable. In this language, the first timescale ¢,
from (2.22) arises from the thermodynamics of the diagonal modes, of order N in number;

"Our treatment explicitly picks out a ‘frame’ or gauge where the diagonal and off-diagonal matrix entries
have very different physical roles. We expect that this setup corresponds to a description of the Matrix black
hole from the perspective of the outside observer. U(N) gauge transformations would naturally change the
perspective, while mixing the roles of diagonal and off-diagonal entries. More on this in the Discussion
section.

~10 -



this gives

2
%th = (gorr(ma)?)1/? ~ <2h) > 1. (2.32)

The scrambling timescale t,., of (2.25) is then given by

2
%t = (ger(1.c))/? ~In N (2’) > 1. (2.33)

S

The lifetime of the configuration ¢y, from (2.24) should correspond to

2
s r
%tlife = (geff(Tlife)z)l/g ~ <éh) N>1. (2.34)

s

These statements follow from the expected black hole physics on the dual side of the
correspondence. Note that all three timescales correspond to regimes where the Matrix
theory SYM is strongly coupled.

On the SYM side, perturbatively, we know that off-diagonal modes have dynamics
given by®

1
E ~ E&j@ + %Ar%x? , (2.35)

where Ar is the distance between the corresponding diagonal entries; this gives a frequency

of RA
2o (2.36)

Wz ™~ f? ‘.
We can then easily see that if Ar ~ £, for nearest neighbor off-diagonal modes, dx modes
can be treated as heavy and can hence be integrated out over time scales

Wil > 1=t >1t, with %ta = 1= (gu(7)?) > 1. (2.37)
This is the strong coupling transition point for the SYM, a regime that we typically asso-
ciate with emergence of geometry on the dual M-theory side. The relevant strong coupling
benchmark is given by g.q(7)? ~ 1, instead of the one using the 't Hooft effective coupling
G (T)2N ~ 1, because the dynamics in question is that of individual partons in the black
hole soup, as opposed to the interaction of the black hole as a whole. More on the interplay
between these two couplings and the emergence of a valid geometrical description can be
found in the Discussion section.

Next, looking at off-diagonal modes d X that straddle diagonal modes separated by a
large distance of order Ar ~ r,, we see from (2.36) that these can be integrated out for
timescales

wsxt > 1= 1>ty with %t = (2 (Tuoan))/® = f% = (g (1)) > f% (2.38)
s h h

This is the shortest of the timescales and determines the regime where a stochastic treat-

ment is valid: it corresponds to timescales where integrating out the 6X’s leads to a

11 -
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Figure 3. The hierarchy of timescales for event horizon dynamics. Timescales ¢t < t, are associated
with non-local physics within DO brane clusters, but timescales t > ¢4, allow a local description
for coarser inter-cluster dynamics.

stochastic mean field potential for the diagonal modes. Note also that, for r, > /,, part of
this regime overlaps with weak coupling in the Matrix SYM.

Figure 3 summarizes the various timescales and clarifies the range of validity for the
effective model that we propose. The stochastic formalism with a mean field potential for
the diagonal modes requires coarse graining over time scales longer than ¢ .,.,. For ¢t > ¢,
6X’s are frozen in a BE condensate. We can then incorporate the effect of the §.X’s into
a mean field potential for the modes on the diagonal. The nearest neighbor off-diagonal
modes, the dz’s, cannot be integrated out at these timescales. We leave them part of the
degrees of freedom participating in the physics of cluster formation. For timescales ¢t > ¢,,
the nearest neighbor modes are heavy as well and are associated with high frequency dy-
namics that can be coarse grained and described through a stochastic treatment. However,
the X modes will always have a much higher frequency (for r, > £,) and hence will still
determine the mean field potential for the diagonal modes. Finally, thermal timescales, t,,
teer, and ty are all much longer and live well within the regime of a stochastic treatment
that coarse grains physics faster than ¢ ..

We then list in one place the set of observations underlying our model:

e We have a stochastic effective description for diagonal modes for ¢t > t o, OF
(geH(T)Q)l/ 3> %' We integrate out the off-diagonal modes that straddle widely
separated modes on the diagonal.

e Strong coupling corresponds to timescales t > t,, or (ges(7)?)/? > 1. In this regime,
all off-diagonal modes are heavy, but the effect of nearest neighbor off-diagonal modes
on diagonal modes is sub-leading. We associate emergence of geometry on the dual
M-theory side with the onset of strong coupling in Matrix theory [2, 53]. At timescales

8The total energy receives an important contribution from fermionic zero modes which will be taken into
account when developing the mean field potential. At this stage, we use the bosonic sector only to simply
identify relevant dynamical scales. Note also that, at finite temperature, supersymmetry would be broken.
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tooen < t < t,, we might be able to write a stochastic effective description of DO brane
cluster dynamics. We expect that at around ¢ ~ t,, the degrees of freedom of Matrix
theory organize in clusters of about d nearest neighbor branes moving in the larger
thermal soup.

2
e Hawking evaporation physics sets in at t > t,, or (g(7)?)Y? ~ (2—’:) > 1, well
within the regime of validity of the stochastic treatment.

It is useful to write some of these timescales in M-theory Planck units. Using (2.6),
and the fact that light-cone time is boosted by a factor of ¢, /R, we find

0
7, = gl = b, (2.39)
lp L ¢
Titoch = E%”i — Epi < Uy, (2.40)
and
lp Th 2 Th 2
Ty = Eﬂp 2 lp 7 > Lp. (2.41)

Hence we see that 7, correspond to Planck scale time in M-theory language. As we
shall see, all this means that the chaotic microscopic dynamics that underlies black hole
horizon physics is associated with a characteristic timescale that is given by the Planck
scale. A well-defined notion of spacetime geometry necessitates coarse graining over longer
timescales.

Our next task is to develop the stochastic effective descriptions of diagonal and near-
est neighbor off-diagonal modes — the first describing black hole thermodynamics and
evaporation, the second giving us a crude peak into brane cluster/bound state dynamics.

2.5 Modes on the diagonal

In this section, we propose a mean field stochastic potential for diagonal modes, valid over
timescales t > t,,. Using spherical coordinates, we posit

742

V(r)=-% <2 - 1>29(7“0 —r), (2.42)

7o

writing r? = 22

¢, where z; is any diagonal mode of X;. The potential is parametrized by

two scales, ro and Vj, and we need to determine these two parameters by comparing the
resulting dynamics to that of a light-cone black hole. Note also that we have incorporated
quantum effects that we know would arise from the fermionic sector of Matrix theory: the
0(ro — r) flattens the potential so as to model the expected flattening of the potenial from

supersymmetry-based cancellations of zero mode energies.”

9The potential is not strictly flat but comes with an 1/ 7472 fall-off at one loop order. For the purposes
of the approximate stochastic description, we treat this as flat since no aspect of the model explores the
region far away from the black hole.
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We start by noting that the only scale near the horizon of the Schwarzschild black hole
is given by 7,.' We then start by setting

ro =T (2.43)

fixing the size of the stochastic diagonal fluctuations to within the would-be horizon size.
The temperature of the soup should naturally be the Hawking temperature in the light-cone

frame R
T=T,~—. (2.44)
Ty
The mass of a stochastic particle should be set to the mass of a D0 brane
1
=—. 2.45
m=~ (2.45)

This leaves us with determining the damping parameter v and the potential scale V. We
start by looking at evaporation flux from the thermal soup. Following [62], we arrange for
a steady state scenario for the probability distribution given by

p=Cites |- (gmet+ve)] (2.46)

where u = r — rg and C' is a normalization constant to be determined. We need to find
f(u) given the boundary conditions

f(=r9)=1 and f(0)~0, (2.47)

where the first one follows from matching with the equilibrium configuration at r = 0,
while the second one amounts to absorbing the evaporation flux at » = rg, corresponding
to evaporation to infinity. The Fokker-Planck equation at strong damping then leads to

£/ (w) + £ () = 0, (2.48)
where

_V'(ro) _ 8V
T  Tr}

>0 (2.49)

K =
for the mean field potential at hand. The solution is given by the error function

_erf((r—rg) K/2)
f(u) = I (2.50)

'9This might prejudice the discussion in favor of black hole complementarity [58]-[61] as opposed to a

firewall scenario at the horizon [54]-[57]. Nevertheless, we still need to map onto geometry on the dual
M-theory side. We have tried to develop a model with an additional scale in the mean field potential set at
the Planck scale near the horizon, and it seems that this does not lead to a picture that is consistent with
Hawking evaporation. While we cannot rule out the possibility of finding an alternate model that includes
the Planck scale — as we have not explored all possibilities — we note however that the simple model given
in the text works very well without the need of a Planck scale at the horizon.
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Integrating over the velocities we have

p=C f(u)eVIT ( (2.51)

which then leads to the current

d/2 —E(pr—p 2
i=c <M) 28 vy BT (252)
my \ m T erf(—ro+/k/2)

We will see below that
K Vo
—~y=~1 2.
’“Oﬁ \E : (2.53)

when we find that Vy ~ T),,. We then note that
erf(—ro\/K/2) ~ —1. (2.54)

For erf(—x), the function near x 2> 1 is very well approximated by —1 with corrections
suppressed exponentially as e~ /x. We determine the normalization factor C' using

1= /ddrp(r, t). (2.55)

For this, we write
2 [ 75
flr—ro)~1+ ﬁ\/gr eV /2 (2.56)

near  ~ 0, and

2 K
f(r—rmrp) ~ ﬁ\/;(r —70) (2.57)

near 7 >~ rg. We then get
Td

d
"o

1~ Vo/T 2.
Cmd/Qe Vod/z (2.58)
up to a numerical factor. The probability current near ry takes the form
/2
T (2nT
=0 T (1Y v, o
my\ m
which then leads to the evaporation flux
7—(d—1)/27,(d+1)/2
F~ j(ro)rgfl ~ 20 , (2.60)
mrgy
which we can then match with Hawking evaporation at temperature 7),'!
R
F=F>~—. (2.62)
To
11f we want to include the kinetic energy of the evaporated bit, we would get
F~ T_(d_U/QVO(M)/Qe*WVO’/T, (2.61)

p)
mrpY

with w being the kinetic energy, giving the standard black body spectrum.
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This gives one of the two conditions we need to determine v and Vj. The other condi-
tion comes from the well-known one-loop effective potential of a probe DO brane in the
background of N DO branes. Using M-theory Planck units, we have [49]

N &1y

V —_ W b} (2-63)

where v is the relative velocity of two partons at a separation r ~ r,. While this is a
perturbative result in the Matrix SYM, it is know to lead to an exact match with the dual
M-theory scenario [49] implying that it is valid at strong coupling as well.'?> Remembering
that the black hole entropy is given by

S ~ ~N (2.64)

in Planck units, and saturating the Heisenberg uncertainty bound for each parton [3-5]

v~ R , (2.65)

Tn
we get the scale of the potential energy at the size of the horizon

R

E~—
5 -
Th,

(2.66)

Rescaling to SYM units using (2.6) gives the same relation (r, — VR, E — E/R). We
then naturally identify this energy scale with the depth of the mean field potential

R

V(O):E:>V0:T—2:Th. (2.67)
h
Finally, from F' = F}, we then get
R
T
The latter relation implies that
1
my~ —, (2.69)
7o

which corresponds to a borderline strong damping regime (2.12) — needed for consistency
with RMT.

We can now look at the quantum and thermal vacuum expectation values of a mode
x on the diagonal, given by

T

2 2
<$ >t,h ~ V”(O) ’ <$ >qu ~ V”(O) : (2'70)
For the given potential and parameters, we have
2N /2 2
<x >th ~ <ac >qu ~ Ty (2.71)

2There have been suggestions that a non-remormalization theorem perhaps underlies this finding [2].
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leading to borderline thermal regime, which implies that the diagonal modes are barely ex-
cited above the ground state. We also note that odd moments vanish at equilibrium, so that

(x) = 0. (2.72)

We then have succeeded in developing a stochastic model for diagonal mode dynamics
that matches with Hawking evaporation. As a result, a consistency check shows that this
stochastic evolution has characteristic timescale given by (2.19)
myr? 2

= —y 2.
7 R h (2.73)

tT ~
as required.

2.6 Off-diagonal nearest neighbor modes

At timescales t ~ t,, where Matrix theory enters the strongly coupled realm, we have the
possibility to describe clusters of d nearest neighbor branes through stochastic means. The
clusters are marginally held together and we expect this dynamics to be a delicate one, given
their natural overlap with the physics D0 brane marginal bound state formation. Neverthe-
less, we will use the methods of stochastic dynamics to try to describe the problem, bearing
in mind that we aim only to identify scaling relations of what is most likely a very subtle
cluster formation process. We model the potential for the nearest neighbor off-diagonal
modes Vy, with a simple quadratic confining form, and the only relevant scale is the curva-
ture V" (0). For nearest neighbor diagonals, we expect an inter-brane separation of Ar ~ £,
leading to a perturbative potential for the corresponding off-diagonal modes given by

R

~ Rigs 2
(6

Wa@(o) Ar? ~ ) = Yvym - (2.74)

This is a perturbative result but we extend it to ¢ < ¢, as a scaling relation. The thermal
and quantum vacuum expectation values are

T T R R
050, V7(0) g3y’ 050, \/V”(O) \/Q%M’ (2.75)

where in the thermal expression, we want to think of 7" as a scale for kinetic energy within

the bound system. We would expect ground state physics, implying

T2
(627), ~ <53:2>qu = 5 ~R, (2.76)
9ym
which identifies
R
Tsy ~ 2 (2.77)

as the expected scale for kinetic energy in the cluster. The mass parameter would still be
given by

My = (2.78)

i
o
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Finally, we propose that the strong damping bound needed by RMT should be valid, and

at worst saturated

1
(m)2 ~mV"(0) = m~y ~ 72 (2.79)

s

identifying the damping parameter « for cluster dynamics. As a sanity check, we can verify
that the associated characteristic timescale for the stochastic dynamics is
Ti o~ MY by (2.80)
imescale ~ ——— ~ — =1, .
vro) g,
which again matches well with our expectations that the relevant dynamics is at the onset
of strong coupling in the SYM theory. Finally, the expected size of the cluster becomes

. T
Size? ~ o) ~ 02, (2.81)

which also syncs well with our expectation that one thermal parton is to occupy one Planck

area at the black hole horizon.'?

3 Quantum information

In this section, we want to describe how information evolves in the stochastic model we
developed above. For this purpose, we need to look more closely at the fermionic degrees
of freedom of the ¥ matrix in (2.1). It is known that these correspond to the polarizations
of the light-cone M-theory supergravity multiplet — the graviton, the gravitino, and the
3-form gauge field [1]. That is, in the low energy regime, we can think of an entry on
the diagonal in the X;’s as the coordinate of a supergravity particle whose flavor and
polarization state is determined by the corresponding entry in the ¥ matrix. We can
expect that information in an M-theory black hole can be encoded in the polarization
states of a thermal soup of supergravity excitations. We would then want to study the
time evolution of the ¥ matrix within the effective model we have developed. Note that
the quantum contribution from the fermionic modes in their ground state has already been
taken into account in the shape of the mean field potential for the diagonal bosonic modes.

In the spirit of RMT, the equilibrium dynamics of the fermionic and bosonic matrix
entries are treated as statistically uncorrelated. This justifies working with the bosonic
sector by itself as we have done so: it is assumed that a corresponding thermal state is
also set up in the fermionic sector as the two sectors are in thermal equilibrium. Our
goal now is to track how information encoded in the polarization states evolves when
this equilibrium configuration is slightly perturbed. We could for example consider one
particularly interesting scenario, the emission of a supergravity particle from the stochastic
soup, as a matrix entry of X; ventures off to large distances. We would choose a particular
matrix configuration that can describe this situation, and analyze the evolution of the
corresponding bit of quantum information in W.

13Note that in M-theory Planck units, this translates to Size ~ £p as expected, given that X — X/\/E
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3.1 Qubit dynamics and M-theory polarizations

We start by considering a d = 3 matrix configuration that looks like'4

ibh oy, 0 &/h 5¢bh 0
X = | oxy, xy Oz |, V=16, Yy 0¥ |, (3.1)
0 oz = 0 &y o

where X, and ¥,, are a (N —2) x (N —2) sub-blocks representing part of the black hole, and
the remaining x,, /¢, and x /1 represent 1x 1 entries that are bits of the black hole that will
participate in an emission process. The particle with coordinate x and polarization state
has perhaps ventured outside the black hole via ergodic motion. The dx mode is a nearest
neighbor off-diagonal, implying that z,, and x are part of a cluster. The rest of the matrix
entries start off in an equilibrium state at temperature T;,. Note that dx,, and v, are
N — 2 component vectors. The fermionic part of the Matrix theory action is given by (2.1)

1. R ;
Sferm[X, \Il] - /dt 5\11\:[/—'- 2)\73/2\IIF [XZ,\II] . (32)

Quantizing the fermionic matrix entries, we have

{Wabar Uy} = 2005, (3.3)

where o and S are 10 dimensional spinor indices, «, 8 = 1,...,16, remembering that the
matrix entries ¥, are Majorana-Weyl in 10 spacetime dimensions. Applying this quanti-
zation to the matrix configuration (3.1), we get for the off-diagonal modes

while the diagonal entries lead to a Clifford algebra

{Ya, s} = 2048 (3.5)
The latter means that we can introduce new raising/lowering spinors on the diagonal by
1 .
Yo = 5 (Yo +ivass) (3.6)
where we now restrict a = 1,...,8. We then have
{d 45 } = dap (3.7)

as needed. In general, the fermionic sector then consists of 8 N (N — 1) qubits from off-
diagonal modes and 8 N qubits from the diagonal modes for a total of 8 N? qubits corre-
sponding to 2% = 256 polarization states of the M-theory supergravity multiplet — one for
each of the N2 matrix degrees of freedom.

The AXs in this expression are set to zero to leading order in the computation as they are fast modes
frozen in the vacuum and their effect is already incorporated in the mean-field potential. The expectation
values (§X) in the vacuum scales inversely with the large frequency.
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Using (3.1), we can then expand the action (3.2) treating all matrix entries as stochastic
variables. Furthermore, given spherical symmetry, we expect all spatial directions to be
statistically equivalent so that we can write z; — « for all 7. We get the action

S B L~ ma)FOT00 + 80T~ ) =0T~ 0)TE) 69

+ (th F(th - xbh)é\llbh - Whh ]-_‘(\Ijbh - wbh) 6th - Hbh (‘Ilbh - wb}L) Fé\l’bh)]

Sferm =

where we define

1
F:V@gﬁ, (3.9)

Throughout, we use a symmetric representation for the I';s. Note that 2 = 1 and TrI' = 0
so that the eigenvalues of I' are £1. We will then choose the convenient representation

r— <1S><8 Osxs ) ' (3.10)

where

Ogxs —1gxs

Taking the thermal vacuum expectation value of (3.8), we see that the thermal average
of the action (S.,.,) vanishes at equilibrium given that we know

() = (z) = (62) = (X)) = (6X,) = 0. (3.11)

This is simply the statement that, once equilibrium is achieved, we have two separate
systems — a bosonic and a fermionic one — that can be treated as two thermal components
in equilibrium at the same temperature. The interesting physics arises when we consider a
perturbed configuration, for example one corresponding to x — x,, being momentarily large
— describing the process of evaporation of a bit of the Matrix black hole. The subsequent
relaxation process would be driven by the couplings in (3.8) between bosonic modes and
qubits. We can analyze this physical setup by looking at the stochastic effective action of
the qubits provided we arrange proper boundary conditions where z and dx are initially
perturbed away from equilibrium. In the next section, we develop this method of tracking
qubit information evolution.

3.2 Qubit action

We expect that a small perturbation should not affect the whole system appreciably on
short enough timescales. This means that if we were to perturb z and dx in (3.1) off-
equilibrium, X,, and §X,, (as well as ¥,;, and §V,,) would remain in equilibrium as long as
N > 1. Using techniques from [63], given a stochastic variable x coupling to other degrees
of freedom F(t) via S = [dt x F, we can write an action

isq — ID/DX 6_ stoch[X}J’_i fthF(t) , (312)

where x would be x or §z from earlier, and where the Stochastic action is

imy (. V'(x) 2_ i "
4T <X+ m-y 2m7V )

&mmz/w (3.13)
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T is the temperature to which the perturbed x relaxes to, and the path integration involves

boundary conditions corresponding to the quenching process of interest. The potential V/,

the damping parameter -, and the mass m are all determined from our previous discussion

in section 2. F'(t) can be obtained from (3.8) and is bilinear in the qubit variables. It can

easily be shown that the Smoluchowski equation for x given by (2.14) follows from Sy, [63].
To evaluate the path integral, we start with the classical equations of motion

Zm’yl TMY 9
—=——Qx=F .14
5 X5 YX=F, (3.14)
where -
Q= ( ) (3.15)
mry

If x represents a radial coordinate y/x? in a spherically symmetric setup as given by (2.42)

we get instead
Vo

(my)?r
Since Vy ~ T for any of the bosonic perturbatlons of interest, {2 has then the same scale

0% = <16 VO 8(d+2) T) (3.16)

7’0

irrespective of symmetry. We solve the sourceless classical equation
¥ —x =0, (3.17)

and we easily find

1

 [ysinhQ(t—ty) — xrsinh Q( — )], 3.18
Snb 00 — 1)) [Xisinh Q (t —tf) — xsinh Q(t — t;)] (3.18)

Xa(t) =

with F' = 0, where x; is an initial off-equilibrium configuration, and x; is an equilibrium
configuration y relaxes towards. The classical contribution to the action is then

Ssl = /tf th(t) Xcl(t)a (319)
0

where we take the initial time ¢; = 0. The quantum contribution is given by

qu_ b / ( t) o
seﬁ_—zf / / dtat' () 35—y F(t), (3.20)

with the associated Green’s function

9 Dttty

G(t,t) = x [sinh Q(t — tf) sinh Q(t; — ¢)0(t — t')

Q 20t _ o2Q1
+sinh Q(t — ¢;) sinh Q¢ — t)0(t' —t) | (3.21)

In summary, we arrive at an action for the qubit variables — hidden in the F'(t) — of the

tr tr ts
Sq:/o dt F(t) xalt —z/ dt/ ' F(O)G(L )P, (3.22)

describing the evolution of the relevant qubits as the bosonic stochastic variable x relaxes

form

— after a quench described by the boundary conditions x; and x ;. Note that the second
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part of (3.22) is imaginary and this implies that the qubit evolution would be in general
non-unitary. This piece involves quartic qubit interactions and would be responsible for
scrambling information away as the background evolves stochastically. This is not sur-
prising yet an important observation: we are then able to associate information loss in
Hawking radiation to the scheme of coarse-graining over short timescales that results in an
effective model of what otherwise is microscopic unitary evolution of information. That is,
we see how averaging over chaotic dynamics in Matrix theory is responsible for information
loss in the dual low energy M-theory or supergravity. Below, we will see that when this
non-unitary piece of the effective dynamics becomes important, we expect the emergence
of geometry on the dual M-theory side. Our goal next is to consider scenarios where x, or
x and dx, are perturbed away from equilibrium, and then we want to track the evolution
of the qubits described by ¥ and .

3.3 Long timescales

Consider the qubit couplings given by (3.8) where x and dx are arranged to start off in an
off-equilibrium configuration. Neglecting the back reaction of this perturbation onto the
black hole, we can take

(X)) = (xy) = (0 X)) =0 (3.23)

so that we have

2vVd R

Sferm — (2 7_‘_)3/2 E

(2 6YT60 + 02 5P T (¢ — o) — YT (Y — i) 62 (3.24)
We want to develop the action of the qubits using (3.12), which then gives (3.22) where x
represents x or dz, and F(t) can be read off from (3.24). Before looking at the details, notice
that the second term in (3.22), which is quartic in the qubits, is imaginary and renders the
evolution non-unitary. The term is the result of coarse-graining over the stochastic variables
2 and dz and naturally leads to information loss. The scale for this non-unitary piece is

T T (R\* ¢
non-unitary coupling ~ o F2$2G ~ e <£§> m (3.25)
given that the propagator G(t,t') scales as 6(t —t')/(0? — Q?) and the fermions are dimen-
sionless. Irrespective of whether y represents x or dx, we have

T
= ~R. (3.26)
my
From (2.67) and (3.15), we have
R 1
ry b,

when x is identified with z; while from (2.74) and (3.15) we instead have

g 1
R e 2
s 0L (3.28)
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when Yy is identified with dx. Hence, for t < t,, the non-unitary coupling scales as

R\® A
non-unitary coupling ~ <€2> 3 ~ <t0> = Gon(7)? (3.29)
whether x represents x or dx. We then see that this coupling, and hence information loss,
sets in for timescales of order t ~ t,, where the effective dimensionless Yang-Mills coupling
becomes order unity and Matrix theory starts describing emergent spacetime geometry in
the dual formulation. For shorter timescales, t < t,, the evolution is effectively unitary,
given by the first semi-classical term in (3.22). Note however, that for t,... < t < t,,
the dynamics is non-local, given by the Planck scale cluster physics and the light nearest
neighbor off-diagonal modes dx of the matrices.

3.4 Short timescales

Let us first start by writing the full qubit action (3.22) that follows from using (3.24).
When Yy is identified with the diagonal coordinate x of (3.1), we have

B t _27 tf , t—t,)
Sq_/o dt f(t) za(t) / dt/ dt’ (8) 25— [(1). (3.30)

d
an R

f(t) = _W\/& (@ oY — W/ ) 5¢/> (3.31)

obtained from (3.10) and (3.24), and where §¢), = d1)q4+s with « = 1,...,8. The ‘dot’
represents a sum over 8 qubits, i.e. §1-Jp = o 01,061a. As mentioned above, the second
non-unitary piece is negligible for ¢ < t,. Looking at the first term of (3.30), we can see
that it provides mass to the dv) and v’ qubits, and it scales as

xclgt ~ Z’tt (3.32)
For early times where t < t,, this term is important only if x, is large. This, for example,
would be the case if the matrix entry labeled by z would evaporate away, x, = r,. If
the initial perturbation for the stochastic variable z is such that z; ~ r,, the subsequent
stochastic evolution is in a flat potential given the form of (2.42). This evolution, described
by (2.17) and (2.18) — or equivalently (3.18), results in z(t) growing to infinity.!> We
then conclude that the effective qubit dynamics that arises from a perturbation on the

diagonal — that corresponds to x evaporating away — is described by

S = / il FO)za(t), (3.33)

with x, ~ r, initially and growing larger thereafter. This is the statement that the off-
diagonal qubits 47 and 47’ become heavier and heavier and condense as the bit evaporates
away.

15To account for the flat direction in (2.42), we can for example take €, — 0, which gives from (3.18)
Za(t) = zi + (t/to) (x5 — x:), where z; ~ 4.
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For the off-diagonal coordinate dx in (3.24), the resulting action takes the form

tf _
&:/tm&4w+ﬁd ‘/d#qwﬁ &ﬂm, (3.34)

where

R

PO = ampra

Vi x [(0F —if) - (09 +i00) + (07 —y,) - (0 —idy)]  (3.35)
In arriving at this expression, we have used a complexified version of the action (3.12)
where x is complex as is dx — since the integrated modes are most naturally represented
by complex variables. We also have used the diagonal qubit operators ¢+ and ¢ defined
n (3.6). Once again, as described above, the second non-unitary piece is negligible for
t < t,. The first term in (3.34) term provides a coupling between qubits v, 1,,, and 61
and it scales as

R ox, t

0L =t ~ —.
e ‘0, t,

(3.36)

As the bit x evaporates away, equations (2.17) and (2.18) — or equivalently (3.18) — tell
us that the initial value of dz. decays exponentially to zero on timescale given by t,, as
the mode becomes heavy.'6 At short times t < t,, we write

1 [t _—
i?:2/‘ﬁ@m@F+MMﬂﬂ. (3.37)

o

In summary, the qubit action is given by S, (é) + Se(flfl), or

€

5, = [ ar [gtutr) (<5000 + 53 o0
+g0Ea(r) (WF —oh) - (60 + i d9") — (8¢ — i 64') - (b~ — ;)
+g88a () (00 —i00) - (0™ =) = (WF =) - G +i60) |, (3.38)

where we have switch from time ¢, , and dx to scaled variables 7, &, and ¢ (see equa-
tion (2.6)), and the effective coupling ¢ is defined as

14 59 J2PR o (9\2(M)1/3\/a

= apre YT gy (3:39)

which has units of length such that g 7 is the effective dimensionless coupling. In total, the
system describes 8 x 4 qubits: 8 x 2 off-diagonals ones denoted by 01, and d1)/,, and 8 x 2
on the diagonal denoted by 1, and v,,,. The stochastic relaxation from a quench is given
by the classical profiles £.,(7) = x,(7)/¢, and 6&,,(7) = dx.,(7) /L, that follow from (3.18).

We now elaborate on the implications of the qubit evolution action (3.38), restricting
our attention to early times .., < t < t, — before the onset of dissipation and emergence
of geometry. For the remaining discussion, we will use the coherent state representation of

16The easiest way to see this is to note that, using (2.17), we have d(0xq)/dt = —Qsz0x -
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the qubits, which we first briefly review. For a qubit with states |0) and |1), a representation
over a coherent state |n) looks like [64]

(o) =1, (1)=7, (3.40)

where 7 is a Grassmanian. A general state |®) is then a function over the Grassmanians
(n|®) = ®(7). A Bell state

1
B)=—(]0)|1) —[1)]0 3.41
|B) \/5(|>\>|>!>) (3.41)
is then represented as
1
B)=—(@,—17;) . 3.42
(mn2|B) ﬂ(ﬁz ) ( )
The expectation value of an operator gets a form of a function over Grassmanians
omn)=moWy=">_ 7" (mlOn)n" . (3.43)
m,n=0,1

The path integral measure is such that
(nlo]@) = / dif'dn'e™" O, 1) (7). (3.44)

For a Hamiltonian of qubits referenced by the operators 1*, we would write v+ — 7 and
¥~ — n. For a simple bilinear and time-dependent structure with sources, we have

H = A(t)m = J(t)n —nJ(t). (3.45)

The unitary evolution operator as a function over Grassmanians takes the form

Dr(t)Dn(t) exp [U"ﬁ(t") +i | dt (im(t)n(t) — H(7(t),n(t),1)) |

;
(3.16)

(") ="
U(n”,n’;t”,t)Z/
n(t")=n’'
which, for a Hamiltonian of the form (3.45), then leads to
U(ﬁ”, 7]/; t”, t) — exp [n//ei ftt, A(t)dtn/

t”

t// " "
4 77/// dt J(t)eiiftt’ ds 0(s—t)A(s) +i / dt j(t)efi ftt, ds 9(tfs)A(s)77/
t/

t/

_ / “a [ a7, s)J(s)] (3.47)

where the propagator is given by
D(t,s) = 0(t — s)et Js AW (3.48)

We can then use this approach to write the unitary evolution operator for the qubits given
by (3.38). The Grassmanian variables will be labeled as 61, 61, 1™, 1;,, and their complex
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conjugates — in correspondence with the respective operators. We then seek the evolution
operator written as

U™ (1), 97 (0), ¥4, (1), 9, (0), 09(7), 8(0), 8¢/ (1), 3/ (0); 7, 0) (3.49)

that acts on the qubit wavefunction ® (1" (0),;,(0),61(0), 6¢(0)). We have the evolution
of a 8 x 4 qubit system, half on the matrix diagonal and the other half off-diagonal; all
32 qubit are part of a cluster. The time evolution is obviously sensitive to the details of
the quench, given by z.(t) and dx.(t). The initial wavefunction ® is another input to
the problem. Cluster formation dynamics might naturally involve the delicate physics of
DO bound state formation — akin to Cooper pair formation in superconductivity. The
dynamics of the marginal bound states in Matrix theory is a complicated strong coupling
problem that remains an open issue, and we will not be able to tackle the full problem here.
Instead, given the spirit of an effective approximate scaling analysis, we will next engage in
a speculative analysis that is inspired by a recent toy model of black hole qubit evaporation
due to Osuga and Page [65]. We will argue that the Matrix theory qubit evolution operator
has the hallmarks of the toy model presented in [65], under a series of assumptions.

In [65], a toy model was proposed whereby the black hole Hilbert space is augmented
to a tensor product that involves the black hole qubit sector and two other sectors, one for
in-falling and another for outgoing radiation modes just inside and just outside the event
horizon. Each black hole qubit is paired with two qubits that are in the singlet Bell state.
The latter is proposed to represent the vacuum for the radiation pair of modes that assures
smooth spacetime near the horizon. As a black hole qubit evaporates away, [65] proposes
a unitary evolution operator that essentially exchanges the black hole qubit with a qubit
of outgoing radiation, leaving the black hole sector qubit entangled in a Bell state with
the qubit of incoming radiation. The result of this is that one qubit of information leaves
the black hole (into the outgoing radiation sector), and a vacuum Bell state of two qubits
(black hole and incoming radiation sectors) is left behind that is now to be interpreted as
part of a bit of new empty spacetime created just outside a black hole as the latter shrinks
in size. The key assumptions in this model are: interactions in the black hole qubit sector
are non-local at the Planck scale, and a Bell vacuum state for black hole and incoming
radiation qubits is tantamount to shrinking the black hole or equivalently expanding the
vacuum space outside of it. The motivation for this toy example is to present a proof of
concept model of black hole evaporation consistent with black hole complementarity.

In our setup, we have an explicit quantum theory of gravity that dictates the qubit
evolution operator. The partons of the matrix black holes are clusters of diagonal and
off-diagonal matrix qubits, about 8 x (d — 1)? qubits in d space dimensions. For d = 3,
that’s 32 qubits. We propose that each cluster of qubits, a 32-qubit system, carries 8 qubits
worth of information only — corresponding to the 256 supergravity states that can encode
information; the remaining 24 qubits are scaffolding that are in a highly entangled Bell-like
vacuum state that is the result of cluster dynamics. These represent the halo at around the
event horizon. Naturally, the information is on the diagonal qubits, say in 1, in the specific
setup we have been considering. That means that 01, 07)’, and 9 start off in a maximally
entangled vacuum Bell state of 24 qubits representing radiation or ‘membrane goo’ near
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the horizon. We then propose that the unitary evolution operator from (3.49) and (3.38) —
given a perturbation of the stochastic variables z(t) and dx(t) that describes the evap-
oration of the x matrix entry — results in having the qubit of information ,, transfered
to 7 which exits the Matrix black hole. The end result leaves behind a vacuum Bell state
of qubits for d1, §7', and 1), that is to be interpreted as the production of a bit of new
spacetime outside the black hole. As a result, the matrix black hole shrinks in size from N
to N — 2. Looking at the form of (3.38), we see a structure that has the right general form
to potentially generate such an evolution of qubits. The analogue of the exchange operator
from [65] in our language takes the form exp [iat (Pp+ — i) (™ — w,,_h)}. Our effective
Hamiltonian involves in addition the mediation of the light d¢ modes in combinations of
the form ~ (yp* —4);})d1~ and its complex conjugate.

Bell states with 24 qubits are very difficult to study and even determine in their own
right. Added to this complication is the fact that (3.38) is in general non-local due to the
light off-diagonal modes. As a result, it is a very challenging task to determine the evolution
of the qubits using the action (3.38). To see this, note that the non-local couplings in (3.47)
have scale given by

T0
/O dr'g xa(T) = (Xi + Xf) X 970 ~ (Xi + X7) (3.50)

where we used (3.18). For x — &, > 1, given that r,, > ¢,. For x — 0¢,, ~ 1, given that
the cluster length scale is ¢,. In any scenario, the relevant dynamics is highly non-local.
Noting some of the general similarities between the model of [65] and ours, we leave the
analysis of the significantly more complex dynamics of our system for future work.

4 Discussion and outlook

The analysis in this work is a first attempt to develop a quantum gravity-centric, bottom
up picture of black hole event horizon physics. The results can be summarized through
two main conclusions:

1. We have determined that near horizon dynamics is non-local in space and time at
the Planck scale. The thermal degrees of freedom of the black hole are ‘cells’ of
around d particles, for a black hole in d space dimensions; each cell spans a size
of order the Planck scale. One can think of each cell carrying bits of information,
encoded in the polarization states of the fermionic variables of Matrix theory — or
equivalently the polarization states of the supergravity multiplet on the dual side.
The dynamics of black hole degrees of freedom is non-local and chaotic for short
Planckian timescales, in a regime where the Yang-Mills theory is hovering just below
strong coupling. At longer timescales and larger distances, the dynamics is effectively
local both in time and space, while being strongly coupled. This is when and where
an effective geometrical picture is possible.

2. When describing evaporation, one is dealing with a chaotic system near the would-be
event horizon with a characteristic timescale given by the Planck scale. To describe
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the evaporation via a top down approach, i.e. via Hawking’s approach, one needs
to average chaotic dynamics over super-Planckian timescales. Where a spacetime
description is valid, one is necessarily left with a non-unitary effective picture for the
evaporation arising from coarse graining over Planckian chaotic motion. The sugges-
tion is that the resolution of the black hole information loss paradox cannot lie in any
framework that relies on a well-defined smooth spacetime geometry at the event hori-
zon. This is a plausibility argument: we demonstrated that, through a rather simple
stochastic model with a single input scale, one can understand how Hawking evopo-
ration is inherently non-unitary — naturally due to stochastic, chaotic UV physics.
This simplest of settings necessitates however the breakdown of smooth geometry
at the horizon. This obervation, together with other independent evidence towards
a breakdown of geometry at the horizon, constitute strong evidence that one most
likely needs to look for resolutions of the information paradox in models involving
a new perspective on near horizon geometry. The geometrical description of black
hole evaporation is inherently non-unitary as it arises from averaging over Planckian
timescales that characterize the chaotic physics of the underlying degrees of freedom.

A couple of footnotes are in order. First, we identify emergent geometry at the bench-
mark of strong effective Yang-Mills coupling g.«(7)?, as opposed to strong effective *t Hooft
coupling g.«(7)2N, which is the natural coupling for large N. The subtlety here is that the
coupling that governs the microscopic event horizon dynamics is one that arises from the in-
teraction of ‘order one’ matrix entries on the diagonal. At most groups of order d? particles
participate in the dynamics, hence the relevant effective coupling is not the N dependent ’t
Hooft coupling. In describing the gravitational interaction of the whole black hole with en-
tropy S ~ N, the relevant effective coupling is indeed the 't Hooft coupling; but microscopic
event horizon dynamics does not involve the participation of all N degrees of freedom.

The second footnote has to do with implicit connections to the issue of black hole
complementarity [58]—[61] . In modeling the mean field potential for the degrees of freedom
of the Matrix black hole, we note that there was no need to introduce a separate Planck
scale near the horizon: the entire potential can be modeled using a single scale, the radius of
the event horizon.!” This is not surprising since we were modeling the physics in a manner
to match against expectations on the dual supergravity side. We also noted that the qubit
action we arrived at has some of the features of the qubit evolution toy model proposed in
the work of Osuga and Page [65]. The latter consisted of a proof-of-concept system that
circumvents the need of a firewall by positing non-local interactions at the horizon and an
exchange mechanism of qubits within a direct product of three Hilbert spaces. All these
ingredients of this toy model emerge naturally from our Matrix theory discussion. However,
our action is more complicated than the one in [65], and we leave a detailed analysis of the
dynamics for future work. Nevertheless, these similarities between the two systems, ours

Y7 Our model builds from the outset on the premise that Hawking evaporation is a single scale phenomenon,
at least to leading order. This does not allow capturing new UV physics through this model that might
still exist and correct Hawking evaporation. Yet, the point is that such additional scales are not needed to
understand why Hawking evporation is inherently non-unitary.
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and that of [65], might be hints that a firewall is not needed at the event horizon after all,
and black hole complementarity prevails. This is consistent with [14, 15, 54] given the non-
local nature of the interactions near the event horizon in Matrix theory — at the level of DO
brane clusters. There is however a significant conceptual challenge to this argument. Black
hole complementarity is a statement about the perspective of an in-falling observer. This
means that one needs to understand how a change of perspective between the observer at
infinity and the one in-falling past the horizon is realized in the language of Matrix theory.
Presumably, this involves a Matrix transformation in U(N) since one expects that local
spacetime coordinate invariance is embedded in the gauge group of the theory. This in turn
requires a more precise map between emergent geometry and metric, and matrix degrees
of freedom. Without this critical missing ingredient, we cannot conclusively understand
how the firewall paradox is addressed by our effective model.

Related to this last point, we also note that our treatment explicitly chooses a frame
for describing the black hole, presumably corresponding to the perspective of an outside
observer. This creates a clear separation between the roles of diagonal and off-diagonal
matrix entries. The residual gauge freedom is the group of permuting diagonal entries,
a subgroup of U(NN). The more interesting transformations would mix diagonal and off-
diagonal entries, and we believe these correspond in part to switching the perspective of
the observer. Very little is known or understood about this part of the Matrix-supergravity
duality, and it seems a full treatment of the quantum black hole would necessitate progress
in this direction.

This work is a step towards unravelling the microscopic details of black hole horizon
physics within a theory of quantum gravity that is fully embedded in string/M-theory. The
effective model approach opens up new directions for a range of possible investigations and
extensions that can only add to our understanding of black holes and quantum gravity. We
hope to report on some of these in future works.
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