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ABSTRACT
Strong lensing provides a powerful means of investigating the nature of dark matter
as it probes the mass function and density profiles of halos on sub-galactic scales.
We present an extension of a forward modeling framework that uses flux ratios
from quadruply imaged quasars (quads) to measure the shape and amplitude of the
halo mass function, including line of sight (LOS) halos and main deflector subha-
los. We apply this machinery to 50 mock lenses — roughly the number of known
quads — with mass functions exhibiting a free-streaming cutoff parameterized by the
half-mode mass mhm. Assuming cold dark matter (CDM), we forecast bounds on
mhm and the corresponding thermal relic particle masses for scenarios with a range
of tidal destruction severity. With significant tidal destruction, at 2σ we constrain
mhm < 107.9

(
108.4

)
M�, or a 4.4 (3.1) keV thermal relic, with image flux uncertainties

from measurements and lens modeling of 2% (6%). With less severe tidal destruction
we constrain mhm < 107

(
107.4

)
M�, or an 8.2 (6.2) keV thermal relic. If dark matter

is warm, with mhm = 107.7M� (5.1 keV), we would favor WDM with mhm > 107.7M�
over CDM with relative likelihoods of 22:1 and 8:1 with flux uncertainties of 2% and
6%, respectively. These bounds improve over those obtained by modeling only main
deflector subhalos because LOS objects produce additional flux perturbations, espe-
cially for high redshift systems. These results indicate that ∼ 50 quads can conclusively
differentiate between warm and cold dark matter.

Key words: [gravitational lensing: strong - cosmology: dark matter - galaxies: struc-
ture - methods: statistical]

1 INTRODUCTION

Theories of particle dark matter predict that the enigmatic
particle(s) collect in gravitationally bound halos. The mass
function and density profiles of these objects depend on the
particle nature of dark matter itself. For example, theories
with cold dark matter predict an abundance of low mass ha-
los, and cuspy r−1 central density profiles (Moore et al. 1999;
Springel et al. 2008; Fiacconi et al. 2016). In warm dark mat-
ter (WDM) models, diffusion of dark matter particles in the
early universe wipes out density fluctuations below a charac-
teristic scale that depends on the production mechanism of
the WDM particle candidate (Kusenko 2009; Shoemaker &
Kusenko 2009; Abazajian 2017). Suppression of small-scale

? gilmanda@ucla.edu

power in WDM models results in a turnover in the halo mass
function and a dearth of small-scale structure at later times
(Bode et al. 2001; Schneider et al. 2012; Lovell et al. 2014).
In self-interacting dark matter (SIDM) theories, scattering
between dark matter particles produces cored density pro-
files in individual halos (Spergel & Steinhardt 2000; Rocha
et al. 2013; Vogelsberger et al. 2016; Kamada et al. 2017;
Tulin & Yu 2018). Finally, in ‘fuzzy’ dark matter scenar-
ios the kpc-scale de Broglie wavelength of ultra-light dark
matter particles results in quantum mechanical phenomena
on galactic scales, which produces large soliton cores (Hui
et al. 2017; Robles et al. 2019). To date, the strongest con-
straints on WDM come from the Lyman-α forest (Viel et al.
2013; Iršič et al. 2017), while cosmological probes on large
scales (Cyr-Racine et al. 2014; Bringmann et al. 2017) and
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2 Gilman et al.

in galaxy clusters (Kim et al. 2017b; Andrade et al. 2019)
constrain the interaction cross section in SIDM models.

Two challenges to CDM in particular spur interest in
alternative theories. First, natural CDM particle candidates
have not yet been detected, despite decades of experimen-
tal searches (Aprile et al. 2018). Second, the suppression of
small scale structure in WDM, and cored density profiles as-
sociated with SIDM, possibly alleviate tension between ob-
servations and the predictions on sub-galactic scales, dubbed
the ‘Small-Scale Crisis’ of CDM (see Bullock & Boylan-
Kolchin 2017, and references therein).

Traditional astrophysical challenges to the CDM model,
however, are predicated on assumptions related to baryonic
physics. This has the undesirable consequence of propagat-
ing uncertainties from sub-galactic astrophysics onto infer-
ences of dark matter properties, and results in covariance
between baryonic astrophysics and dark matter physics. Su-
pernova and stellar feedback inside halos, for instance, and
the tidal destruction of subhalos by their host galaxy, mim-
ick the observable signatures of SIDM and WDM models,
respectively (Tollet et al. 2016; Read et al. 2018; Despali
& Vegetti 2017; Garrison-Kimmel et al. 2017; Kim et al.
2017a; Despali et al. 2018a). Moreover, in some cases, the
uncertainties related to baryonic astrophysical processes can
be larger than the differences between CDM, WDM, and
SIDM (e.g. Nierenberg et al. 2016). To isolate dark matter
physics from sub-galactic astrophysics, and to differentiate
between CDM, WDM, and SIDM, one must look to masses
below 108M�, where subhalos are expected to be devoid of
stars and completely dark in the case of CDM, or absent in
the case of WDM.

Gravitational lensing offers a direct probe of this elu-
sive, low-mass regime. It circumvents the complications as-
sociated with using luminous matter to trace the dark mat-
ter by enabling the direct measurement of the distribution of
matter across cosmological distance, and is sensitive to mass
scales where astrophysical effects are thought to be too weak
to significantly alter the structure of halos. It also compli-
ments other probes of dark matter, such as the Lyman-α
forrest, since lensing depends on different systematics and
measures the halo mass function directly.

Ultimately, analysis of strong lenses hinges on separat-
ing mass distributions that vary on large scales (the lensing
galaxy and its parent dark matter halo) from small scale
structure in the main lens plane and along the line of sight.
In strong lens systems with luminous arcs, the analysis con-
sists of iteratively fitting a smooth model to the flux in pixels
of an image while simultaneously reconstructing the back-
ground source. This process can reveal the presence of small
scale structure in the arcs (see e.g. Vegetti et al. 2014; Heza-
veh et al. 2016b; Vegetti et al. 2018; Ritondale et al. 2018).
Birrer et al. (2017b) performed this analysis, and placed
constraints on the free streaming length of dark matter.
Recently, several authors have proposed using the surface
brightness residuals from lens models fit to luminous arcs
and to infer the power spectrum of dark matter in strong
lenses (Hezaveh et al. 2016a; Diaz Rivero et al. 2018; Cyr-
Racine et al. 2018), and Bayer et al. (2018) applied this
method to a strong lens system.

In addition to extended arcs, some strong gravitational
lenses produce four images (quads) of an unresolved back-
ground source, such as a quasar. The magnification ratios

(flux ratios) between multiple images of unresolved sources
have long been recognized as powerful probes of small scale
structure near lensed images (Mao & Schneider 1998; Met-
calf & Madau 2001), and have been used to test the predic-
tions of CDM and to detect structure near individual objects
(Dalal & Kochanek 2002; Amara et al. 2006; Xu et al. 2012;
Nierenberg et al. 2014; Xu et al. 2015; Nierenberg et al.
2017). Recently, Nierenberg et al. (2014, 2017) used image
flux ratios measured from narrow line emission, a method
first proposed by (Moustakas & Metcalf 2003), to study sub-
structure in strong lenses. The significance of this advance
derives from the fact that the magnification of a lensed image
is a function of background source diameter (Dobler & Kee-
ton 2006); the narrow-line region, which typically subtends
angles on scales of a few tens of milliarcseconds, is resilient
to contaminating effects of microlensing by stars, while still
being sensitive to the milliarcsecond perturbations sourced
by dark matter halos above 106M� with current astrometric
precision of a few m.a.s. (Nierenberg et al. 2017).

In this work, we extend the formalism presented by
(Gilman et al. 2018) to include the contribution from dark
matter halos along the line of sight. Since field halos do not
orbit in a steep galactic potential with star formation, stellar
feedback, and other complications, they constitute an ideal
laboratory for studying the intrinsic structure of dark mat-
ter halos. Several studies investigate the role of the line of
sight halos on flux ratio perturbations in strong lenses (Chen
et al. 2003; Metcalf 2005; Xu et al. 2012; Inoue & Takahashi
2012), and Despali et al. (2018b) address the line of sight
contribution in the context of gravitational imaging with lu-
minous arcs. The consensus from these works is that the line
of sight halos affect lensing observables, possibly becoming
the dominant source of perturbation to smooth lens models
for lenses at high redshift.

The analysis presented here builds on previous analysis
of multiple image lenses in several ways. First, we quan-
tify the signal from non-linear multi-plane lensing effects
on flux ratios with finite-size background sources, and com-
bine this multi-plane lensing machinery with a forward-
generative model to measure the shape and amplitude of
the halo mass function by combining flux ratio statistics
from a sample of lenses. We also marginalize over parame-
ters such as the background source size and the power law
profile of the main deflector, both of which can affect the
flux ratios between images. We demonstrate how well this
method constrains the free-streaming length of dark matter
in the presence of uncertainties associated with measure-
ments and lens modeling, and apply the machinery to a set
of 50 simulated quads. The number 50 is chosen since it is
roughly the size of the current sample of known quads (Sha-
jib et al. 2018, HST GO-15652) with a similar distribution
of lens and source redshifts.

This paper is organized as follows: First in Section 2,
we describe our prescription for modeling the line of sight
halo mass function, and the subhalo mass function in the
main lens plane. In Section 3, we discuss the impact of line
of sight halos on flux ratio observables. In Section 4, we de-
scribe the forward modeling procedure implemented in the
simulations, and the process for creating mock datasets. Fi-
nally, in Section 5 we present the results of simulations run
with a mock data set in which we infer dark matter and
lens model parameters with a Bayesian framework. Finally,
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Flux ratio statistics with line of sight halos 3

Section 6 summarizes our main results. All lensing compu-
tations performed in this work utilize the open-source grav-
itational lensing software lenstronomy (Birrer et al. 2015;
Birrer & Amara 2018). Cosmological calculations, in par-
ticular the line of sight halo mass function and two-halo
term, are computed with the software package colossus
(Diemer 2017). We assume a flat cosmology with σ8 = 0.82,
Ωm = 0.28 and h = 0.7. When quoting halo masses, we refer
to M200 computed with respect to the critical density of the
universe at z=0.

2 MODELING THE LINE OF SIGHT AND
SUBHALO MASS FUNCTIONS

This section describes the parameterization of the subhalo
mass function in the main deflector, and the halo mass func-
tion along the line of sight, as well as the density profile for
individual halos. We then describe our parameterization of
free-streaming effects in WDM models, both on the mass
functions and the mass-concentration relation. The forward
model, described in Section 4, will use these parameteriza-
tions to render realistic populations of dark matter structure
for lensing computations.

2.1 Mass profile of individual halos

We model the density profiles of dark matter halos using
truncated NFW profiles (Baltz et al. 2009)

ρ (r, rs, rt) =
ρ0

x (1 + x)2

τ2

x2 + τ2
(1)

where τ = rt
rs

and x = r
rs

.
In the main lens plane, we tidally truncate subhalos

through a Roche limit approximation, assuming a roughly
isothermal mass profile for the main lens halo mass dis-
tribution. This truncation corresponds to a scaling rt ∝(
M200r

2
3D

) 1
3 (Tormen et al. 1998; Cyr-Racine et al. 2016).

We truncate according to this scaling using the expression

rt = 0.68

(
M200

106M�

) 1
3
(

r3D

100kpc

) 2
3

[kpc] . (2)

This results in a skewed distribution of τ with mean 〈τ〉 ∼ 6,
and a tail extending to τ ∼ 20.

We truncate line of sight halos at r50, or the radius
where the mean enclosed density is 50ρcrit

1. Finally, we
adopt the mass-concentration-redshift relation for CDM ha-
los presented by (Diemer & Joyce 2018) with a scatter of
0.13 dex (Dutton & Macciò 2014). We render subhalos in
the range 106−1010M�, which captures perturbations from
the smallest subhalos that affect image magnifications, given
the source sizes we model.

1 We introduce this truncation to keep the total mass per unit

volume along the line of sight finite, since the mass of an NFW

profile diverges. Since r50 is much larger than the scale radius of
an NFW halo, this truncation negligibly impacts observables.
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Figure 1. Top: The subhalo mass function for CDM and a

WDM scenario with a half-mode mass of 107M�. The line of
sight halo mass function looks qualitatively similar, but evolves

slightly with redshift. Bottom: The mass concentration relation

for the same CDM and WDM models as in the upper panel. The
effects of free-streaming on the mass-concentration relation alter

the properties of halos two orders of magnitude above the half-

mode mass.

2.2 The line of sight halo mass function

We model line of sight structure using the mass function of
Sheth and Tormen (Sheth et al. 2001), plus a boost from
the 2-halo term at a distance r from the main deflector
ξ2halo (r,M, z), where M denotes the halo mass of the par-
ent dark matter halo. The two-halo term accounts for the
correlated structure in the vicinity of the main lens halo.
To leading order, this term rescales the background density
and the amplitude of the halo mass function. The inclusion
of ξ2halo results in a roughly 5−15% boost in the number of
halos located at approximately the main lens redshift, de-
pending on the normalization of the subhalo mass function
and the lens redshift. We review the form of the two-halo
term and its implementation in lensing simulations in Ap-
pendix A.

We introduce a rescaling factor δlos to account for the-
oretical uncertainty regarding the amplitude of the halo
mass function. This term accounts for statistical fluctua-
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4 Gilman et al.

tions around the mean density of the universe, which may
lead to modestly over-dense or under-dense lines of sight to
individual lenses. We note, however, that due to the vast
cosmological distances probed by strong lenses (order Gpc,
versus kpc-scale dark matter halos and filament diameters)
the dark matter structure in these volumes should be well
represented by the average halo mass function in the uni-
verse 2, which corresponds to δlos = 1, modulo uncertainties
in parameters such as σ8 and Ωm.

With these modifications, the line of sight halo mass
function takes the form

d2Nlos

dmdV
= δlos (1 + ξ2halo)

d2N

dmdV

∣∣
ShethTormen

. (3)

This mass function yields accurate counts of isolated halos
over a wide mass range. We do not model the subhalos of
these objects along the line of sight, subsuming the possi-
ble effects of these small perturbers into the marginaliza-
tion over δlos. We render line of sight halos in the range
106 − 1010M�. Line of sight halos are rendered in a double-
cone geometry with opening angle 3REin, where REin is the
Einstein radius of a given lens, and a closing angle behind
the main lens plane such that the cone closes at the source
redshift.

2.3 The subhalo mass function of the main
deflector

We parameterize the subhalo mass function in terms of a
projected number density per unit area. In principle, the
abundance and spatial distribution of substructure depends
on the total mass of the parent dark matter halo and redshift
(Gao et al. 2011; Han et al. 2016), and tidal stripping, which
can dramatically reduce the subhalo content of galactic halos
(Despali & Vegetti 2017; Han et al. 2016; Garrison-Kimmel
et al. 2017; Jiang & van den Bosch 2017; Richings et al.
2018). We may therefore write the subhalo mass function as

d2N

dmdA
=

Σsub

m0

(
m

m0

)−α
F (M)H (z) (4)

where F and H encode dependence on the parent halo mass
M and redshift, respectively.

We render subhalos out to a maximum projected radius
of Rmax = 3REin, and render the subhalo z-coordinates in
three dimensions out to the virial radius of the parent halo.
In the semi-cylindrical volume defined by the viral radius
and Rmax, we assume the spatial distribution of subhalos
follows the mass profile of the parent NFW halo outside
r3D = 0.5Rs, where Rs is the scale radius of the parent halo,
and assume the spatial distribution (per unit volume) is con-
stant inside 0.5Rs. This reflects the impact of tidal stripping,
which tends to preferentially destroy subhalos in the central
regions of halos (Jiang & van den Bosch 2017). This pro-
cedure sets the distribution of subhalo z-coordinates, which
affects the truncation of subhalos through Equation 2. When
we render halo populations from this mass function and the
line of sight halo mass function, we draw from a Poisson

2 To maintain the correct matter density in the universe, we add

negative convergence sheets at each lens plane such that the total

mass added in halos at each lens plane equals zero, on average
(see Birrer et al. 2017a).

distribution with mean 〈N〉 obtained by normalizing and
integrating Equation 4 (see Section 4).

2.4 Modeling free-streaming effects in WDM

Diffusion of dark matter particles in the early universe sup-
presses small scale power in the matter power spectrum be-
low a characteristic ‘free-streaming length’ that depends on
the WDM particle mass and formation mechanism. For a
more detailed review of WDM theory, see Benson et al.
(2013); Schneider et al. (2013).

We parameterize free-streaming effects on the mass
function through the half-mode mass mhm, defined with re-
spect to the length scale where the WDM transfer function
is damped with respect to the CDM transfer function by
one-half. In WDM models, the number of halos below mhm

is strongly suppressed with respect to CDM. We adopt the
functional form for this effect given by Lovell et al. (2014)

dNwdm

dm
=
dNcdm

dm

(
1 +

mhm

m

)−1.3

. (5)

We note that other parameterizations for the turnover in the
mass function differ slightly from Equation 5 (see Schneider
et al. 2012; Benson et al. 2013). For instance, the WDM mass
functions by Benson et al. (2013) exhibit a harder turnover
than the parameterization in Equation 5 due to physical
effects, namely, the presence of dark matter velocity disper-
sion at early times. Other (non-physical) variables, including
the different algorithms for identifying and assigning mass
to halos, and the choice of window function used to compute
the matter power spectrum, can yield different mass func-
tions for the same dark matter model. We do not explicitly
address these complications in this work.

Thermally produced dark matter particles (thermal
relics), assuming they comprise the entirety of the dark
matter, admit a one-to-one mapping between the half-mode
mass mhm and the mass of the dark matter particle mDM.
To translate between these two quantities, we use the scal-
ing mhm ∼ m−3.33

DM (see Schneider et al. 2012), and normalize
this relation using the 2 × 108M�h

−1 ∼ 3.3 keV constraint
from the Lyman-α forrest (Viel et al. 2013). This yields

mhm (m) = 1010
(mDM

1keV

)−3.33

M�h
−1. (6)

In addition to a suppressed mass function below the
free streaming scale, free streaming alters the concentration-
mass relation of WDM halos (Schneider et al. 2012; Macciò
et al. 2013; Bose et al. 2016; Ludlow et al. 2016). We model
this suppresion using the parameterization given by (Bose
et al. 2016)

cwdm (m, z)

ccdm (m, z)
= (1 + z)β(z)

(
1 + 60

mhm

m

)−0.17

. (7)

with β (z) = 0.026z−0.04.3 We plot the subhalo mass func-
tion and the mass concentration relation in Figure 1. Due
to the factor of 60 in Equation 7, the effect on halo concen-
trations affects the central densities of objects with masses
significantly above the half-mode mass.

3 We remind the reader that we use the ccdm (m, z) relation pre-
sented in Diemer & Joyce (2018).
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Figure 2. A visualization of the mass distributions that affect observables in single-plane and multi-plane lensing. The top and bottom
rows show a single realization of CDM and WDM structure, respectively. Left: The convergence map from subhalos of the main deflector

only, with Σsub = 0.012kpc−2, which corresponds to a projected mass fraction in substructure at the Einstein radius of 1% at z = 0.5.

Center: The full line of sight realization viewed in projection. Computing deflection angles with respect to these mass distribution
effectively employs the Born approximation, in which the deflection angles from halos at different redshifts are computed by assuming

light travels along an unperturbed path. There are blue regions with negative mass due to the inclusion of negative convergence sheets

at each lens plane, to ensure that the mean density along the line of sight is the background density of the universe. Right: The effective
multi-plane convergence for these realizations. The deflection angles corresponding to these convergence maps, after subtracting off the

convergence from the main deflector, include the non-linear effects present in multi-plane lensing not captured by the Born approximation

(see Appendix A).

3 EFFECT OF LINE OF SIGHT STRUCTURE
ON IMAGE FLUX RATIOS

In order to constrain different dark matter models, we must
accurately predict image flux ratios in the presence of per-
turbing dark matter halos in the main lens plane and along
the line of sight. To this end, in this exploratory section
we investigate the effect of halos at multiple redshifts on
flux ratio observables. First, we present visualizations of the
non-linear effects present in multi-plane lensing by defining
an effective single plane mass distribution for a multi-plane
lens system. We then quantify the signal in flux ratios from
line of sight structures using a summary statistic, and com-
pare the contributions from subhalos in the main deflector
to the signal from line of sight objects for lenses at different
redshifts.

3.1 Multi-plane lensing

As photons traverse the cosmos from a background source to
an observer, they experience numerous deflections by dark
matter halos along the line of sight. One formulation of the
equation describing these deflections and the path of de-

flected light rays is given by (Schneider 1997)

βS = θ − 1

Ds

S−1∑
n=1

Dnsαn (Dnβn) . (8)

where βS and θ denote angular coordinates in the source
plane and on the sky, respectively, and where Dn and Dns
denote angular diameter distances to the nth lens plane, and
between the nth lens plane and the source plane.

In the case of a single lens plane, the deflection field
from multiple halos is a linear superposition of the deflec-
tions from each individual halo. In the case of multiple lens
planes, however, Equation 8 becomes a recursive equation
for the βn, coupling the deflections from halos at different
redshifts. Equation 8 describes a physical process akin to
looking through a magnifying glass through the lens of an-
other magnifying glass (or in the case of substructure lens-
ing, through thousands of other magnifying glasses). For ad-
ditional details on multi-plane lensing, see Schneider et al.
(1992).

The number of halos along the line of sight often out-
number main lens plane subhalos, to a degree that depends
on the lens and source redshifts, and the normalization of
the subhalo mass function. However, number counts do not
accurately reflect the effects of these line of sight objects on
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Figure 3. Distributions of the summary statistic in Equation 10
for different dark matter mass functions, and lens and source red-

shifts. Dotted curves represent realizations of main deflector sub-

halos only, while the solid curves include both subhalos and line
of sight halos. Black and grey curves denote CDM mass functions

with normalizations Σsub = 0.012kpc−2 and 0.024kpc−2, respec-

tively, while magenta curves correspond to WDM mass functions
with Σsub = 0.012kpc−2 and mhm = 108M�. Mass functions

with more small scale structure produce more frequent flux ra-
tio anomalies with respect to smooth lens models, which results
in longer tails in the cumulative distribution of these statistics.

The boost in the frequency and magnitude of flux ratio anoma-
lies is much stronger for configurations with higher lens/source

redshifts.

lensing observables. First, the geometry defined by the lens
and source redshifts results in different lensing efficiencies for
halos at different redshifts. Second, the coupling between de-
flections by halos at different redshifts results in non-linear
effects that impact the deflection angles.

To glean some physical intuition of the lensing effects
at play in a multi-plane system, we adopt a definition of the
lensing surface mass density for multi-plane systems that
encodes redshift-dependent lensing efficiency, and non-linear
coupling between different lens planes. We define κeffective,
the effective multi-plane convergence, as

κ(effective) ≡
1

2
∇ ·α (9)

where α is the deflection field of the lens system, or the
mapping from a coordinate on the sky to a position in source
plane through multi-plane ray-tracing.

This definition expresses the convergence of a multi-
plane realization in terms of deflections angles (αx, αy)
rather than a lensing potential, but is equivalent to the usual
definition of convergence in the case of a single lens plane. 4

We compute these deflection angles by ray-tracing through
the line of sight according to Equation 8. To obtain an effec-
tive substructure convergence κsub(effective), we simply sub-
tract the convergence profile of the main deflector κmacro

(the macromodel), from the full κ(effective).

The definition of κ in Equation 9 permits a comparison
between single plane and multi-plane ‘convergence’ maps.
For illustrative purposes, in Figure 2, we render a full multi-
plane realization of NFW halos between 105.7 and 1010M�,
for a CDM and WDM scenario. The far left panels show only
the single-plane realizations of the subhalo mass function, as
would be present in a typical strong lens halo. The central
panels show the single plane realizations plus the a full line of
sight realization viewed in projection, with coupling between
the multiple lens planes turned off. The lensing properties of
this convergence map correspond to adopting the Born ap-
proximation in lensing, in which lensing quantities are com-
puted by assuming the light rays follow unperturbed paths
through the lens planes in front of and behind the main de-
flector. The far right panels show the effective multi-plane
convergence for these realizations. In Appendix B, we com-
pare flux ratios computed with the Born approximation to
those computed with full ray-tracing, and find the two ap-
proaches yield significantly different observables.

Comparing the mass distribution in the far left panels
with those on the far right suggests the inclusion of line of
sight objects will dramatically affect the statistics of flux
ratio distributions in strong lenses caused by small scale
density fluctuations in the projected mass density. In the
following sections, we will show that this is indeed the case.

4 Convergence is equivalent to the projected surface mass density

in units of the critical density for lensing Σcrit = c2

4πG
Ds

DdsDd
in

single plane lensing, where subscripts d and s denote the lens

and source redshifts. For multiple lens planes, we express κ as a
vector-field derived quantity.
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Flux ratio statistics with line of sight halos 7

3.2 Flux ratio statistics with line of sight halos

We perform a simple experiment to build intuition for the
impact of line of sight halos on flux ratio observables. First,
we compute a set of image positions x and flux ratios
freference for a smooth lens mass distribution, which for sim-
plicity we model as en ellitpical isothermal-ellipsoid with ex-
ternal shear (SIE+Shear). Next, given a dark matter model
with fixed Σsub and mhm (with δlos = 1 and a background
source size of 40 pc FWHM), we render 1,000 realizations
of halos this model from Equations 3 and 4. For each of
these realizations, we optimize a smooth model to fit the
image positions, and compute the model flux ratios f ′ with
respect to this optimized lens model. We then compute the
summary statistic5

Ssmooth

(
f ′,freference

)
≡

√√√√ 3∑
i=1

(
f ′i − freference(i)

)2
. (10)

The statistic Ssmooth encodes the amount of flux ra-
tio anomaly with respect to a smooth lens model induced
by the presence of dark matter halos. In principle, the dis-
tributions of this statistic depend on the reference smooth
lens model used to compute freference, but since we con-
struct these distributions merely for visualization purposes
the choice of smooth model is not crucial. These complica-
tions notwithstanding, we note that the SIE+Shear profile
used to compute Ssmooth reasonably describes the large-scale
mass profile of a typical deflector (Auger et al. 2010; Gilman
et al. 2017).

Figure 3 shows distributions of Ssmooth for different lens
(source) redshifts of 0.5 (2) and 0.8 (3) with different dark
matter models. The addition of line of sight halos increases
the frequency of a flux ratio anomaly with respect to a
smooth lens model, and the boost is substantially higher for
configurations with higher lens and source redshifts. The in-
clusion of line of sight structure also increases the difference
in relative amplitudes between the CDM and WDM (solid
black and magenta curves) relative to models with lens plane
subhalos only. Finally, the distribution of summary statistics
for a CDM mass function with a high normalization (grey
dotted curve) resembles the statistics produced in a WDM
model with a lower value of Σsub. This reflects a degeneracy
between the amplitude of the subhalo mass function in the
main lens plane, and the turnover scale in the mass function.

In the next Section, we amend the definition of the sum-
mary statistic in Equation 10 slightly, replacing freference

with a set of observed fluxes from a strong lens fobs. We
write this new statistic Slens as

Slens

(
f ′,fobs

)
≡

√√√√ 3∑
i=1

(
f ′i − fobs(i)

)2
. (11)

Through the forward model, we will attempt to mini-
mize this statistic by computing flux ratios f ′ with different
dark matter mass functions. In Appendix C, we describe the
implementation of a fast algorithm for lens model optimiza-

5 The summation i runs over the three flux ratios derived from
the four image fluxes.

tions with many line of sight halos, which we use to compute
the statistic in Equation 11.

4 SIMULATIONS OF SUBSTRUCTURE
LENSING: SETUP AND METHODOLOGY

In this section, we describe the setup of simulations designed
to project the constraining power of flux ratios on a WDM
mass function. We first outline the physical assumptions
imposed in the simulations, and the priors on the param-
eters sampled in the forward model. Next, we walk through
the forward modeling procedure. The subsequent section de-
scribes our implementation of flux uncertainties, both from
measurement errors and lens modeling. We then describe
how, after accounting for uncertainty in the image fluxes,
we construct posterior distributions for the model parame-
ters. Finally, we describe the procedure for creating simu-
lated datasets we will use to test this machinery and make
forecasts.

4.1 Physical assumptions and priors

The methodology we present is flexible, and accommodates
any parameterization for the quantities such as the subhalo
mass function, line of sight halo mass function, main de-
flector mass profile, etc. However, for the purpose of mak-
ing forecast statements and presenting the methodology, we
make several simplifying assumptions regarding the imple-
mentation of dark matter physics, mass models, and lensing
quantities.

First, we do not marginalize over the mass, concentra-
tion, or ellipticity of the host dark matter halo. We assume
a halo mass of 1013M�, which is typical for a lensing galaxy
(Gavazzi et al. 2007), when distributing halos spatially and
evaluating the two-halo term in Equation 3. We do not ex-
pect the ellipticity of the parent dark matter halo to affect
the lens model predictions for image fluxes, since the ellip-
ticity of the lensing galaxy and external shear dominate the
quadrupole moment of the mass distribution (Keeton et al.
1997). We also ignore any redshift dependence in the sub-
halo mass function, although we evolve the line of sight halo
mass function evolve with redshift. With these simplifica-
tions, the subhalo mass function in Equation 4 takes the
form

d2N(13)

dmdA
=

Σsub

m0

(
m

m0

)−α
(12)

where the subscript (13) refers to the assumed halo mass of
1013M�. We assume α = 1.9 (Springel et al. 2008; Fiacconi
et al. 2016). We derive a projected mass density in subha-
los by integrating Equation 12 over mass, and find values
of Σsub ∼ 0.01 − 0.02 kpc−2 yield surface mass densities
in substructure similar to those derived in simulations of
early-type galaxy halos of 107M�kpc−2 with a pivot mass
of m0 = 108M� (Fiacconi et al. 2016). This normaliza-
tion in principle depends on the severity of tidal stripping,
the host halo mass, the halo redshift, and the halo forma-
tion time. Rather than modeling all of these effects from
first principles, we subsume them in the normalization Σsub,
and impose a wide (flat) prior on this parameter between
0 − 0.045kpc−2. Gilman et al. (2018) demonstrate that the
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mean normalization in the lens sample effectively scales the
information content available per lens; we perform the same
analysis in this work, examining how the constraints on dark
matter respond to different values of Σsub.

Regarding the implementation of WDM mass functions,
we assume that the parameterization of the mass function
turnover near mhm (Equation 5) applies to both halos along
the line of sight, and for subhalos in the main lens halo. As
we vary the half-mode mass mhm between 104.8 − 1010M�,
none of the models considered are truly ‘cold’ in the sense of
GeV-scale WIMPS with free-streaming masses of order an
Earth mass. However, provided mhm << mlow = 106M�,
the halo populations rendered result in the same observables
as those in a CDM universe. 6 We therefore interpret infer-
ences that favor models with mhm < 106M� as consistent
with CDM, even though the true half-mode mass may be in
fact be much lower than the value we recover. Finally, while
we implement scatter and redshift dependence in the mass
concentration relation in Equation 7, we do not marginal-
ize over the parameters describing the turnover for WDM
models.

We vary the rescaling parameter for the line of sight
halo mass function between 0.7 and 1.3. This accounts for
uncertainties the prediction of the halo mass function which
is typically at the 10− 30% level (Despali et al. 2016), and
accounts for variance in the average density along the line
of sight to strong lenses.

The background source size enters the forward model
because the perturbation to image magnifications depends
on the source size relative to the deflection angle of a per-
turber (Dobler & Keeton 2006). Upper limits on the size
of the narrow-line region from (Nierenberg et al. 2017) cor-
respond to physical sizes of ∼ 50pc, which agrees with the
surface brightness profiles seen in low redshift AGN (Müller-
Sánchez et al. 2011). We therefore allow the source size to
vary between 25 and 50 pc.

We model the main deflector as a power-law ellipsoid
plus external shear. This is a generalization of the widely
applied, physically motivated (e.g. Treu et al. 2006) singu-
lar isothermal sphere (SIE) profile used to model lensing
galaxies. Studies of early-type deflectors find mass profiles
ρ (r) ∼ r−γmacro modestly steeper than r−2 (Treu et al. 2009;
Auger et al. 2010; Shankar et al. 2017), so we allow the
power-law profile γmacro to vary between 2 and 2.2. We as-
sume deflectors with complex morphologies, including fea-
tures like stellar disks, have been identified and removed
from our sample, and describe residual baryonic effects by
adding perturbations to the forward model image fluxes, a
process we describe in Section 4.3. We marginalize over un-
certainties in image positions by rendering Gaussian astro-
metric uncertainties of ±3 m.a.s. in the forward model.

As a final note, we point out that many of the simplify-
ing assumptions we impose in our forecasts effectively ignore
relevant information that could be used to inform a prior.
For example, the velocity dispersion of the lensing galaxy

6 This is only true if the signal in flux ratio saturates at mlow,
otherwise we would miss part of the signal from halos with mass

< mlow. We verify that halos of mass below 106M� do not signif-
icantly affect the flux ratio signal for the background source sizes
25-50 pc.

could inform a prior on the halo mass and the normaliza-
tion Σsub, and possibly the macromodel profile γmacro. Since
Σsub is somewhat correlated with mhm (see Section 5), this
could improve constraints on the free-streaming length of
the dark matter. Similarly, modeling redshift dependence in
the normalization of the subhalo mass function could break
the covariance between Σsub and δlos (see Section 5). This
information would therefore improve the precision on the
inferred dark matter properties, and it is possible that we
overestimate uncertainties by omitting it.

4.2 Forward modeling procedure

To constrain the halo mass function, we adopt a forward
modeling approach. This consists of generating mock data
sets by simulating the physical processes that affect lens-
ing observables, including the size of the background source,
dark matter halos in the main lens halo and along the line of
sight, the mass profile of the main deflector, and statistical
measurement errors. This approach handles complicated de-
generacies between model parameters - for example, between
halo redshift and halo mass (e.g. Despali et al. 2018b) - by
building these features directly into the forward-generated
data sets. In effect, we exchange the task of computing a
complicated likelihood function with the challenge of simu-
lating the relevant physics in strong lensing.

This first step in the forward model is to sample all
parameters from their respective prior probability densi-
ties, summarized in Table 1. For convenience, for the ith
realization, we denote the collection of the model parame-
ters Mi. Using the parameters describing the dark matter
(Σsub, δlos,mhm), we render a the full population of line of
sight halos and lens plane subhalos, as described in Section
2.

Next, using the observed image positions 7 and fluxes
from a strong lens, we optimize a power-law plus external
shear lens model with power law slope γmacro to fit the ob-
served image positions in the presence of the full population
of dark matter halos, and ray-trace to compute the flux ra-
tios with background source modeled as a Gaussian with
a FWHM of σsrc. While optimizing the macromodel to fit
image positions, we allow the lens Einstein radius, centroid,
ellipticity, ellipticity angle, shear, and shear angle to vary,
while keeping the power-law slope γmacro fixed for each opti-
mization. If necessary, we may extend the forward modeling
of γmacro to additional mass profile parameters to add com-
plexity in the lens macromodel.

At this stage, we have a set of observed flux ratios and
a set of flux ratios simulated in the forward model. We use
the model-predicted flux ratios f ′ with the observed flux
ratios fobs to compute the summary statistic in Equation
11, which we then assign to the set of parameters Mi. We
repeat this entire procedure 600,000 times for each lens (see
the convergence test in Appendix D).

7 We add random statistical measurement errors of ±3 m.a.s. to

the image positions for each realization.
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Table 1. Parameters sampled in the forward model

parameter definition prior

Σsub

[
kpc−2

]
normalization of subhalo mass function (Equation 12) uniform: [0, 0.045]

(rendered between 106 − 1010M�)

mhm [M�] half-mode mass (Equations 5 and 7) log-uniform: [4.8, 10]

∝ to free streaming length and thermal relic mass mDM

δlos rescaling factor for the line of sight Sheth-Tormen uniform: [0.7, 1.3]

mass function (Equation 3, rendered between 106 − 1010M�)

σsrc [pc] source size uniform: [25, 50]

parameterized as FWHM of a Gaussian

γmacro logarithmic slope of main deflector mass model uniform: [2, 2.2]

δxy [m.a.s.] image position uncertainties N (0, 3)

4.3 Accounting for uncertainty in image fluxes

We introduce uncertainties in the image fluxes by adding
perturbations to the fluxes in the mock data, and by ren-
dering these perturbations in the model fluxes. Explicitly,
we modify each model-predicted image flux fi as

fi → fi +N (0, δ) . (13)

The most straightforward interpretation of this procedure is
the incorporation of statistical measurement errors. For ref-
erence, current measurements of narrow-line fluxes achieve
precision of 3 − 6% (Nierenberg et al. 2014, 2017). These
perturbations also simulate the role of unknown sources of
uncertainty, or simply those we do not explicitly model.
For example, in cases where a more complex macromodel
is required, the additional degrees of freedom that must be
marginalized over result in a larger variation in image fluxes
at fixed image positions, which effectively introduces an ad-
ditional source of flux uncertainty.

We will explicitly consider flux perturbations of 2%, 4%,
6%, and 8%. The intermediate values of 4% and 6% repre-
sent current measurement precision (Nierenberg et al. 2017)
and modeling uncertainties (Gilman et al. 2017). The 2%
value represents a best-case scenario with precise measure-
ments — perhaps with observations from future telescopes
such as JWST — and a sample of morphologically simple
deflectors that do not require complex macromodels. The
8% value corresponds to a scenario where the majority of
the systems in the lens sample require marginalizations over
complex macromodels.

4.4 Bayesian Inference

To construct posterior probability densities for the parame-
ters M listed in Table 1, we rank the 600,000 Mi by their
summary statistics, with those that minimize the statistic
ranked highest. A subset of these models (we use the top
1,500) form a probability density p′ (M |data), which be-
comes an increasingly good approximation of the true pos-
terior distribution p (M |data) as the number of forward
model samples increases. This procedure falls in the cat-
egory of Approximate Bayesian Computing methods (for a
review, see (Lintusaari et al. 2017)), and is widely applied to

problems with intractable likelihood functions (Akeret et al.
2015; Hahn et al. 2017; Birrer et al. 2017b; Davies et al.
2018). We apply a kernel density estimator to the 1,500
sample that form p′ (M |data), and multiply the resulting
probability densities to obtain the final posterior. We test
for convergence in this algorithm in Appendix D.

We acknowledge that, formally, a marginalization of
the macromodel, rather than an optimization of the macro-
model, yields the desired posterior distribution of dark mat-
ter parameters. We avoid this computationally prohibitive
step 8 with two justifications: First, the volume of macro-
model parameter space is typically tightly constrained by
the requirement that the macromodel fit the image posi-
tions. For macromodels parameterized as power-law ellip-
soids, the image fluxes do not vary significantly over this vol-
ume, and the variation in image fluxes induced by marginal-
izing over the macromodel is negligible compared to other
sources of uncertainty 9 Second, we note that for each of
the 600,000 realizations rendered in the forward model, each
macromodel re-optimization is independent. Thus, over the
course of many realizations, covariance between macromodel
parameters and the parameters describing the dark matter
content is reflected in the summary statistics.

4.5 Creating simulated data sets

To create mock data sets, we parameterize the lens macro-
model as a power-law ellipsoid, and generate mock lenses by
sampling the Einstein radii, ellipticity, and external shears,
as well as lens and source redshifts, from the distributions of
these quantities used by Oguri & Marshall (2010). We plot
the lens and source redshifts of the 50 quads in our mock
lens sample in Figure 4. We sample power law slopes drawn
from a distribution centered at 2.05± 0.04, consistent with

8 This is computationally prohibitive because the vast major-

ity of macromodel parameter configurations do not fit the image
positions, and therefore consume computation time without con-
tributing to the desired posterior distribution.
9 We test this by re-sampling a once-optimized macromodel

around the peak of the likelihood, and computing the variation
in image fluxes.
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Figure 4. The lens and source redshifts for the 50 quads in our
mock lens sample. We draw these parameters, along with the lens

velocity dispersion, ellipticity, and shear from the distributions

used by Oguri & Marshall (2010).

the morphological properties of the early-type galaxies that
dominate the strong lensing cross section (Auger et al. 2010;
Shankar et al. 2017). The background source is parameter-
ized by a circular Gaussian with a FWHM, which we specify
within the range 25−50 pc, consistent with the upper limits
on the size inferred by Nierenberg et al. (2017), and com-
parable to the luminous extent of the narrow line region
of quasars (Müller-Sánchez et al. 2011). Finally, we choose
background source positions to produce roughly equal num-
bers of cross, fold, and cusp image configurations. When
generating the mock data sets, we add measurement errors
to the image positions of 3 m.a.s., and model statistical mea-
surement errors by adding perturbations to the image fluxes,
as described in Section 4.3.

5 SIMULATIONS OF SUBSTRUCTURE
LENSING: RESULTS

This section presents the results of our analysis, in which
we test the forward modeling machinery described in the
previous section to constrain dark matter properties. We
discuss how measurement and modeling uncertainties af-
fect the precision of constraints on both CDM and WDM
mass functions, and make projections for the constraints on
the half-mode mass. We explicitly consider 4 models: Two
CDM cases with a different normalization of the subhalo
mass function Σsub, and two WDM cases with half-mode
masses of 107.7M�, and 107M�.

5.1 Joint inference on model parameters

Beginning with the CDM mass functions, in Figure 5 we
show posterior distributions for all the parameters sampled
in the forward model for a CDM mass function with a nor-
malization of Σsub = 0.018 kpc−2. As described in Section

4, we add flux perturbations of 2%, 4%, and 6% the mock
data and model fluxes to simulate measurement errors, and
additional sources of flux uncertainty that stem from lens
modeling. We marginalize over ten realizations of these flux
perturbations to reduce shot noise in the posterior distribu-
tions.

The boost in signal from the line of sight halos per-
mits 2σ bounds on the half-mode mass that range between
mhm < 107.1M�, or a 7.9 keV thermal relic particle, to
mhm < 108.8M� (2.4 keV) as statistical measurement errors
and modeling uncertainties in image fluxes increase from 2%
to 6%. This rapid erosion of constraining power underscores
the necessity of accurately measuring image fluxes, and ac-
curate lens model predictions for these observables.

The most visibly striking covariance in Figure 5 exists
between Σsub and mhm (see also Figure 6). Physically, this
feature corresponds to adding more substructure by increas-
ingly the normalization, and subsequently removing some of
the subhalos by raising the half-mode mass such that the to-
tal amount of flux perturbation remains relatively constant.
Thus, above a sensitivity threshold of roughly 106M�, Σsub

and mhm are positivity correlated. The opposite is true for
Σsub and δlos: the additional source of flux perturbation from
extra line of sight structure is partially offset by reducing
the number of lens plane subhalos, and these parameters
are anti-correlated. Finally, there is weak evidence (notice
the slightly tilted 2σ contours) for a positive correlation be-
tween the power-law slope of the macromodel γmacro and
the source size σsrc. Without a priori knowledge of the true
source size, the focusing power of a lens with a steeper mass
profile makes larger background sources look smaller. Thus,
a more extended background source is focused to the same
size image by a steeper mass profile and these parameters are
positively correlated. We emphasize that despite the covari-
ance between parameters such as Σsub and mhm, the data
still constrains these parameters independently. The covari-
ance affects the precision of the inference, but it does not
result in completely unconstrained posterior distributions.

The normalization of the subhalo mass function Σsub

plays an important role in the constraints on WDM and
CDM models. Systems with more substructure are effec-
tively weighted more than systems with fewer subhalos, and
the strength of the constraints on mhm reflect this weight-
ing. We illustrate this effect in Figure 6, through comparison
with Figure 5. The former has Σsub = 0.01 kpc−2, while the
latter has nearly twice as many lens plane subhalos with
Σsub = 0.018 kpc−2. The constraints on mhm are weaker
for the simulation with less substructure, because the data
contains less signal. Due to the covariance between Σsub and
mhm, a significant portion of the volume of the posterior lies
in high Σsub, high mhm parameter space, which results in a
peak in the marginalized constraint on mhm. Stronger the-
oretical priors on Σsub, which take into account the role of
halo mass, redshift, and tidal stripping, may improve con-
straints on mhm by breaking this covariance.

It is possible that by extending the range of the prior on
Σsub to higher values, the covariance between mhm and Σsub

would result in weaker constraints on the half-mode mass.
However, extending the prior in this manner would imply
a degree of ignorance surrounding the parameter Σsub that
would likely be exaggerated given the current state of nu-
merical simulations of dark matter halos and their substruc-
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Figure 5. The posterior distributions resulting from the forward modeling analysis of a sample of 50 lenses, with flux uncertainties
stemming from measurement errors and lens modeling controlled at the 2%, 4%, and 6% level. Vertical bars in the marginal distribution

indicate 2σ confidence interval, while dashed (solid) lines in the panels denote 2σ (1σ) contours. The marginalized constraints on mhm

range from 107.2M� for the case of 2% flux uncertainties, to 108.8M� for uncertainties of 6%.

ture (Benson 2012; Wheeler et al. 2018; Bozek et al. 2018;
Lovell et al. 2018). Keeping the width of the prior fixed, we
implicitly assume that one may predict Σsub for each lens
halo to within the width a factor of 4.5, or the width of the
prior on Σsub.

In Figures 7 and 8, we show the constraints on WDM
mass functions with mhm of 107.7M� and 107M�, which cor-
respond to thermal relic dark matter particles of 5.1 and 8.2
keV, respectively. Both datasets have Σsub = 0.012 kpc−2.
As in Figures 5 and 6, we marginalize over every parameter
listed in Table 1, but focus only on the joint distribution of
Σsub and mhm. We see evidence for a turnover in the mass
function, even though it lies below 108M�. When interpret-
ing the marginalized posteriors for mhm in cases where there

is a clear peak in WDM territory, we use the relative likeli-
hood between the lowest mhm bin (at 104.8M�) and the peak
of the posterior as a summary statistic, since the statement
regarding the 2σ confidence interval depends on the width
of the prior. 10

In the case of mhm = 107.7M�, with flux uncertainties
of 2%, 4%, and 6%, we favor WDM mass functions with

10 Sometimes, inference on CDM mass functions results in a pos-

terior distribution peaked around some value of mhm, due to the
covariance between mhm and other parameters. This effect is vis-

ible in Figure 6. In the case of Figure 6, the maximum likelihood

ratio between WDM and CDM with uncertainties of 2% equals
two.
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Figure 6. Inference on a CDM mass function with a normalization of the subhalo mass function Σsub = 0.01, roughly half the value
of the normalization assumed in Figure 5. The color scheme is the same as in Figure 5, with black, magenta, and blue representing flux

uncertainties of 2%, 4%, and 6%, respectively. In this case, the marginalized constraints on mhm are 109.1M�, 108.1M�, and 108.1M�
for flux uncertainties of 6%, 4%, and 2% (for the 4% and 2% flux uncertainties, the 2σ confidence interval happen to be the same). These
constraints are weaker by roughly an order of magnitude in mass over the bounds quoted in Figure 5, which illustrates the role of the

normalization of the subhalo mass function on the possible constrains on mhm.
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Figure 7. Inference on a WDM mass function with a half-mode mass of 107.7M� (mthermal = 5.4 keV), with the same color scheme

as Figure 5. As in Figure 5, we marginalize over the parameters listed in 1 and over various degrees of flux uncertainty, and the color
scheme is the same as in Figures 5 and 6. For flux uncertainties of 2%, 4%, and 6%, we favor WDM with mhm > 107.7M� over CDM

with likelihood ratios of 22, 30, and 8, respectively.
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Figure 8. Inference on a WDM mass function with a half-mode mass of 107M� (mthermal = 8.2 keV)., marginalized over the parameters
listed in Table 1, with the same color scheme as Figure 5. For each degree of uncertainty in image fluxes, the peak of the posterior coincides

with the location of the the turnover at 107M�, but the width of the distributions increases. With uncertainties of 2%, 4%, and 6% we

favor WDM mass functions with mhm > 107M� over CDM with likelihood ratios of 4:1, 3:1, and 2:1, respectively.

mhm > 107.7M� over CDM with relative likelihoods of 22:1,
30:1, and 8:1, respectively 11. With uncertainties of 4% and
6%, the posterior distributions of mhm shift towards higher
masses, and the posteriors no longer resolve the position of
the turnover in the mass function and mass-concentration
relation. The shift to higher values of mhm is a consequence
of the weak signal produced by very warm mass functions
with a paucity of small-scale structure. Increased flux un-
certainties wash out the information from the ‘weak signal’
regime of parameter space with mhm > 107.7M�, and the
constraints on this region of parameter space deteriorate be-
cause the data itself lies in this ‘weak signal’ regime. This
reasoning is similar to the interpretation of Σsub as an in-
formation scaling parameter for CDM mass function: like a
CDM mass function with a high normalization, a ‘colder’
WDM mass function produces more significant flux pertur-
bation events, and is more resilient to increased uncertainties
in image fluxes. If this reasoning is correct, we should expect
the posteriors on mhm for ‘colder’ WDM mass function to
remain relatively stationary, modulo an increased variance,
after adding perturbations to the image fluxes.

This effect is seen in Figure 8, which has mhm =
107M�. The shift of the posterior distributions towards
higher masses as flux uncertainties increase does not hap-
pen in this case because the WDM mass function with
mhm = 107M� produces stronger perturbations in the data
than the warmer, ‘weak signal’ model with mhm = 107.7M�.
This is because the halos are both more numerous and more
concentrated that the WDM model with mhm = 107.7M�.
In turn, the stronger signal survives additional flux uncer-

11 The increase from 22 to 30 is likely due to shot noise.

tainties, and is sufficient to constrain very warm mass func-
tions. The locations of the peaks of the posteriors coincide
with the true value of mhm, but the width of the distribu-
tions widen. In this case, we favor WDM mass functions
with mhm > 107M� over CDM mass functions with relative
likelihoods of 4:1, 3:1, and 2:1 with flux uncertainties of 2%,
4%, and 6%, respectively. The fact that we statistically favor
WDM models over CDM models suggests that we could in-
fer a turnover in the mass function at mhm = 107M� (or an
8.2 keV WDM particle) at higher significance with a larger
sample of quads.

5.2 Marginalized constraints on the
free-streaming length

The posterior distributions in Figures 5 and 6 give a sense
for how the constraints on the half-mode mass in WDM
models depends on the precision with which one measures
image fluxes and predicts them with lens models, and on
parameters such as the normalization of the subhalo mass
function. To take into account sample variance, in Figure 9
we plot the marginalized constraints on the half-mode mass
as a function of the number of lenses, Σsub, and flux mea-
surement uncertainties of 2%, 4%, 6%, and 8%. We plot the
bounds on mhm for both a high

(
Σsub = 0.02kpc−2

)
and

low
(
Σsub = 0.008kpc−2

)
normalization of the subhalo mass

function. To produce these curves, we compute 200 boot-
straps of 50 lenses, and average over many realizations of
flux uncertainties.

With a sample of 50 lenses it will be possible to probe
below 108M� in the halo mass function, to a degree that
depends on the amount of substructure in the main deflec-
tor, measurement precision of image fluxes, and precise lens
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Figure 9. Forecasts for the constraints on the half-mode mass as

a function of the number of lenses, including line of sight halos and

subhalos of the main deflector. Black, purple, blue, and red colors
denote flux uncertainties of 2%, 4%, 6%, and 8%. The solid line

corresponds to a normalization Σsub = 0.008kpc−2, while dashed

lines correspond to Σsub = 0.022kpc−2. The y-axis labels repre-
sent the 2σ bound on mhm, with the mass of the corresponding

thermal relic dark matter particle in parentheses. Models with

more subhalos (dashed lines), and hence more signal, are more
resilient to flux uncertainties than models with fewer lens planes

subhalos (solid lines) and produce stronger constraints on mhm.

model predictions for this observable. With control over im-
age fluxes at the level for 4%, routinely achieved at present
(Nierenberg et al. 2014, 2017), the bounds on mhm with 50
quads range between 107.1 − 108.1M� for values of Σsub of
0.01 and 0.022 kpc−2, respectively. With more precise pre-
dictions of Σsub made on a lens-by-lens basis, these bounds
may improve. We also note that future surveys, such as
LSST, WFIRST, and Euclid, will discover hundreds of quads
(Oguri & Marshall 2010), so the sample of available quads
will eventually be much larger than 50.

6 SUMMARY AND CONCLUSIONS

We have presented a method to perform Bayesian inference
on the halo mass function through a forward modeling anal-
ysis of image flux ratios in quadruply imaged quasars. We
model the contribution from line of sight halos, which boost
the signal per lens and permit stronger constraints on the
properties of dark matter with fewer systems. We demon-
strate the method with a sample of 50 quads, comparable in
number to the currently observed sample size, and project
the constraints on the free streaming length of a WDM par-
ticle under different degrees of flux measurement and lens
modeling uncertainties, while marginalizing over parameters

describing the size of the background source, the lens macro-
model, and the amplitude of the line of sight halo mass func-
tion.

Our key results can be summarized as follows:

• With a sample of 50 quads, we are able to constrain
the free streaming length of dark matter on scales below
108M�. Assuming CDM, with mean subhalo mass func-
tion normalizations Σsub = 0.022kpc−2

(
0.008kpc−2

)
we

forecast bounds on the half-mode mass of 107
(
107.9

)
M�,

107.1
(
108.1

)
M�, 107.4

(
108.4

)
M�, 107.5

(
108.8

)
M� for flux

uncertainties of 2%, 4%, 6%, and 8%, respectively. These
mhm limits translate to bounds on the mass of thermal relic
particles of 8.2 (4.4), 7.7, (3.8), 6.2 (3.1), 5.8 (2.4) keV.
• Line of sight halos contribute substantially to the sig-

nal in flux ratios, even dominating the signal in lens systems
with higher lens and source redshifts. However, the normal-
ization of the subhalo mass function still plays a key role in
scaling the information content per lens, with higher values
of this parameter translating into tighter constraints on the
mass function. The half-mode mass is also covariant with the
normalization, which affects the marginalized constraints on
this parameter. These features underscore the importance
of theoretical work to predict the projected surface mass
density of substructure inside galactic halos with accurate
models of baryonic feedback and tidal stripping.
• In the case that dark matter is warm, we are able to

infer the location of the turnover in the mass function with
50 quads, even if it lies below 108M�. With a half-mode
mass of 107.7M�, which corresponds to a 5.1 keV thermal
relic particle, we favor WDM mass functions with mhm >
107.7M� over CDM with relative likelihoods of 22:1, 30:1 and
8:1 for flux uncertainties of 2%, 4%, and 6%, respectively.
With the same set of flux uncertainties and a half-mode
mass of 107M�, we favor WDM with mhm > 107M� over
CDM with relative likelihoods of 4:1, 3:1, and 2:1. These
constraints will likely improve with additional lenses, which
suggests that a future large sample of quads could be used
to infer a turnover in the halo mass function at 107M� at
high statistical significance.

Our work is broadly consistent with other studies of
the line of sight contribution in substructure lensing. For
instance, by ray tracing through N-body simulations, (Xu
et al. 2012) compare the frequency of flux anomalies induced
by line of sight versus main lens halos, and reach the con-
clusion that line of sight halos contribute at the same level
as subhalos. More recently, (Despali et al. 2018b) analyze
the role of line of sight halos in the context of gravitational
imaging. This method differs somewhat from this analysis in
that it aims to detect individual halos along the line of sight,
and in the main lens plane, but the authors reach a simi-
lar conclusion: the line of sight contribution substantially
boosts the signal per lens.

The strength of the constraints on WDM models de-
pend sensitively on the normalization of the subhalo mass
function. This is partly due to the interpretation of the nor-
malization as scaling the information content per lens, and
also due to the covariance between the normalization and
the half-mode mass, although we stress that despite this co-
variance both parameters can be constrained independently.
This highlights the importance of refining theoretical predic-
tions for the value of the normalization, accounting for halo
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mass, redshift, and the destruction of subhalos by tidal strip-
ping. To this end, observables from each lens system, such
as the central velocity dispersion, half-light radius, redshift,
etc. may be used to inform the prior on the normalization
and thus further improve the inferred posterior with actual
data.

The macromodel used to describe the mass profile of the
main deflector plays a key role in this analysis. Several stud-
ies demonstrate that simple parameterizations sometimes
fail to fit the flux ratios of substructure-less mass profiles,
leading to ‘artificial’ flux ratio anomalies in the sense that
they do not derive from dark matter substructure (Gilman
et al. 2017; Hsueh et al. 2018). However, we note that these
cases are dominated by the presence of undetected stellar
disks, which are rare in the early-type galaxies that domi-
nate the lensing cross section (Auger et al. 2010; Shankar
et al. 2017). Also, we point out that identifying morpho-
logically complexity in the main deflector and modeling it
can remove these ‘artificial’ anomalies (Hsueh et al. 2016).
While we do not explicitly account morphologically complex
deflectors in this work, we do allow some freedom in the
macromodel by marginalizing over the power law slope, and
account for additional variations in the image fluxes as high
as 8% that would result from marginalizing over additional
macromodel parameters in the forward model.

Finally, we note that the formalism we present nat-
urally accommodates other parameterizations of the halo
mass function, and density profile for individual objects.
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APPENDIX A: IMPLEMENTING THE
TWO-HALO TERM

The two-halo term describes an excess of matter (relative
to the mean density of the universe) near a large halo, or a
peak in the density field. It is evaluated using the software
package colossus (Diemer 2017), and takes the form

ξ2halo (r,M, z) = b (M, z) ξlin (r, z) (A1)

where b (M, z) is the halo bias around a mass M , computed
with the model presented by Tinker et al. (2010), and

ξlin (r, z) =
1

2π2

∫ ∞
0

k2P (k, z)
sin(kr)

kr
dk (A2)

is the linear matter-matter correlation function at a distance
r. While in principle WDM free-streaming should affect the
linear power spectrum P (k, z), we do not model this effect.

We define a boost parameter β in terms of ξ2halo as

β (M, z) =
2

rmax − rmin

∫ rmax

rmin

ξ2halo

(
r′,M, z

)
dr′ (A3)
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Figure A1. Distributions of the summary statistic Ssmooth,

which represents the amount of flux raito anomaly with respect to

a smooth lens model (see the discussion in Section 3). The grey
curve is computed with the two-halo contribution, and the red

curve is computed without it. Both models include only line of

sight halos to isolate the contribution from ξ2halo. The largest dif-
ference between the curves, an offset of 4%, lies at Ssmooth ∼ 0.2.

where M denotes the parent halo mass, and the factor of 2
accounts for symmetry around the parent halo. We choose
rmin = 0.5Mpc and rmax = 10Mpc, which captures most of
the contribution from the correlation function while omit-
ting the contribution from regions inside the virial radius
of the parent halo. Defining A0 (z) as the normalization
of the halo mass function in the lens plane closest to the
main lens halo, we incorporate the two halo term by taking
A0 (z)→ (1 + β)×A0 (z), and add these halos at the main
lens redshift.

In Figure A1 we plot the distribution of summary statis-
tics Ssmooth for a CDM mass function that includes the boost
from the two-halo term, and one that does not. In both cases,
we set to Σsub = 0 to isolate the impact of the two-halo term.
The lens and source redshifts are set at 0.6 and 2, respec-
tively. The largest differences between the curves occurs at
Ssmooth ∼ 0.2, and is equal to 4%. We conclude that the
contribution from ξ2halo is at most at the level of a few per-
cent, although this may increase if a larger halo mass than
1013M� is used to evaluate Equation A3.

APPENDIX B: THE BORN APPROXIMATION
IN SUBSTRUCTURE LENSING

The Born approximation computes the deflection at each
subsequent plane along an unperturbed path. This speeds
up lensing computations since a full backwards ray-tracing
routine is not required. In Figure B1, we compare the dis-
tribution of flux ratio anomalies computed with respect to a
smooth lens model (see the discussion in Section 3.2) using
the Born approximation, and through full multi-plane ray-
tracing. The difference between the solid and dotted curves
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Figure B1. The two curves show distributions of summary

statistics computed with respect to a smooth lens model. The

curves are computed for the same CDM mass function, with and
without the use of the Born approximation. The disagreement be-

tween the two curves suggests that the Born approximation does

not predict image flux ratios accurately enough to differentiate
between dark matter models.

in the figure, which represent flux ratios computed with and
without the Born approximation, respectively, is compara-
ble to the difference of WDM and CDM mass functions in
Figure 3. Thus, we conclude that full multi-plane ray-tracing
approach is required to accurately predict image flux ratios
and probe dark matter on small scales.

APPENDIX C: A FAST ALGORITHM FOR
MULTI-PLANE LENSING COMPUTATIONS

For each observed lens, our forward modeling approach re-
quires finding a set of macromodel parameters that cast the
four light rays in a quadrupole image system to the same
location in the source plane. For a single realization, this
typically requires hundreds to thousands of backwards ray-
tracing computations.

This task is computationally light for models with ha-
los only in front of and at the same redshift as the main
deflector because the path through the foreground field of
halos is not coupled to the deflections produced in the main
lens plane (owing to the recursive nature of Equation 8).
Put differently, as soon as one specifies image positions on
the sky and draws a realization of dark matter halos, the
path through the foreground field is fully determined. In
contrast, the path through the field of background halos is
coupled to the deflections produced by the macromodel. The
path through the background field therefore changes for each
new proposal of macromodel parameters. This necessitates
repeated computations of the potentially thousands of de-
flection angles of halos behind the main lens plane, which
requires hundreds to thousands as many function evalua-
tions as those needed in single plane lensing computations.
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Figure C1. A visualization of the perturbative ray tracing algo-

rithm we use to optimize lens models with potentially thousands
of line of sight halos. The panels show the path through the back-

ground field relative to a straight line for multiple iterations of

the algorithm, in which progressively smaller halos are rendered
in progressively smaller apertures around the path of the light

rays. This procedure speeds up optimizations of lens models with
line of sight halos by at least an order of magnitude.

We address this computational challenge by implement-
ing a perturbative approach to lens model optimizations.
First, we optimize the macromodel to fit image positions
with only foreground halos and main deflector subhalos
present. We denote this optimize lens model ~m∗. This pro-
ceeds quickly, since the macromodel deflection angles are
not coupled to those from foreground and main lens plane
halos. Next, we add the largest background halos with
m > 108M�, and re-optimize ~m∗. Even though the deflec-
tions from these massive halos are coupled to those of the
macromodel and need to be continously re-evaluated dur-
ing the optimization, since there are relatively few of them
this proceeds fairly quickly. Next, we add halos in the range
107.5 − 108M�, but only in 300 m.a.s. apertures around the
path of the rays computed with respect to ~m∗. Since the area
in which we render these smaller halos is relatively small,
and since the macromodel solution ~m∗ is already close to
the true solution, this optimization also proceeds quickly.
We iterate this process for progressively smaller halos until
we reach 106M�.

A visual representation of this process is presented in
Figure C1, where we plot the path through the background
halos relative to a straight line for subsequent iterations of
the perturbative approach. After adding the 108M� back-
ground halos, the path through the background lens planes

changes only slightly, which reflects the fact that these mas-
sive objects dominate the deflection field.

This procedure accomplishes the optimization of a
macromodel with background halos 10-50 times faster than
a naive optimization with all background halos included si-
multaneously. We test that the flux ratio statistics are iden-
tical to those obtained by ray tracing through full realiza-
tions without the perturbative approach implemented. We
note that this algorithm is reminiscent of the Born approx-
imation in that it initially neglects the presence of small
deflections from subhalos along the line of sight, but differs
fundamentally from the Born approximation in that the full
non-linear coupling between every subhalo is eventually ac-
counted for.

APPENDIX D: CONVERGENCE OF
POSTERIOR DISTRIBUTIONS

We approximate the true posterior distributions for model
parameters by retaining the top 1,500 samples (ranked by
their summary statistics) out of the 600,000 realizations
computed per lens. To test whether this procedure yields
an accurate approximation to the true posterior distribu-
tion, we appeal to a certain feature of Approximate Bayesian
Computing algorithms, namely, that the approximation to
the true posterior distribution converges as the number of
samples increases. We can therefore test for convergence by
applying the same cut on the top 1,500 samples to an ‘under-
sampled’ model with only 400,000 realizations per lens, and
check that the posterior distribution stays approximately
fixed in place. We generate the sample of 400,000 by drawing
the realizations randomly from the computed set of 600,000.

We perform this test and plot the results in Figure
D1. While there is some movement in the 1σ contours, the
2σ contours trace each other closely. Importantly the con-
straints on the half-mode mass are the same between the
two inferences, which is the most important criterion for
our purpose of forecasting bounds on dark matter warmth.
Finally, we note that ABC routines tend to yield conserva-
tive approximations to the true posterior distributions, in
the sense that with more samples the volume of the result-
ing posterior distribution shrinks. This explains why black
contours (400,000 samples) tend to cover more area than
the red contours (600,000 samples). As additional forward
model samples improve the precision of the inference, the
constraints we present would only improve by computing
additional realizations.

c© 0000 RAS, MNRAS 000, 1–??



Flux ratio statistics with line of sight halos 19

0.7

0.85

1.0

1.15

1.3

LO
S 600,000 realizations per lens

400,000 realizations per lens

25
30
35
40
45
50

sr
c

2

2.05

2.1

2.15

2.2

m
ac

ro

0 0.9 1.8 2.7 3.6 4.5

sub × 102 [kpc 2]

5
6
7
8
9

10

lo
g 1

0m
hm

0.7 0.85 1.0 1.15 1.3
LOS

25 30 35 40 45 50
src

2
2.0

5 2.1 2.1
5 2.2

macro

5 6 7 8 9 10
log10mhm

Figure D1. A convergence test for the forward model simulations. The overall agreement between the black and red distributions

indicates that the posteriors we derive, and the numerical operations involved to produce them including the kernel density estimation,

are robust to changes in the number of forward model samples per lens.
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