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ABSTRACT

This paper addresses a key challenge in Educational Data
Mining, namely to model student behavioral trajectories in
order to provide a means for identifying students most at-
risk, with the goal of providing supportive interventions.
While many forms of data including clickstream data or data
from sensors have been used extensively in time series mod-
els for such purposes, in this paper we explore the use of
textual data, which is sometimes available in the records
of students at large, online universities. We propose a time
series model that constructs an evolving student state repre-
sentation using both clickstream data and a signal extracted
from the textual notes recorded by human mentors assigned
to each student. We explore how the addition of this textual
data improves both the predictive power of student states for
the purpose of identifying students at risk for course failure
as well as for providing interpretable insights about student
course engagement processes.
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1. INTRODUCTION

With the rapidly-changing landscape of work opportunities
causing increased concerns related to unemployment, work-
ers have a greater need to seek further education. Online
universities [1] like Western Governor’s University (WGU)
[18] play crucial roles in helping workers achieve their career
success by providing a personal and affordable education
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based on real-world competencies. In such online educa-
tional contexts, modeling the population of students at scale
is an important challenge, for example, in order to identify
students most at-risk and to provide appropriate interven-
tions to improve their chances of earning a degree in a timely
fashion. In this respect, a plethora of approaches for click-
stream analysis [13, 30, 31] have been published in the field
of Educational Data Mining, which address questions about
modeling student course engagement processes. Some of this
work has produced time series models producing predictive
signals related to dropout or disengagement, which can then
be used as triggers for interventions [25]. While clickstream
data is the most readily available, and while some success
has been achieved using it for this purpose, its low level in-
dicators provide only glimpses related to student progress,
challenges, and affect as we would hope to observe and model
them. In this paper, we explore the extent to which we may
achieve richer insights by adding textual data to the foun-
dation provided by clickstream data.

One advantage to modeling student behavior and states from
a for-pay platform is that the level of support provided to
students is greater than in freely available contexts like Mas-
sive Open Online Courses (MOOCs), and this more inten-
sive engagement provides richer data sources that can be
leveraged. In our work, we make use of a new data source
provided by the Western Governor’s University (WGU) plat-
form, where each student is assigned a human mentor, and
the notes from each biweekly encounter between student and
mentor are recorded and made part of the time series data
available for each student. Thus, even if we do not have
access to the full transcript of the interactions between stu-
dents and their mentors, we can leverage the documentation
of provided support in order to enhance the richness and ulti-
mately the interpretability of student states we may induce
from other low level behavioral indicators we can extract
from traces of learning platform interactions.

A major thrust of our work has been to develop a tech-
nique for leveraging this form of available textual data. We
refer to this data as Mentor’s Notes. In particular, we pro-



pose a sequence model to integrate available data traces
over time, which we refer to as Click2State, which serves
a dual purpose. The first aim is to induce predictive stu-
dent states, which provide substantial traction towards pre-
dicting whether a student is on a path towards passing or
failing a course. Another is to provide us with insights into
the process of passing or failing a course over time, and in
particular leveraging the insights of human mentors whose
observations give deeper meaning to the click level behav-
ioral data, which is otherwise impoverished from an inter-
pretability standpoint.

In the remainder of the paper we discuss related work in the
fields of Educational Data Mining of large scale online course
data to contextualize our specific work. Next we discuss the
specific data we are working with and how it relates to the
context in which it was collected. Then we explain from
a technical level the modeling approach we are taking in
this work. Finally, we present a series of experiments that
investigate the following three research questions:

e RQ1. How can we leverage contemporary text mining
techniques such as Latent Dirichlet Allocation (LDA)
[2] to extract information and meaning from mentors’
notes about the formation of student states across time
using a time-series model?

e RQ2. To what extent does integrating a representation
of topical insights from Mentor’s Notes improve the
ability of a time series neural model to predict whether
students are on a path towards passing or failing a
course?

e RQ3. How can we use insights about student progress
in an online course captured using student state rep-
resentations from our integrated model to understand
the process of passing or failing a course on the plat-
form?

2. RELATED WORK

Past research aiming at enhancing the learning process of
students in online universities has focused on providing an-
alytic tools for teachers and administrators. These tools are
meant to enhance their ability to offer support and make
strategic choices in the administration of learning within
the contexts under their care. As just one example, the
Analytics4Action Evaluation Framework (A4AEF) model
[25], developed at the Open University (UK) [1], provides a
university-wide pipeline allowing its users to leverage learn-
ing analytics to enable successful interventions and to gain
strategic insights from their trials. One of the most im-
portant challenges in implementing such a pipeline is to
model the population of students in such a way as to provide
both predictive power for triggering interventions and inter-
pretability for ensuring validity and for supporting decision
making.

Some past research has already produced models to identify
at-risk students and predict student outcomes specifically in
online universities [6, 21]. For example, Smith et el. [29] pro-
posed models to predict students’ course outcomes and to
identify factors that led to student success in online univer-
sity courses. Eagle et al. [12] presented exploratory models

to predict outcomes like high scores on the upcoming tests
or overall probability of passing a course, and provided ex-
amples of strong indicators of student success in the WGU
platform where our work is also situated. However, this past
work has focused mainly on predictive modeling of student
outcomes, whereas our work pursues both predictive power
and interpretability.

While much work in the field of Educational Data Mining
explores time series modeling and induction of student state
representations from open online platforms such as Massive
Open Online Courses (MOOCs) or Intelligent Tutoring Sys-
tems, far less has been published from large, online univer-
sities such as WGU, which offer complementary insights to
the field. Student states are triggered by students’ interac-
tion with university resources, their progress through course
milestones, test outcomes, affect-inducing experiences, and
so on. Affect signals in particular have been utilized by
many researchers as the basis for induced student states, as
this rich source of insight into student experiences has been
proven to correlate with several indicators of student accom-
plishments [9, 24, 26]. Researchers have investigated affect
and developed corresponding detectors using sensors, field
observation, and self-reported affect. These detectors cap-
ture students’ affective signals from vocal patterns [7, 23],
posture [11], facial expressions [3, 23], interaction with the
platform [4, 5, 14], and physiological cues [7, 20]. Although
these signals provide rich insights, the requisite data is some-
times expensive or even impractical to obtain, even on for-
pay platforms such as WGU, where we conduct our research.

The bulk of existing work using sequence modeling to induce
student states has focused on the data that is most readily
available, specifically, clickstream data. For example, Tang
et al. [30] have constructed a model to predict a set of stu-
dent actions with long short-term memory (LSTM) [15] on
student clickstream data from a BerkeleyX MOOC, though
the basic LSTM was unable to match the baseline of de-
faulting to the majority class for samples of student actions.
Fei et al. [13] proposed a sequence model to predict dropout
based on clickstream data using deep learning models such
as recurrent neural networks (RNNs) and LSTMs, with more
success. Wang et al. [31] also built a deep neural network
architecture using a combination of convolutional neural net-
work (CNN) [19] and RNN for dropout prediction from click-
stream data. Though these models have achieved differing
success at their predictive tasks, a shortcoming shared by all
of these models is the lack of interpretability in the induced
student state representations.

Some prior work has nevertheless attempted to construct
cognitively meaningful representations, such as representa-
tions that can be constructed through summarization of raw
video clickstream data [27, 28]. Sinha et al. [27] attempted
to construct cognitive video watching states to explain the
dynamic process of cognition involved in MOOC video click-
stream interaction. Building on this work, Sinha et al. [28]
explored the combined representations of video clickstream
behavior and discussion forum footprint to provide insights
about student engagement process in MOOCs. Similar to
our own work, their work extracting these abstract feature
representations from the raw clickstream data aims (1) to
obtain noise-resistant and interpretable features and (2) to



# click | # focused state | # keypress | # mouse move | # scroll | # unfocused state
Target course 53 61 0 168 904 1732
Other courses 177 167 0 455 2301 4887
Degree plan 0 0 0 0 0 0
Portal 21 89 0 263 3862 2440
Homepage 36 69 0 122 72 1581

Table 1: Example of clickstream data.

Type Description

# click
## focused state

# keypress
# mouse move
# scroll The number of scroll counts.

## unfocused state

The number of mouse clicks.

The number of times a mouse was in a content box. It is incremented by
one every time a mouse goes into a content box from somewhere else.
The number of times a keyboard was pressed.

The number of times a mouse has been moved.

The number of times a mouse was outside a content box.

Table 2: Description of click types.

transform the unstructured raw clickstream data to struc-
tured data appropriate as input to existing statistical or ma-
chine learning models. However, this published work does
not model the temporal patterns of such cognitively mean-
ingful features such as we perform in this paper. Our work
extends previous studies by proposing a model that enriches
temporal signals from clickstream data using the textual
mentor’s notes in order to provide a means for interpret-
ing student state representations as they evolve over time
within courses.

3. DATA

Our study is based on data collected by Western Gover-
nor’s University (WGU), an online educational platform L
WGU is an online school with career-focused bachelor’s and
master’s degrees—in teaching, nursing, I'T, and business—
designed to allow working professionals the opportunity to
fit an online university education into their busy lives. Stu-
dents in WGU earn a competency-based degree by prov-
ing knowledge through regular assessments [16], which facil-
itates self-paced learning based on their prior experience.

To support self-paced learning, students in WGU are as-
signed to a program mentor (PM). The PM is in charge
of evaluating a student’s progress through their degree and
helping to manage obstacles the student faces. A PM and
a student generally have bi-weekly live calls, but this may
vary depending on the student’s needs and schedule. Each
PM writes down a summary of what was discussed, which
we refer to as a mentor’s note. An example is given in Fig-
ure 1. As in the example, mentor’s notes describe the status
and progress of the student and what types of support was
offered or what suggestions were made during the call. This
information can provide meaningful cues to infer student
states over time.

1https ://www.wgu. edu/

Discussed the revision needed for
returned Task 1. Referred student to
template and course tips and
information received by email
earlier. Student verbalized
understanding. Support offered.

Figure 1: An example of mentor’s notes.

In our modeling work we aim both for predictive power and
interpretability, thus it is an important part of our work
to build models that induce an interpretable student state
representation. In this work we specifically investigate how
the use of the mentor’s note data along side the more fre-
quently used clickstream data might enable that important
goal. Clickstream data in WGU also provides us with infor-
mation on how active students are and where in the WGU
platform they spend their time. We collect clickstream data
from four different types of web pages in the WGU platform:
course, degree plan, homepage, and portal. The course web
pages cover all pages related to courses in WGU. Degree plan
represents a dashboard where students check their progress
toward a degree. Homepage is the main page that shows
students’ progress in each course and allows access to all
provided WGU features. Portal covers any other pages for
student support including technical and financial assistance.

An example of the clickstream data can be seen in Table 1.
Each row represents one of five different click sources: tar-
get course page, other course page, degree plan page, portal
page, and homepage. We divide the course pages into "tar-
get course” and “other course”. Each column represents one
of different six click types: click count, focus state count,
keypress count, mousemove count, scroll count, and unfo-
cused state count. The values in the table represent the
weekly count of different type of clicks from each different
source. The description of these click types are in Table 2.
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HA CA
# of students 6,041 4,062
Length of a term 25 weeks 25 weeks
Avg prior units 62 £+ 39 11 + 23

Fail rate 0.185 0.509
Avg # of notes per student | 10.9 + 5.7 | 11.0 £ 5.8
Avg length of notes (chars) | 198 + 47 | 194 + 55

Table 3: Data Statistics

For this paper, we have collected the mentor’s notes and
clickstream data from two courses conducted in 2017: Health
Assessment (HA) and College Algebra (CA). We choose
these two courses because they are popular among students
and represent different levels of overall difficulty. Table 3
shows the statistics for the dataset. “Average prior units” is
the average number of units students transferred to WGU
from prior education when they started the degree, and func-
tions as a proxy for the level of student’s prior knowledge.
We split the dataset for each course into a training set (80%),
a validation set (10%), and a test set (10%). For training, in
order to avoid a tendency for trained models to over-predict
the majority class, we have resampled the training set so
that both the pass state and the fail state are represented
equally.

4. PROPOSED METHOD

As we have stated above, in our modeling work, we propose a
sequence model, Click2State, with two primary purposes.
The first is to form a student state representation that will
allow us to better identify students at risk of failing a course
than a baseline model that does not make use of rich textual
data. The second is to provide us with a means to interpret
the meaning of a student state representation.

Figure 2 provides a schematic overview of our proposed
model. Note that it is first and foremost a sequence model
that predicts whether a student will pass or fail a course
based on an interpretable student state that evolves from
week to week as each week’s clickstream data is input to
the recurrent neural model. A summary of the content of
the mentor’s note for a week is constructed using a popular
topic modeling technique, specifically Latent Dirichlet Al-
location (LDA). In the full model, an intermittent task to
predict the topic distribution extracted from the mentor’s
notes associated with a time point is introduced. The goal
is to use this secondary task to both improve the predictive
power of the induced student states over the baseline as well
as to enhance the interpretability of the state respresenta-
tion. Below we evaluate the extent to which both of these
objectives are met in this model.

When training a neural model, inputs are presented to the
network, activation is propagated forward, then an error is
computed at the output, and the error is propagated back-
wards through the network. As the error is propagated back-
wards, adjustments are made to the weights in order to re-
duce the occurrence of such errors. In all of our experiments,
the only input at each time step is a representation of the
clickstream data from the time step. We have two predic-
tive tasks, namely pass prediction and topic prediction (from

mentor’s notes). We propagate errors for pass prediction
only after the whole sequence of inputs has been provided
to the network. Error for topic prediction of mentor’s notes
are propagated after each time step where mentor’s notes
are provided with the clickstream data.

Feature Vector Design We train our model using click-
stream feature vectors (as input) and topic distribution vec-
tors (as output for the topic prediction task). We design
the clickstream feature vector to include both an encoding
of click behavior of students from a time period as well as a
control variable that represents the prior knowledge of stu-
dents as estimated by the number of units they were able to
transfer in from their higher education experience prior to
starting a degree at WGU. The full clickstream feature vec-
tor contains thirty weekly counts for each different type and
source of click, in addition to the single control variable just
mentioned, which is the number of transferred units. We use
min-max normalization to scale the values between 0 and 1
in preparation for training. To extract a topic distribution
vector for each mentor’s note, we run Latent Dirichlet Allo-
cation (LDA)[2] over the whole set of mentor’s notes from
the entire training dataset.

Formal Definition of the Model Now we formally spec-
ify the model. Denote the student’s clickstream features by
C = (c1,c2, ..., cT), where ¢ is the clickstream feature vector
of tth week, and T is the number of weeks for the term. The
clickstream feature vectors are encoded via Gated Recurrent
Units (GRU) [8], which are variants of the Recurrent Neural
Network (RNN). Each time step is a week, ¢. Thus, at each
time step ¢, this network constructs a hidden state of the
student for the tth week, h; € R, where H is the dimen-
sionality of the hidden state representation. We consider h;
as the student state representation associated with the tth
week. Based on the generated student state representation
from RNN (h¢), our model is trained to predict a topic dis-
tribution of a mentor’s note. As mentioned above, the model
is only trained to predict the topic distribution 6, for every
week ¢t where a student has a mentor’s note in the data. But
at test time, a topic distribution can be predicted for ev-
ery student state since the representation of student state is
always within the same vector space. Similarly, though we
only propagate error for the pass or fail prediction task after
a series of weeks of data for a student have been input to
the RNN;, the pass or fail prediction can be made from the
student state representation at any time step.

Topic Prediction Given the generated hidden states from
RNN (h¢) for the tth week, the model estimates the true
topic distribution (8; € R™t) of a mentor’s note on tth week
where N is the number of topics. The estimated topic dis-
tribution (6; € R™t) is computed by taking h; as an input of
one fully connected layer (weight matrix: Wy) whose output
dimensionality is N; followed by a softmax layer.

6, = Softmax(Wohy)

In training time, the loss function we use for error propa-
gation and adjustment of weights is calculated by means of
the Kullback-Leibler divergence loss between 6, and 0;.

Fail Prediction As data from a student’s participation in
a course is fed into the RNN week by week, the model es-
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Figure 2: Architecture of Click2State Model.

timates the probability of the student failing that course
(P(y = 1|C)) at the last timestep T. The estimated prob-
ability is computed by taking h: as an input of one fully
connected layer (weight matrix: W,) whose output dimen-
sionality is one followed by a sigmoid layer.

P(y =1|C) = Sigmoid(Wyhy)

In training time, the loss function we use for error propa-
gation and adjustment of weights for fail prediction is the
computed binary cross entropy loss with P(y = 1|C) and a
true label for nth student, y,.

Loss The loss function is composed of KL divergence loss
for the topic prediction and binary cross-entropy loss for the
fail prediction. Assume there are a total of N students. The
KL divergence loss of topic distribution of the mentor’s note
for nth student at time ¢ is defined as:

KLD,t = Dir (Ot || On),

where 6, and én,t are the true and estimated topic distri-
bution of the mentor’s note at time t for nth student.

The binary cross-entropy of the nth student measures the
similarity between the predicted P(y = 1|C) and the true y
as:

BCE, = — UYn log P@(yn = 1|C)
= (1 = yn)log(l — Po(yn = 1|C)),

where y, is the true y (€ {0,1}) of the nth student and Pe
is the probability of the fail predicted by our model with
parameters ©.

Assume that there are a total of V,, mentor’s notes for nth
student. Combining the two losses, our final loss is

tn, Ny,

Z KLD,, ]

"t tn,1

Z)\BCE + (1 —A)—

where ¢, ; is the timestep when nth student has ith mentor’s
note, and A is the rescaling weight to balance the contribu-
tion of two different loss functions.

S. RESULTS

In this section, we answer our aforementioned research ques-
tions one by one. First we describe topics learned from men-
tor’s notes and how they may relate to student states. Then
we illustrate experiment results to evaluate our Click2State
model, along with experimental settings. We conclude by
providing methods of extracting insights from these learned
student state representations related to the process of pass-
ing or failing a course over time.

RQ1. What types of information about student states
can we extract from mentor’s notes using LDA? Men-
tor’s notes are summaries of bi-weekly live calls where pro-
gram mentors (PM) interact with students to provide advice
and support. On this bi-weekly call, PMs mostly check stu-
dents’ progress and help them to establish appropriate study
plans to achieve their goals for the term. PMs also diagnose
students’ issues and developmental needs to better provide
struggling students with tailored instruction and support.

With this in mind, we answer the question of how student
state information may be extracted from mentor’s notes
through application of LDA to the notes. This provides
us with topics we can easily describe and interpret to de-
duce overall student states. In this section, we illustrate the
insights this LDA approach yields. We set the number of
topics to ten to maximize the interpretability of the results.
Table 4 shows the learned topics with manually assigned la-
bels, topical words, and text. Topical words are the top ten
words with the highest probability of appearing within each
learned topic, and are presented in decreasing order of likeli-
hood. The topical text column contains an example snippet
from one of top ten mentor’s notes for each topic with the
highest topic probability. Frequently in topic models in-
duced by LDA, not all of the topics are strongly thematic.
Since many words in a text are non-thematic, and since ev-
ery word needs to be assigned to a topic by the model, one
or more learned topics is not coherent enough to interpret.
Thus, we exclude from our interpretation the one topic that
was incoherent out of the 10 learned topics, and thus we
have nine topics in Table 4.



Topic Topical Words

Topical Text

task, submit, revise, discuss,
equate, complete, need, write,
practice, paper

T1. Revision

The ST and I discussed his Task 3 revisions after he
made some corrections. The ST still needs to revise
the task based on the evaluator’s comments. He plans
to do more revisions that align with the task rubric
and submit the task soon.

student, question, call, email,
send, course, discuss, appoint,
speak, assist

T2. Question

Student emailed for help with getting started. CM
called to offer support. Student could not talk for long.
CM emailed welcome letter and scheduling link and
encouraged for student to make an appointment

week, goal, today, schedule, pass,

T3. Assessment take, exam, final, work, talk

C278: took and did not pass preassessment, did not
take final. NNP C713: took and did not pass the
preassessment. Passed LMC1 PA with a 65 on 02/27.
LMC1 exam scheduled for 02/27

student, review, assess, plan,
study, attempt, discuss,
complete, take, report

T4. Review for exam

Student scheduled appointment to review for first OA
attempt but had taken and not passed the attempt
by the time of the appointment.

student, discuss, course,
complete, engage, college, term,
plan, pass, progress

T5. Term plan

Discussed final term courses. Discussed starting
(C229 and working through hours and then working
through C349 course.

goal, course, progress, current,
complete, previous, work, date,
pass, module

T6. Course progress

Current course: C349 Previous goal: completed
modules 1-3 and engage shadow health by next appt
date Progress toward goal: Yes New Goal: shadow
health completed and engaged in video assessment

term, course, complete, date,
goal, week, progress, current,
leave, remain

T7. Term progress

Date: 8/22/17 Term Ends: 5 weeks OTP Progress:
5/14 cu completed Engaged Course: C785 Goal
Progress: did not pass PA

work, week, lesson, complete, go,

T8. Time constraint . .
progress, plan, finish, time, goal

NNP stated he was not able to make forward progress
in course related to personal situation and time
constraints from an unexpected event.

goal, week, work, complete, task,
T9. Goal setting
contact

progress, pass, accomplish, finish,

Previous goal: finish shadow health, finish and submit
video by next call, start ¢228 next Progress/concerns:
states working on c349 SH, discussed deadlines Goal:
finish shadow health

Table 4: LDA Topics Learned From Mentor’s Notes

Note that there are two topics related to student progress,
course progress (T6) and term progress (T7). Course progress
(T6) focuses on progress towards modules in a particular
course, along with past and present goals about the course
itself. Term progress (T7) emphasizes the number of course
units that have been achieved, course units that remain, and
goals about courseload within in a term. There is a clear util-
ity to these topics as an interpretation tool for regulation of
the student’s process moving through the curriculum-if a
student hits an impasse in their studies, mentor’s notes are
expected to focus on what challenges the student experi-
enced and what was discussed to address these challenges.

We also find two topics directly associated with plans and
goals, which are term plan (T5) and goal setting (T9). Term
plan (T5) includes discussions about plans for a term, such
as course selection and long-term degree planning. Goal
setting (T9) is similar in focus to course progress (T6), but
is not constrained to a single course. As with the previous
topics, these reflect serious investment from the student and
make useful cues for favorable progress.

The remaining six topics provide insight on specific issues
and circumstances a student may be facing at a particu-

RQ2. Does the task of topic prediction construct
better student state representation than our base-
line, as evaluated by the ability to predict student
failure? One method of evaluating the quality of a state
representation is by measuring its predictive power on a task,
such as the task of predicting whether a student will fail a
course. We measure the predictive power of learned student
state representation from our model and compare with that
of our baseline, which shares the same neural architecture
but is not trained on the extra task of topic prediction. The
specific predictive task is to determine whether a student
fails a course within a given term given a sequence of weeks
of student clickstream data. For this analysis, we trained
separate models to make a prediction after a set number of
weeks so that we could evaluate the difference in predictive
power of student states depending on how many weeks worth
of data were used in the prediction. The classifier associated
with the i-th week is trained on the clickstream data of all
students up until the i-th week in the training set, to pre-
dict failure as determined at the end of the term. During
the training step, we mark the clickstream sequences of the
students who failed in the given term as positive instances,
and those of students who did not as negative instances.



Health Assessment

College Algebra

Topic Prediction

0.85] —— FP —— FP
—— FP+TP 0.851 —— FP+TP 1.15
0.80 %)
0
0.80 (=}
L 0.75 (@] =110
=) - >
< o070 T 073 [a}
1.05
0.70 o
0.65 : X —e— Health Assessment
1.00 —e— College Algebra
0.60 0.65
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Week Week Week

(a) Fail Prediction Performance on
Health Assessment by Weeks

(b) Fail Prediction Performance on
College Algebra by Weeks

(¢) Topic Prediction Performance on
Both Courses by Weeks

Figure 3: Performance of Fail Prediction and Topic Prediction by Weeks

—e— P Students F Students —e— P Students F Students —e— P Students F Students
0.15 0.10
g 015 g 0.10 g
. 0.05
& 010 b bt
E E 005 -E 0.00 M
@ 0.05 0] ©
o T 0.00 o
c c - c
G 0.00 @ g 005
) » g )
0 / wn -0.05 w)
-0.05 —0.10
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Week Week Week
(a) Topic "Revision” (b) Topic ?Question” (¢) Topic ”Assessment”
—+— P Students F Students —— P Students F Students —+— P Students F Students
08 0.1
o 005 v v
o 0 0.6 o
O v} ]
»n 0.00 J’M"ﬁ/'\ n [ 7
© To4 T f
- © | ] |
5 005 g | 3 |
c c 0.2 | C _p1
T -0.10 o L °
3 -0 e \ i
-0.15
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Week Week Week
(d) Topic "Review for exam” (e) Topic "Term plan” (f) Topic ”Course progress”
—e— P Students F Students —e— P Students F Students —e— P Students F Students
o1 0.4
- g o e I
g / O o 01 ‘l
wv / wn 0.2 W
0.0 |
o |4 o o ‘
. . .
o] f g 01 ] |
'g P 'g 'g 0.0
S 01 S 0.0 &
in in in
—0.17 4 -0.11 &
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Week Week Week

(g) Topic ”Term progress”

(h) Topic ”Time constraints”

(i) Topic ”Goal setting”

Figure 4: Standard Score of Each Topic Probability across Weeks for P and F Students

We evaluate our model and baseline using data from two
WGU courses: Health Assessment and College Algebra. As
our evaluation metric, we use the AUC score (Area Under
the Receiver Operating Characteristic Curve), which mea-
sures the probability of a positive instance being classified
as more likely to fail a course than a negative instance. For
clickstream feature encoding, Gated Recurrent Units (GRU)

[8] with hidden state sizes 20, 40, 60, 80, and 100 are ex-
plored. Optimization is performed using Adam [17] with
the initial learning rate 0.001 without weight decay. The
rescaling weight () is 0.5, and the minibatch size is 1.

Figure 3(a) shows the AUC scores across time steps for the
Health Assessment course while Figure 3(b) shows the AUC



scores across time steps for College Algebra. For the Health
Assessment course, our model achieves a statistically signif-
icant improvement (p-value < 0.05) in performance over the
baseline model after the 5th week. For College Algebra, our
model achieves a statistically significant improvement after
the 17th week. This difference in model performance be-
tween the Health Assessment and College Algebra courses
suggests the result from College Algebra-specific topic data
adds limited predictive power to the model. It is possible
the clickstream data of students taking College Algebra al-
ready contains enough information about whether a student
is going to fail, a conclusion supported by the fact that AUC
scores of the baseline model for College Algebra are always
better across time steps than those for Health Assessment.

We also plot the KL Divergence loss of our model across
time steps to determine how well our model is predicting
the topic distribution of each mentor’s note. The KL Di-
vergence is a typical performance measure when predicting
a discrete probability distribution, which measures the en-
tropy increase due to the use of an approximation to the true
distribution rather than the true distribution itself. Figure
3(c) shows the minimum KL Divergence loss of the topic
prediction task for both courses at each week. Though we
determined that adding this task improves the fail predic-
tion task, results on this task specifically are not impres-
sive, which demonstrates the relative difficulty of predicting
mentor’s notes from click data. The KL Divergence loss
increases as the number of weeks increases. A possible ex-
planation is that topics become more diverse as the weeks
pass and therefore become harder to predict. In addition,
the KL Divergence loss is lower in College Algebra than in
Health Assessment, which could be explained by students in
College Algebra having less variance in the topics of focus
in their mentors’ notes.

RQ3. What insights do we gain about the process
of passing or failing a course over time from pre-
dicted mentor’s notes topic distributions over time
from the model? To answer the question of character-
izing students likely to pass or fail a course, we perform
three different experiments on the dataset of clickstream and
mentors’ notes data of students taking the College Algebra
course. We choose this course because our topic prediction
loss was lower (and thus, accuracy higher) for the course.
First, we determine what topics inferred from our model
correlate with whether a student will pass or fail a course
(Experiment 1). Then we find sequences of standardized
topic probabilities of each topic inferred by our model that
characterize students likely to pass or fail (Experiment 2).
Lastly, we report how early we can identify students likely to
fail based on our learned student state representation (Ex-
periment 3).

State Revision Question Assessment
P 0.4795 0.0346 -0.1486
F 0.4914 0.1090 0.1735
State | Review for exam Term plan Course progress
P -0.1469 -0.0481 0.6301
F -0.0752 -0.1426 -0.0049
State Term progress Time constraint Goal setting
P 0.2298 -0.4811 0.0817
F -0.1647 -0.2186 0.0661

Table 5: Standard Score of Inferred Topic Probabil-
ities from P and F State

Experiment 1. In the first experiment, we find the two stu-
dent state representations which minimize or maximize the
probability of failing a course. We call the state representa-
tions that minimize and maximize the probability of failure
as a P state and F state, respectively. Then, we show what
topic distributions are inferred from P and F states. We
represent emphasis, or a lack thereof, on a topic by stan-
dardizing topic probabilities and observing the number of
standard deviations above and below the mean of a topic
probability.

Table 5 shows the number of standard deviations above or
below the mean (also called standard score) for each inferred
topic probability from the P and F state. While the standard
score of some topics are similar for the P and F state, some
vary wildly. For example, the standard score of assessment
topic (T3) for the P state is negative and for the F state is
positive. One interpretation of this results is that students
likely to fail have more trouble in passing assessments, and
thus talked to their mentors more about assessment topic
(T3). As shown in Table 4, the topical text of assessment
(T3) includes a general description of students’ progress in
assessments. The standard score of course progress (T6) and
term progress (T7) for the P state is positive and negative
for the F state. This suggests that students more likely to
pass show smoother progress instead of reporting ongoing
issues, so their typical mentors’ notes can focus exclusively
on progress reports. Evidently, the topical text of course
and term progress (T6, T7) in Table 4 is a progress report
without ongoing issues.

Experiment 2. We investigate the inferred probability of
each topic from learned student state representation by our
model. We compare the trajectory of inferred probability of
each topic from students who passed (P students) and failed
(F students) a course. Figure 4 shows the average standard
score of topic probability per topic for P and F students over
time.

We can see through this experiment clear, distinct patterns
for the frequency of each topic over time that make intuitive
sense given the format of online courses. For example, term
plan (T5) is high frequency for the first week and plunges
right after, since most students and mentors will naturally
discuss plans for a term at the start of each term. The
topical text of term plan (T5) actually exhibits the discus-
sion of course choice for the final term, expected to happen
at the beginning of the final term. The standard scores of
other topics related to goal and progress (T6,T7,T9) also
decrease over time, likely for similar reasons. The standard



scores of revision (T1), question (T2), and assessment (T3),
meanwhile, increase over time, which may indicate students
seek help more actively as they approach the end of a term.
The standard scores of review for exam (T4) increase dra-
matically until the third week, decrease for few weeks, and
finally level off. As the only condition for students in WGU
to pass a course is to pass the final assessment, it may be
that many students take their final assessments during the
earlier weeks so they can pass a course as early as possi-
ble. The standard scores of time constraints (T8) steeply
increase until the fourth week, and then gradually decrease
over time. This suggests that when students begin a term
they do not expect to have time constraints, but accumu-
late unanticipated issues in their personal lives as the course
goes on. It is possible that students mention time constraints
less near the end of the term either because they have al-
ready abandoned the course or they better planned out their
schedules near the end of the term in order to complete a
term. However, we need to keep in mind that it may not
be that they actually have time constraints, but that they
just needed an excuse for slow progress. The topical text in
Table 4 also shows time constraints may be discussed as the
potential reason for slow progress though it may not be the
real reason for the issue.

For most topics, the P and F students exhibit distinct di-
vergences in topic patterns. For topics related to goal and
progress (T6, T7, T9), the gap between P students and F
students increases over time—suggesting that as time goes
on F students will be reporting issues and obstacles to their
mentors instead of positive progress. The gap between P stu-
dents and F students for question (T2) increases over time,
likely for similar reasons. For revision (T1), P students gen-
erally have higher standard scores than F students over time,
which supports the idea that P students actively seek oppor-
tunities for revision and review towards the end of a term.
For assessment (T'3), standard score for F students increases
over time while score for P students decreases. This could
suggest that F students are more likely to procrastinate and
struggle with their assessments than P students. Finally, for
time constraints (T8) F students show higher standard score
as time goes on. A likely interpretation is that students who
encounter time constraints due to a demanding job or other
outstanding personal issues cannot devote focus to a course
and are more likely to fail.

Experiment 3. We report how early we can identify stu-
dents likely to fail based on our learned student state repre-
sentation. We compare the Euclidean distance between stu-
dent state representation and the representation of P and F
states. Then we plot the average distance of students who
actually passed and failed (P student and F student) across
time steps.

Figure 5 shows how the Euclidean distance between the stu-
dent state and the P and F states changes over time. We
find that F students are closer to the F state over all differ-
ent weeks except second week. P students on average are
approximately the same distance between the P and F state
until about 15 weeks. Based on these observations, we can
see in early stages whether a student is likely to fail from
the difference between the distance of our model’s student
state representation from P and F states. This is especially

evident in early stages (week 5 onward), where we see a
substantial distance between the average F student’s state
representation from the P state compared to the F state,
while there is much more ambiguity for P students.
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Figure 5: Average Euclidean Distance between
State Representation of P and F Students and P
and F State Representation

6. CONCLUSION

In this paper, we propose and evaluate a sequence model,
Click2State, which aims to build an interpretable student
state representation by leveraging mentor’s notes to give
deeper meaning to impoverished clickstream data. We also
introduce a methodology for interpreting the learned rep-
resentation from our model that extracts time-sensitive in-
sights about the process of passing or failing a given online
course. Our experimental results demonstrate that student
state representations learned by our model have better pre-
dictive power on the task of determining student failure rate
than a baseline that only uses click stream data. We also
present how individual topic-based insights into the process
of passing or failing a course let us construct a rich charac-
terization of a student likely to fail or pass an online course.

We see many possible ways to build on the work in this
paper. For instance, instead of learning topics using a sim-
ple LDA approach, which is purely unsupervised, we might
train our model to learn topics that directly correlate with a
student’s likelihood of failure [10, 22]. In this case, the key
challenge might be to train a model in a way that enable us
to maintain the level of interpretability in topics that we see
from LDA. Another direction could utilize mentor’s notes
explicitly as an additional input of a model. This approach
might provide us a more targetted student state representa-
tion.
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