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Abstract—We propose a novel application of coded computing
to the problem of the nearest neighbor estimation using MatDot
Codes (Fahim et al., Allerton’17) that are known to be optimal
for matrix multiplication in terms of recovery threshold under
storage constraints. In approximate nearest neighbor algo-
rithms, it is common to construct efficient in-memory indexes
to improve query response time. One such strategy is Multiple
Random Projection Trees (MRPT), which reduces the set of
candidate points over which Euclidean distance calculations
are performed. However, this may result in a high memory
footprint and possibly paging penalties for large or high-
dimensional data. Here we propose two techniques to parallelize
MRPT that exploit data and model parallelism respectively
by dividing both the data storage and the computation efforts
among different nodes in a distributed computing cluster. This is
especially critical when a single compute node cannot hold the
complete dataset in memory. We also propose a novel coded
computation strategy based on MatDot codes for the model-
parallel architecture that, in a straggler-prone environment,
achieves the storage-optimal recovery threshold, i.e., the number
of nodes that are required to serve a query. We experimentally
demonstrate that, in the absence of straggling, our distributed
approaches require less query time than execution on a single
processing node, providing near-linear speedups with respect to
the number of worker nodes. Our experiments on real systems
with simulated straggling, we also show that in a straggler-prone
environment, our strategy achieves a faster query execution than
the uncoded strategy.

Index Terms—MRPT, MatDot codes, K-NN search, straggler
and failure tolerance

I. INTRODUCTION

We consider the problem of finding the k nearest neighbors
of a query point in a given high-dimensional dataset. To solve
this problem efficiently, our goal is to speed up an existing
algorithm [1] by parallelizing it, and to make it resilient to
stragglers. The k-nearest neighbor (k-NN) problem is often a
first step used in a variety of real world applications (see [1])
including genomics, personalized search, network security,
and web based recommendation systems.

In the era of Big Data, k-NN algorithms are often a
bottleneck, as data and dimensionalities grow [2]. There is
a rich body of work on fast nearest neighbor retrieval. The
existing work can be broadly classified into three categories.
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The first category of methods speeds up k-NN retrieval by
reducing the space over which exact distance calculations
are performed, by employing space partitioning data struc-
tures [3]-[5]. The second category of techniques improves
retrieval times by system level parallelism [6], [7]. Algo-
rithms in the first and second categories are seldom scalable
as they require that the whole dataset be held in (shared)
memory for optimal performance. For large high-dimensional
datasets, marshaling enough resources on a single system is
challenging. A third category of methods aims to overcome
this challenge by parallelizing storage and computation in
a distributed setting. PANDA [8] and DSI sharding [9] are
examples of data parallel implementations of distributed k-
NN algorithms. While these techniques rely on specialized
or high performance hardware (e.g. Edison supercomputer
for PANDA), the general trend in the distributed systems has
been to use general purpose commodity systems [10] [11].
These approaches also do not address a more serious issue —
the effects of node failures and slow nodes, or “stragglers”.
Schroeder and Gibson [12] observed as many as 1,159 system
failures per year at the Los Alamos National Laboratory.
Dean et al. [13] study a real Google service and observe
that the slowest 5% of requests are responsible for half of
the total 99" percentile latency.

Recently, the idea of Coded Computing [14]-[22] has
been found to be very useful in combating stragglers and
faults, by the efficient use of novel erasure-codes to create
redundancy in computing. In this paper, we use one such
coded computing technique called MatDot codes to speed
up an approximate k-NN algorithm called Multiple Random
Projection Trees (MRPT) [1], that achieves the storage-
optimal recovery threshold! of 2m — 1. We note that for
matrix multiplication X7 Q or matrix-vector product X”'q
under the constraint that only % fraction of each operand
can be stored at each node, MatDot codes use vertical block-
partitioning of the first matrix X7 as compared to other
existing strategies that use either horizontal partition or a
combination of both (see [17], [23], [24]); and it turns out
that vertical partitioning of the first matrix is better suited for
the coded MRPT problem formulation.

This coded computing problem ensues from our broader
goal in this work, which is to speed up MRPT by employing
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data and model parallelism and straggler-tolerant computing
techniques. We differentiate here between data parallelism
and model parallelism. In data parallelism, different nodes
process different pieces of data, but each node performs
all the computations relevant to the entire model. In model
parallelism, the model itself is parallelized across nodes.

MRPT partitions the search space to retrieve approximate
k nearest neighbors of the query q. It uses a combination of
random projection trees and voting to achieve fast queries and
high accuracy. In this paper, we propose two enhancements
to the MRPT algorithm by parallelizing it in a distributed
setting. Our contributions are as follows:

o« We propose a distributed implementation of MRPT ex-
ploiting data parallelism that experimentally demonstrates
faster queries than a single node implementation, even
when using CPUs with lower clock speeds. Additionally,
the cloud based virtual machines we use in our experiments
for parallel MRPT have a non-zero steal time, i.e., they may
be required to wait while others are being served.

o We formulate a coded computing problem for MRPT, and
then apply coded matrix multiplication strategies, namely
MatDot and Systematic MatDot codes to further reduce the
query time for the model parallel architecture in a system
that is prone to straggling.

The rest of the paper is organized as follows. In Section II
we explain the MRPT algorithm and describe how it reduces
the search-space through projections and voting. In Sec-
tion III we introduce the Data Parallel Model Implementation
of MRPT. In Section IV we introduce our proposed model
parallel implementation of MRPT and then describe the
application of MatDot codes and systematic MatDot codes in
our model parallel architecture to achieve a lower recovery
threshold [23] under straggling. The model parallel archi-
tecture is ideal for applications where system components
are unreliable and accuracy is important. In Section V we
experimentally demonstrate the advantages of our approach.
A conclusion is provided in Section VI.

II. PRELIMINARIES
A. MRPT Algorithm

This section briefly describes the two stages of the MRPT
algorithm: (i) off-line index construction stage and (ii) on-
line query stage. Assume that we are given a d-dimensional
dataset X' consisting of N points, represented as a d x N
matrix X. Given a query point q, the problem of k-nearest
neighbors involves finding a set of points x C X such that
|k| = k and dist(x,q) < dist(y,q) for each x € K, y €
X\k, and the function dist(-) is the distance function in the
d-dimensional Euclidean space given by:

dist(u,v) = [lu—v|| = V]l +[[v[* - 2u- v

D

where u and v are two vectors in this space.

In the MRPT algorithm, a sparse d-dimensional random
projection vector r is chosen, in which each entry r; is
sampled from the following distribution:

{N (0,1) with probability a
r, =

0 with probability 1 — a.
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Typically, the sparsity parameter a can be chosen as —-, as

in [1], to obtain good accuracy. Now, each d-dimensional
data-point p € X is then projected onto the sparse vector r.
The dataset X is then divided into two subsets at the median
point of the projected values. The process is then repeated
recursively for every subset at a level, with a new random
vector r chosen for that tree level, until depth ¢ is reached.
Thus, for every tree t € T, the entire dataset X is partitioned
into 2¢ cells (or leaves), denoted as L1, Lo, ..., Lo, all of
which contain [gﬂ or L%J data-points.

Online Query Stage in MRPT: Given a d-dimensional
query vector q, the first step in the MRPT query stage is to
generate a candidate set of indices (pruned data-point indices)
S c{1,2,...,N} such that |[S| < N.

For each Random Projection (RP) tree t € T, at each level
the query vector q is projected onto the random vector r for
that level and then assigned a branch based on whether its
value is greater than or less than the median of the projections
of all other data-points with r. This process is then repeated
recursively until a leaf is reached.

Each tree had already partitioned the dataset X into 2/
cells or leaves. For 1 <¢ < T, let f;(-) be defined as:

22
fix:a@) =Y 1(x € Liq e L)

i=1

2)

where 1(x € L;,q € L;) denotes the indicator function that
returns 1 if both x and q reside in the same cell. Let F'(-) be
a function that returns the number of trees in which x and q
occur in the same leaf, defined as follows:

T

F(x;q) =Y fi(x,q). 3)
t=1

The candidate set of indices (pruned points) S can then be

finally chosen as follows:

S={jc{1,2,...,N}:x; € X and F(x;;q) > v} (4)

Here, v is a pre-configured parameter known as the vor-
ing threshold. Thus, the set S denotes the set of indices
C {1,2,...,N} for which at least v trees have found the
corresponding data-point x; in the same cell as q.

Finally, exact distance calculations are performed for each
x; with 7 € S, to obtain the approximate k nearest neigh-
bors to the query-vector q. The algorithm for this stage
is mentioned in Algorithm 1. Here, TREE_QUERY(q, ) is
a function corresponding to tree ¢ that returns the pruned
collection of the indices of the data-points that lie in the
same cell (or leaf) as q. Thus, TREE_QUERY(q,t) gives
{j c {1,...,N} : 1(x; € L;,q € L;) = 1 for some
L;}. The exact distance calculation is discussed again in
Section IV.

B. Coded Computing: Coded Matrix Multiplication

Coded computing combines distributed numerical algo-
rithms and error correcting codes (ECCs) to mitigate unre-
liable processors and randomness in their response time. In



Algorithm 1 The MRPT Query Phase

1: procedure APPROXIMATE_KNN(q, k, 7, v)

2 S+ 0

3 Let votes = [0, ..., 0] be a new n-dimensional array
4 for ¢ in 7 do

5: for point in TREE_QUERY (q, t) do

6: votes[point] < votes[point] + 1

7 if votes|point] = v then

8 S + S U {point}

9 return EXACT_KNN(q, &, S)

this work, we focus on coded matrix multiplication as matrix
multiplication is the main bottleneck in MRPT algorithm.

System Model: We want to compute C = AB where
A and B are N-by-N matrices. A master node distributes
the computation to P worker nodes. A worker node has
limited memory/computing power, so each node can receive
the 1/m-th fraction of matrices A and B. After completing
its computation, a worker reports the result to a fusion node.
Recovery threshold is defined as the worst-case number of
workers needed to recover the final result.

Let K be the number of workers needed to complete the
computation if all worker nodes are reliable (K is different
depending on how we split the matrix). In reality, some
processors are significantly slower than the others due to
queuing delays or random faults in the processor [14]. With-
out any reliability measure to alleviate straggler problems,
computation completion time would be dominated by few
stragglers. Our aim is to use more than K worker nodes
by adding some redundancies, which are carefully designed
by applying the ideas from coding theory, so that the whole
computation can be resilient to stragglers.

MatDot codes: The matrix A is split vertically into m
column blocks, and B is split horizontally into m row blocks:

B,
B= : ,

B,
where A;,B; (i=1,...,m)are N X N/m and N/m x N

dimensional submatrices, respectively.
The matrices A and B are then encoded as polynomials:

A=[A A, ... A,], (5)

pa(x) = ZAiwi_l, pe(z) = ZBjxm_j. (6)
i=1 j=1

A master node distributes encoded matrices, pa(«;) and

pB(«;) to the i-th worker node (i = 1,...,P). Then the

i-th worker node computes the following product at z = o:
m m

pc(x) _ Z ZAiBjxm_H_(i_j)»

i=1 j=1

)

and returns the result to the master node. Note that the
coefficient of 2™~ ! in pc(z) is C = Y i, A;B;. Since
pc(x) is a polynomial of degree 2m — 2, its coefficients can
be recovered by the master node as soon as it receives the
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values of pc(z) at any 2m — 1 distinct points. Hence the
recovery threshold is K = 2m — 1. This is provably the
optimal recovery threshold, when a worker node can store
%—th fraction of each input matrix [23].

Systematic MatDot codes: A code is called systematic
if, for the first m worker nodes, the output of the r-th
worker node is the product A,.B,. We refer to the first m
worker nodes as systematic worker nodes. Having systematic
nodes is useful because if all the systematic nodes complete
their computation in time, there is no need for decoding.
Systematic MatDot codes are achieved by applying different
encoding polynomials. Let pa(z) = Y i, A;L;(z) and
pe(z) = Y i~ B;L;(x) where L;(z) is defined as follows
forie{1,...,m}:

11

Fe{1,...m}N\{i} Ty —

Using these polynomials, the worst-case recovery threshold
remains the same as non-systematic MatDot codes [23].

IIT. DATA PARALLEL MRPT

Now, we model MRPT as a problem in data parallelism
and describe our first strategy to parallelize the algorithm.
Consider a distributed computing cluster having a single
master node and P worker nodes as shown in Fig. 1.

Given a d x N matrix X representing the set of data-points
X and a cluster with P worker nodes, we randomly split
X vertically into P disjoint, vertical partitions X; for ¢ €
{1,2,...,P}.Thus, X = [X1|X2\ e \Xp] , where each X;

is of dimension d X %.

Li(z) S (8)

Lj

Master node
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Local trees Tp,

Local MRPT
Algorithm

Local T nearest

Worker 1
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Fig. 1: Data Parallel MRPT Architecture.

We distribute each partition X; across the P worker nodes
in the cluster such that the worker W; contains partition
X,;. Each worker then runs the MRPT index construction
algorithm described in Section II-A to build a local MRPT
set of trees 7; from its partition X; of X.

Given a query q, the master node transmits q to each
worker node W;. Then W; uses the MRPT query algorithm
described in Section II-A on its trees 7; to determine the 7



nearest neighbors of q. We use the same voting threshold
v in all workers. After local voting, a local exact distance
calculation step is performed to narrow down to 7 data-
points. Finally, each worker node W; then returns the indices
of its set of 7 (> k) nearest neighbors N;, from the partition
X; of X, to the master node along with their exact distances
from the query q. Then, the master node determines the final
set of k nearest neighbors to q from all the Pr candidate
data-point indices received from all the worker nodes, i.e.,
the indices of all the data-points in the set U2 ; N;, by sorting
the data-points based on their exact distances.

Remark (1) : Recall that k C X (with |k| = k) is the set
of the true k nearest neighbors of q. We let k; C k be the
set of the true nearest neighbors to q that lie in worker W;.
To achieve maximum accuracy, we must have x; C N; and
therefore the value of v chosen for the system must be such
that |k;| is much less than 7. In fact, a higher value of T
implies higher chance of containing the desired set k;, though
it comes with increased communication cost from worker to
master and increased computation at the master node.

IV. MODEL PARALLEL MRPT

In this section we discuss a model parallel architecture for
approximate k nearest neighbor search using MRPT. We then
propose two enhancements to the model parallel architecture
that apply coded distributed matrix multiplication techniques
that achieve the optimal recovery threshold in a system that
is prone to straggling.

A. Problem Formulation for Model Parallel MRPT

Consider the d-dimensional dataset X' as before. In the
model parallel architecture, given a query q, we first find the
possible candidate set of indices (pruned indices) S using the
recursive algorithm described in Section II-A. Now the search
space for the true nearest neighbors  reduces to the set of
data-points whose indices are in S, i.e., k C {x;: j € S}.

To find the set x, we compute the exact Euclidean distance
from each data-point x; (for j € S) to the query point
q. Examining the terms constituting the Euclidean distance
in (1), the Euclidean norm ||x,|| for each x; € X can be
precomputed and the same can be done to get |qf|. We
must now only compute the dot product x; - q to obtain
the Euclidean distances from each x; to q.

To do this, we first represent the data-points indexed in the
set S as a d x |S| matrix X(S) that contains only the data-
points x; (columns of X) such that j € S. The transpose
of this matrix is the |S| x d matrix X(S)7 that essentially
denotes all the rows of the matrix X7 indexed in S.

Consider the column vector w such that w = X(S)Tq.
Note that each element of the vector w corresponds to the
dot-product x; - q = x}"q for some j € S. The Euclidean
distance from x; to q can now be determined as all the terms
in (1) are known to us, which includes the individual norms as
well as the dot product x;-q. The problem thus reduces to the
following: compute the vector w = X(S)?q in a distributed
computing cluster where X7 is known in advance. Since the
computation w = X (S)7q is the only stage of the algorithm
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Fig. 2: Partitioning the data matrix X and the query vector
q in Model Parallel MRPT.

Master node
Trees 7, 4

AV

TREE_QUERY

S = {Pruned candidates}

e T

Worker 1 Worker 2 Worker P
Lol [ Lo e
X, (5)] X, (5)7] Xp(S)T

— —
a/P /P

X2(5)T‘h
xl(S)qu\\
Master node

Fig. 3: Model Parallel Architecture with Uncoded Distributed
Matrix Multiplication.

XP(S)TCIP

that must be done at runtime (in the online stage) and scales
linearly with d, we now discuss several scalable strategies
that compute vector w in a distributed setting.

B. Uncoded Distributed Matrix-Vector Multiplication
We split X7 into P equal partitions as follows (see Fig. 2):

X' =[X{ X7 X} ©)

Now consider a cluster consisting of one master node and
P worker nodes as shown in Fig. 3. Each partition X7
is distributed across the worker nodes such that worker W;
stores the partition X, T in advance (off-line).

Note that, if XT is partitioned using the strategy just
discussed, the matrix X(S)7 also gets partitioned as follows:

X(9)" = [X1(9)T Xa(9)T Xp(S)'] (10

In the online phase, we only split the query q into P equal
partitions, {q; : 7 € {1,...,P}} (again see Fig. 2). The
product w can then be expressed as:

P
w=> X;(9) q (11)
i=1
Given a query q for which the k nearest neighbors must
be determined, the master node first computes the possible
candidate set S for q from its MRPT index set of trees 7T
and then transmits the set S and partition q; of q to worker



node W;. For every S, each worker node W; only fetches the
matrix X;(9)7 from X7 already stored in its memory. It then
computes the product X;(S)Tq; and returns the resulting
vector to the master node. The master node can thus compute
the vector w by adding the results using (11), and determine
the k£ nearest neighbors using the exact distances.

C. Coded Distributed Matrix-Vector Multiplication using
MatDot Codes

In order to successfully compute the vector w using the
strategy described in Section IV-B, the master node must
wait for every worker node W; to successfully return the
product X;(S)Tq;. In a straggler-prone environment, this
might cause unprecedented delays in computation. Thus, to
avoid waiting for all nodes and be able to recover the matrix-
vector product by only waiting for some out of all workers
to finish, we will now apply the MatDot-based distributed
matrix multiplication strategy [23].

We partition the matrix X vertically again, but into m
partitions instead of P as follows:

X" =[x X7 XTI ] (12)
We then use the following encoding polynomial:
Pxr(B) = X[ (13)
Jj=1

The rows of Pxr () indexed in set S actually represent the
following polynomial:
Pxrs)(8) =Y _X;(9)"p7

j=1

(14)

We will be referring to this observation later.

Now, given a cluster with a master node and P worker
nodes, as shown in Fig. 4, each worker node W; is initialized
with a different 3;, using which it computes the polynomial
Px7(B;) in (13). This encoding step can be performed off-
line as X7 is known in advance.

During the online stage, given a query q for which the k
nearest neighbors must be determined, the master node first
partitions q into m parts: {q,; : j € {1,2,...,m}}. We then
use the following encoding polynomial:

Po(B) =) q;p" (15)
j=1

As in Section IV-B, the master node first determines the
candidate set S. It then transmits S and the encoded query
P4(B;) obtained from (15) to worker W;. The worker W;
then fetches only the matrix Px(g)r(8;) from its stored
Pxr(5;) (recall (14)) which essentially denotes all the rows
of Pxr(f;) indexed in S. Then, it computes the product
Px (57 (Bi) Pq(B;) and returns the result to the master node.

The coefficient of A™~! in the polynomial
Px(5)7(B)Pq(B) turns out to be our desired desired
matrix-vector product X(S)"q = Y7, X;(5)"q; from
the property of MatDot codes. We need to evaluate the
polynomial at only 2m — 1 distinct points so as to determine
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Fig. 4: Model Parallel Architecture with MatDot Codes.

the coefficient for every power of 3. The master node must
therefore wait for at least 2m — 1 worker nodes following
which it can determine the term > ;- X;(5)"q; using
polynomial interpolation. We then follow the strategy of
comparing the exact distances in Section IV-A to obtain the
set of the k nearest neighbors to q.

D. Coded Distributed Matrix-Vector Multiplication using
Systematic MatDot Codes

In our prior work [23] where we proposed MatDot Codes,
we also introduced their systematic variant. Their advantage
is that, while for MatDot Codes the recovery threshold is
always 2m — 1, for systematic MatDot Codes one might
sometimes only need m nodes to finish, although 2m — 1 is
the worst-case value. In this section, we apply the systematic
MatDot code to the MRPT problem.

Similar to the previous case, we first partition X7 ver-
tically into m partitions, but then use a different encoding
function:

Pxr(B) =Y X L), (16)
j=1
where L;() is given by:
L= ] g,:ﬁr (17)
J T

re{l1,2,...,m}\j

Consider a cluster consisting of one master node and P
worker nodes. Worker W, is assigned a value (3; using
which it computes the polynomial in (16). This encoding is
performed in advance, in the off-line stage. Interestingly, the
workers {W; : i =1,2,...,m} turn out to be the systematic

worker nodes, which contain uncoded partitions of X7



In the online phase, given a query g, the master node first
partitions q into m partitions and then uses the following
encoding function:

Po(B) =Y _a;L;(B) (18)

j=1

where L;(f) is given by (17). The master node then transmits
candidate set S and Pg4(;) to each worker node. Worker W;
is responsible for computing the product Px g7 (83;)Pq(53:).
We first consider the case when the first m workers to
successfully complete their computation are the systematic
worker nodes. We can then obtain the vector w as follows:

w = Z Px(s)7 (Bi) Pq(B:)

i=1

19)

If the results of the first 2m — 1 successful workers do not
contain results from the m systematic nodes, then the master
interpolates the polynomial Px g7 (83)Pq(f). It then com-
putes this polynomial product at each §; € {81,82,...,0m}-
Finally, it computes the vector w using (19). Note that in
the ideal case, i.e., when all the systematic worker nodes
finish first, we only needed m nodes to finish as opposed
to the worst-case recovery threshold of 2m — 1. We can
now proceed with the steps of comparing exact distances
(see Section IV-A) to retrieve the k nearest neighbors of q.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of data and
model parallel MRPT in terms of both accuracy and speed.
All of our experiments were conducted on Amazon Elastic
Compute Cloud instances [25].

The STL-10 dataset [26] is a dataset of N = 100000
images each of dimension d = 9216 used in unsupervised
image classification algorithms, while GIST [27] is a popular
dataset with N = 1000000 and d = 960 used in ANN
algorithms. These datasets provide us with a good mix of
dimensionality and number of datapoints to evaluate our
proposed strategies. The MRPT parameters used for the
experiments are provided in Table I.

TABLE I: MRPT Parameters

Dataset || £ v Number of Trees || Projection Sparsity
STL-10 || 7 || 25 900 0.01
GIST 9 10 900 0.032

We evaluate the accuracy of our implementation using

|krvrPT N K

recall defined as: , where q is the query whose

true k nearest neighbors is the set x and kp;rpr is the set
of k nearest neighbors returned by the algorithm.

For the single node MRPT baseline, we used a compute
optimized c5.large instance with two 3GHz Intel Xeon
Platinum processors and 4 GB of memory. For the data
parallel and model parallel architectures, we used 2.medium
instances with two 2.3 GHz Intel Broadwell processors and
4 GB of memory. All instances are provisioned with 40GB
HDD secondary storage. Note that the hardware used for
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our baseline experiments is superior to that used to evaluate
our parallel strategies. In all experiments we ran 500 queries
sequentially with k& = 10. We consider the average result
of 50 runs for each experiment. The experiments were
conducted in a cluster consisting of 1 master node and 16
worker nodes.

In the experiments with MatDot codes and systematic
MatDot codes, we used encoding polynomials of degree 2.

A. System Constraints

All our experiments are conducted on systems with limited
memory. Thus the MRPT algorithm has to use the disk to
hold the index 7 and the actual data points. In compari-
son, the data parallel and model parallel architectures use
less memory and avoid disk penalties. In the data parallel
architecture, we reduce the amount of points each worker
must hold by a factor of P. Additionally, the MRPT indexes
become smaller as each worker holds a smaller fraction of
the dataset. In the model parallel architecture, the master
node can discard the components for each point after tree
construction; it only needs the index. At each worker node,
the memory requirement is at least halved.

B. Simulating Stragglers on Amazon Web Services

To demonstrate the effects of stragglers in the model
parallel architecture, we sample the minimum time 7; a
worker W; must take to complete a matrix multiplication for
a query from the shifted Exponential [14], [16] and Weibull
distributions [28], [29] shown in (20) and (21) respectively.

PriT; <t]=1—¢ 1 (t-al) (20)

Pr(T; <t]=1- (- t=ait)™ 1)

Here, [; is the number of row vectors loaded at worker
W; for matrix multiplication, a; > 0 is the shift parameter,
o; > 0 is the shape parameter for the Weibull distribution,
;i > 0 is the straggling parameter for W, and ¢ > a;l;.
For our experiments, we set each Wiy Qg and «; to some
constants 4, a, and « to maintain homogeneity in minimum
computation times across workers. The parameters chosen are
as follows: Shifted Exponential (a = 0.0000001, p = 15) and
Weibull (a = 0.2, u = 2, a = 0.5) for both the datasets. Note
that, for model parallel MRPT, I; = |S|. We use a similar
strategy to simulate straggling in data parallel MRPT with [;
set to the average of |S| for the set of test queries.

C. Results

Our experimental results are provided in Tables II and also
illustrated in Fig. 5. For completion, we also include our
obtained recall values here:

STL-10: Data Parallel (0.9632), Model Parallel (0.9648).
GIST: Data Parallel (0.9430), Model Parallel (0.9350).

In all our experiments, both data and model parallel MRPT
outperform the single node implementation. As shown in Fig.
5a and Fig. 5b, data parallel MRPT is significantly faster than
single node MRPT. This is due to the smaller size of the
MRPT index and absence of disk penalties at workers. It can
be seen that the data parallel strategy has better performance



TABLE II: Runtime Statistics in seconds for MRPT on STL-10 and GIST datasets over 50 Runs

Experiment Type Mean (STL-10) | Std. Dev.(STL-10) | Mean (GIST) | Std. Dev.(GIST)
Single Node 762.272 69.147 2795.791 173.395
Data Parallel, Shifted-Exponential Runtime 349.309 14.672 1091.010 44.261
Data Parallel, Weibull Runtime 305.046 14.44 1082.638 39.081
Uncoded Model Parallel, Shifted-Exponential Runtime 419.114 17.217 1260.504 49.566
Uncoded Model Parallel, Weibull Runtime 408.814 13.625 1261.980 62.259
Coded Model Parallel (MatDot), Shifted-Exponential Runtime 179.082 7.956 608.496 38.406
Coded Model Parallel (MatDot), Weibull Runtime 179.075 8.312 618.515 39.270
Coded Model Parallel (Systematic MatDot), Shifted-Exponential Runtime 168.869 6.865 604.546 22951
Coded Model Parallel (Systematic MatDot), Weibull Runtime 171.428 8.526 622.716 22.495
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Fig. 5: Experimental Results of MRPT in different configurations.

when compared to uncoded model parallel strategy because
of its embarrassingly parallel design. Owing to this design,
the data parallel strategy could scale linearly with the number
of nodes. However, these scaling benefits in query execution
come at a cost, as the random projection trees computed at
each node do not contain all the data points and hence the
candidate set generated by each node could contain lesser true
positives. To offset this condition, we might have to lower
the voting threshold in-order to generate a better candidate,
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while causing more communication overheads and hence
lower query execution time. The note mentioned in Section
IIT explains this case in more detail. For our experiments, we
do not lower the voting threshold as the loss in recall for
STL-10 and GIST is not significant.

The model parallel architecture results in a high communi-
cation cost as the candidate set has to be transmitted to each
worker node. However, we find that if the MRPT parameters
for a dataset are sufficiently tuned, Algorithm 1 will generate



a smaller candidate set over which exact distance calculations
must be performed. For our experiments, the algorithm was
able to reduce the search space for STL-10 from 100000
datapoints to 3025 and for GIST from 1000000 to 14934
datapoints on average per query. Additionally, the model
parallel strategy does not suffer from the accuracy related
issues as compared to the data parallel architecture as the
candidate set is generated using the entire dataset and not
parts of it separately.

Both the strategies outperform baseline single node MRPT
despite running on inferior hardware. The parallel strategies
are not limited by memory constraints as in the case of single
node MRPT. These strategies are therefore very useful when
large datasets do not fit in memory. The coded model parallel
strategy also makes the algorithm tolerant to slow nodes and
failures in a distributed setting.

Fig. 5c and Fig. 5d show that model parallel MRPT
outperforms single node MRPT. They also outperform data
parallel MRPT under simulated straggling. This is of signif-
icance to real world systems where straggling may manifest
as unreliable nodes or network delays. Fig. S5e and Fig. 5f
show the benefits of coded matrix multiplication as opposed
to the uncoded model parallel architecture under simulated
straggling. Both MatDot codes and systematic MatDot codes
are consistently faster than the uncoded approach. Fig. Se also
shows that systematic MatDot codes is able to outperform
MatDot codes owing to its lower recovery threshold.

VI. CONCLUSIONS

We proposed two approaches to parallelize the MRPT
algorithm in a distributed setting. We also applied the Mat-
Dot code based distributed matrix multiplication strategy to
reduce the recovery threshold in a system that is prone to
stragglers. We showed that our parallelization strategies can
achieve faster queries than the single node MRPT algorithm
under limited memory. Our results demonstrate the benefits
of applying MatDot code and systematic MatDot code to
the model parallel architecture in a system with simulated
stragglers. In our experiments we observed large floating
point errors when inverting high degree Vandermonde ma-
trices for polynomial interpolation. As future work, we will
experiment with strategies to reduce the condition number
of a Vandermonde matrix [30] so that we can employ poly-
nomials of higher degrees, and thus apply the MatDot code
and systematic MatDot code with a larger number of worker
nodes. Another possibility is to perform the computations
in exact rational arithmetic. This would eliminate rounding
errors, but the effect on runtime needs to be analyzed.
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